Dirichletreihen und Zetafunktionen Übungsblatt 1

Aufgabe 1 Sei

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

eine Dirichlet-Reihe. Man zeige: Genau dann konvergiert die Reihe für mindestens ein $s \in \mathbb{C}$, wenn die Folge $(a_n)_{n\geqslant 1}$ höchstens polynomial wächst, d.h. wenn es ein $d \in \mathbb{N}$ und ein $K \in \mathbb{R}_+$ gibt mit $|a_n| \leqslant K n^d$ für alle $n \geqslant 1$.

Aufgabe 2

Man berechne die Koeffizienten a_n der Dirichlet-Reihe

$$F(s) := \left(1 - \frac{1}{3^{s-1}}\right)\zeta(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

und bestimme die Konvergenz-Abszissen $\sigma_a(F)$ und $\sigma_c(F)$.

Aufgabe 3

Man konstruiere eine Dirichlet-Reihe $f(s) = \sum \frac{a_n}{n^s}$ mit

$$\sigma_a(f) = 1$$
 und $\sigma_c(f) = \frac{1}{2}$.

Aufgabe 4

Sei $f(s) := \sum_{n=1}^{\infty} \frac{a_n}{n^s}$ eine Dirichlet-Reihe, die für s = 0 divergiert.

Man beweise folgende Formel für die bedingte Konvergenz-Abszisse:

$$\sigma_c(f) = \limsup_{N \to \infty} \frac{\log |A(N)|}{\log N}, \text{ wobei } A(N) := \sum_{n=1}^N a_n.$$