Analytische Zahlentheorie Übungsblatt 9

Aufgabe 33

Die Liouvillesche Funktion $\lambda: \mathbb{N} \to \mathbb{Z}$ ist wie folgt definiert: Sei $n = p_1^{k_1} \cdot \ldots \cdot p_r^{k_r}$ die kanonische Primfaktorzerlegung von $n \in \mathbb{N}$ und $k := \sum_{j=1}^r k_j$. Dann setzt man

$$\lambda(n) := (-1)^k.$$

Sei $M(x) := \sum_{n \leqslant x} \mu(n)$ (dabei ist μ die Möbius-Funktion) und $M_1(x) := \sum_{n \leqslant x} \lambda(n)$. Man beweise:

$$M_1(x) = M(x) + O(\sqrt{x})$$
 für $x \to \infty$.

Aufgabe 34

Man bestimme alle Dirichlet-Charktere $\chi: \mathbb{N} \to \mathbb{C}$ modulo 6 und zeige direkt: Für einen vom Hauptcharakter verschiedenen Charakter χ modulo 6 gilt

$$L(1, \chi) > 0.$$

Aufgabe 35

Sei $\chi: \mathbb{N} \to \mathbb{C}$ ein Dirichlet-Charakter modulo $m \geq 2$.

Man beweise: Die Funktion $L(s,\chi)$ hat keine Nullstellen auf der Geraden $\{\text{Re}(s)=1\}$.

Aufgabe 36

Man beweise für Re(s) > 1 die Reihen-Entwicklung

$$\frac{1}{L(s,\chi)} = \sum_{n=1}^{\infty} \frac{\mu(n)\chi(n)}{n^s}.$$

Klausur am Mittwoch, 20. Juli 2011, 14 hct.

Bitte Anmeldung (online) nicht vergessen!