Die Riemannsche Zeta-Funktion Übungsblatt 4

Aufgabe 13

Man leite aus der asymptotischen Beziehung $p_n \sim n \log n$ den Primzahlsatz

$$\pi(x) \sim \frac{x}{\log x}$$

her.

Aufgabe 14

Man beweise für festes $\varepsilon>0$ die asymptotische Beziehung

$$\pi((1+\varepsilon)x) - \pi(x) \sim \frac{\varepsilon x}{\log x}.$$

Aufgabe 15 Man zeige:

a) Für alle $m \ge 1$ gilt

$$\int_{2}^{x} \frac{dt}{\log^{m} t} = O\left(\frac{x}{\log^{m} x}\right).$$

b) Für alle $m \ge 2$ gilt

$$\int_{2}^{x} \frac{dt}{\log t} = \frac{x}{\log x} + \sum_{k=2}^{m-1} \frac{(k-1)! x}{\log^{k} x} + (m-1)! \int_{2}^{x} \frac{dt}{\log^{m} t} + C_{m}.$$

Dabei ist C_m eine (von x unabhängige) Konstante.

Aufgabe 16 Man beweise für alle ganzen Zahlen $m \ge 2$

a)
$$\prod_{k=1}^{m-1} (1 - e^{2\pi i k/m}) = m,$$

b)
$$\prod_{k=1}^{m-1} \sin(\frac{k\pi}{m}) = \frac{m}{2^{m-1}},$$

c)
$$\prod_{k=1}^{m-1} \Gamma\left(\frac{k}{m}\right) = \sqrt{\frac{(2\pi)^{m-1}}{m}},$$

d)
$$\prod_{k=0}^{m-1} \Gamma\left(\frac{z+k}{m}\right) = (2\pi)^{\frac{m-1}{2}} m^{\frac{1}{2}-z} \Gamma(z).$$

Abgabetermin: Mittwoch, 10. Dezember 2008, 14 Uhr, Übungskasten im 1. Stock