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Problem 13

Let M be a finite set with m ≥ 2 elements. As defined in problem 8, an involution of
M is a map σ : M → M , different from the identity, with σ ◦ σ = idM .

a) Prove: If m is odd, then every involution σ of M has at least one fixpoint, i.e.
there exists an x ∈ M with σ(x) = x.

b) Let m = 2k be even. Determine the number of involutions of M without fixpoints.

Problem 14

Let σ : Z26 → Z26 be an involution without fixpoints. Determine the number of per-
mutations π : Z26 → Z26 such that

π−1σπ = σ.

Problem 15

Let N = 2n be an even positive integer and P = C = ZN
2 . Let K = SN be the group of

all permutations of the set {1, 2, . . . , N}. For π ∈ K define the encryption Eπ : P → C
in the obvious way by letting π permute the components of a plaintext vector x ∈ ZN

2 .
Set Dπ = (Eπ)−1. Let Pkey be the uniform probability distribution on K and let Pplain

be an arbitrary probability distribution with Pplain(x) > 0 for all x ∈ P .

a) Show that the cipher system (P , C,K, E, D, Pplain, Pkey) does not provide perfect
secrecy.

b) Consider the following subsystem: Let P1 = C1 be the set of all vectors x =
(x1, . . . , xN) ∈ ZN

2 such that exactly n of the components xi are zero. Prove
that the cipher system (P1, C1,K, E, D, Pplain1, Pkey) provides perfect secrecy. Here
Pplain1 is any probability distribution on P1 with Pplain1(x) > 0 for all x ∈ P1.

Problem 16

A sequence xi ∈ Z25, i ≥ 0, has been generated by a linear congruential generator

f : Z25 → Z25, x 7→ (ax + b) mod 25,

with an initial element x0 ∈ Z25 and recursion relation xi+1 = f(xi).

We identify Z25 with the alphabet A . . . Z without the letter J. The following ciphertext
has been obtained from an English plaintext by adding the sequence (xi) modulo 25.
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The beginning of the plaintext was THE. Calculate a, b and the plaintext.
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