
Elliptic Curves in Algorithmic Number Theory
and Cryptography

Otto Forster

§1 Applications in Algorithmic Number Theory

In this section we describe briefly the use of elliptic curves over finite fields for

two fundamental problems in algorithmic number theory, namely factorization and

proving primality of large integers.

1.1 Factorization. The elliptic curve factorization method of H. Lenstra is a gen-

eralization of the so-called (p − 1)-factorization algorithm of Pollard. The com-

mon setup for both methods is the following: Suppose we want to find a factor of

some large integer N . Let there be given a functor that associates to N a group

G(N) and to any prime divisor p | N a group G(p) and a group homomorphism

βp : G(N) → G(p) with the following property: If x ∈ G(N) r {e} is a nontriv-

ial element lying in the kernel of one of the βp (for an unknown prime divisor

p | N), then a nontrivial divisor of N can be easily calculated. In the case of

Pollard’s (p − 1)-method one sets G(m) := (Z/m)∗ for all integers m > 0. If an

element x̄ = x mod N ∈ (Z/N)∗ is in the kernel of the natural homomorphism

βp : (Z/N)∗ → (Z/p)∗ for some prime divisor p | N and if x 6≡ 1 mod N , then

d := gcd(x− 1, N)

is a nontrivial divisor of N . But how can we find a nontrivial element in the kernel

of βp if p is unknown? This is possible provided that the order of G(p) is a “smooth”

number, i.e. if

#G(p) = qk1
1 qk2

2 · . . . · qkr
r

with small prime powers qki
i , say qki

i ≤ B for all i and a given (relatively small)

bound B. One then calculates the number

Q(B) =
∏
q≤B

qα(q,B),

where α(q, B) := max{k ∈ N : qk ≤ B}. By the prime number theorem, Q(B) has

order of magnitude exp(B). Since by assumption #G(p) | Q(B), for every element

August 2002
This is a preliminary version of an appendix to the forthcoming 2nd edition of the book

D. Husemöller: Elliptic Curves, Springer-Verlag

O. Forster: Elliptic Curves in Algorithmic Number Theory and Cryptography 2

ξ ∈ G(p) we have ξQ(B) = e. Therefore, if we calculate y := xQ(B) for an arbitrary

element x ∈ G(N), then y ∈ ker(βp), because βp(y) = βp(x)Q(B) = e. If y 6= e, then

by assumption a divisor of N can be calculated. Pollard’s method is efficient if there

is a prime divisor p | N such that p− 1 is a smooth number. But this is not always

the case. It was Lenstra’s idea to replace the multiplicative group F∗p in Pollard’s

method by an elliptic curve G(p) = Ea,b(Fp). By varying the parameters a, b of

the elliptic curve, there is a better chance that the order #Ea,b(Fp) is a sufficiently

smooth number.

Lenstra’s algorithm works as follows: To start, we choose random elements a ∈ Z/N ,

P0 = (x0, y0) ∈ (Z/N)2 and determine a value b ∈ Z/N such that

y2
0 ≡ x3

0 + ax0 + b mod N.

In rare cases we will have gcd(4a3 + 27b2, N) 6= 1. Then we have either found a

nontrivial divisor of N and can stop the algorithm or else N | 4a3 + 27b2 and we

must start again with new random values a, x0, y0.

If gcd(4a3 + 27b2, N) = 1, consider the equation

Y 2 = X3 + aX + b.

For every prime divisor p | N , we define the group G(p) := Ea,b(Z/p) as the elliptic

curve defined by this equation taken modulo p and set G(N) :=
∏

p|N Ea,b(Z/p).

The homomorphisms βp : G(N) → G(p) are the natural projections. If we denote

by G(p)′ := G(p) r {O} the affine part of G(p), then G(N)′ :=
∏

p|N G(p)′ is

the complement of
⋃

p|N ker(βp). The points of G(N)′ can be represented by pairs

(x, y) of integers satisfying our equation modulo N . We have already constructed a

point P0 = (x0, y0) of G(N)′. By the general principle of the factorization algorithm

explained above, we must now calculate the multiple Q(B) · P0 (for some suitable

choice of B). This can be done in O(log Q(B)) steps by repeated doubling and

adding. The group law to add two points P1 + P2 =: P3 is given by the formulas

x3 := λ2 − x1 − x2, y3 := λ(x1 − x3)− y1,

where the “slope” λ is defined by

λ :=
y2 − y1

x2 − x1

if x1 6= x2 and λ :=
3x2

1 + a

2y1

if P1 = P2.

The only problem in doing these operations in Z/N is the calculation of the inverses

of the denominators. These inverses, if they exist in Z/N , can be calculated by using

the extended Euclidean algorithm to calculate the gcd of the denominator and N .

If the gcd equals 1, the inverse can be calculated and we can go on. The exceptional

case is that the gcd is a number d 6= 1. If d 6= N , we are in a lucky case because we

have found a divisor of N . If one of the elliptic curves G(p) has an order dividing

Q(B), an exceptional case must necessarily occur during the calculation of Q(B)·P0,

because then Q(B) · P0 cannot be an element of G(N)′. If we do not encounter a

O. Forster: Elliptic Curves in Algorithmic Number Theory and Cryptography 3

lucky case we are not completely lost, because we can start again with new random

parameters a, x0, y0, i.e. with new elliptic curves G(p) with different orders. A nice

feature of the elliptic curve factorization algorithm is that it is easily parallelizable,

because we can let many computers work on the factorization of the same number

N using different elliptic curves.

1.2 Deterministic Primality Tests. There are some very efficient probabilistic

primality tests for large integers. An example is the Solovay-Strassen test. This test

works as follows. Let N be a large odd integer to be tested for primality. Choose a

random integer a with 1 < a < N and check whether (1) gcd(a, N) = 1, and (2)

a(N−1)/2 ≡ (a
N

) mod N , where (a
N

) is the Jacobi symbol. Of course, if N is prime,

these conditions are satisfied (condition (2) is a theorem of Euler). Hence if one of

the conditions fails, we are certain that N is not prime. If both conditions hold,

we can assert the primality of N only with a certain error probability. Indeed one

can show that for composite N condition (2) is satisfied for less than N/2 values of

a. Hence the error probability is less than 1
2
. (For most N the error probabilty is

much less.) By repeating the test m times with independent random values a, the

error probability will be less than 2−m. An integer N which has passed successfully

sufficiently often a probabilistic primility test is called a “probable prime”. For all

practical purposes we may assume that N is prime, but this is not a mathematical

certainty.

If the prime decomposition of N−1 is known, there is a simple deterministic primal-

ity test: N is prime if and only if there exists an integer a such that aN−1 ≡ 1 mod N

and a(N−1)/q 6≡ 1 for all prime divisors q | N − 1. An a with this property is then a

primitive root modulo N . If N is prime then there exist ϕ(N − 1) primitive roots,

hence by trying out some random numbers one can be found. But in general N − 1

(which is the order of (Z/N)∗ in case N is prime) is difficult to factorize. As in

the case of Lenstra’s factorization method one can try to replace the group (Z/N)∗

by an elliptic curve Ea,b. By varying the coefficients a, b, the orders of the elliptic

curves vary and there is a better chance that at least one of these orders can be

factorized. This was the idea of Goldwasser/Kilian. Their primality test is based on

the following proposition.

Proposition. Let N be a probable prime with gcd(6, N) = 1 and let a, b be integers

with gcd(4a3 + 27b2, N) = 1. Consider the elliptic curve with affine equation

E = Ea,b : Y 2 = X3 + aX + b.

Suppose there exists a prime q > (4
√

N + 1)2 and an affine point P = (x, y) on

E(Z/N) such that q · P = O. Then N is prime.

Remark. As in 1.1 we define E(Z/N) =
∏

p|N E(Z/p). All calculations are done in

Z/N . In contrast to 1.1, here an exceptional case where we encounter a denomina-

tor, which is a nonzero noninvertible element of Z/N , will rarely occur in practice,

because N is a probable prime.

O. Forster: Elliptic Curves in Algorithmic Number Theory and Cryptography 4

Proof. Assume that N is not prime. Then there exists a prime divisor p | N with

p ≤
√

N . The natural homomorphism

E(Z/N) −→ E(Z/p)

maps P to a point P = (x̄, ȳ) ∈ E(Z/p) of order q. By the theorem of Hasse (Chap.

13.1, Theorem (1.2)), the order of E(Z/p) satisfies

#E(Z/p) < p + 1 + 2
√

p ≤
√

N + 1 + 2
4
√

N = (
4
√

N + 1)2.

Therefore it would follow that q > #E(Z/p), a contradiction!

The primality test of Goldwasser/Kilian uses this proposition in the following way:

Choose random numbers a, b and determine the order m := #Ea,b(Z/N) by Schoof’s

algorithm (cf. 2.6), assuming N is prime. By trial division of m by small primes write

m as m = f · u, where f is the factored and u the unfactored part. If f ≥ 2 and

u > (4
√

N +1)2, test whether q := u is a probable prime. If this is not the case or if u

is not of the required size, start again with new random values a, b. If q is a probable

prime, it is in general easy to find a point P = (x, y) on Ea,b(Z/N) of order q. Then

by the proposition N is prime provided q is prime. Since q ≤ 1
2
#Ea,b(Z/N), this can

be tested recursively by the same method. The primality test of Goldwasser/Kilian

has expected polynomial running time (polynomial in the number of bits of N), but

still is too slow in practice.

Atkin/Morain have devised an improvement which makes this primality test efficient

in practice. Instead of choosing random elliptic curves and calculating their order,

they construct, using a complex multiplication method, elliptic curves whose order

is known a priori. Let −D be the discriminant of an imaginary quadratic number

field. If N is prime and the equation 4N = t2 + Ds2 has an integer solution (t, s),

then there exists an elliptic curve E over the field Z/N , whose endomorphism ring is

the ring of algebraic integers in Q(
√
−D), and which has m = #E(Z/N) = N +1±t

elements. As above, one can test whether m can be written as m = f · q, where q is

a probable prime with m/2 ≥ q > (4
√

N + 1)2. There exists an effective algorithm of

Cornacchia to decide whether the Diophantic equation 4N = t2+Ds2 is solvable and

to find a solution in case of existence (of course (−D
N

) = 1 is a necessary condition).

The equation of the elliptic curve E can be constructed in the following way: We first

calculate the j-invariant jD := j
(
−D+i

√
D

2

)
∈ C with sufficiently high precision. This

is an algebraic integer of degree equal to the class number h of the field Q(
√
−D).

Its conjugates are j(τν), ν = 2, . . . , h, where the lattices Z + Zτν represent the non-

principal ideal classes of Q(
√
−D). By calculating also these conjugates of jD, we

get its minimal polynomial HD(T) ∈ Z[T]. This polynomial, taken modulo N , has

at least one zero j0 ∈ Z/N , which is the j-invariant of the elliptic curve E(Z/N).

From this we can calculate the equation of the elliptic curve. Up to isomorphism,

there are only two possibilities, except for D = −3 with 6, and D = −4 with 4

isomorphism classes.

O. Forster: Elliptic Curves in Algorithmic Number Theory and Cryptography 5

Incorporating further improvements, the primality test of Atkin/Morain is very ef-

ficient and has been used to prove the primality of numbers with more than 1000

decimal digits.

§2 Elliptic Curves in Cryptography

The use of elliptic curves in cryptography is based on the discrete logarithm problem.

First we describe this problem in a general group.

2.1 The Discrete Logarithm. Let G be a finite abelian group (we will write it

multiplicatively) and let g ∈ G be a fixed element of known order q. Let G0 = 〈g〉
the cyclic subgroup of G generated by g. Then we have an isomorphism of groups

expg : Z/qZ −→ G0, k 7→ gk.

The inverse map of expg is called the discrete logarithm (with respect to basis g)

logg : G0 −→ Z/qZ .

More concretely, given an element x ∈ G0 = 〈g〉, the discrete logarithm of x is the

unique number k mod q such that x = gk.

Popular choices for the group G are the multiplicative group of a finite field or an

elliptic curve over a finite field.

The crucial point for the cryptographical applications is that the exponential map

can be effectively calculated, whereas the calculation of the logarithm is in general

much more complicated. To give an idea of the orders of magnitude involved, the

bitsize of the number q (which should be a prime for reasons that we will explain

later) is typically between 160 and 1024 (i.e. q ≈ 2160 up to q ≈ 21024). The power

gk can be calculated by the repeated squaring algorithm: If

k =
r∑

i=0

bi2
r, bi ∈ {0, 1}

then

gk =
∏
bi 6=0

g2i

and g2i
requires i multiplications. Hence the complexity grows linearly with the

number of digits of q. The complexity of the discrete logarithm depends of course on

the particular group G. We will discuss this problem later, but we say at this point

only that for general elliptic curves the best known algorithms have a complexity

growing exponentially with the number of digits of q.

We will now describe two cryptographical applications of the discrete logarithm in

the context of a general group.

2.2 Diffie-Hellman Key Exchange. Suppose that two parties, say Alice and Bob,

want to take up a confidential communication over an unsecured channel like the

O. Forster: Elliptic Curves in Algorithmic Number Theory and Cryptography 6

Internet. For this purpose they send their messages encrypted with a secret key that

is known only to Alice and Bob. But how can they agree on a common secret key if

this information must also be exchanged over the unsecured channel? This can be

done by a public key system invented by W. Diffie and M.E. Hellman. First Alice

and Bob agree on a triple (G, g, q) consisting of a group G and an element g ∈ G

of order q as in (2.1). It is supposed that the discrete logarithm problem in G is

intractable. This (G, g, q) is a public key that need not to be kept secret. For every

particular session a new secret key is established in the following manner:

1. Alice chooses a random number α ∈ Z/qZ, calculates a := gα ∈ G and sends a to

Bob. The number α must be kept secret, but a may be known to an adversary.

2. Bob chooses a random number β ∈ Z/qZ, calculates b := gβ ∈ G and sends b to

Alice. Again β must be kept secret.

3. Alice calculates ka := bα ∈ G, and Bob calculates kb := aβ ∈ G. Of course

ka = gαβ = kb;

so they can use ka = kb as their common secret key. An adversary knows a = gα and

b = gβ. To calculate gαβ from gα and gβ is known as the Diffie-Hellman problem.

For this no better method is known than to calculate α or β by solving the discrete

logarithm problem for one of the equations a = gα or b = gβ. But this was supposed

to be practically impossible.

2.3 Digital Signatures. An electronic document can be easily copied and the copy

is completely identical to the original. Therefore, at first sight, it seems that a digital

signature can be forged even more easily than can handwritten signature. Therefore

it is surprising that a secure digital signature scheme can be established using public

key cryptography. The idea is to use signatures that depend on the signed document

and that can only be produced using a private (secret) key, whereas verification of

the signature is possible using the public key corresponding to the secret key.

There are several digital signature schemes; we will describe one that is a variant of

a scheme invented by T. ElGamal. This scheme uses the discrete logarithm and can

be formulated for an arbitrary finite abelian group (for example, an elliptic curve

over a finite field).

So let (G, g, q) be (as above) a triple where G is a group and g ∈ G an element

of known prime order q and suppose that the discrete logarithm problem in G is

intractable. Furthermore let there be given a map ϕ : G → Z/qZ. (For example,

if G is an elliptic curve over a prime field Fp, for a point A ∈ G, A 6= O, we could

define ϕ(A) = x(A) mod q, where x(A) ∈ {0, 1, 2, . . . , p − 1} is the x-coordinate of

A.)

1. To set up a public/private key pair for digital signatures, Alice chooses a random

number ξ ∈ (Z/q)∗ and calculates

h := gξ ∈ G.

O. Forster: Elliptic Curves in Algorithmic Number Theory and Cryptography 7

The public key is then (G, q, ϕ, g, h), whereas ξ serves as Alice’s private key and must

be kept secret. (An adversary can calculate ξ from the public data, provided he can

solve the discrete logarithm problem in G, which we supposed to be practically

impossible.)

2. To sign a particular message m ∈ (Z/qZ)∗ (in practice m will be a so called

message digest or cryptographic check sum of a longer document), Alice chooses a

new random number α ∈ (Z/qZ)∗ and calculates

a := gα ∈ G,

and, using her private key ξ,

m′ := m + ξϕ(a) ∈ Z/qZ.

If m′ = 0 (a case which in practice will never occur, because its probability is only

1/q), another random number α has to be chosen. Then Alice calculates

β := α−1m′ ∈ (Z/qZ)∗.

The signature of m is

σ := (a, β) ∈ G× Z/qZ,

and the signed message is the pair (m,σ).

3. If Bob wants to verify that (m, σ) was indeed signed by Alice, he does the following

calculations (which use only the public key)

γ := mβ−1 ∈ Z/qZ, δ := ϕ(a)β−1 ∈ Z/qZ,

and

c := gγhδ ∈ G.

He accepts the signature if c = a. If the message m was properly signed, this is

indeed the case, because

gγhδ = gmβ−1

gξϕ(a)β−1

= g(m+ξϕ(a))β−1

= gm′β−1

= gα = a.

2.4 Algorithms for the Discrete Logarithm. Let G be a cyclic group of order

q with generator g and x ∈ G. We wish to determine a number ξ ∈ Z/qZ such that

x = gξ.

If q is not prime, but a composite with prime factorization

q =
∏

p
rj

j ,

it is easy to see that the problem can be reduced to cyclic groups of order pj.

Therefore the discrete logarithm problem is hardest if q is prime.

O. Forster: Elliptic Curves in Algorithmic Number Theory and Cryptography 8

The baby step/giant step (BSGS) algorithm of Shanks proceeds in the following way:

Let k := d√qe be the smallest integer ≥ √
q. The (unknown) discrete logarithm ξ

can be written as

ξ = nk + m, 0 ≤ n,m < k.

The equation x = gξ is equivalent to

xg−m = gkn.

First, the “giant steps”

gkν , ν = 0, 1, . . . , k − 1

are calculated and stored in a hash table. Then the “baby steps”

xg−µ, µ = 0, 1, 2, . . .

are calculated one after the other and compared with the stored values until a

collision

xg−m = gkn

is found. The discrete logarithm is then ξ = (kn + m) mod q. If efficient hashing

techniques are used for storing and searching, this algorithm requires roughly O(
√

q)

steps. The memory requirement (for the giant steps) is also O(
√

q). However there

exist probabilistic variants (Pollard’s rho and lambda method) which use only a

small constant amount of memory and have the same time complexity O(
√

q).

Remark. The complexity O(
√

q) is an exponential complexity considering it (as cus-

tomary) as a function of the number of binary digits of q.

To be safe against this algorithm (i.e. to make the discrete logarithm problem in-

tractable), q should be by today’s (2002) standards at least 2160. The number of

required steps would then be > 280 ≈ 1.2 · 1024.

For special groups there exist more efficient algorithms for the discrete logarithm.

For example, for the multiplicative group F∗q of a finite field there exist subexponential

algorithms (index calculus method, number field sieve). Subexponential complexity

is between polynomial and exponential complexity.

For general elliptic curves over finite fields no better algorithms for the discrete

logarithm problem are known than the general purpose O(
√

q) algorithms. However,

for elliptic curves with special properties, one can do better. For example, let E be

a supersingular elliptic curve over Fp, so that E(Fp) has n = p + 1 elements. Using

the Weil pairing

E[n]× E[n] −→ µn

and the fact that µn = µp+1 is a subgroup of F∗p2 , one can embed E(Fp) into the

multiplicative group F∗p2 and use the more efficient algorithms in F∗p2 to solve the

discrete logarithm problem. For several other special classes of elliptic curves algo-

rithms with complexity better than O(
√

q) are known. So the recommendation for

the application of elliptic curves in cryptography is to use “random” elliptic curves

O. Forster: Elliptic Curves in Algorithmic Number Theory and Cryptography 9

(i.e. curves with random coefficients) in the hope that the special algorithms for

the discrete logarithm that have been found or may be found in the future do not

apply to them. As we have seen, to make the discrete logarithm problem difficult,

the order of the group should be a prime number or have at least a large prime fac-

tor. So the problem arises of counting the number of points of the randomly chosen

elliptic curves. If one has efficient algorithms for this purpose, one chooses random

elliptic curves and determines their order. If the order is not satisfactory, the curve

is thrown away and a new random curve is chosen, until a good one is found.

2.5 Counting the Number of Points. A straightforward way to determine the

number of points of an elliptic curve E over the prime field Fp, (p an odd prime),

given by the equation

Y 2 = X3 + aX + b = P3(X)

is to use the Legendre symbol. For a given x ∈ Fp, the equation Y 2 = P3(x) has 2,

1 or 0 solutions in Fp if
(

P3(x)
p

)
equals +1, 0 or −1 respectively. Therefore, taking

into account also the point at infinity, it follows

#E(Fp) = 1 +
∑
x∈Fp

{
1 +

(
P3(x)

p

)}
= (p + 1) +

∑
x∈Fp

(
P3(x)

p

)
.

However, this method has complexity O(p) and can be used only for small primes p

(say up to 106).

A better method with complexity O(4
√

q) is an adaption of Shanks’s baby step/giant

step algorithm. Let E be an elliptic curve over a finite field Fq. By the theorem of

Hasse, the order of E lies in the “Hasse interval”

H := {n ∈ N : |n− (q + 1)| ≤ 2
√

q}.

One chooses a random point P ∈ E(Fq) and determines by the BSGS algorithm an

integer N ∈ H such that N · P = O. Since H has 1 + 2b2√qc elements, this can be

done with about 2 4
√

q giant and baby steps. If N is the only element of the Hasse

intervall with N · P = O, this is the order of E(Fq). For orders up to 1024, this

method is effective in practice. But the elliptic curves used in cryptography are still

larger, so other methods are needed.

2.6 Schoof’s Algorithm. Recall that for an elliptic curve E defined over a finite

field Fq the Frobenius automorphism φ = φq : E → E satisfies a quadratic equation

φ2 − cφ + q = 0,

where the trace c is connected to the order N of the elliptic curve by

N = #E(Fq) = q + 1− c.

The idea of Schoof is to calculate c` := c mod ` for various small primes ` by re-

stricting the Frobenius automorphism to the group of `-division points E[`] ⊂ E,

O. Forster: Elliptic Curves in Algorithmic Number Theory and Cryptography 10

which is invariant under φ. If the characteristic p of the field Fq is bigger than `,

then

E[`] ∼= Z/`Z× Z/`Z = F2
`

is a 2-dimensional vector space over F` and the restriction φ | E[`], which we denote

again by φ, satisfies the characteristic equation

φ2 − c`φ + q` = 0,

with q` = q mod `. The trace c` can be calculated by choosing a point P ∈ E[`]r{0}
and solving the equation

φ2(P) + q`P = c`φ(P).

If c` is known for all ` ∈ {`1, . . . , `r}, then by the Chinese remainder theorem we

can calculate c modulo L :=
∏

`ν . If L is greater than the length 4
√

q of the Hasse

interval, c and therefore N = #E(Fq) is uniquely determined. Even if L < 4
√

q,

then there are at most d4√q/Le possible values for N . Using an appropriate BSGS

method, one can then determine the correct value of N in about
√

4
√

q/L steps.

How can we find a point P ∈ E[`]r{0} ? For odd `, the x-coordinates of these points

are the roots of the `-division polynomial Ψ`(T) ∈ Fq[T], which is a polynomial of

degree (`2−1)/2 (because the `2−1 points of E[`]r{0} come in pairs ±P having the

same x-coordinate), cf. [5], Chap. 13.9. Using the recursion formulas, the division

polynomials can be easily calculated. In general, Ψ` neither has a zero in the ground

field Fq nor is it irreducible. Suppose we know an irreducible factor F (T) of degree

r of the polynomial Ψ`(T). Then the field K := Fq[T]/(F (T)) is isomorphic to Fqr

and the element t := T mod F (T) ∈ K is the x-coordinate of an `-division point. If

the element P3(t) is the square of an element s ∈ K, then (t, s) ∈ K2 is an `-division

point of the elliptic curve, otherwise one has to pass to a quadratic extension of K.

To avoid the case distinction it is convenient, instead of working with the curve

E : Y 2 = X3 + aX + b =: P3(X),

to work with the twisted curve

Ẽ : P3(t)Y
2 = P3(X).

On this curve, (t, 1) is an `-division point. The points (ξ, η) on Ẽ correspond to points

(ξ,
√

P3(t)η) on E. Therefore the Frobenius automorphism φ : (x, y) 7→ (xq, yq)

translates to (ξ, η) 7→ (ξq, P3(t)
(q−1)/2ηq) on Ẽ.

There exist standard algorithms to determine an irreducible factor F of Ψ`; es-

sentially one has to calculate the greatest common divisor of T qr − T and Ψ`(T)

for r = 1, 2, However these algorithms are too expensive compared with all

other operations, so it is better to leave Ψ` unfactorized and work over the ring

R := Fq[T]/(Ψ`(T)), which amounts to working simultaneously over all fields

Fq[T]/(Fj(T)), where Fj are the irreducible factors of Ψ`. Working with the ring

R instead of a field can cause only problems when inverses of elements ξ 6= 0 have

O. Forster: Elliptic Curves in Algorithmic Number Theory and Cryptography 11

to be calculated. The calculation of an inverse is done using the extended Euclidean

algorithm. If the inverse does not exist, one detects automatically a factor G of Ψ`.

Hence this does not hurt but is rather useful because we can pass to the smaller ring

R′ = Fq[T]/(G(T)).

The algorithm of Schoof we sketched so far was the first algorithm of polynomial

complexity for the point counting problem on elliptic curves. However it is still too

slow for the curves used in cryptography. Atkin, Elkies and others have contributed

improvements, which make the algorithm practical. In the next section we will de-

scribe one such improvement.

2.7 Elkies Primes. As before let E be an elliptic curve defined over a finite field

Fq of characteristic p > 3, with trace c = (q+1)−#E(Fq) and let ` < p be a an odd

prime. Recall that the Frobenius automorphism restricted to the two dimensional

F`-vectorspace E[`] of `-division points of E satisfies the quadratic equation

φ2 − c`φ + q` = 0,

where c` = c mod ` and q` = q mod `. Therefore the eigenvalues of φ |E[`] are

λ1,2 = 1
2
(c` ±

√
c2
` − 4q`).

If c2
` − 4q` is a square in F`, which will be the case for about half of the primes `,

these eigenvalues belong to the field F`. Primes with this property are called Elkies

primes for the given elliptic curve. For such primes an eigenvector of φ spans a 1-

dimensional subspace C ⊂ E[`] invariant under the Frobenius automorphism. C is

a cyclic subgroup of E of order ` defined over the ground field Fq, hence the isogeny

E → E/C is also defined over Fq. Furthermore

G(T) :=
∏

P∈(Cr0)/±1

(T − x(P)) ∈ Fq[T]

is a factor of degree (` − 1)/2 of the division polynomial Ψ`(T). The important

thing about Elkies primes is that they can be determined without having to work

explicitly in E[`]. This is done using the modular polynomials Φ`(x, y), cf. [5], Chap.

11.9. These are polynomials of degree ` + 1 with integer coefficients, hence they can

also be regarded as polynomials over Fq. If j(E) is the j-invariant of the elliptic

curve E then the zeroes of Φ`(j(E), y) are the j-invariants of curves E/C, where C

runs through the cyclic subgroups of E of order `. Therefore ` is an Elkies prime if

and only if the polynomial Φ`(j(E), y) ∈ Fq[y] has a zero in Fq; this can be checked

by computing the greatest common divisor of this polynomial and yq − y. When

a solution j′ ∈ Fq of Φ`(j(E), j′) = 0 has been found, there is also a procedure

to calculate directly the factor G(T) of the division polynomial Ψ`(T). With this,

a substantial gain in efficiency of Schoof’s point counting algorithm is achieved,

because for the elliptic curves used in cryptography primes ` up to 100 or higher

are needed, so it makes a big difference whether one has to deal with polynomials of

degree (` − 1)/2 or (`2 − 1)/2. There exist still further improvements, for example

O. Forster: Elliptic Curves in Algorithmic Number Theory and Cryptography 12

replacing the modular polynomials Φ`, whose coefficients grow rapidly with `, by

simpler polynomials. We refer to Blake/Seroussi/Smart [2] and the references given

there. We have restricted our attention here to elliptic curves over finite fields with

large prime characteristic. For curves over fields of characteristic 2, other methods

exist.

Bibliography

1. Atkin, A.O.L., Morain, F.: Elliptic curves and primality proving. Math. Comp.

61, 29-67 (1993).

2. Blake, I., Seroussi, G., Smart, N.: Elliptic Curves in Cryptography. LMS Lec-

ture Notes Series 265, Cambridge University Press, 1999.

3. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer-

Verlag, 1996.

4. Goldwasser, S., Kilian, J.: Almost all primes can be quickly certified. 18th

STOC, 316-329 (1986).

5. Husemöller, D.: Elliptic Curves. 2nd edition, Springer-Verlag, to appear.

6. Lenstra, H.W.: Factoring integers with elliptic curves. Ann. Math. 126, 649-

673 (1987).

7. Schoof, R.: Elliptic curves over finite fields and the computation of square

roots mod p. Math. Comp. 44, 483-494 (1985).

8. Schoof, R.: Counting points on elliptic curves over finite fields. J. Théorie des

Nombres de Bordeaux 7, 219-254 (1995).

9. Solovay, R., Strassen, V.: A fast Monte Carlo test for primality. SIAM J. Comp.

6, 84-85 (1977). Erratum Vol. 7, 118 (1978).

Otto Forster, Math. Institut der LMU München (Germany)

Email: forster@mathematik.uni-muenchen.de

