Mathematik I für Physiker

Probeklausur 2

Prof. Dr. H.-D. Donder

Aufgabe 1: Stelle die folgenden komplexen Zahlen in der Form $re^{i\varphi}$ mit $r \in \mathbb{R}^+$ und $\varphi \in [0, 2\pi)$ (Polarkoordinaten) dar:

(a)
$$\frac{(\sqrt{3}+i)^3}{2i}$$
 (b) $2i(\sqrt{3}+i)$

Aufgabe 2: Beweise, dass für alle $n \in \mathbb{N}$ gilt:

(a)
$$\sum_{k=0}^{n} \binom{n}{k}^{2} = \binom{2n}{n} \quad \text{Tipp: } (1+x)^{2n} = (1+x)^{n} (1+x)^{n}$$
(b)
$$\sum_{k=0}^{n} kx^{k} = x \frac{1-x^{n}}{(1-x)^{2}} - \frac{nx^{n+1}}{1-x} \quad \text{für } x \in \mathbb{R} \setminus \{1\}$$

(b)
$$\sum_{k=0}^{n} kx^{k} = x \frac{1-x^{n}}{(1-x)^{2}} - \frac{nx^{n+1}}{1-x} \quad \text{für } x \in \mathbb{R} \setminus \{1\}$$

Aufgabe 3: Berechne folgende Grenzwerte von Folgen und Reihen oder beweise, dass sie nicht existieren:

(a)
$$\lim_{n \to \infty} (n+1) \cos \left(\frac{6+9n+4n^2}{2n+2} \pi \right)$$
 (b) $\sum_{k=1}^{\infty} (-1)^k \sin \left(\frac{1}{k} - \frac{1}{5} \right)$

Aufgabe 4: Bestimme das Taylorpolynom dritten Grades $T_3(f,0)$ der Funktion $f:\mathbb{R}\to$ \mathbb{R} mit Entwicklungspunkt 0:

(a)
$$f(x) = e^{x^3}$$
 (b) $f(x) = \frac{1}{1+x^2}$

Aufgabe 5: Berechne die folgenden Integrale:

(a)
$$\int_0^{\pi/4} \tan t dt$$
 Tipp: Substituiere $x = \cos(t)$
(b)
$$\int_0^{\infty} t^3 e^{-t} dt$$

Aufgabe 6: Sei $g: \mathbb{R} \to \mathbb{R}$ eine Regelfunktion und $f: \mathbb{R} \to \mathbb{R}$ stetig. Zeige, dass dann auch die Funktion

$$f \circ g : \mathbb{R} \to \mathbb{R}, \quad f \circ g(x) = f(g(x))$$

eine Regelfunktion ist.