Mathematik I für Physiker

Übungsblatt 7

Prof. Dr. H.-D. Donder

Aufgabe 1: Sei a > 0. Berechne die folgenden Grenzwerte:

(a)
$$\lim_{x \to a} \frac{x^2 - a^2}{x^3 - a^3}$$
 (b)
$$\lim_{x \to \infty} \left(\frac{1}{(x+2)^2} - \frac{1}{x^2} \right) / \left(\frac{1}{(x+1)^2} - \frac{1}{x^2} \right)$$

(c)
$$\lim_{x \to a} \frac{\sqrt[3]{x} - \sqrt[3]{a}}{\sqrt{x} - \sqrt{a}}$$
 (d)
$$\lim_{x \to \infty} \frac{\sqrt{x+2} - \sqrt{x}}{\sqrt{x+1} - \sqrt{x}}$$

(c)
$$\lim_{x \to a} \frac{\sqrt[3]{x} - \sqrt[3]{a}}{\sqrt{x} - \sqrt{a}}$$
 (d)
$$\lim_{x \to \infty} \frac{\sqrt{x+2} - \sqrt{x}}{\sqrt{x+1} - \sqrt{x}}$$

Aufgabe 2: Welche der folgenden Funktionen sind stetig? Welche sind gleichmäßig stetig? (Beachte den Definitionsbereich!)

(a)
$$f: \mathbb{Q} \to \mathbb{R}$$
, $f(x) = \begin{cases} 1 & \text{, falls } x^2 > 2 \\ 0 & \text{sonst} \end{cases}$

(b)
$$f: [0,4] \to \mathbb{R}, \quad f(x) = \begin{cases} 1 & \text{, falls } x^2 > 2 \\ 0 & \text{sonst} \end{cases}$$

(c)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = (x - n)(x - n - 1)$, falls $x \in [n, n + 1)$ für $n \in \mathbb{Z}$

(d)
$$f:(0,1] \to \mathbb{R}$$
, $f(x) = \left(\frac{1}{x} - n\right) \left(\frac{1}{x} - n - 1\right)$, falls $\frac{1}{x} \in [n, n+1)$ für $n \in \mathbb{N} \setminus \{0\}$

Aufgabe 3: Sei $f:[a,b]\to\mathbb{R}$ monoton wachsend. Zeige, dass für jedes $p\in(a,b)$ die links- und rechtsseitigen Limites

$$\lim_{x \nearrow p} f(x)$$
 und $\lim_{x \searrow p} f(x)$

existieren.

Aufgabe 4: Für jedes n sei $A_n \subset \mathbb{R}$ eine nichtleere kompakte Menge. Es gelte für alle n $A_{n+1} \subseteq A_n$. Zeige, dass es einen Punkt gibt, der in allen A_n liegt, dass also gilt:

$$\bigcap_{n\in\mathbb{N}} A_n \neq \emptyset$$

Die Schnittmenge $\bigcap_{n\in\mathbb{N}} A_n = A_0 \cap A_1 \cap A_2 \cap \ldots$ ist hierbei definiert als die Menge aller Zahlen, die für jedes $n \in \mathbb{N}$ in der Menge A_n liegen, das heißt:

$$\bigcap_{n\in\mathbb{N}}A_n=\{x\in\mathbb{R}\mid\text{F\"{u}r alle }n\in\mathbb{N}\text{ gilt: }x\in A_n\}$$