Mathematik I für Physiker

Übungsblatt 4

Prof. Dr. H.-D. Donder

Aufgabe 1: Bestimme, falls existent, die Grenzwerte von:

(a)
$$\left(\frac{6n^7 + 8n^3 + 99}{3n^7 + 99n^5 + 4n}\right)_{n \in \mathbb{N}}$$
(b)
$$\left(\frac{n + 2^n + 5}{2n + 5 - 2^{n+1}}\right)_{n \in \mathbb{N}}$$
(c)
$$\left(\sqrt{n+1} - \sqrt{n}\right)_{n \in \mathbb{N}}$$
(d)
$$\left(\sqrt{n+\sqrt{n}} - \sqrt{n}\right)_{n \in \mathbb{N}}$$

(b)
$$\left(\frac{n+2^n+5}{2n+5-2^{n+1}}\right)_{n\in\mathbb{N}}$$

(c)
$$\left(\sqrt{n+1} - \sqrt{n}\right)_{n \in \mathbb{N}}$$

(d)
$$\left(\sqrt{n+\sqrt{n}}-\sqrt{n}\right)_{n\in\mathbb{N}}$$

Aufgabe 2: Sei $M \subseteq \mathbb{R}$ und $a = \sup(M)$. Zeige, dass es eine Folge $(a_n)_{n \in \mathbb{N}}$ gibt, deren Glieder a_n alle in M liegen und die gegen a konvergiert.

Aufgabe 3: Beweise: Eine Folge $(a_n)_{n\in\mathbb{N}}$ konvergiert genau dann gegen $a\in\mathbb{R}$, wenn jede Teilfolge von $(a_n)_{n\in\mathbb{N}}$ eine gegen a konvergente Teilfolge besitzt.

Aufgabe 4: Finde Folgen $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$, so dass

$$\lim_{n \to \infty} a_n = 0, \quad \lim_{n \to \infty} b_n = \infty \quad \text{und:}$$

- (a) $\lim_{n\to\infty} a_n b_n = 5$
- (b) $\lim_{n\to\infty} a_n b_n = \infty$
- $\lim_{n\to\infty} a_n b_n = -\infty$ (c)
- (d) $(a_n b_n)$ ist beschränkt aber konvergiert nicht.