
1. Classical Physics

What is classical physics? It became the name for non quantum physics. This
begs the question: What is quantum physics? One easily finds a statement
like: It is the physics were the position and momentum of a particle are oper-
ators. That is as senseless as it reads. Some time ago it was fashionable to say
that classical physics describes the world with classical notions like particles
moving around in space, while in modern physics, i.e. quantum mechanics,
the classical notions are not anymore adequate. Why? Who knows! Here is
a more serious statement: Classical physics is the description of the world
when the interference effects of the Schrödinger wave function are so small
that they can be neglected. That is the case for a tremendously wide range
of scales from microscopic gases to stellar matter, in particular it includes
the scale of our direct human perception, which is why classical physics was
found before quantum mechanics. A theory which governs in this enormous
range the behavior of matter is Newtonian mechanics. No wonder that New-
ton considered himself a giant of physics.

1.1 Newtonian Mechanics

Newtonian mechanics is about point particles. What is a point particle? It is
“stuff” or “matter” that occupies a point in space (mathematically described
by q ∈ R3) called its position. The theory describes the motion of point
particles through space. Mathematically an N-particle system is described by
the positions of the N particles:

q1, . . . , qN , qi ∈ R3

which change with time, so that one has trajectories q1(t), . . . , qN (t); t ∈ R,
where the parameter t ∈ R means usually the time.

Newtonian mechanics is given by equations—the physical law—which gov-
ern the trajectories, called the equations of motions. Equations of motions
can be formulated in many different (but more or less equivalent) ways so
that the physical law looks different for each formulation, but the trajectories
remain the same. We shall soon look at an example. Which formulation one
prefers will mostly be a matter of taste, one may find the arguments leading
to a particular formulation more satisfactory or convincing than others.
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To formulate the law of Newtonian mechanics one introduces positive
parameters, called ”masses” m1, . . . , mN , which represent “the matter” and
the law reads

miq̈i = F i(q1, . . . , qN ). (1.1)

F i is called the ”force”. That is in general a function of all particle positions
i.e. it is a function of the configuration , that is the family of all coordinates
(q1, . . . , qN ) ∈ R3N (the set of all such tuples is called configuration space .)
q̇i = dqi/dt = vi is the velocity of the i− th particle and it’s derivative q̈i is
called acceleration.

Newtonian mechanics is romantic in a way: One way of talking about it is
to say that particles accelerate each other, they interact through forces with
each other: Newtonian mechanics is a theory of interaction. The fundamental
interaction is gravitation or mass-attraction given by

F i(q1, . . . , qN ) =
∑

j 6=i

Gmimj
qj − qi

‖qj − qi‖3 , (1.2)

with G the gravitational constant.
All point particles of the Newtonian universe interact according to (1.2).
In effective descriptions of subsystem (in the way we actually use Newto-

nian mechanics in everyday life), other forces like harmonic forces of springs
can appear on the left hand side of (1.1). Such general forces need not (and in
general will not) arise from gravitation alone, electromagnetic forces will also
play a role, i.e. we describe electromagnetic interaction between electrically
charged particles by the Coulomb force as approximation within Newtonian
mechanics. The Coulomb force is similar to (1.2) but may have a different
sign and the masses mi are replaced by the charges ei which may be positive
or negative.

One may wonder why Newtonian mechanics can be successfully applied
to subsystems like the solar system or even smaller systems like systems on
earth, that is, why can one ignore all the rest of the universe? There are vari-
ous reasons one can give. For example far away matter which homogeneously
surrounds the earth produces a zero net field. Also the force (1.2) falls off
with large distances (especially for astronomically large distances it is negli-
gible). That then allows the effective description of a subsystem ignoring far
away matter. But of course the effect of distant matter is never exactly zero.

Anmerkung 1.1.1. Initial value problem
The equation (1.1) is a differential equation and thus poses an initial value
problem: The trajectories qi(t), t ∈ R, which obey (1.1), are only determined
once ”initial data” are given qi(t0), q̇i(t0) where t0 is some time, called the
”initial time”. This means that the future and the past evolution of the
trajectories are determined by the “present” state qi(t0), q̇i(t0). Note, that
the position alone is not sufficient to determine the state of a Newtonian
system.
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It is well known, that differential equations need not have unique and
global solutions, i.e. solutions which exists for all times for all initial values.
What does exist however is — at least for the gravitation case — a local
unique solution for a great many initial conditions, i.e. a solution which exists
uniquely for some short period of time, if the initial values are reasonable:
(1.1) und (1.2) have no solution if for example two particles occupy the same
position. Also for the solution to exist it must not happen that two or more
particles collide. It is a famous mathematical physics problem to establish
the so called “existence of dynamics” result for a many particle gravitating
systems, where one hopes to show, that only for ”exceptional initial values”
the solutions fail to exist globally. What does ”exceptional” mean? We shall
answer this in short while.

We wish to shortly comment on the manner of speaking of ”interacting”
particles, which gives a human touch to Newtonian mechanics: The parti-
cles attract each other. Taking this notion to heart one might be inclined to
associate with the notion of particle more than simply an object which has
a position. That might be misleading, since no matter how one justifies or
speaks about Newtonian mechanics, when all is said and done there remains
a physical law about the motion of point particles and that is a mathematical
expression about the change of points in space with time. We shall explore
one such prosaic description next.

1.2 Hamilton Mechanics

One can formulate the Newtonian law differently. Different formulations are
based on different fundamental principles, like for example the principle of
least action. But never mind such principles, we simply observe now that it
is mathematically much nicer to rewrite everything in terms of configuration
space variables

q =




q1

.

.
qN


 ∈ R3N ,

i.e. we write the differential equation for all particles in a compact form as

mq̈ = F (1.3)

with

F =




F 1

.

.
F N




and the mass matrix
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m =




m1

m2 0
m3

m4

0 m5

. . .




.

Configuration space cannot be depicted ((see 1.1) for a very special situ-
ation), at least not for a system of more than one particle, because it is
6-dimensional for 2 particles in physical space. It is thus not so easy to think
intuitively about things going on in configuration space. But one better builds
some intuition for configuration space because it plays a fundamental role in
quantum theory.

Abb. 1.1. configuration space for 3 particles in a one dimensional world

A differential equation is by definition a relation between the flow and the
vector field. The flow is the mapping along the the solution curves, which are
integral curves along the vector field (the tangents of the solution curves). If
a physical law is given by a differential equation, the vector field encodes the
physical law. Let us see how this works.

The differential equation (1.3) is of second order and does not express
transparently the relation between integral curves and vector field. We need
to change (1.3) into an equation of first order so that the vector field becomes
transparent.

For that one considers the phase space variables
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(
q
p

)
=




q1

.

.
qN

p1

.

.
pN




∈ R3N × R3N = Γ

which was introduced by Boltzmann1, where we consider positions and veloc-
ities, the latter however for convenience of notation as momenta– pi = mivi.
One point in Γ represents the present state of the entire N -particle system.
The dimension of phase space has twice the dimension of configuration space
and can be depicted for one particle moving in one dimension, for example
the pendulum (See figure 1.2).

Abb. 1.2. Phase space description of the
mathematically idealized harmonically swing-
ing pendulum. The possible trajectories of the
mathematically idealized pendulum swinging
in a plane with frequency 1 are concentric cir-
cles in phase space. The sets M und M(t) will
be discussed later.

(1.3) becomes obviously

. (1.4)

1 The notion of phase space was used by Ludwig Boltzmann (1844–1906) as syn-
onymous to state space, the phase being the collection of variables which uniquely
determine the physical state. The physical state is uniquely determined if it’s fu-
ture and past evolution in time is uniquely determined given the physical law.
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The state of the N -particle system is completely determined by
(

q
p

)
because

(1.4) and the ”initial values”
(

q(t0)
p(t0)

)
determine uniquely the phase space

trajectory (if the initial value problem allows for a solution.)
For(1.2) and many other effective forces there exists a function V on R3N ,

the so called potential energy function such that F = −gradqV = −∂V
∂q =

−∇V . Using this we may write (1.4) as

(
q̇
ṗ

)
=




∂H
∂p (q, p)

−∂H
∂q (q,p)


 , (1.5)

where H(q, p) =
1
2
(p ·m−1p) + V (q) (1.6)

=
1
2

N∑

i=1

p2
i

mi
+ V (q1, . . . , qN ).

Now we have the Newtonian law in the form of a transparent differential
equation (1.5), expressing the relation between the integral curves (on the
left hand side differentiated to have tangent vectors) and the vector field on
the right hand side(which are the tangent vectors specifying the physics). The
way we wrote it, the vector field is actually generated by a function H (1.6)
on phase space, called Hamilton function after its inventor William Rowan
Hamilton (1805-1865), who in fact did introduce the Symbol H in honor of
the physicist Christiaan Huygens (1629-1695) and we shall say later what
the “wave man” Huygens has to do with all this. The role of the Hamilton
function H(q,p) is to give the vector field

vH(q, p) =

(
∂H
∂p

−∂H
∂q

)
. (1.7)

and the Hamiltonian dynamics is simply given by
(

q̇
ṗ

)
= vH(q, p). (1.8)

The function H allows us to focus on a particular structure of Newtonian
mechanics, now rewritten in Hamiltonian terms. Almost all of this section
depends solely on this structure and we shall shortly see examples. The equa-
tions (1.5) and (1.6) with Hamilton function H(q, p) define a Hamiltonian
system.

The integral curves along this vector field (1.7) are the possible system

trajectories in phase space, i.e. the are solutions
(

q(t, (q,p))
p(t, (q,p))

)
of (1.8) to
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given initial values
(

q(0, (q,p))
p(0, (q,p))

)
=

(
q
p

)
. Note that that requires existence

and uniqueness of solutions of the differential equations (1.8). One possible
evolution of the entire system is represented by one curve in phase space (see
figure 1.3) — a flow line — and one defines the Hamiltonian flow by the
map(ΦH

t )t∈R from phase space to phase space, given by the prescription that
for any t a point in phase space is mapped to the point to which it moves
within time t under the evolution (if that evolution is defined, see Remark
1.1.1) :

ΦH
t

((
q
p

))
=

(
q(t, (q,p))
p(t, (q, p))

)
.

We say something more to the flow map later on. The flow can be thought
of pictorially as flow of a material fluid in Γ with the (system!-)trajectories
as flow lines.

Abb. 1.3. The Hamilton function generates a vector field on the 6N -dimensional
phase space of an N -particle system in physical space. The integral curves are the
possible trajectories of the entire system in phase space. Each point in phase space is
the collection of all the positions and velocities of all the particles. One must always
keep in mind, that the trajectories in phase space are not trajectories in physical
space, they can never cross each other because they are integral curves on a vector
field and in every point of phase space there is a unique vector. Trajectories in
phase space do not interact with each other! No way! They are not the trajectories
of particles!

Hamiltonian mechanics is another way to talk about Newtonian mechan-
ics; it is a prosaic way to talk about the motion of particles, the only romance
left is the secret how to write down the physically relevant H, once that is
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done, the romance is over and one has before one the laws of mechanics writ-
ten in mathematical language. That is it. The advantage of the Hamiltonian
form is that it directly expresses the law as differential equation in its very
meaning (1.8). And it has the advantage that it allows one to talk simulta-
neously about all possible trajectories of a system. That will be helpful to
define a typical trajectory of the system, which we must and shall do later.

This however does not mean that we should forget the Newtonian way
altogether. By no means. To understand which path a system takes it is
good to know how the particles in the system interact with each other and
to have intuition about that. Moreover we should not loose sight of what we
are interested in: The behavior of the system in physical space. Although we
did not touch the issue at all it is also important to understand the physical
reasoning which leads to the mathematical law (for example how Newton
found the gravitational potential), as this may give one confidence in the
correctness of the law. Of course one also achieves confidence by checking
whether the theory describes correctly what we see, but since we can usually
only see a tiny fraction of what a theory says, confidence is mostly grounded
on theoretical insight.

The fundamental properties of the Hamiltonian flow are “conservation of
energy” and “conservation of volume”. These properties depend only on the
form of the equations (1.8) with (1.7), i.e. H(q, p) can be a completely general
function of (q, p) and need not be the function (1.6). In such generality one
calls p the canonical momentum which is not anymore velocity times mass.
Now, conservation of energy means that the value of the Hamilton function
does not change along trajectories. That is easy to see: Let (q(t),p(t)), t ∈ R
be a solution of (1.8) then:

d
dt

H(q(t), p(t)) = q̇
∂H

∂q
+ ṗ

∂H

∂p
=

∂H

∂p

∂H

∂q
− ∂H

∂q

∂H

∂p
= 0. (1.9)

More generally the time derivative along trajectories of any function
f(q(t), p(t)) on phase space is

d
dt

f(q(t),p(t)) = q̇
∂f

∂q
+ ṗ

∂f

∂p
=

∂H

∂p

∂f

∂q
− ∂H

∂q

∂f

∂p
=: {f,H}, (1.10)

abstractly
d
dt

f ◦ Φt = {f ◦ Φt,H}.

The term {f,H} is called the Poisson bracket of f and H. It can also be
defined in more general terms for any pair of functions f, g viewing g as
Hamilton function with Φg

t as the flow generated by g

{f, g} =
d
dt

f ◦ Φg
t =

∂g

∂p

∂f

∂q
− ∂f

∂q

∂f

∂p
. (1.11)



1.2 Hamilton Mechanics 9

Note, that {f, H} = 0 means that f is a constant of motion i.e. the value
of f remains unchanged along a trajectory (df/dt = 0), f = H being the
simplest example.

Now we come to the “conservation of volume”. Recall that the Hamilto-
nian flow (ΦH

t )t∈R is best be pictured as a “fluid flow” in Γ with the (system!-)
trajectories as flow lines, which are the integral curves along the Hamiltonian
vector field v(q,p) (1.7). These flow lines have neither sources nor sinks, i.e.
the vector field is divergence free:

divv(q, p) =
(

∂

∂q
,

∂

∂p

) (
∂H
∂p

−∂H
∂q

)

=
∂2H

∂q∂p
− ∂2H

∂p∂q
= 0 . (1.12)

This important (though rather trivial) mathematical fact is known as
Liouville’s theorem ( Liouville (1809–1882)) for the Hamiltonian flow (it has
nothing to do with Liouville’s theorem of complex analysis.) One calls a
fluid which flows divergence free “incompressible”, a behavior differently from
air in an air pump which gets very much compressed. Consequently and as
we shall show below the “volume” of any subset in phase space which gets
transported via the Hamiltonian flow remains unchanged. Before we express
this in mathematical terms and give the proof we shall consider the issue in
more general terms:

Anmerkung 1.2.1. On the time evolution of measures.
The notion of “volume” deserves a bit of elaboration. Clearly, since phase
space is very high dimensional, “volume” is more abstract than volume of a
three dimensional object. In fact we shall use later on a notion of “volume”
which is not simply the trivial extension of three dimensional volume. Volume
means measure, the size or weight or whichever intuitive expression one might
favor of sets, where in general one may want to consider a biased weight. The
most famous such measure and in fact the mother of all measures is the
generalization of the volume of a cube to arbitrary subsets, the Lebesgue-
measure λ. We shall say more to that later. Not needed now2! If one feels
intimidated by the name Lebesgue measure, then take |A| =

∫
A

dnx—usual
Riemann integration—as Lebesgue measure of A (for all practical purposes
correct). The measure may in a more general sense be also thought of as
some kind of weight distribution where the Lebesgue measure gives equal
2 We need to deal with the curse of the continuum: Not all subsets of Rn have a

volume or as we now say: a measure. There are non measurable sets within the
enormous multitude of subsets. These non measurable sets are mathematically
existent but not constructible in any practical way out of unions and intersections
of simple sets, like cubes or balls. They are nothing we need to worry about in
practical terms, but nevertheless they are there and thus must be dealt with
properly and we do so in section ??
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(i.e. unbiased) weight to every point, which for a continuum of points is a
somewhat demanding notion, but one nevertheless may feel what is meant.
For the time being we may require that the measure be an additive positive
set function, i.e. a function which gives positive values to sets and which is
additive on disjoint sets: µ(A ∪ B) = µ(A) + µ(B). The role of the measure
will eventually be to tell us the size of a set, which sets are small and which
are big. Big sets are important small sets are not—almost humane.

It may be best to think for now of a measure in general as some abstract
way of giving “mass” to subsets and the question is: How does a measure (or
the mass) change with a flow. That question was first asked for the Hamil-
tonian flow, but it can be asked and in fact has been asked for flows of a
general character. We shall do the same now. Let µ be a measure on phase
space. Next we consider a general (not necessarily Hamiltonian) flow map on
phase space (see (1.19)) below for a definition.

In general any flow Φt on Rn (or some general phase space) defines natu-
rally the time evolution of the measure µt on Rn:

µt = µ ◦ Φ−t (1.13)

which means
µt(A) = µ(Φ−tA) (1.14)

(or µt(ΦtA) = µ(A) ) for all (measurable) sets A and all t ∈ R. Behind this
definition is the simple logic that if a measure µ is given at “time t = 0 ”
then the measure µt of a set A is is the measure µ of the set from which A
originated by virtue of the flow. In other words the measure changes only
because the set changes.

Very important is the notion of stationary measure . That is a measure
which does not change under the flow Φt:

µt(A) = µ(A), ∀t ∈ R, ∀A. (1.15)

The stationary measure plays a distinguished role for justifying probabilistic
reasoning. It’s importance was presumably first discovered by Boltzmann and
we shall spend some time on Boltzmann’s general ideas on statistical physics
which are valid for all kind of theories. But not now.

The above mentioned preservation of volume for Hamiltonian flows as a
consequence of Liouville’s theorem refers to phase space volume and is the
assertion that

λ(Φ−tA) = λ(A). (1.16)

with λ the Lebesgue measure on phase space. That means, that under the
Hamiltonian flow sets change their shape but not their volume, which may
also be referred to as Liouville’s theorem, since it is a direct consequence of
(1.12), as we shall show next. For the pendulum in figure (1.2) one sees that
immediately since the ”slices of pie” just rotate and the general situation is
depicted in figure 1.4.
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Abb. 1.4. The preservation of volume of the Hamiltonian flow. The set M in phase
space changes under the flow but its volume remains the same.
We shall now show that come about.

Anmerkung 1.2.2. Continuity equation
One can derive from the change of measure (1.14) for a general flow gen-

erated by a vector field a differential equation, governing the change of the
density of the measure. That differential equation is called continuity equa-
tion. If the measure has a density (you may think of a mass density) %(x)
then the change of measure with time defines a time dependent density %(x, t)
and one has the logical relation3

µt(A) =:
∫

χA(x)%(x, t)dnx

= µ(Φ−t(A)) =:
∫

χΦ−t(A)(x)%(x)dnx

=
∫

χA(Φtx)%(x)dnx , (1.17)

where χA means the characteristic function of the set A, i.e. the function
which is 1 on A and zero otherwise. Furthermore Φt is the solution flow map
of some vector field v(x) on Rn (or some general phase space), i.e.

d
dt

Φt(x) = v(Φt(x)). (1.18)

Actually the family (Φt)t∈R is a one parameter group (the “time” t) of maps,
i.e.
3 Note aside that %(x, t) can be computed from an obvious change of variables in

the last integral: %(x, t) = %(x)| ∂Φ−tx

∂x
|
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(Φt(x))t∈R, x ∈ Rn : Φt ◦ Φs(x) = Φt+s(x), Φ0(x) = x. (1.19)

We shall now show that the density %(x, t) satisfies the continuity equation:

∂

∂t
%(x, t) + div(v(x)%(x, t)) = 0. (1.20)

To see that replace in (1.17) the indicator function by a smooth function
f which has compact support

∫
f(Φt(x))%(x)dnx =

∫
f(x)%(x, t)dnx , (1.21)

Differentiate now (1.21) with respect to t and get
∫

dΦt(x)
dt

· (∇f(Φt(x)))%(x)dnx =
∫

f(x)
∂

∂t
%(x, t)dnx. (1.22)

Replace dΦt(x)
dt with the right hand side of (1.18) and use (1.21) again with

f replaced by v(x, t) · (∇f(x)) (that is a wonderful trick) to get for the left
hand side of (1.22) ∫

v(x, t) · (∇f(x))%(x, t)dnx (1.23)

and after partial integration

−
∫

f(x)∇·(v(x, t)%(x, t))dnx. (1.24)

This being equal to the right hand side of (1.22) we conclude (since f is
arbitrary) that (1.20) holds.

Now we ask whether there is a stationary measure (1.15). In terms of
the densities the question is: Does there exist a stationary density that is a
density independent of time, satisfying (1.20)? Since the time derivative part
in (1.20) vanishes: ∂

∂t%(x) = 0, the density must satisfy the partial differential
equation

div(v(x)%(x)) = 0. (1.25)

This is in general a very difficult question. In particular it is almost impossible
to find the solution for a general vector field. However, not so in the Hamil-

tonian case. There the answer is trivial! Because of (1.12)! Setting x =
(

q
p

)

(1.12) reads divv(x) = 0 for all x. In this case (1.20) becomes (after using
product rule)

∂

∂t
%(x, t) + v(x) · ∇%(x, t) = 0. (1.26)

%(x, t) = const. is obviously stationary.
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Put now f = χA, A ⊂ Γ . Then % = 1 yields for (1.21)
∫

χA(Φt(x))dnx =
∫

χΦ−tA(x)dnx =
∫

χA(x)dnx = λ(A), (1.27)

where Φ−tA = {(q, p) ∈ Γ | Φt(q, p) ∈ A}.
In short, (1.27) says

λ(Φ−tA) = λ(A). (1.28)

We may as well put into (1.28) instead of A the future set ΦtA,and use
Φ−tΦt = id (identity) so that

λ(A) = λ(ΦtA) (1.29)

Concluding, Liouville’s theorem asserts that the Lebesgue measure (≡
volume) is stationary for Hamiltonian flows.

Anmerkung 1.2.3. Time dependent vector fields
The continuity equation holds also for time dependent vector fields v(x, t), in
which case the flow map is a two parameter group Φt,s advancing points from
time s to time t. All one needs to do is to replace in (1.20) the vector field
by the time dependent expression v(x, t), the proof goes through verbatim.
Now the notion of stationary measure seems unfitting, since the velocity field
(representing the physical law) changes with time. But remarkably the notion
still applies for Hamiltonian flows, i.e. even in the case where the Hamiltonian
is time dependent (energy is not conserved) the volume (Lebesgue measure
of a set) does not change under the flow.

Anmerkung 1.2.4. On the initial value problem (1.1.1)
The Lebesgue measure in phase space plays a distinguished role for the Hamil-
tonian flow. It is thus natural to weaken the problem of initial values in the
sense of the measure: One is happy, if one can show that the bad set of initial
conditions for which no global solutions exist has Lebesgue measure zero. Be
warned however, that a set which has measure zero, is small in the sense
of measure but not necessarily small in the sense of cardinality (number of
points in the set). The famous Cantor set as subset of the interval [0, 1] has
as much numbers as the reals but has zero Lebesgue measure.

We close this section with a for modern physicists heretical thought,
namely we imagine a Newtonian universe. That is not physical (we know
there is Quantum mechanics and much more), but we nevertheless can think
of it and it is good enough to ask a question which in an appropriate sense
can be asked in any other theory. Which initial values give rise to OUR New-
tonian universe? According to which criteria were the initial values of OUR
universe chosen? We do not ask, who chose the initial conditions. We ask:
Which physical law determines them? One possibility to answer this could be
that our universe is nothing special, that it could be typical in the sense that
almost all (in the sense that the Lebesgue measure of the set which does not
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give rise to a universe like ours is very small) initial conditions would give
rise to a universe very much like ours. That is however not the case, but that
we shall address later.

1.2.1 Hamilton-Jacobi Formulation

The Hamiltonian structure and phase space are intimately connected with
symplectic geometry. We shall say a bit about that at the end of the chapter.

But let us move on to another question. The Hamiltonian formulation
of Newtonian mechanics is prosaic and brings out the particular structure
shared by Newtonian mechanics with all Hamiltonian flows: conservation of
energy (if H is time independent) and phase space volume. But that was
not Hamilton’s aim. He had a much deeper vision for mechanics. He tried
for an analogy of mechanics with wave optics (Huyghens’ principle , that’s
Hamilton’s H) and Fermat’s extremal principle of geometric optics, according
to which light rays takes the path of the shortest time and moreover they
follow the normals of wave fronts. Could mechanics be formulated by a similar
guidance principle where the mechanical paths are determined by the normal
vectors of wave fronts? The extremal principle replacing Fermat’s is the least
action principle δ

∫
Ldt = 0, L(q, q̇) being the so called Lagrange function.

The mechanical trajectories (the Newtonian trajectories) between t0, q0 and
t, q (note that instead of initial position and initial velocity we consider initial
position and end position) are characterized as the extremals of

t∫

t0

L(q(t′), q̇(t′))dt′ .

We omit the derivation of the Euler-Lagrange equation, which is standard,
but we recall that for Newtonian mechanics

L(q, q̇) =
1
2
q̇ ·mq̇ − V (q) , (1.30)

which yield the Newtonian equations as Euler-Lagrange equations. Lagrange
function and Hamilton function are Legendre transforms of another4(what is
remarkable here is that almost all great mathematicians of the 19th century
have left some trace in theoretical mechanics). Starting with H you get L
by changing from the variable p to q̇, meaning that (q, p) gets replaced by
(q, q̇), using the implicitly given function q̇ = ∂H(q,p)

∂p , where the equation is
solved by p as function of q̇.
4 Here is the definition: Let f(x) be convex and let z be a given slope, search the

point x(z), in which the tangent on the graph of f has slope z. You find x(z)
by minimizing F (x, z) = f(x) − xz in x, which by convexity of f is uniquely
determined. The Legendre transform of f is g(z) = F (x(z), z).
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For “normal” Hamilton functions (quadratic in the momentum) that so-
lution is immediate and looking at (1.30) the Legendre transform pops right
up:

L(q, q̇) = p · q̇ −H(q, p). (1.31)

Note aside that if one starts with the least action principle as being fun-
damental one can guess the form of the Lagrange function from so called first
principles like symmetry, homogeneity, simplicity. But that is not what we
wish to recount here.

We wish to come to Huyghens principle and the definition of waves
Sq0(q, t) which guide mechanical trajectories starting at q0 moving along
the vector field p(q, t) = ∇Sq0(q, t).

Hamilton suggested

Sq0,t0(q, t) :=

t∫

t0

L(γ, γ̇)dt (1.32)

where γ : q0, t0 −→ q, t is the extremum of the action principle, i.e. the
Newtonian path.

This definition leads unfortunately in general to a multi-valued function:
Take for example the harmonic oscillator with period T . There are very many
extremal trajectories for a harmonic oscillator having period T which go from
(0, T ) to (0, 2T ), that is, S is not uniquely defined. Or think of a ball which
may bounce off a wall. The position q before the wall can always be reached
within a given time on two ways. Once with and once without reflection on
the wall.

However the definition is good for short enough times but never mind
such nuisance, let us finish the thought: Ignoring the dependence on (q0, t0)
and considering 5

dS =
∂S

∂q
dq +

∂S

∂t
dt,

we can identify in view of (1.31)

dS = pdq −H(q, p)dt

and thus by comparison

p(q, t) =
∂S

∂q
(q, t) (1.33)

hence
∂S

∂t
(q, t) + H

(
q,

∂S

∂q

)
= 0. (1.34)

5 We may ignore that dependence because we assume uniqueness of the trajectory
which yields that Sq0,t0(q, t) = Sq1,t1(q, t) + Sq0,t0(q1, t1) i.e. the vector field
(1.33) does not depend on the choice of (q0, t0).



16 1. Classical Physics

This is the known as Hamilton-Jacobi-differential equation. For Newtonian
mechanics, where q̇i = pi/mi we obtain then the following picture: We have
defined on configuration space Rn of N particles (n = 3N) a function S(q, t)
(“unfortunately” multi-valued) whose role it is to generate a vector field

v(q, t) = m−1∇S(q, t) (1.35)

on configuration space. Integral curves Q(t) along the vector field are the
possible trajectories of the N -particle system i.e. they solve

dQ/dt = v(Q(t), t) .

S(q, t) itself is dynamical and solves the nonlinear partial differential equation

∂S

∂t
(q, t) +

1
2

N∑

i=1

1
mi

(
∂S

∂qi

)2

+ V (q) = 0. (1.36)

This picture is not quite right, because S is in general not well defined for me-
chanics, it is however almost quantum mechanics. We shall soon understand
which little quantum is missing to get the picture right.

1.3 Fields and Particles: Electromagnetism

Many hold the view that a particle is not a good concept for physics. They
see it as a classical Newtonian concept which has been made obsolete by
quantum mechanics. Fields on the other hand are generally well accepted,
because relativity teaches that the right physical theory will be a field theory,
eventually quantized of course. To understand whether fields do work as well
as one hopes, we shall give a short look at electromagnetism where dynamical
fields come into play as fundamental objects which are needed to describe
interaction between particles, which carry a “charge”. Electro-magnetic fields
act on a particle at position q ∈ R3 via the Lorentz force:

mq̈ = e

(
E(q, t) +

q̇

c
×B(q, t)

)
, (1.37)

where E(q, t) und B(q, t) are electric and magnetic field and c is the velocity
of light. While the fields act on particles as described, in electro magnetism
the fields are not independent agents which have a kingdom of their own but
they are generated by particles. They are generated by particles and they
act on particles, that is why one may say that they are there to handle the
interaction between particles. But the particles are point particles (what else
could they be) and that does not go well with fields. We shall explain this
now. We shall use the opportunity to also introduce relativistic physics.

Albert Einstein (1879–1955) deduced from Maxwell’s equations of elec-
tromagnetism that space and most importantly time change differently from
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Galilean physics when one changes to moving frames. The nature of their
change is governed by the fact, that the velocity of light does not change
when one changes to a moving frame of reference. This led to the under-
standing (and soon to the four dimensional description by Minkowski(1864–
1909)) that space and time are “of the same kind”: A particle needs for its
specification not only a position in space but also one in time, meaning that
the coordinates of a particle in relativistic physics are space and time coor-
dinates. This is a revolution in Newtonian mechanics, where we of course are
used to particles having different positions but not different times. So one
must get used in relativistic physics to the space-time description of parti-
cles, each particle having its own space-time coordinates. Like there is no
natural simultaneity of particle positions (the particles would all sit on top
of each other) there is now no natural simultaneity in time either (which
there is Newtonian mechanics, called the absolute time). In other words, the
configuration space of classical mechanics where we collect all positions of
the particles of a system at the same time, plays no natural role anymore.
Instead Einstein believed that the overturn of absolute time brought physics
closer to the true description of nature and he believed that physical theories
must be local in the sense, that no physical effects can move faster than light.
John Bell showed that that is wrong. Until today that seems to be the only
scientific mistake Einstein did. We shall devote to this a whole chapter later
but now we must move on.

Minkowski introduced the so called four dimensional space-time with a
particular scalar product6. In space time particles do not move anymore in a
Newtonian way, but according to new dynamics.

A particle’s position is now xµ, µ = (0, 1, 2, 3) where x0 is selected as
time coordinate since it is distinguished by the ”signature” of the so called
Minkowski-length7 (ds2 = dx02 − dx2 = dx02 − ∑3

i=1 dxi2). In Newtonian
mechanics we are used to parameterize paths by time, which is not anymore
natural. A natural parameter is now length—Minkowski length—normalized
6 Minkowski suggested to use as space-time coordinates for the time coordinate

imaginary numbers (x0 = ict, x) because then the formal Euclidean scalar prod-

uct yields the Minkowski-Metrik s2 = x02
+ x2 = −ct2 +

∑3
i=1 xi2). The advan-

tage is that now all congruences, i.e. the transformations which leave the scalar
product invariant (the so called Lorentz group) appear in Euclidean disguise and
hence are to be seen as four dimensional rotations and reflections. This is different
from the Galilean case where the change to relatively moving frames (Galilean
boost ) must be dealt with separately. In the Minkowski case the corresponding
Lorentz boost is simply a “rotation” but with an imaginary angle, which one
understands when one considers the changes of x0 and, say, x1 then the rotation
yields x0

′ = x0 cos φ − x1 sin φ, x1
′ = x0 sin φ + x1 cos φ, which requires in the

Minkowski case φ = iψ—an imaginary angle. Following in the (’)-frame (moving

with relativ velocity v the point x1 = 0, then x1
′

ct′ = v
c

= tanh ψ, which yields
the well known formula for the Lorentz boost.

7 The sign of ds2 is convention. ds2 < 0 means ”space like ” distance, ds2 > 0
”time like ” distance.
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with 1/c, i.e. on each trajectory we select somewhere a zero mark and go
from there with the length element of the i-th particle

dτi =
dsi

c
=

1
c

√(
dx0

i

dτi

)2

−
(

dxi

dτi

)2

dτi .

Thus

ẋ2
i = gµν ẋµ

i ẋν
i = c2, gµν =

(
1 0
0 −E3

)
, (1.38)

where we use the Einstein convention of summation and sum automatically
over those indices which appear more than once. The “ ˙ ” means derivative
with respect to Minkowski length τi, the “proper time” of the i-th particle.
(In the frame where the particle is at rest x0

i = cτi). The metric tensor gµν

which defines here the Minkowski scalar product can be used to lower (and
raise with the inverse of the metric tensor) indices:

xν := gµνxµ .

For us it is natural to parameterize the trajectory by the coordinate time
x0 = ct of our rest frame where we see the particle move with velocity v. So
we have a new function

x̄µ(x0) = (x0,x(x0)) = xµ(τ(x0))

for which we get by chain rule

dx̄µ

dx0
=

(
1,

v

c

)
= ẋµ dτ

dx0

or taking the Minkowski square

1− v2

c2
= c2

(
dτ

dx0

)2

, (1.39)

which allows us to switch between proper time and coordinate time.
The relativistic dynamics of a ”free” particle may be defined by an ex-

tremal principle which determines the physical space time path from x to y
as the path with the shortest Minkowski length. That is the variation

δ

y∫

x

ds = δ

τ(y)∫

τ(x)

(ẋµẋµ)
1
2 dτ = 0.

If we wish to talk about relativistic mechanics in Newtonian terms, i.e.
if we wish to use Newtonian concepts like energy, mass and force and the
like—and we might wish to do that because it may then be easier to come
to Newtonian mechanics as limiting description of relativistic mechanics—we
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can multiply the integral by dimensional constants to get an action integral
so that the terms in the Euler-Lagrange equation read analogously to the
Newtonian terms. That is, writing S = mc

∫
ds the canonical momentum is

pµ = mc
ẋµ

√
ẋ2

= mẋµ.

Its Minkowski length is by (1.38)

gµνpµpν = pµpµ = m2ẋµẋµ = m2c2. (1.40)

Parameterizing with x0 = ct we have

pµ = mẋµ =
m√

1− v2

c2

(c, v).

Taking |v| ¿ c (i.e. x0 ≈ cτ) we get the ”Newtonian limit”, from which we
recognize m as ”rest mass”, because

p =
m√

1− v2

c2

v = m̃v

becomes p ≈ mv. Furthermore

mc√
1− v2

c2

≈ mc

(
1 +

1
2

v2

c2
+ . . .

)
= mc +

m

2
v2

c
+ . . . ,

so that we put E = p0c. With(1.40) we obtain thus the so called energy
momentum relation:

E =
√

p2c2 + m2c4 = m̃c2.

Now we have for N particles the space-time-trajectories qi = (qµ
i (τi)),

µ = (0, 1, 2, 3), i = 1, . . . , N . Let us introduce a “force” Kµ which accelerates
the particles. By virtue of (1.38) we have

ẍµẋµ = 0

and that suggests
Kµẋµ = 0.

Thus force must be orthogonal (in the sense of Minkowski metric) to velocity.
The simplest way to realize that is to put

Kµ = Fµν ẋν

with Fµν = −F νµ, an anti symmetric tensor of rank 2 (an anti symmetric
4×4-matrix). A way to generate such a tensor is with the help of a “four
potential” Aµ :
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Fµν =
∂

∂xµ
Aν − ∂

∂xν
Aµ. (1.41)

The Maxwell-Lorentz-theory of electro magnetic interaction has the force act
on the particles where the law involves not only masses as parameters, but
also “charges” ei:

miq̈
µ
i =

ei

c
Fµ

ν(qi)q̇ν
i (1.42)

where in view of (1.37) one names the matrix elements as follows

Fµ
ν(x) =




0 E1 E2 E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0


 .

(Recall that indices are lowered or raised by action of gµν = gµν , i.e. Fµ
ν =

Fµλgλν .)
For the three-vector qi(τi) we obtain then

mq̈i = ei

(
E +

q̇i

c
×B

)
,

where “ ˙ ” still refers to the derivative with respect to τi, but for small
velocities (compared to velocity of light) this is close to (1.37).

But the fields – the Fµ
ν – are themselves generated by the particles, which

is supposed to give the interaction between the charges.
The equation which describes the generation of fields is not difficult to

guess in analogy to the gravitational potential being given by the potential
equation ∆V = ∇ · ∇V = δ(x) for a point mass at the origin. (Note that
the “scalar product construction” of the law is a good trick for making the
law invariant under “Euclidean congruences”. Taking the four dimensional ∇
in the sense of Minkowski suggests the four dimensional potential equation
(invariant under “Minkowskian congruences”)

((
∂

∂x0

)2

−
(

∂

∂x

)2
)

Aµ = ¤Aµ =
4π

c
jµ. (1.43)

jµ is the current originating from the moving particles with charges ei.We
discuss that current below.

Note aside, that (1.41) does not determine the vector potential uniquely,
a term of the form ∂

∂xµ f with a nice f can always be added to Aµ without
changing the forces. This is called gauge invariance. (1.43) determines the
potential in the so called Lorentz gauge

∂

∂xµ
Aµ = 0.
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The current is a distribution, because the charges are concentrated on the
positions of the particles which are points. (One could think of smeared out
charges but a charge with a certain extension (a ball for example) would not
be a relativistic object because of Lorentz-contraction (??)): A ball would
not remain a ball when moving8.

The current of a point charge is by itself unproblematic. It has the follow-
ing (frame independent, i.e. relativistic) form (since we used boldface notation
for three dimensional vectors we use x for the four vector x = (x0, x)) :

jµ(x) =
∑

i

eic

∞∫

−∞
δ4(x− qi)q̇

µ
i dτi (1.44)

with

δ4(x) =
3∏

µ=0

δ(xµ).

Better known is the form in a frame, which we can get by integration.
With x0 = ct we obtain (in the second equality below we write the integral
as “line-integral” along the trajectory curve)

jµ(x) =
∑

i

eic

∞∫

−∞
δ4(x− qi(τi))q̇

µ
i (τi)dτi

=
∑

i

eic

∫

γi = qi(τi)
τi ∈ (−∞,∞)

δ4(x− qi)dqµ
i

=
∑

i

eic

∞∫

−∞
δ(x− qi(ti))δ(ct− cti)

dqµ
i

dti
(ti)dti

=
∑

i

eiδ(x− qi(t))
dqµ

i

dt
(t).

From (1.44) we get easily the continuity equation

∂

∂xµ
jµ = 0,

8 Suppose one would not care about relativistic invariance, and one takes a small
ball in the rest frame of the electron (for instance with radius 10−16cm, which
seems to be an upper bound from experimental data), which however yields an
effective mass of the electron larger than the observed electron mass: The rough
argument is, that the Coulomb energy of a concentrated charge (infinite for a
point charge) yields by the energy mass relation a field mass, which since it
moves with the electron must be accelerated as well, hence it is effectively part
of the electron mass. [6].
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using that the trajectories are time like and with the same step as above

∂

∂xµ
jµ =

∑

i

eic

∞∫

−∞

∂

∂xµ
δ4(x− qi)

dqµ
i

dτi
dτi

=
∑

i

eic

∫

γi = qi(τi)
τi ∈ (−∞,∞)

(
− ∂

∂qµ

)
δ4(x− qi)dqµ

i

=
∑

i

eic

(
lim

τi→∞
δ4(x− qi(τi))− lim

τi→−∞
δ4(x− qi(τi))

)

= 0 ∀x ∈ R4.

The system (1.41)-(1.43) of differential equations defines the theory of
charges interacting via fields.

But: (1.42) is unproblematic if the field Fµ
ν is given as a nice func-

tion. The linear partial differential equation (1.43) is unproblematic if jµ

is given, even as distribution, like in (1.44). Then one has a ”Cauchy-
problem” to solve, i.e. to solve (1.43) we need initial data Aµ(0, x1, x2, x3)
and (∂Aµ/∂t)(0, x1, x2, x3) and there is no obstacle for finding a solution.

But now we have to solve (1.42)-(1.43) together, not separately, and that
does now work. The system of differential equations are only formal expres-
sion, i.e. there are no functions qµ(τ), Aµ(x), whose derivatives would fulfill
the equations. It even does not matter whether we have more than one par-
ticle. Let us take one particle to see what goes wrong. First solve

Aµ(x) =
(

¤−1 4π

c
jµ

)
(x) =

∫
¤−1

x,x′
4π

c
jµ(x′)d4x′ (1.45)

with a Greens function ¤−1
x,x′ given by

¤¤−1
x,x′ = δ4(x− x′) (1.46)

The Greens function is not unique, they all differ by solutions of the ho-
mogenous equation (j = 0), i.e. by functions in the kernel of ¤. A symmetric
choice is9

¤−1
x,x′ = δ((x− x′)2) = δ((xµ − x′µ)(xµ − x′µ)).

Why is that symmetric? Using

δ(f(x)) =
∑

k

1
|f ′(xk)|δ(x− xk) (1.47)

9 It is quite natural that the Greens function is like this. It is the most natural
relativistic function one can write down. The points which have Minkowski dis-
tance zero from each other form the light cones (backward and forward) and
they are kind of special. So the function is not eccentric in any way.
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where xk are the single zeros of f we get

δ(x2 − y2) =
1
2

δ(x− y)
y

+
1
2

δ(x + y)
y

,

and thus

¤−1
x,y = δ

(
(x− y)2

)
= δ

(
(x0 − y0)2 − (x− y)2

)

=
1
2

δ((x0 − y0)− |x− y|)
|x− y| +

1
2

δ((x0 − y0) + |x− y|)
|x− y| ,

which is the sum of retarded and advanced Greens function, a notion which
becomes clear in a minute. Any linear combination of these parts is a possible
¤−1

x,y, and one commonly uses only the retarded part to have only to deal
with radiation ”emitted in the past”. We say something more to that later.
Convince yourself (by formal manipulations) that10 (1.46) holds for this or
any other linear combination.

Now let us come to the end of the story. With (1.45) and (1.44) we get

Aµ(x) = e

∫
δ
(
(x− q(τ))2

)
q̇µ(τ)dτ (1.48)

and with(1.47) we find

Aµ = e
q̇µ(τa)

2(xµ − qµ(τa))q̇µ(τa)
+ e

q̇µ(τr)
2(xµ − qµ(τr))q̇µ(τr)

,

where τa and τr are the solutions of

(x− q(τ))2 = 0 ⇔ ct− cτ = ∓|x− q(τ)|.
We see here the names: The retarded/advanced time is given by the intersec-
tion point of forward/backward light cone based at x with the trajectory of
the particle (see figure 1.5, where you should think of x as being an arbitrary
point).

We have thus derived a field (see for instance [2] if some manipulations
are unclear) Aµ which is everywhere nice except on points x which lie on the
world line q of the charge which is generating the field. For x = q(τ), then
τa = τr = τ) and the denominator is zero. But this is now the end of the
story since these are the x–values which are needed in (1.42).

This is well known under the name of ”self interaction” of the electron.
The field which the electron generates acts back on the electron and this back
reaction is mathematically ill defined since the electron is a point. Hence the
field idea to manage interaction between point charges does not work.
10 e.g.:( ∂

∂x0 )2 −∆)( 1
|x|δ(x

0 − |x|) =
1
|x|δ

′′ − ∆( 1
|x| )δ(x

0 − |x|) − 1
|x|∆δ(x0 − |x|) − 2∇( 1

|x| ) · ∇δ(x0 − |x|) =

δ(x)δ(x0 − |x|), where on needs to use the chain rule on ∇δ(·).
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For reasons outside of Maxwell’s theory of electromagnetism (and may
be for the reason that the theory which we describe next is the true electro-
magnetic theory) the theory works well (in the sense of describing physical
phenomena correctly) when the fields are generated done by smeared out
charges (charge clouds) to describe the radiation of an antenna or when the
fields are “external” given fields which act on charges by the Lorentz force
equation. In short, electromagnetism is fine for most of non academic life.

1.3.1 No fields, only particles: Electromagnetism

What is bad about fields to describe interaction? That the field is naturally
acting everywhere and thus also on the particle itself which generates the
field. But taking the idea of relativistic interaction between particles seri-
ously then why don’t the particles interact directly relativistically without
introducing fields? In a sense one does this in solving (1.43) for Aµ and puts
that into (1.42). Fokker thought that way [5] and discovered a relativistic
particle theory, which was later rediscovered by Wheeler and Feynman [8],
to explain retarded radiation. How can the particles interact directly in a
relativistic way?

There is no natural simultaneity for a force to act at the same time
between particles but we know already: The simplest choice is to take
Minkowski-distance and to say that particles interact when they have dis-
tance zero to each other. Hence the particle at space-time point q interacts
with all other particles at space-time points which are intersection points of
light cones based at q with the other trajectories, that is when

(qµ
i − qµ

j )(qiµ − qjµ) = (qi − qj)2 = 0 ,

i.e. when δ((qi− qj)2) is not zero. Note, that there are always two light cones
based at one point, one directed towards the future and and one directed
towards the past (figure 1.5) (Of course the physical law does not care about
such notions like past and future.)

It is rather clear that dynamics which are defined by future times and
past times cannot anymore be given by differential equations of the ordinary
kind. Nevertheless some differential equations can be written down from a
variational principle: The Fokker-Wheeler-Feynman-action S is the simplest
relativistic action one could think of describing interacting particles:

S =
∑

i


−mic

∫
dsi −

∑

j>i

eiej

c

∫ ∫
δ
(
(qi − qj)2

)
dqµ

i dqjµ


 . (1.49)

Writing the trajectories qµ
i (λi) with arbitrary parameters λi and denoting

q̇µ
i = dqµ

i /dλi we obtain for S
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Abb. 1.5. In Feynman-Wheeler-electromagnetism particles interact along back-
ward and forward light cones (here we set c = 1).

S =
∑

i


−mic

∫
(q̇µ

i q̇iµ)
1
2 dλi −

∑

j>i

eiej

c

∫ ∫
δ
(
(qi − qj)2

)
q̇µ
i q̇jµdλidλj


 .

Most noteworthy is that there are no diagonal terms in the double sum.
That is the major difference to the Maxwell-Lorentz-theory where morally
the diagonal terms are present. The contribution of the i-th particle in the
interaction reads

−ei

c

∫
dλiq̇

µ
i

∫ ∑

j 6=i

ejδ
(
(qi − qj)2

)
q̇jµdλj

= − 1
c2

∫
jµ
i (x)Aiµ(x)dx

with the “field” 11

Aiµ(x) =
∑

j 6=i

ej

∫
δ
(
(x− qj)2

)
q̇jµdλj . (1.50)

In the Wheeler-Feynman formulation fields (like (1.50)) would only be
introduced as a suitable macroscopic description, good for certain situations
like handling capacitors.
11 We computed this in (1.48), but it is important to understand that this is simply

a mathematical expression, which plays no role unless x is a point on the word
lines of the other particles. There is no field in this theory.
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(1.48) shows that both advanced and retarded Greens function appear in
Aµ. But it is the ”emission of radiation” which we typically see and which
is solely described by the retarded Greens function. Wheeler-Feynman as
well as Maxwell-Lorentz electromagnetism are time reversible, i.e. the theory
does not favor the emission before absorption. The typicality of emission has
been coined the problem of the electromagnetic arrow of time. The original
motivation of Wheeler and Feynman was to reduce this arrow of time to the
thermodynamic one, which had been so successfully explained by Boltzmann,
by supposing a special initial distribution of the particles in the phase space
of the universe. (We shall address this further in the chapter on probability.)

Wheeler and Feynman consider therefore the thermodynamic description
of the particle system, i.e. they consider a distribution of charges distributed
throughout the universe which ”absorb all radiation”, which in terms of the
theory means that the sum of the differences of retarded and advanced forces
over all particles vanish. This is called the absorber condition. This macro-
scopic theory is still time symmetric. But supposing further that at some early
time the initial distribution of the particles was special (non equilibrium like)
the time directed radiation phenomena and in particular the observed radia-
tion damping of an accelerated charge is reduced to Boltzmann’s explanation
of irreversibility, see section ??.

We emphasize again that the Wheeler-Feynman electro-magnetic theory
is a mathematically consistent relativistic theory with interaction, actually
the only such mathematically well defined theory existing so far and it is
about particles—no fields. The theory is however cumbersome, since it is not
of the usual Cauchy-data form, i.e. given by differential equations (ordinary
or partial) which determine solutions for given initial values. Why? Because
the Euler-Lagrange equations of (1.49) are not ordinary differential equa-
tions, since there appear advanced and retarded times in them In comparison
Maxwell-Lorentz-theory is formally of the ordinary type, but with the serious
drawback that the fields make the equations mathematically undefined.

Anmerkung 1.3.1. On the nature of reality
Reality is a curious notion. Physics takes the view that something “out there”
exists, that the world is “made out of something”. That’s not curious at all.
But what it is that the world is made of, that is not easy to say, since the
only access we have to the world is by our senses and our thinking and
communication about the experience we have: What the world is made of is
specified by our physical theory about the world and it is only there, were
we can see what the world is made of. When our physical theory is about
point particles and how they move, then there are point particles out there—
if what the theory says about their motion is consistent with our experience
of course. Often the connection between the entities of the theory and our
experience is complicated, often not even spelled out in any detailed way.
Nevertheless one has some kind of good feel for how it works and a bit of
pragmatism in this is alright.
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When we wish to explain a physical phenomenon, we reduce it (in the
ideal case) to the behavior of the ontological quantities, which the physical
theory is about.

In Maxwell-Lorentz electro-magnetism fields are ontological. Switch on
your radio. What better explanation is there than that, that the fields are
out there which get absorbed as radio waves by the the radio antenna and
the radio transform those into air waves? Music to your ears. But in Wheeler-
Feynman electro-magnetism there are no fields and only particles. It explains
the music as well. But the explanation is different.

If Maxwell-Lorentz-theory (with point charges) would be mathematically
consistent, we could chose between fields and particles as being “real” or only
particles as being “real”. Since both would describe the macroscopic world as
we see it, our choice would then have to be made on the grounds of simplicity
and beauty of the theories. Maybe we find in the future a simpler and nicer
theory then what we have now which is solely about fields. Then only fields
will be “real”.

“Reality” thus changes with the nature of our physical theory and with
it the elements which can be measured: In the Wheeler-Feynman-theory of
electro-magnetism the electro-magnetic field cannot be measured. Why? Be-
cause it is not there. It is not part of the theory. That is trivial. Less trivial
may seem the understanding that the theory also says what elements and
how those elements can be measured. In Maxwell-Lorentz-theory the electric
field is measured—according to the theory—by its action on charges.

Here is another point which one may think about from time to time. Al-
though all variables which are needed to specify the physical theory are “real”
there is nevertheless a difference. In a particle theory the particle positions
are primitive or primary variables, the make up the so called primitive ontol-
ogy in [1]. They must be there: a particle theory without particle positions
is not thinkable. Particle positions are what the theory is about. The role of
all other variables is to say how the positions change. They are secondary
variables, needed to spell out the law. We could also call the particle po-
sitions a priori and the other variables a posteriori. Like the electric field.
In fact, secondary variables can possibly be replaced by other variables or
can even be dispensed with. Like in Wheeler-Feynman electro-magnetism.
Another example which we did not touch at all is general relativity which
makes the Newtonian force obsolete.

1.4 Secondary Remarks

Anmerkung 1.4.1. On the symplectic structure of the phase space
With the understanding of tensors and forms, in particular differential forms,
not only mathematics advanced but also our insight in physics advanced. It
was better appreciated what the objects “really” are. We have an example
in our relativistic description of electro-magnetism (1.3): The electric and
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magnetic field strengths are not vector fields as one learns in school but
rather coordinates of an antisymmetric second rank tensor. Mathematical
abstraction helps one to get down to the basis of things and that is nice.
One such mathematical abstraction is symplectic geometry. We say a few
things here mainly to make sure, that no important mysteries are uncovered
by further mathematical abstraction which we should take note of.

Mathematically deeper than conservation of energy and volume is the
symplectic structure of phase space which goes hand in hand with Hamil-
ton’s formulation of mechanics [7]. Symplectic geometry needs space of even
dimensions. Classical physics provides that: Consider the phase space R2n

with coordinates (q1, . . . , qn, p1, . . . , pn). Given x, y ∈ R2n let qi(x) be the
projection of x on the qi-th coordinate axis. Then

ω2
i (x, y) = qi(y)pi(x)− qi(x)pi(y) (1.51)

is the area of the parallelogram projected into the (qi, pi)-plane, generated
by x, y. Put

ω2(x,y) =
n∑

i=1

w2
i (x,y) = x · (−I)y = ((−I)y)tx (1.52)

with

I =
(

0n +En

−En 0n

)
,

En = n− dimensional unit matrix
0n = n− dimensional zero matrix,

and zt = z transposed = row vector = element in the dual space of R2n.
The 2-Form ω2 respectively the symplectic matrix I defines the symplectic
structure of phase space R2n (n = 3N for N particles) and gives (like a scalar
product) an isomorphism between the vector space and its dual. From courses
in analysis we know that the gradient ∂f

∂x of a function f(x), x ∈ Rd is in
fact a “dual element”, i.e. it is the row vector which acts as a linear map on
h as ∂f

∂xh = row times column (matrix multiplication with a vector). Now
use ω2 to identify ∂f

∂x with a vector ∇ωf (using the Euclidean scalar product
this is the normal ∇f): given z ∈ R2n ω2(·, z) is a linear form, i.e. a linear
map

R2n −→ R
x 7−→ ω2(x, z) = (−Iz)tx .

which we wish to equal ∂f
∂x , hence search for a zf , so that

∂f

∂x
x = (−Izf )tx ∀x

⇐⇒ (
∂f

∂x
)t = (∇f) = (−Izf )

⇐⇒ zf = ∇ωf = = I(∇f) .
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Thus (1.6)can be written as
(

q̇

ṗ

)
= I(∇H) = I

(
∂
∂q H

∂
∂pH

)
.

The Hamiltonian flow respects the symplectic geometry, in particular it is
area preserving, which means the following: Let C be a closed curve in R2n,
define the ”enclosed area” as sum of the n areas, which arise from projections
of C on the coordinate planes (qi, pi) (cf. (1.51) and (1.52)). In the (qi, pi)-
plane we have a curve Ci with the area

Φ(qi, pi) =
(

qi

pi

)
, qi, pi ∈ area(Ci) = A(Ci).

The area can be transformed by Stokes’ theorem in two dimensions into a
line-integral

∫

A(Ci)

dqidpi =
∫

A(Ci)

rot
(

0
qi

)
dqidpi

=
∮

Ci

(
0
qi

)
·
(

dqi

dpi

)

=
∮

Ci

qidpi . (1.53)

In general:

A = area of C =
∮

C

q · dp =
∑

i

∮

Ci

qidpi.

Using differential forms

ω2
i = dpi ∧ dqi and ω2 =

∑

i

dpi ∧ dqi and ω2 = dω1 with ω1 =
∑

i

pidqi.

(1.53) is nothing but ∫

A(Ci)

dω1 =
∫

Ci

ω1.

Transporting C with the Hamiltonian flow yields the area A(t) and preser-
vation of area means that A(t) = A. By change of variables integration over
A(t) can be expressed by q(t) und p(t) in the integral, so that
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d
dt

A(t) =
d
dt

∮

C

q(t) dp(t) =
∮

C

q̇ dp +
∮

C

q dṗ

=
∮

C

q̇ dp−
∮

C

ṗ dq


+

∮

C

d(qṗ) = 0




=
∮

C

∂H

∂q
dq +

∮

C

∂H

∂p
dp =

∮

C

dH

= 0.

Furthermore, the volume in even dimensional vector spaces can be thought
of as arising from a product of areas (generalizing the area in R2 = width
times length), i.e. products of two forms (1.51) yield the volume form: ω =
dp1 ∧ dq1 ∧ . . . ∧ dpn ∧ dqn, the Lebesgue measure on phase space (in form
language) and thus Liouville’s theorem arises from preservation of area.

Transformations of coordinates (q,p)
ψ−→ (Q, P ) are called canonical or

symplectic, if the Jacobi matrix ∇ψ is symplectic, which is a variation of
”orthogonal matrix”), i.e.

(∇ψ)tI∇ψ = I. (1.54)

They preserve areas and they fulfill the canonical equations



Q̇

Ṗ


 = I




∂
∂QH̃

∂
∂P H̃


 , H̃ ◦ ψ = H.

The Poisson bracket (1.11) is invariant under canonical transformations be-
cause (1.11) can be written as

{f, g} = ∇f · I∇g,

and if f(Q,P ), g(Q,P ) and (Q, P ) = ψ(q, p) are given and observing

∇(f ◦ ψ) = ∇ψ(∇f ◦ ψ),

we have that

{f ◦ ψ, g ◦ ψ} = ∇(f ◦ ψ) · I∇(g ◦ ψ)
= (∇f ◦ ψ) · (∇ψ)tI∇ψ(∇g ◦ ψ)

(1.54)
= (∇f ◦ ψ) · I(∇g ◦ ψ)
= {g, f} ◦ ψ.

Clearly
{qi, pi} = δij , , {qi, qj} = 0, {pi, pj} = 0,
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and variables which fulfill this are called canonical. Of particular interest are
variables (Q1, . . . , Qn, P1, . . . , Pn), where P1, . . . , Pn do not change with time-
and where the Hamilton function achieves the form H̃(Q, P ) =

∑n
i=1 ωiPi.

Then Q̇i = ωi, i.e. Qi = ωit + Qi,0, and Qi is like a phase of a harmonic
oscillator. Such (Pi, Qi) are called action-angle-variables. Systems, which al-
low for such variables are called integrable, since their behaviour in time is
in principle completely under control, their motion (in the new coordinates)
being that of ”uncoupled” harmonic oscillators and thus the solution is found
by algebraic manipulation and integration. The Hamiltonian movements in
R2 (H not time dependent, one particle in one space dimension) are inte-
grable, since H itself does not change with time and hence one may choose
P = H. Integrability is however atypical for Hamiltonian systems.
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