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ABSTRACT. In [9] Y. Eliashberg and W. Thurston gave a definition of
tight confoliations. We give an example of a tight confoliation ξ on T 3

violating the Thurston-Bennequin inequalities. This answers a question
from [9] negatively. Despite of this, it is still possible to prove restric-
tions on homotopy classes of plane fields which contain tight confolia-
tions.

The failure of the Thurston-Bennequin inequalities for tight confoli-
ations is due to the presence of overtwisted stars. Overtwisted stars are
particular configurations of Legendrian curves which bound a disc with
finitely many punctures on the boundary. We prove that the Thurston-
Bennequin inequalities hold for tight confoliations without overtwisted
stars and that symplectically fillable confoliations do not admit over-
twisted stars.
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1. INTRODUCTION

In [9] Eliashberg and Thurston explore the relationship between folia-
tions and contact structures on oriented 3-manifolds. Foliations respectively
contact structures on an oriented 3-manifold M are locally defined by 1-
forms α such that α ∧ dα ≡ 0 respectively α ∧ dα > 0 (more precisely this
defines positive contact structures).

One of the main results of [9] is the following remarkable theorem.

Theorem 1.1 (Theorem 2.4.1 in [9]). Suppose that a C2-foliation ξ on a
closed oriented 3-manifold is different from the product foliation of S1×S2

by spheres. Then ξ can be C0-approximated by a positive contact structure.
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In the main part of the proof of this theorem a given foliation on M
is modified so that the resulting plane field is somewhere integrable while
it is a positive contact structure on other parts of M . This motivates the
following definition.

Definition 1.2. A positive confoliation on M is a C2-smooth plane field on
a 3-manifold M which is locally defined by a 1-form α such that α∧dα ≥ 0.
We denote the region where ξ is a contact structure by H(ξ).

Theorem 1.1 remains true when foliations are replaced by confoliations.
Like in the case of foliations and contact structures the definition of confoli-
ations can be generalized to higher dimensions (cf. [2, 9]) but in this article
we are only concerned with dimension 3. All plane fields appearing in this
article will be oriented, in particular these plane fields have an Euler class
e(ξ) ∈ H2(M ; Z).

In the last chapter of [9] Eliashberg and Thurston discuss several proper-
ties of foliations (tautness, absence of Reeb components) and contact struc-
tures (symplectic fillability, tightness) and what can be said about a contact
structure approximating a taut or Reebless foliation. For example they es-
tablish the following theorem.

Theorem (Eliashberg, Thurston, [9]). If a contact structure ξ on a closed
3-manifold is sufficiently close to a taut foliation in the C0-topology, then ξ
is symplectically fillable and therefore tight.

Another result in this direction is due to V. Colin.

Theorem (Colin, [7]). A C2-foliation without Reeb components on a closed
oriented 3-manifold can be C0-approximated by tight contact structures.

In [12] J. Etnyre shows that every contact structure (tight or not) may be
obtained by a perturbation of a foliation with Reeb components. This result
is implicitly contained in [23]. Moreover, J. Etnyre improved Theorem 1.1
by showing that Ck-smooth foliations can be Ck-approximated by contact
structures provided that k ≥ 2 (a written account will hopefully be available
in the near future, cf. [13]).

In order to understand better the relationship between geometric prop-
erties of foliations and properties of the contact structures approximating
them, it is interesting to ask about properties of confoliations which appear
in the approximation process. For example the notion of symplectic filla-
bility can be extended to confoliations in an obvious fashion.

The question how to generalize the notion of tightness is more compli-
cated. One aim of this article is to clarify this point. The following defini-
tion is suggested in [9].

Definition 1.3. A confoliation ξ on M is tight if for every embedded disc
D ⊂ M such that

(i) ∂D is tangent to ξ,
(ii) TD and ξ are transverse along ∂D
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there is an embedded disc D′ satisfying the following requirements
(1) ∂D = ∂D′,
(2) D′ is everywhere tangent to ξ,
(3) e(ξ)[D ∪D′] = 0.

This definition is motivated by the following facts: If ξ is a contact struc-
ture, then there are no surfaces tangent to ξ and Definition 1.3 reduces to a
definition of tightness for contact structures. In the case when ξ is a folia-
tion on a closed manifold Definition 1.3 is equivalent to the absence Reeb
components by a theorem of Novikov [25]. Thus Definition 1.3 interpolates
between tight contact structures and Reebless foliations. Moreover, the fact
that symplectically fillable contact structures are tight generalizes to confo-
liations (we recall the definition of symplectic fillability in Section 2.3).

Theorem 1.4 (Theorem 3.5.1. in [9]). Symplectically fillable confoliations
are tight.

As pointed out in [9] there are inequalities imposing restrictions on the
Euler class e(ξ) of ξ when ξ is a tight contact structure or a Reebless folia-
tion. Before we can state these inequalities we need one more definition.

Definition 1.5. Let γ be a null-homologous knot in a confoliated manifold
(M, ξ) which is positively transverse to ξ. For each choice F of an oriented
Seifert surface of γ we define the self linking number sl(γ, F ) of γ as fol-
lows. Choose a nowhere vanishing section X of ξ|F and let γ′ be the knot
obtained by pushing γ off itself by X . Then

sl(γ, F ) = γ′ · F .

Obviously sl(γ, F ) depends only on [F ] ∈ H2(M, γ; Z).
In [3] D. Bennequin proved an inequality between sl(γ) of a transverse

knot in the standard contact structure ker(dz + x dy) on R3 and the Euler
number of a Seifert surface of γ. This inequality was extended to all tight
contact structures by Eliashberg in [8]. From Thurston’s work in [29] it
follows that the same inequalities hold for surfaces in foliated manifolds
without Reeb components. We summarize these results as follows.

Theorem 1.6 (Eliashberg [8], Thurston [29]). Let ξ be a tight contact struc-
ture or a foliation without Reeb components on a closed manifold M (differ-
ent from a foliation by spheres) and F ⊂ M an embedded oriented surface.

a) If F ' S2, then e(ξ)[F ] = 0.
b) If ∂F = ∅ and F 6' S2, then |e(ξ)[F ]| ≤ −χ(F ).
c) If ∂F 6= ∅ is positively transverse to ξ, then sl(γ, [F ]) ≤ −χ(F ).

The inequalities stated in this theorem are referred to as Thurston-Benne-
quin inequalities. In particular, only finitely many classes in H2(M ; Z) are
Euler classes of tight contact structures or foliations without Reeb compo-
nents. Foliations by spheres violate a) and we exclude such foliations from
our discussion.
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It was conjectured (Conjecture 3.4.5 in [9]) that tight confoliations satisfy
the Thurston-Bennequin inequalities. In this article we show that a) is true
for tight confoliations and c) holds when F is a disc. On the other hand we
give an example of a tight confoliation ξT on T 3 which violates b) and c) for
surfaces which are not simply connected. Therefore every contact structure
which is close to ξT must be overtwisted. This yields a negative answer to
Question 1 on p. 63 of [9]. The construction of (T 3, ξT ) is based on the
classification of tight contact structures on T 2 × [0, 1] due to E. Giroux and
K. Honda.

Our example indicates that tight confoliations are much more flexible
objects than tight contact structures or foliations without Reeb components.
For example infinitely many elements of H2(T 3; Z) are Euler classes of
tight confoliations. Nevertheless, tight confoliations have some rigidity
properties. In addition to the Thurston-Bennequin inequalities for simply
connected surfaces we show the following theorem.

Theorem 5.1. Let M be a manifold carrying a tight confoliation ξ and
B ⊂ M a closed embedded ball in M . There is a neighbourhood of ξ in the
space of plane fields with the C0-topology such that ξ′

∣∣
B

is tight for every
contact structure ξ′ in this neighbourhood of ξ.

This theorem leads to restrictions on the homotopy class of plane fields
which contain tight confoliations. For example only one homotopy class of
plane fields on S3 contains a tight confoliation by Eliashberg’s classification
of tight contact structures on balls together with Theorem 5.1. For the proof
of Theorem 5.1 we study the characteristic foliation S(ξ) = TS ∩ ξ on
embedded spheres S ⊂ M (we generalize the notion of taming functions
introduced in [8] to confoliations and use results from [16]).

Motivated by the example (T 3, ξT ) we define the notion of an overtwisted
star. Roughly speaking, an overtwisted star on an embedded surface F is a
domain in F whose interior is homeomorphic to a disc, the boundary of this
domain consists of Legendrian curves and all singularities on the boundary
have the same sign. The main difference between overtwisted stars and
overtwisted discs (ie. discs D with the properties required in Definition 1.3
which are not neutralized by an integral disc D′) is that the set theoretic
boundary of an overtwisted star may contain closed leaves or quasi-minimal
sets of the characteristic foliation.

An example of an overtwisted star is shown in Figure 13 on p. 26. It will
be clear from the definition of overtwisted stars that contact structures which
admit overtwisted stars are not tight, ie. they are overtwisted in the usual
sense. Following Eliashberg’s strategy from [8] we prove the following
theorem.

Theorem 6.2. Let (M, ξ) be an oriented tight confoliation such that no
compact embedded oriented surface contains an overtwisted star and (M, ξ)
is not a foliation by spheres.
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Every embedded surface F whose boundary is either empty or positively
transverse to ξ satisfies the following relations.

a) If F ' S2, then e(ξ)[F ] = 0.
b) If ∂F = ∅ and F 6' S2, then |e(ξ)[F ]| ≤ −χ(F ).
c) If ∂F 6= ∅ is positively transverse to ξ, then sl(γ, [F ]) ≤ −χ(F ).

Moreover, Theorem 1.4 can be refined as follows.

Theorem 6.9. Symplectically fillable confoliations do not admit overtwisted
stars.

The proof of this theorem implies that a confoliation which admits over-
twisted stars can be approximated by an overtwisted contact structure.

These results indicate that tightness in the sense of Definition 1.3 together
with the absence of overtwisted stars is the right generalization of tightness
to confoliations.

This article is organized as follows: In Section 2 we recall several facts
about confoliations and characteristic foliations. Section 3 contains a dis-
cussion of several methods for the manipulation of characteristic foliation
on embedded surfaces. For example we generalize the elimination lemma
to confoliations and we discuss several surgeries of surfaces when integral
discs of ξ intersect the surface in a cycle. In Section 4 we describe an ex-
ample of a tight confoliation on T 3 which violates the Thurston-Bennequin
inequalities while we prove Theorem 5.1 in Section 5.

In Section 6 we discuss overtwisted stars and establish the Thurston-
Bennequin inequalities for tight confoliations without overtwisted stars.
Moreover, we prove that symplectically fillable confoliations do not admit
overtwisted stars.

Throughout this article M will be a closed connected oriented 3-manifold
and ξ will always denote a smooth oriented plane field on M .

Acknowledgements: The author started working on this project in the fall
of 2006 during a stay at Stanford University, the financial support provided
by the ”Deutsche Forschungsgemeinschaft” is gratefully acknowledged. It
is a pleasure for me to thank Y. Eliashberg for his support, hospitality and
interest. Moreover, I would like to thank V. Colin and J. Etnyre for helpful
conversations.

2. CHARACTERISTIC FOLIATIONS, NON-INTEGRABILITY AND
TIGHTNESS

In this section we recall some definitions, notations and facts which will
be used throughout this paper. Most notions discussed here are generaliza-
tions of definitions which are well-known in the context of contact struc-
tures (cf. for example [1, 10, 14, 15] and the references therein).

2.1. Characteristic foliations on surfaces. We consider an embedded ori-
ented surface F in a confoliated 3-manifold (M, ξ) and we assume that ξ is
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cooriented. The singular foliation F (ξ) := ξ ∩ TF is called the character-
istic foliation of F . The leaves of the characteristic foliation are examples
of Legendrian curves, ie. curves tangent to ξ.

The following convention is used to orient F (ξ): Consider p ∈ F such
that Fp(ξ) is one-dimensional. For X ∈ Fp(ξ) we choose Y ∈ ξ(p) and
Z ∈ TpF such that X, Y represents the orientation of ξ(p) and X, Z induces
the orientation of the surface. Then X represents the orientation of the
characteristic foliation if and only if X, Y, Z is a positive basis of TpM .

By this convention the characteristic foliation points out F along bound-
ary components of F which are positively transverse to ξ. An isolated sin-
gularity of F (ξ) is called elliptic respectively hyperbolic when its index is
+1 respectively −1. A singularity is positive if the orientation of ξ coin-
cides with the orientation of F at the singular point and negative otherwise.

We denote the number of positive/negative elliptic singularities by e±(F )
and the number of positive/negative hyperbolic singularities is h±(F ).

2.2. (Non-)Integrability. The condition that ξ is a confoliation can be in-
terpreted in geometric terms. The following interpretation can be found in
[9].

Let D be a closed disc of dimension 2 and ξ a positive confoliation trans-
verse to the fibers of π : D×R −→ D. Then ξ can be viewed as a connec-
tion. We assume in the following that this connection is complete, ie. for
every differentiable curve σ in D there is a horizontal lift of σ starting at a
given point in the fiber over the starting point of σ.

We consider the holonomy of the characteristic foliation on π−1(∂D)

(1) h∂D : π−1(p) ' R −→ R ' π−1(p)

where h∂D(x) is defined as the parallel transport of x ∈ R along ∂D.

Lemma 2.1 (Lemma 1.3.4. in [9]). If the confoliation ξ on π : D×R −→ D
defines a complete connection, then h∂D(x) ≤ x for all x ∈ π−1(p) and
p ∈ ∂D. Equality holds for all x ∈ π−1(p) if and only if ξ is integrable.

If D = D × {0} is tangent to ξ, then the germ of the holonomy is well
defined without any completeness assumption and h∂D(x) ≤ x for all x in
the domain of h∂D. The germ of h∂D coincides with the germ of the identity
if and only if a neighbourhood of D is foliated by discs.

Of course, the second part of the lemma applies to the case when one
considers only the part lying above or below D × {0} ⊂ D × R. A conse-
quence of Lemma 2.1 is the following generalization of the Reeb stability
theorem to confoliations.

Theorem 2.2 (Proposition 1.3.9. in [9]). Let M be a closed oriented man-
ifold carrying a positive confoliation ξ. Suppose that S is an embedded
sphere tangent to ξ. Then (M, ξ) is diffeomorphic to the product foliation
on S2 × S1 by spheres.
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Foliations by spheres appear as exceptional case in some theorems. They
will therefore be excluded from the discussion.

Another useful geometric interpretation of the confoliation condition can
be found on p. 4 in [9] (and many other sources): Let X be a Legendrian
vector field and F a surface transverse to X . The slope of line field Ft(ξ) on
the image of F under the time-t-flow of X is monotone in t if and only if ξ
is a confoliation. This interpretation is useful when one wants extends con-
foliations along leaves of a foliation of rank 1 which is Legendrian where
the confoliation is already defined.

We define the fully foliated part of a confoliation ξ on M as the comple-
ment of

{x ∈ M | there is a Legendrian curve connecting x to H(ξ)}.
If γ is a Legendrian curve in a leaf of ξ and A ' γ × (−δ, δ), δ > 0 an
annulus transverse to the leaf such that γ = γ × {0}, then we will consider
several types of holonomy hA of the characteristic foliation on A.

• We say that γ has linear holonomy or non-trivial infinitesimal holo-
nomy along γ if h′A(0) 6= 0.

• The holonomy along γ is sometimes attractive if there are sequences
(xn), (yn) which converge to zero such that xn > 0 > yn and

hA(xn) < xn, hA(yn) > yn for all n ∈ N.

2.3. Tightness of confoliations. In this section we summarize several facts
about tight confoliations. We shall always assume that ξ is a tight confolia-
tion but it is not a foliation by spheres.

If (M, ξ) is tight and D ⊂ M is an embedded disc such that ∂D is
tangent to ξ and ξ

∣∣
∂D

is transverse to TD, then the disc D′ whose existence
is guaranteed by Definition 1.3 is uniquely determined. Otherwise there
would be a sphere tangent to ξ and ξ would be a foliation by spheres by
Theorem 2.2. But we explicitly excluded this case.

The definition of tightness refers to smoothly embedded discs but of
course it has implications for discs with piecewise smooth boundary and
slightly more generally for unions of discs.

Lemma 2.3. Suppose that (M, ξ) is a tight confoliation and S ⊂ M is
an embedded sphere such that the characteristic foliation S(ξ) = TS ∩ ξ
has only non-degenerate hyperbolic singularities along a connected cycle
γ of S(ξ). Then there are immersed discs D′

i, i = 1, . . . k in M which are
tangent to ξ and

∂

(
k⋃

i=1

Di

)
= ∂D.

This follows by considering C∞-small perturbations of S such that γ
is approximated by closed leaves of the characteristic foliation of the per-
turbed sphere. We will continue to say that a disc bounds the cycle γ al-
though the “disc” might have corners or be a pinched annulus, for example.
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The most important criterion to prove tightness is Theorem 1.4. It is
based on the following definition.

Definition 2.4. A positive confoliation ξ on a closed oriented manifold M
is symplectically fillable if there is a compact symplectic manifold (X, ω)
such that

(i) ω
∣∣
ξ

is non-degenerate and
(ii) ∂X = M as oriented manifolds where X is oriented by ω ∧ ω.

In this definition we use the “outward normal first” convention for the
orientation of the boundary. There are several different notions of sym-
plectic fillings and Definition 2.4 is often referred to as weak symplectic
filling. It is clear from Theorem 1.4 (and Theorem 6.9) that the existence of
a symplectic filling is an important property of a confoliation.

Theorem 1.4 can be applied to some non-compact manifolds.

Proposition 2.5 (Proposition 3.5.6. in [9]). If a confoliation ξ is transverse
to the fibers of the projection R3 −→ R2 and if the induced connection is
complete, then ξ is tight.

In [9] one can find an example which shows that the completeness condi-
tion can not be dropped. Note that if (M, ξ) is symplectically fillable, then
the same is true for confoliations ξ′ which are sufficiently close to ξ in the
C0-topology.

3. PROPERTIES AND MODIFICATIONS OF CHARACTERISTIC
FOLIATIONS

The characteristic foliations on embedded surfaces in manifolds with
contact structures has several properties reflecting the positivity of the con-
tact structure. Moreover, there are methods to manipulate the characteristic
foliation by isotopies of the surface. Similar remarks apply when ξ is a
foliation. In this section we generalize this to the case when ξ is a confolia-
tion. If ξ is tight, then there are more restrictions on characteristic foliation.
Some of these additional restrictions shall be discussed in Section 5.

3.1. Neighbourhoods of elliptic singularities. By our orientation conven-
tion positive elliptic singular points lying in the contact region are sources.
The following lemma shows how to interpret this statement for confolia-
tions.

Lemma 3.1. Let (M, ξ) be a confoliated manifold and F an immersed sur-
face whose characteristic foliation has a non-degenerate positive elliptic
singularity p.

There is an open disc p ∈ D ⊂ F such that each leaf of the characteristic
foliation on D is either a circle or there is a closed transversal of F (ξ)
through the leaf. If p is positive respectively negative and ∂D is transverse
to F (ξ), then F (ξ) points outwards respectively inwards.
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Proof. We fix a defining form α for ξ on a neighbourhood of p. If dα(p) 6=
0, then p lies in the interior of the contact region and the claim follows from
[15]. When dα(p) = 0, then F (ξ) is transverse to the gradient vector field
R of a Morse function which has a critical point of index 0 or 2 at p.

In the following we assume that p is positive and R points away from
p and coorients ξ away from p (the other cases are similar). The Poincaré
return map of the characteristic foliation is well defined on a small neigh-
bourhood of p in a fixed radial line starting at the origin (cf. [22] for exam-
ple) and F (ξ) is oriented clockwise near p by our orientation convention.
We want to show that the Poincaré return map is non-decreasing when the
orientation of the radial line points away from p.

Fix a vector field Z coorienting both F and ξ. We write Dz for the image
of F under the time z-flow of Z. We may assume that the tangencies of Dz

and ξ are exactly the points on the flow line γp of Z through p.
We extend R to a vector field on a neighbourhood of p tangent to Dz such

that it remains transverse to ξ on U \γp. Then the vector field T = zZ+R is
transverse to ξ on {z ≥ 0} \ {p} ⊂ U . The flow of T exists for all negative
times t and every flow line of T approaches p as t → −∞. Since dα(p) = 0
and p is elliptic there are local coordinates x, y on D around p such that p
corresponds to the origin and

(2) α = dz + (xdx + ydy) + α̃

where α̃ denotes a 1-form such that α̃/(x2 + y2) and α̃/z remain bounded
when one approaches the origin.

We choose a closed embedded disc D′ in {z ≥ 0} which is transverse
to T and D such that ∂D′ = ∂D and D ∪ D′ bound a closed half ball B.
This half ball is identified with a Euclidean half ball of radius 1 and we fix
spherical coordinates ρ, ϑ, φ (where ρ denotes the distance of a point from
the origin, ϑ is the angle between γp and the straight line connecting the
point with the origin) such that T corresponds to ρ∂ρ. In this coordinate
system

(3) α = cos(ϑ)dρ + ρ sin(ϑ) (−dϑ + sin(ϑ)dρ + cos(ϑ)ρdϑ) + α̃

and α̃/(ρ2 sin2(ϑ)) and α̃/(ρ cos(ϑ)) remain bounded when one approaches
the origin.

Consider a closed disc D′′ lying in the interior of D′. We identify the
union of all flow lines of T which intersect D′′ with D′′ × (0, 1] such that
the second factor corresponds to flow lines of T . On D′′ × (0, 1] the factor
cos(ϑ) is bounded away from 0. By (3) the plane field ker(α) extends to
a smooth plane field on D′′ × [0, 1] such that D′′ × {0} is tangent to the
extended plane field. Therefore ker(α) extends to a continuous plane field
on (D′× [0, 1])\ (∂D′×{0}) which is a smooth confoliation on D′× (0, 1].

The holonomy of the characteristic foliation on ∂D′′ × [0, 1] is non-
increasing by Lemma 2.1 when ∂D′′ × {0} is oriented as the boundary
of D′′. Our orientation assumptions at the beginning of the proof imply
that the characteristic foliation on ∂D′ × (0, 1] is oriented in the opposite
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sense. This implies that the Poincaré-return map of the characteristic folia-
tion around p is non-decreasing. �

3.2. Legendrian polygons. In the proof of rigidity theorems for tight con-
foliations and also in Section 6 we well use the notion of basins and Legen-
drian polygons. In this section we adapt the definitions from [8].

Definition 3.2. A Legendrian polygon (Q, V, α) on a compact embedded
surface F is a triple consisting of a connected oriented surface Q with
piecewise smooth boundary, a finite set V ⊂ ∂Q and a differentiable map
α : Q \ V −→ F which is an orientation preserving embedding on the
interior such that

(i) corners of Q are mapped to singular points of F (ξ),
(ii) smooth pieces of ∂Q are mapped onto smooth Legendrian curves

on F ,
(iii) for points v ∈ V the image α(b±) of the two segments b± ⊂ ∂Q\V

which end at v have the same ω-limit set γv and γv is not a singular
point of F (ξ).

A pseudovertex is a point x ∈ ∂Q such that α(x) is a hyperbolic singularity
and α|∂Q is smooth at α(x), the elements of V are called virtual vertices.

A hyperbolic singularity α(x) on α(∂Q) can be a pseudovertex only if
both unstable or both unstable leaves are contained in α(∂Q).

The points in V should be thought of as missing vertices in the boundary
of Q. Figure 1 shows the image α(Q) of a Legendrian polygon (Q, V, α)
where Q is a disc, V = {v} ⊂ ∂Q and the corresponding ends of ∂Q \ {v}
are mapped to leaves of the characteristic foliation whose ω-limit set is the
closed leaf γv. There are three pseudovertices.

v

γ

FIGURE 1.

The following definition generalizes the notion of injectivity of a Legen-
drian polygon to the context of confoliations.

Definition 3.3. A Legendrian polygon (Q, V, α) identifies edges if there are
edges e1, e

′
1 . . . , el, e

′
l, l ≥ 2 in a connected component of ∂Q such that
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• for all i = 1, . . . , l the edges ei, e
′
i, i = 1, . . . , l have one end at a

pseudovertex xi,
• α(e′i) = α(e′i+1), l = 1, . . . , l − 1 and α(e′l) = α(e′1),
• either γe1...el

= α(e1)∪ . . .∪α(el) is a non-trivial cycle or l = 2 and
α(e1) = α(e2).

A Legendrian polygon which does not identify edges is called injective.

Notice that α may identify vertices even if (Q, V, α) is injective. An
example of a non-trivial cycle γe1e2e3 which can arise from a non-injective
Legendrian polygon is shown Figure 2.

1
’e

2
e’

3
e’

γ

2 3
e e e

12
e

e 3
e

1

FIGURE 2.

Because F is compact and the singularities of F (ξ) are isolated the limit
sets of individual leaves of the characteristic foliation on F belong to one
and only one of the following classes (cf. Theorem 2.6.1. of [24])

• fixed points,
• closed leaves,
• cycles consisting of singular points and leaves connecting them and
• quasi-minimal sets, ie. closures of non-periodic recurrent trajecto-

ries.
At this point we use the smoothness of ξ (smoothness of class C2 would
suffice).

Lemma 3.4. Let F ⊂ M be a surface and ξ a confoliation on M such that
∂F is transverse to ξ and the characteristic foliation points inwards along
∂F . Assume that U ⊂ F is a submanifold of dimension 2 such that every
component of ∂U is either is tangent to F (ξ) or transverse to ξ and the
characteristic foliation points outwards.

Let B(U) be the union of all leaves of F (ξ) which intersect U . Then
B(U) is the image α(Q \ V ) of a Legendrian polygon (Q, V, α).

Proof. A preliminary candidate for (Q, V, α) is Q0 := U, V0 = ∅ and α0 the
inclusion of Q0. We will define vertices and edges of Q and we will glue 1-
handles to components of ∂Q0. The existence of α will be immediate once
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the correct polygon with all pseudovertices, corners and elliptic singularities
and V are defined.

Each intersection of ∂U with a stable leaf of a hyperbolic singularity of
F (ξ) defines a vertex of Q0. These vertices form a subset P0 ⊂ ∂Q0 which
will serve as a first approximation for the set of pseudovertices. For p ∈ P0

we denote the corresponding hyperbolic singularity of F (ξ) by α(p).
First we consider the boundary components Γ of Q0 which are transverse

to F (ξ) and Γ ∩ P0 = ∅. All leaves of F (ξ) passing through Γ have the
same ω-limit set Ω(Γ) (cf. Proposition 14.1.4 in [21]).

We claim that Ω(Γ) is an elliptic singularity or a cycle: Assume that Ω(Γ)
is quasi-minimal. According to Theorem 2.3.3 in [24] there is a recurrent
leaf γ which is dense in Ω(Γ). There is a short transversal τ of F (ξ) such
that |γ ∩ τ | ≥ 2 and there are leaves of F (ξ) passing through Γ which
intersect τ between two points p1, p2 of γ ∩ τ . Because γ is recurrent it
cannot intersect Γ. Let I ⊂ τ be the maximal open segment lying between
p1, p2 such that the leaves of F (ξ) induce a map from I to Γ. It follows (as in
Proposition 14.1.4. in [21]) that the boundary points of I connect to singular
points of F (ξ) which have to be hyperbolic by our assumptions. These
hyperbolic singularities are part of a path tangent to F (ξ) which connects Γ
with τ and this path passes only through hyperbolic singularities. This is a
contradiction to our assumption Γ ∩ P0 = ∅.

Thus if P0 ∩ Γ = ∅, then there are two cases depending on the nature of
Ω(Γ).

• If Ω(Γ) is an elliptic singularity respectively a closed leaf of F (ξ),
then we place no vertices on Γ and α maps Γ to the elliptic point
respectively the closed leaf while α = α0 outside a collar of Γ.

• If Ω(Γ) is a cycle containing hyperbolic points, then we place a
corner on Γ for each time the cycle passes through a hyperbolic
singularity. The map α|Γ is defined accordingly.

Next we consider a boundary component Γ of Q0 which is transverse to
F (ξ) and contains an element p of P0 ∩ Γ. Let η be an unstable leaf of the
corresponding hyperbolic singularity α(p) of F (ξ) and Ω(η) the ω-limit set
of η. Depending on the type of Ω(η) we distinguish four cases.

(i) Ω(η) is an elliptic singular point x. Then we place a vertex on Γ
next to the pseudovertex unless x already appeared in the construc-
tion and α maps all edges on Γ to unstable leaves of hyperbolic sin-
gularities. The edge between the pseudovertex and the new vertex
is mapped to η by α.

(ii) Ω(η) is a cycle of F (ξ) or a quasi-minimal set. Then we place a
vertex v on Γ and add this vertex to to the set of virtual vertices V0.

(iii) Ω(η) is a hyperbolic point and α(p) is part of a cycle. Some pos-
sible configurations in this case are shown in Figure 3 (except the
top right part). More precisely, the configurations in Figure 3 corre-
spond to the case when there are are at most two different hyperbolic
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singularities of F (ξ) which are connected. (This assumption is sat-
isfied for surfaces in a generic 1-parameter family of embeddings.)

We add a 1-handle to Q0 along Γ. This defines a new polygon
Q1. We define α1 : Q1 −→ F such that one of two new boundary
components is mapped to the cycle containing α(p) and we place a
corner on this connected component of ∂Q1 for each time the cycle
passes trough a hyperbolic singularity. In particular p is no longer a
pseudovertex. Outside of a collar of Γ we require α1 = α0.

(iv) Ω(η) is a hyperbolic singularity and α(p) is not part of a cycle. Then
we place a corner on Γ which corresponds to Ω(η). We continue
with the unstable leaf η′ ⊂ Bω(Γ) of Ω(η) and place corners or
vertices on Γ depending on the nature of the ω-limit set of η′. One
possible configuration is shown in the top right part of Figure 3.

α (p) α(p) q

q qα(p) (p)α

η η

η

η η η

FIGURE 3.

All unstable leaves of hyperbolic singularities in F (ξ) which correspond
to elements of P0 ∩ Γ can be treated in this way.

We iterate the procedure (starting from the choice of pseudovertices) until
no new 1-handles are added and we have treated all occurring boundary
components and unstable leaves of pseudovertices. This process is finite
because each hyperbolic singularity can induce the addition of at most one
1-handle and there are only finitely many hyperbolic singularities on F . In
the end we obtain the desired Legendrian polygon (Q, V V, α). �

3.3. The elimination lemma. There are several possibilities to manipulate
the characteristic foliation on an embedded surface. Of course one can al-
ways perturb the embedding of the surface so that it becomes generic and
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that the singularities lie in the interior of the contact region H(ξ) or in the
interior of its complement. In addition to such perturbations we shall use
two other methods.

The first method discussed in this section is called elimination of singu-
larities and it is well known in the context of contact structures. The second
method will be described in Section 3.4.

By a C0-small isotopy of the surface F one can remove a hyperbolic and
an elliptic singularity which are connected by a leaf γ of F (ξ) if the signs
of the singularities agree. The characteristic foliation before the isotopy is
depicted in Figure 4. The segment γ corresponds to the thickened segment
in the middle.

+ +

FIGURE 4.

After the isotopy the characteristic foliation on a neighbourhood of γ
looks like in Figure 5. The elimination of singularities plays an important

FIGURE 5.

role in Eliashberg’s proof of the Thurston-Bennequin inequalities (Theo-
rem 1.6) for tight contact structures.

Below we give a proof of the elimination lemma which applies to confo-
liations under a condition on the location of the singularities. Usually, (cf.
[1, 14] for example) the elimination lemma is proved using Gray’s theorem
but this theorem is not available in the current setting.

Lemma 3.5. Let F be a surface in a confoliated manifold (M, ξ). Assume
that the characteristic foliation on F has one hyperbolic singularity and
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one elliptic singularity of the same sign which are connected by a leaf γ of
the characteristic foliation.

If the elliptic singularity lies in H(ξ), then there is a C0-small isotopy
of F with support in a small open neighborhood U of γ such that the new
characteristic foliation has no singularities inside of U . The isotopy can be
chosen such that γ is contained in the isotoped surface.

Proof. We assume that both singularities are positive. There is a neighbour-
hood U of γ with coordinates x, y, z such that ξ

∣∣
U

is defined by the 1-form
α = dz+a(x, y, z)dy such that the function a satisfies ∂xa ≥ 0. We assume
that ∂z is positively transverse to ξ and F , {z = 0} ⊂ F and the x−axis of
the coordinate system contains γ.

As indicated in Section 2.2 ξ
∣∣
U ′ can be extended to a confoliation ξc on

R3 which satisfies the assumptions of Lemma 2.1 if U ′ ⊂ U is a ball and ∂x

is tangent to ∂U ′ along a circle. We choose ε > 0 so that x×(ε, ε) ⊂ U ′ (the
second factor corresponds to the z-coordinate) for all x in a neighbourhood
V ⊂ F of γ. Since every step in the proof will take place in a fixed small
neighbourhood of γ we can apply Lemma 2.1 without any restriction.

For a path σ ⊂ V we will consider the hypersurface Tσ = σ × (−ε, ε).
By our choices Tσ(ξ) is transverse to the second factor of Tσ.

Choose a smooth foliation I of a small neighbourhood (contained in V )
of γ in F by intervals Is, s ∈ [−1, 1] as indicated by the dashed lines in
Figure 4. We require I to have the following properties.

(i) Two intervals Is0 , Is1 pass through the singularities. One of them is
tangent to the closure of the unstable separatrices of the hyperbolic
singularity.

(ii) All intervals intersecting the interior of γ have exactly two tangen-
cies with the characteristic foliation on F . The intervals which do
not intersect the closure of γ are transverse to the characteristic fo-
liation.

(iii) Let σ by a path in F which is shorter than δ with respect to a fixed
auxiliary Riemannian metric. If δ > 0 is small enough, then the
image of (σ(0), 0) under the holonomy along Tσ is defined. We
assume that the length of each Is is smaller than δ.

We parameterize the leaf Is by σs : [0, 1] −→ F such that the intersection
of γ with Is is positive (or empty), ie. in Figure 4 the leaves of I are oriented
towards the upper part of the picture.

The following figures show neighbourhoods of Is in Ts := Tσs for certain
s ∈ [−1, 1]. In each of these figures the dashed line represents Is, it is
oriented from left to right. Figure 6 corresponds to a leaf Is which does not
intersect γ. Then Is is nowhere tangent to the characteristic foliation on Ts.
By our orientation conventions and the choice of I the slope of ξ ∩ Ts is
negative along Is.

The leaves Is0 , Is1 contain the singular points of the characteristic folia-
tion on F . As shown in Figure 7 there is exactly one tangency of F and the
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FIGURE 6.

characteristic foliation on Ts0 , Ts1 . The slope of the characteristic foliation
on Ts0 , Ts1 is negative along Is0 , Is1 except at the point of tangency.

FIGURE 7.

Finally, the leaves Is, s ∈ (s0, s1) intersect the interior of γ and Is is
tangent to F (ξ) in exactly two points. This is shown in Figure 8. Between
the two points of tangency, the slope of the characteristic foliation on Ts is
positive along Is, it is zero at the tangencies and negative at the remaining
points of Is.

FIGURE 8.

We want to find a smooth family of isotopies of the intervals Is within Ts

such that
(i) for all s the isotopy is constant near the endpoints of Is and

(ii) after the isotopy, the intervals Is are transverse to the characteristic
foliation on Ts.
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This will produce the desired isotopy of F . Such a family of isotopies
exists if and only if the following condition (s) is satisfied for all s ∈ [−1, 1]:

Condition C(s): The image of σs(0)×{0} under the holonomy along σs

lies below the other endpoint σs(1) × {0} of Is or the leaf of Ts(ξ) which
passes through (σs(0), 0) exits Ts through (σs,−ε) ⊂ ∂Ts.

Note that this condition is automatically satisfied for s ∈ [−1, 1] if Is does
not intersect γ or this intersection point is close enough to a singularity of
the characteristic foliation.

If C(s) is not satisfied for all s, then we will replace I by another foliation
I ′ by intervals I ′s (the corresponding embeddings of intervals are denoted
by σ′s) as follows:

(i) If Is does not intersect γ, then σs = σ′s. I ′s intersects γ if and only if
Is does.

(ii) I ′s is tangent to the characteristic foliation on F along two closed
intervals (which may be empty or points). The complement of these
two intervals is the union of three intervals such that each of these
intervals is mapped to a curve of length ≤ δ.

(iii) Is and I ′s coincide on those intervals where the characteristic folia-
tion on Ts has negative slope for all s ∈ [−1, 1].

(iv) Is∪I ′s bounds a positively oriented disc (here Is denotes the interval
Is with the opposite orientation).

In Figure 9 the dashed line corresponds to I ′s while the thick solid line
represents Is.

+ +

FIGURE 9.

For s ∈ (s0, s1) we define a curve I ′′s by replacing the segment of Is

lying between the tangencies with F (ξ) by two segments of leaves of F (ξ)
whose A-limit set is the elliptic singularity in V . Then the holonomy on
I ′′s × (−ε, ε) clearly satisfies the condition (s). This shows that for each s
one can choose I ′s with the desired properties.

Whenever Is satisfies C(s) then so does I ′s by Lemma 2.1. It follows that
we can choose the foliation I ′ such the leaf I ′s of I ′ satisfies C(s) for all
s ∈ [−1, 1]. The desired isotopy of F can be constructed such that the
surface is transversal to ∂z throughout the isotopy. �



18 T. VOGEL

The following lemma is a partial converse of the elimination lemma. Be-
cause it is only concerned with the region where ξ is a contact structure we
omit the proof. It can be found in [8, 15].

Lemma 3.6. Let F ⊂ M be an embedded surface in a confoliated manifold
and γ ⊂ F a compact segment of a nonsingular leaf of the characteristic
foliation on F which lies in the contact region of ξ.

Then there is a C0-small isotopy of F with support in a little neighbour-
hood of γ such that after the isotopy there is an additional pair of singu-
larities (one hyperbolic and ons elliptic) having the same sign. The isotopy
can be performed in such a way that γ is still tangent to the characteristic
foliation and connects the two new singularities.

We end this section with mentioning a particular perturbation of an em-
bedded surface F which also appears in [8]. Consider an injective Legen-
drian polygon (Q, V, α) such that there is an elliptic singularity x of F (ξ)
such that α−1(x) consists of more than one vertex of Q.

Then F can be deformed by a C0-small isotopy near x into a surface
F ′ such that there is a map α′ : Q −→ F ′ with the same properties as α
which coincides with α outside a neighbourhood of α−1(x) and α′ maps all
vertices in α−1(x) to different elliptic singularities of F ′(ξ), cf. Figure 10.

FIGURE 10.

3.4. Modifications in the neighbourhood of integral discs. The second
method for the manipulation of the characteristic foliation on an embedded
surface F is by surgery of the surface along a cycle γ which is part of an
integral disc of ξ. The latter condition is satisfied when the confoliation is
tight and γ bounds a disc in F (for example when F is simply connected).

While the elimination lemma is used to prove the Thurston-Bennequin
inequalities for tight contact manifolds, the following lemmas adapt lem-
mas appearing in [27, 29] (cf. also [4]) from the proof of the existence of
the Roussarie-Thurston normal form for surfaces in 3-manifolds carrying
a foliation without Reeb components. The existence of this normal form
implies the Thurston-Bennequin inequalities for such foliations.

Lemma 3.7. Let F be a surface and γ a closed leaf of the characteristic
foliation on F such that there is a disc D tangent to ξ which bounds γ and
F ∩D = γ.

Then there is a surface F ′ which is obtained from F by removing an
annulus around γ and gluing in two discs D+, D− contained in a tubular
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neighbourhood of D. The discs can be chosen such that D+(ξ), D−(ξ) have
exactly one elliptic singularity in their interior and these singularities have
opposite signs.

If the germ of the holonomy h∂D has non trivial holonomy along γ on
one side of γ, then we can achieve that the elliptic singularity on the disc
on that side lies in the interior of the contact region and every leaf of the
characteristic foliation on the new discs connects the singularity with the
boundary of the disc.

Proof. We will construct D+ in the presence of non-trivial holonomy on the
upper side of γ ⊂ F . The construction of the other disc is analogous.

Fix a closed neighbourhood U ' D × (−ε, ε), ε > 0 of D such that the
fibers of D × (−ε, ε) −→ D are positively transverse to ξ. We assume
F ∩ U = ∂D × (−ε, ε) and we identify D × {0} with the unit disc in R2.

By Lemma 2.1 there is x ∈ D and 0 < η < η′ < ε such that x × [η, η′]
is contained in the interior of the contact region of ξ. On D we consider
the singular foliation consisting of straight lines starting at x. For t ∈ [η, η′]
let Dt be the disc formed by horizontal lifts of leaves of the singular foli-
ation on D with initial point (x, t). Generically, Dt(ξ) is homeomorphic
to the singular foliation by straight lines on D and the singularity is non-
degenerate for all t ∈ [η, η′].

Let ρ : [η, η′] −→ [1/2, 1] be a monotone function which is smooth on
(η, η′] such that ρ ≡ 1 near η′ and the graph of ρ is C∞-tangent to a vertical
line at (η, 1/2). We denote the boundary of the disc of radius ρ(t) in Dt by
St. The union of all St, t ∈ [η, η′] with the part of Dη which corresponds
to the disc with radius 1/2 is the desired disc D+. We remove the annulus
∂D × [0, η′] from F and add D+.

By construction the only singular point of D+(ξ) is (x, η), the singularity
is elliptic and contained in the contact region.

In order to show that all leaves of D+(ξ) accumulate at the elliptic singu-
larity it is enough to show that there are no closed leaves on D+. Assume
that τ is a closed leaf of D+(ξ). Let Dτ be the disc formed by lifts of the
leaves of the radial foliation on D with initial point on τ .

The restriction of ξ to D × [0, ε] extends to a confoliation ξ̃ on R2 × R
which is a complete connection. By Proposition 2.5 ξ̃ is tight. Hence τ
must bound an integral disc of ξ′. Now Dτ is the only possible candidate
for such a disc. But Dτ cannot be an integral disc of ξ̃ because it intersects
the contact region of ξ̃ (or equivalently ξ) in an open set. This contradiction
finishes the proof. �

The following two lemmas are analogues to the elimination lemma in the
sense that we will remove pairs of singularities. However, new singularities
can be introduced: In Lemma 3.9 we will obtain a surface whose char-
acteristic foliation is not generic. However this will play no role in later
applications since the locus of the non-generic singularities will be isolated
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by closed leaves of the characteristic foliation and these singularities do not
contribute to e(ξ)[F ) or χ(F ).

Lemma 3.8. Let F be a surface in a confoliated manifold, D an embedded
disc tangent to ξ and D ∩ F = γ a cycle containing exactly one corner x0.

Then there is a surface F ′ which is obtained from F by removing a tubu-
lar neighbourhood of γ and gluing in two discs D+, D−. The characteristic
foliation of F ′ has no singularities on D− and one elliptic singularity on
D+ whose sign is the opposite of the sign of x0.

Proof. The assumptions of the lemma imply that x0 has a stable and an
unstable leaf which do not lie on D. Fix a product neighbourhood U '
D̃ × (−ε, ε) of D with the following properties.

(i) D is contained in the interior of the disc D̃ × {0}.
(ii) There is a simple Legendrian curve σ ⊂ D̃ containing x0 in its inte-

rior and intersecting ∂D in two points respectively ∂D̃ in two points
such that γ is nowhere tangent to σ respectively ∂D̃ is transverse to
σ. The points in γ ∩ σ are denoted by x0, x1.

(iii) The fibers of π : D̃ × (−ε, ε) −→ D̃ are transverse to ξ and F .
Now consider Tσ = σ × (−ε, ε). The intersection Tσ ∩ F has a non-
degenerate tangency with Tσ(ξ) in x0 and meets σ × {0} transversely in
x1. We choose two points y0, y1 ∈ Tσ ∩ F such that x0 lies between π(y0)

and x1 and y1 lies on the other side of D̃ (as indicated in Figure 11).

xx
σ

y
1

0 1

y
0

F
σ

F
σ

FIGURE 11.

The points y0, y1 can be connected by a curve σ̂ ⊂ Tσ transverse to the
characteristic foliation on Tσ provided that y0, y1 are close enough to D̃.
Moreover, we may assume that σ̂ is tangent to F near its endpoints (cf. the
lower dashed curve in Figure 11).

The curve σ̂ is going to be part of D−. In order to finish the construction
of D− we choose a foliation of D̃ by a family Is, s ∈ σ of intervals that
connect boundary points of D̃ and are transverse to σ. The characteristic
foliation on TIs consists of lines which are mapped diffeomorphically to Is

by π.
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If σ̂ was chosen close enough to D̃, then there is a smooth family of
curves Îs ⊂ Is × (−ε, ε), s ∈ σ such that Îs

(i) intersects σ̂ exactly once and is tangent to ξ in this point,
(ii) is transverse to ξ elsewhere and

(iii) is tangent to F near y0, y1.

The choices we made for σ̂ and Îs, s ∈ σ ensure that the union of all curves
Îs is a disc D− which is transverse to ξ. The disc D+ is obtained as in
the proof of Lemma 3.7. The statement about the sign of the singularity of
D+(ξ) follows from the construction. �

Lemma 3.9. Let F ⊂ M be an embedded surface in a manifold carrying
a confoliation ξ such that F (ξ) contains a hyperbolic singularity x and the
stable and unstable leaves of x bound an annulus A ⊂ F which is pinched
at x. We assume that the pinched annulus is bounded by an integral disc D
of ξ such that ∂A = F ∩D.

Then there is an embedded surface F ′ which is obtained from F by re-
moving a neighbourhood of γ and gluing in an annulus A′ and a disc D′

such that A′(ξ) has one of the following properties.
(i) A′(ξ) has no singularity.

(ii) The singularities of A′(ξ) form a circle and a neighbourhood in F ′

of this circle is foliated by closed leaves of F (ξ′).
The characteristic foliation on D′ has exactly one singularity which is el-
liptic and whose sign is opposite to the sign of x.

Proof. The disc D in the assumptions of the lemma is an immersed disc
which is an embedding away from two points in the boundary. These two
points are identified to the single point x. Let S1 ' σ ⊂ D be a simple
closed curve in D which meets x exactly once.

We choose a solid torus C = σ × [−1, 1] × [−1, 1] such that σ = σ ×
{(0, 0)} and the foliation corresponding to the second factor is Legendrian
while the foliation corresponding to the third factor is transverse to ξ. For
s ∈ [−1, 1] let As = σ × {s} × [−1, 1]. The torus is chosen such that
D ⊂ σ × [−1, 1]× {0} and F intersects A− = σ × [−1, 1]× {−1} in two
circles bounding an annulus while F ∩ (σ× [−1, 1]×{1}) is a circle which
bounds is disc in σ × [−1, 1]× {1}.

A disc D′ which bounds F∩(σ×[−1, 1]×{1}) with the desired properties
can be constructed as in the proof of Lemma 3.7.

Let Ps := σ(s)× [−1, 1]× [−1, 0], s ∈ S1. The characteristic foliation on
Ps consists of lines transverse to the last factor of Ps and σ(s)×[−1, 1]×{0}
is a leaf of Ps(ξ)

If ξ one of the annuli σ × {t} × (−1, 0], t ∈ (−1, 1) has non-trivial
holonomy along σ × {(t, 0)} or if σ × {(t, 0)} is not Legendrian, then one
can choose a curve σ′ in that annulus which is transverse to ξ. The annulus
A′ is the union of curves in Ps, s ∈ S1 which connect the two points of
F ∩ (σ(s)× [−1, 1]×{−1} and pass through σ′ ∩Ps. These curves can be
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chosen such that they are transverse to Ps(ξ) everywhere except in σ′ ∩ Ps.
By construction A′(ξ) has the property described in (i) of the lemma.

This construction also applies if we choose σ′ in annuli which are C∞-
close to σ × {t} × [−1, 0] for a suitable t ∈ [−1, 1]. If all annuli of this
type have trivial holonomy along their boundary curve which is close to σ×
{(t, 0)}, then ξ is a foliation on a neighbourhood of σ in σ×[−1, 1]×[−1, 0]
by Lemma 2.1. The holonomy along σ is trivial. Choosing σ′ tangent to a
leaf, the same construction as in the previous case (with σ′ = σ) yields an
annulus A′ with the properties described in (ii). �

Lemma 3.7 and Lemma 3.8 suffice for Section 5 because the embedded
surfaces in that section are going to be simply connected.

In the lemmas of this section we have assumed that F ∩ D = γ. In
general F and D may intersect elsewhere. Since all singularities of the
characteristic foliation on γ are non-degenerate or of birth-death type, there
is a neighbourhood of γ in D such that γ is the intersection of F with
this neighbourhood. After a small perturbation with support outside of a
neighbourhood of γ we may assume that F is transverse to D on the interior
of D. Now we can apply Lemma 3.7 a finite number of times to circles in
F ∩D in order to achieve that the resulting surface intersects D only along
γ. Then we can apply the lemmas of this section.

4. TIGHT CONFOLIATIONS VIOLATING THE THURSTON-BENNEQUIN
INEQUALITIES

The example given in this section shows that tightness (as defined in Def-
inition 1.3) is a much weaker condition for confoliations compared to the
rigidity of tight contact structures or foliations without Reeb components.
It also shows that it may happen that every contact structure obtained by a
perturbation of a tight confoliation is overtwisted.

The starting point for the construction of a tight confoliation violating the
Thurston-Bennequin inequalities is the classification of tight contact struc-
tures on T 2 × I such that the characteristic foliation on Tt = T 2 × {t}, t ∈
{0, 1} is linear (cf. [16]). We fix an identification T 2 ' R2/Z2 and the
corresponding vector fields ∂1, ∂2.

According to Theorem 1.5 in [16] there is a unique (up to isotopy relative
to the boundary) tight contact structure ξ on T 2 × I such that

(i) the characteristic foliation on ∂(T 2× I) is a pair of linear foliations
whose slope is 2 respectively 1/2 on T0 respectively T1,

(ii) the obstruction for the extension of the vector fields which span the
characteristic foliation on ∂(T 2 × I) is Poincaré-dual to (2, 2) ∈
H1(T

2; Z) ' Z2.
Figure 12 shows the characteristic foliation on T 2 × {t} at various times
together with its orientation. The two curves in T 2 × {1/2} where the
characteristic foliation is singular represent the homology class (2, 2) ∈
H1(T

2; Z). We may assume that the contact structure is T 2-invariant and
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FIGURE 12.

tangent to ∂t on a neighbourhood of the boundary (cf. [15]). Then there
are smooth functions fi, gi, i ∈ {0, 1} on this neighbourhood such that ξ is
spanned by ∂t and

f0(t)∂1 + g0(t)∂2 near T 2 × {0}
f1(t)∂1 + g1(t)∂2 near T 2 × {1}.

(4)

Because ξ is a positive contact structure, the functions fi, gi satisfy the in-
equalities f ′i(t)gi(t) − g′i(t)fi(t) > 0 for i ∈ {0, 1} on their respective
domains.

We now modify ξ to a confoliation ξ̃ on V = T 2× [0, 1]. For this replace
the functions fi, gi in (4) by f̃i, g̃i such that for i = 0, 1

• f̃i, g̃i coincide with fi, gi outside of small open neighbourhoods of
T 2 × {i}

• there is τ > 0 such that f̃ ′i(t)g̃i(t)− g̃′i(t)f̃i(t) > 0 if t ∈ (τ, 1− τ)
and

• f̃ ′i(t)g̃i(t)− g̃′i(t)f̃i(t) ≡ 0 for t ∈ [0, τ ] ∪ [1− τ, 1]

• f̃i, g̃i coincide with fi, gi at t = 0, 1.

Remark 4.1. From the proof of Theorem 1.5 in [16] it follows that the
contact structure ξ̃ on T 2 × (τ, 1− τ) is tight.

We write ξ for the confoliation constructed so far. In the next step we will
extend ξ to a smooth confoliation on T 2 × [−1, 2] such that the boundary
consists of torus leaves.

Let h be a diffeomorphism of R+
0 such that h(s) < s for s > 0 and all

derivatives of h(s)− s vanish for s = 0. The suspension of this diffeomor-
phism yields a foliation on S1×R+

0 whose only closed leaf is S1×{0} and
all other leaves accumulate on this leaf. In this way we obtain a foliation
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on S1 × (S1 × R+
0 ) such that the boundary is a leaf and the characteristic

foliation on S1 × (S1 × {σ}) ' T 2 × {σ}, σ > 0 corresponds to the first
factor. In particular it is linear.

Using suitable elements of Gl(2, Z) we glue two copies of the foliation
on T 2 × [0, σ], σ > 0 to T 2 × [0, 1]. We obtain an oriented confoliation on
T 2 × [−1, 2] such that the boundary is the union of two torus leaves and
we may assume the orientation of the boundary leaves coincides with the
orientation of the fiber of T 2 × [−1, 2].

After identifying the two boundary components by an orientation pre-
serving diffeomorphism, we get a closed oriented manifold M carrying a
smooth positive confoliation which we will denote again by ξ.

Claim: ξ is tight.
We show that the assumption of the contrary contradicts Remark 4.1. Let

γ ⊂ M be a Legendrian curve which bounds an embedded disc D in M
such that ξ is nowhere tangent to D along γ and violates the requirements
of Definition 1.3. By construction ξ has a unique closed leaf T . If γ is
contained in T , then γ bounds a disc in T because T is incompressible. Thus
we may assume that γ lies in the complement of T and we can consider the
manifold M \ T = T 2 × (−1, 2).

By Remark 4.1, γ cannot be contained in T 2 × (τ, 1 − τ). If γ lies
completely in the foliated region T 2×

(
(−1, τ ]∪ [1− τ, 2)

)
, then it bounds

a disc in its leaf because all leaves are incompressible cylinders.
It remains to treat the case when the γ intersects the contact region and

the foliated region. All leaves of ξ in M \ T = T 2 × (−1, 2) are cylinders
which can be retracted into the region T 2 × [0, τ) ∪ (1 − τ, 1]. Hence we
may assume that γ is contained in T 2 × [0, 1].

First we show that there is a Legendrian isotopy of γ such that the re-
sulting curve is transverse to the boundary of the contact region B = T 2 ×
{τ, 1 − τ}. A similar isotopy will be used later, therefore we describe it in
detail.

Let T 2 × (0, τ ′) with 0 < τ < τ ′ be a neighbourhood of one component
of B where ξ can be defined by the 1-form

α0 = dx1 −
f̃0(t)

g̃0(t)
dx2.

We consider the projection pr : T 2 × [0, τ ′] −→ S1 × [0, τ ′] such that the
fibers are tangent to ∂1. Note that dα0 is the lift of the 2-form

ω =
f̃ ′i(t)g̃i(t)− g̃′i(t)f̃i(t)

g̃2
0(t)

dx2 ∧ dt.

The fibers of pr are transverse to ξ. Let γ̂ be a segment of γ which is
contained in T 2 × [0, τ ′] and whose endpoints do not lie on B.

If γ̂ is contained in the foliated part of ξ, then we isotope γ̂ within its leaf
such that the resulting curve is disjoint from T 2×{τ} and the isotopy does
not affect the curve on a neighbourhood of its endpoints.
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Now assume that some pieces of γ̂ are contained in the contact region
of ξ. Then pr(γ̂) passes through the region of S1 × (τ, τ ′] where ω is non-
vanishing. We consider an isotopy of the projection of γ̂ which is fixed near
the endpoints and the area of the region bounded by γ̂ is zero for all curves
in the isotopy. By Stokes theorem one obtains closed Legendrian curves
when γ̂ is replaced by horizontal lifts of curves of the isotopy (with starting
point on γ).

Hence we may assume that γ is transverse to T 2 × {τ} and γ is decom-
posed into finitely many segments whose interior is completely contained
in either the contact region or the foliated region of ξ.

Let γ0 ⊂ γ be an arc with endpoints in the contact region of ξ such that
γ0 contains exactly one subarc of γ lying in the foliated region. Because γ0

is embedded, its union with a Legendrian segment of T 2 × {τ} bounds a
compact half disc in a leaf tangent to ξ and we can choose γ0 such that the
half disc does not contain any other segment of γ.

Now we isotope γ0 relative to its endpoints such that after the isotopy this
segment lies completely in the contact region of ξ. As above we deform
pr(γ0) through immersions such that the resulting arc γ̂0 has the following
properties

• the integral of ω over the region bounded by γ̂0 and pr(γ0) is zero
and the same condition applies to every curve in the isotopy,

• γ̂0 is completely contained in S1 × (τ, τ ′].

Then the horizontal lift of γ̂0 can be chosen to have the same endpoints
as γ0 and we can replace γ0 by this horizontal lift. The resulting curve is
Legendrian isotopic to γ but it the number of pieces which lie in the foliated
region has decreased by one.

After finitely many steps we obtain a Legendrian isotopy between γ0 and
a Legendrian unknot which lies completely in the interior of the contact
region. The Thurston-Bennequin invariant of the resulting unknot is still
zero, ie. it bound a disc with the properties of D in Definition 1.3. But this
is impossible because the contact structure on T 2 × (τ, 1− τ) is tight.

Claim: If M = T 3, then ξ violates b) of Theorem 1.6.
The trivialization of ξ induced by the characteristic foliation on T 2 ×

{0, 1} extends to the complement of T 2 × [0, 1] in T 3. The obstruction for
the extension of the trivialization from T 2×{0, 1} to T 2× [0, 1] is Poincaré-
dual to (1, 1) ∈ H1(T

2 × [0, 1]). Hence e(ξ) is Poincare-dual to (2, 2, 0) ∈
H1(T 2) ⊕ Z where the second factor corresponds to the homology of the
second factor of T 3 ' T 2 × S1. This means that ξ violates the Thurston-
Bennequin inequalities since these inequalities imply e(ξ) = 0.

An example of a torus in (T 3, ξT ) which violates the Thurston-Bennequin
inequality can be described very explicitly. Let T0 be the torus which is
invariant under the S1-action transverse to the fibers of T 2 × S1 −→ S1

and which intersects each fiber in a curve of slope −1, hence this curve
represents (1,−1) ∈ H1(T

2) when T0 is suitably oriented. It follows from
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the description of ξ given above, that τ = T0 ∩ (T 2×{1/2}) is Legendrian
and the characteristic foliation on T0 has exactly four singular points which
lie on τ and have alternating signs.

Moreover, T0 ∩ T is a Legendrian curve and ξ is transverse to all tori
T 2 × {t}, t ∈ (−1, 2) except in the singular points on T0 ∩ (T 2 × {1/2}).
Figure 13 shows a singular foliation homeomorphic to the one on T0. We

−

+

+

−

FIGURE 13.

choose the orientation of T0 such that e(T0) = −4. In order to find an
example of a surface with boundary which violates the inequality c) from
Theorem 1.6 it suffices to remove a small disc containing one of the elliptic
singularities in T0.

According to [9] every positive confoliation can be approximated (in the
C0-topology) by a contact structure. From this it follows that tightness is
not an open condition in the space of confoliations with the C0-topology.
Actually ξ can be approximated by contact structures which are C∞-close
to ξ. This can be seen by going through the proof of Theorem 2.4.1 and
Lemma 2.5.1 in [9]: By construction the holonomy of the closed leaf on T0

is attractive, therefore it satisfies conditions which imply the conclusion of
Proposition 2.5.1, [9] (despite of the fact that the infinitesimal holonomy is
trivial). The main part of this proposition is stated in Lemma 6.3 together
with an outline of the proof.

Thus tightness is not an open condition for confoliations in general. This
answers question 1 from the section 3.7 in [9] (when tightness is defined as
in Definition 1.3).

5. RIGIDITY RESULTS FOR TIGHT CONFOLIATIONS

The example from the previous section shows that tight confoliations are
quite flexible objects compared to tight contact structures and foliations
without Reeb components. In this section we establish some restrictions
on the homotopy class of plane fields which contain tight confoliations.
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The first restriction is the Thurston-Bennequin inequality for simply con-
nected surfaces. Note that this imposes no restriction on the Euler class e(ξ)
of a tight confoliation ξ on a closed manifold M unless the prime decom-
position of M contains (S1 × S2)-summands. Further restrictions on the
homotopy class of ξ follow from

Theorem 5.1. Let M be a manifold carrying a tight confoliation ξ and
B ⊂ M a closed embedded ball in M . There is a neighbourhood of ξ in the
space of plane fields with the C0-topology such that ξ′

∣∣
B

is tight for every
contact structure ξ′ in this neighbourhood.

The proof of this theorem is given in Section 5.2. Let us explain an
application of Theorem 5.1 which justifies the claim that Theorem 5.1 is a
rigidity statement about tight confoliations.

By Theorem 1.1 every confoliation on a closed manifold can be C0-
approximated by a contact structure unless it is a foliation by spheres. Hence
Theorem 5.1 can be applied to every confoliation. Recall the following the-
orem.

Theorem 5.2 (Eliashberg, [8]). Two tight contact structures on the 3-ball
B which coincide on ∂B are isotopic relative to ∂B.

It follows from this theorem that two tight contact structures on S3 are
isotopic and therefore homotopic as plane fields. In contrast to this every
homotopy class of plane fields on S3 contains a contact structure which
is not tight. Thus the following consequence of Theorem 5.1 shows that
there are restrictions on the homotopy classes of plane fields containing
tight confoliations.

Corollary 5.3. Only one homotopy class of plane fields on S3 contains a
positive tight confoliation.

Proof. Let ξ be a tight confoliation on S3. It is well known that every
foliation of rank 2 on S3 contains a Reeb component, cf. [25]. Thus H(ξ)
is not empty. We choose p ∈ H(ξ) and a ball B ⊂ H(ξ) around p.

According to [9] ξ can be C0-approximated by a contact structure ξ′ on
S3 such that ξ and ξ′ coincide on B. By Theorem 5.1 the restriction of ξ′ to
S3 \ B is tight and by a result from [6] ξ′ is a tight contact structure on S3

which is homotopic to ξ. �

More generally, Theorem 5.1 together with Theorem 5.2 implies that the
homotopy class of a tight confoliation ξ as a plane field is completely de-
termined by the restriction of ξ to a neighbourhood of the 2-skeleton of a
triangulation of the underlying manifold.

5.1. The Thurston-Bennequin inequality for discs and spheres. In this
section we prove the Thurston-Bennequin inequalities for a tight confolia-
tion ξ in the cases where F is a sphere or a disc (with transverse boundary).
For this we adapt the arguments in [8]. We shall discuss why Eliashberg’s
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proof cannot be adapted for non-simply connected surfaces in tight confo-
liations after the proof Theorem 5.4. Recall that the self-linking number
sl(γ, F ) of a null-homologous knot γ which is positively transverse to ξ
with respect to a Seifert surface F satisfies e(ξ)[F ] = −sl(γ, F ) where
e(ξ)[F ] corresponds to the obstruction for the extension the characteristic
foliation near ∂F to a trivialization of ξ

∣∣
F

.

Theorem 5.4. Let (M, ξ) be a manifold with a tight confoliation. Then

a) e(ξ)[S2] = 0 for every embedded 2-sphere S2 ⊂ M and
b) sl(∂D, D) ≤ −1 for every embedded disc whose boundary is posi-

tively transverse to ξ.

Proof. We perturb the surface such that it becomes generic and the elliptic
singularities lie in the interior of H(ξ) or in the interior of the foliated re-
gion. Furthermore, we assume in the following that there are no connections
between different hyperbolic singularities of characteristic foliations.

If D is a disc as in in b), then by the Poincaré index theorem

χ(D) = e+(D) + e−(D)− h+(D)− h−(D)

e(ξ)(D) = e+(D)− e−(D)− h+(D) + h−(D).
(5)

Subtracting these equalities we obtain χ(D) − e(ξ)[D] = 2(e− − h−). In
order to prove b) it suffices to replace D by an embedded disc D̂ with
e(ξ)[D] = e(ξ)[D̂] and ∂D̂ = ∂D such that D̂ contains no negative el-
liptic singularities.

Because ξ is tight and D is simply connected each cycle of D(ξ) is the
boundary of an integral disc. We can apply Lemma 3.7 or Lemma 3.8.

We now choose particular cycles of D(ξ) to which we apply Lemma 3.7
and Lemma 3.8: Define γ ≤ γ′ for two cycles γ, γ′ of the characteristic
foliation if γ′ bounds an embedded disc containing γ. We apply Lemma 3.7
and Lemma 3.8 to cycles which are maximal with respect to≤. This means
in particular that the holonomy of maximal cycles which are closed leaves
of D(ξ) is not trivial on the outer side of the cycle.

Hence we obtain a disc D̂ whose characteristic foliation does not have
closed cycles and all elliptic singularities are contained in H(ξ). In partic-
ular there are no integral discs of ξ which pass through elliptic singularities
of the characteristic foliation of D. Moreover, e(ξ)[D] = e(ξ)[D̂]. From
now on we will write D instead of D̂.

Adapting arguments from [8] we eliminate one negative elliptic singu-
larity y: Let U be a disc such that ∂U is transverse to D(ξ) and y ∈ U .
According to Lemma 3.4 there is a Legendrian polygon (Q, V, α) covering
B(U). In the present situation V = ∅ since D(ξ) has no cycles or excep-
tional minimal sets.

Note that B(U) ⊂ D because the characteristic foliation is pointing out-
wards along ∂D. After a small perturbation of D we may assume that α
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identifies vertices of ∂Q only if adjacent edges are also identified (for el-
liptic vertices see Figure 10). In this situation all boundary components of
∂B(y) are embedded piecewise smooth circles.

By construction D(ξ) contains no cycles. Then every boundary compo-
nent γo of B(y) contains an elliptic singularity (which has to be positive).
If all singularities of D(ξ) on γo are positive, then we obtain a contradiction
to the tightness of ξ. Hence γo contains a negative singularity which has
to be hyperbolic. According to our assumptions it is a pseudovertex of the
Legendrian polygon, ie. its unstable leaf ends at y while the other unstable
leaf never meets B(y).

Therefore the application of the elimination lemma (Lemma 3.5) does
not create new cycles. We continue with the elimination of negative elliptic
singularities until e− = 0. This finishes the proof of b)

Now we prove of a). First, we use Lemma 3.7 and Lemma 3.8 in order
to decompose S into a disjoint union of embedded spheres such that there
are no cycles which contain hyperbolic singularities. In the following we
consider each sphere individually, so we continue to write S. If S(ξ) con-
tains a closed leaf, then the claim follows immediately from the definition
of tightness: Let D1, D2 ⊂ S be the two discs with ∂D1 = γ = ∂D2. Then
there is an integral disc D′ of ξ such that ∂D′ = γ. We orient D′ such that
D1∪D′ is a cycle and denote by−D′ the disc with the opposite orientation.
Then [S] = [D1 ∪ D′] + [(−D′) ∪ D2] and the claim follows from (iii) of
Definition 1.3 applied to D1, D2:

e(ξ)[S] = e(ξ)[D1 ∪D′] + e(ξ)[(−D′) ∪D2] = 0.

Finally, if S(ξ) has neither closed leaves or cycles, then one can prove a)
using b) when one considers complements of small discs around positive or
negative elliptic singularities. �

Consider a Legendrian polygon (Q, V, α) in F ⊂ M when ξ is a contact
structure on M . Generically, the characteristic foliation on F is of Morse-
Smale type (cf. [15]). In particular there are no quasi-minimal sets. If
the set of virtual vertices of the Legendrian polygon (Q, V, α) associated
to U is not empty, then by Lemma 3.6 one can create a canceling pair of
singularities along on γv for v ∈ V such that all leaves which accumulated
on γv now accumulate on an elliptic singularity.

For this reason the case V 6= ∅ plays essentially no role when ξ is a
contact structure. If the ω-limit set of γ is contained in the fully foliated part
of a confoliation, then it not possible to apply Lemma 3.6 (cf. Section 4)
in general. It is at this point where the proof of the Thurston-Bennequin
inequalities for tight contact structures fails when one tries to adapt the
arguments from [8] to tight confoliations and surfaces which are not simply
connected.

We finish this section with a remark that will be useful later.



30 T. VOGEL

Remark 5.5. Let ξ be a tight confoliation. For an embedded surface F ⊂
M we define d±(F ) = e±(F ) − h±(F ). Note that if F is a sphere, then
d+(F ) = d−(F ) = 1 by Theorem 5.4 and χ(F ) = 2.

Part b) Theorem 5.4 can be strengthened: Consider α-limit set of stable
leaves of positive hyperbolic singularities of D′. Since D′(ξ) contains no
cycles the α-limit set is generically a positive elliptic singularity. Thus we
may eliminate all negative elliptic and all positive hyperbolic singularities
from D′(ξ). This implies

d−(D) = e−(D)− h−(D) = e−(D′)− h−(D′) ≤ 0

d+(D) = e+(D)− h+(D) = e+(D′)− h+(D′) ≥ 0.

In a later application we shall consider discs such that ∂D is negatively
transverse to ξ. Then the two inequalities above will be interchanged.

5.2. Perturbations of tight confoliations on balls. The proof Theorem 5.1
is given in the following sections. It has two main ingredients: First we gen-
eralize taming functions on spheres in contact manifolds to confoliations.
We show that the characteristic foliation on an embedded sphere S can be
tamed if ξ is tight and that this remains true for contact structures ξ′ which
are close enough to ξ. Then we apply arguments from [16] to conclude that
ξ′|B is tight if ξ′ is a contact structure.

In the following sections ξ will always be an oriented tight confoliation
on M and S denotes an embedded oriented sphere. We do not consider
foliations by spheres.

5.2.1. Properties of S(ξ) for tight confoliations ξ. In this section we prove
two results which will play an important role in the proof of Theorem 5.1.
The following proposition is a generalization of Lemma 4.2.1 in [8].

Proposition 5.6. Let ξ be a tight confoliation on M and S ⊂ M an em-
bedded sphere such that the singularities of S(ξ) are non-degenerate or of
birth-death type. Let U ⊂ S be a connected submanifold of dimension 2
such that ∂U is transverse to S(ξ) and S(ξ) points outwards along ∂U .
Each connected component Γ of the boundary of the associated Legendrian
polygon (Q, V, α) has the following properties.

(i) If there is a negative elliptic singularity x on α(Γ) such that α(Q)
is not a neighbourhood of x or a cycle γv with v ∈ V ∩ Γ such that
α(Q) is not a one-sided neighbourhood of γv, then α(Γ) contains a
positive pseudovertex.

(ii) If d+(U) = 1 and (Q, V, α) identifies the edges e1, e
′
1, . . . , el, e

′
l of Γ,

then α maps the pseudovertices x1, . . . , xl lying on the cycle γe1...el

to negative hyperbolic singularities of S(ξ).

Proof. After a small perturbation of F in the complement of U we may
assume that all singularities are non-degenerate. This perturbation does
not affect the basin B(U) of x. It was shown in Lemma 3.4 that B(U) is
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covered by a Legendrian polygon (Q, V, α). Recall that α is defined only
on Γ \ (Γ ∩ V ), but we shall denote α(Γ \ (Γ ∩ V )) by α(Γ).

First, we reduce the situation to the case when V = ∅. By the theorem
of Poincaré-Bendixon, the ω-limit sets γv, v ∈ V are cycles. Because ξ is
tight, these cycles bound integral discs Dv, v ∈ V of ξ and we can apply
Lemma 3.7 or Lemma 3.8. Since Dv may intersect U it is also necessary to
consider cycles in U .

Let γi a cycle of S(ξ) which is contained in Dv. We assume that the disc
Di ⊂ Dv bounded by γi intersects S only along γi. The cycle γi is either
contained in U or in the complement of U .

We begin with the case γi ⊂ U . We obtain two embedded spheres S ′, S ′′

by cutting along γi. When we use Lemma 3.7, the subset U ⊂ S induces
two subsets U ′ ⊂ S ′, U ′′ ⊂ S ′′ such that U ′ respectively U ′′ contains
one positive respectively one negative singularity in addition to singular-
ities which were already present in S, ∂U ′ respectively ∂U ′′ is transverse
to S ′(ξ) respectively S ′′(ξ) and the characteristic foliation points outwards.
The pseudovertices of the Legendrian polygons associated to the basins of
U ′, U ′′ coincide with the pseudovertices of (Q, α, V ). If d+(U) = 1, then

d+(U ′) + d+(U ′′) = d+(U) + 1

d+(S ′ \ U ′) + d+(U ′) = d+(S ′) = 1

d+(S ′′ \ U ′′) + d+(U ′′) = d+(S ′′) = 1.

(6)

Notice that (S ′ \ U ′) ∪ (S ′′ \ U ′′) = S \ U and ∂(S \ U) is negatively
transverse to Sξ. It follows from Remark 5.5 that d+(S ′ \ U ′) ≤ 0 and
d+(S ′′ \ U ′′) ≤ 0. Together with (6) this implies d+(U ′) = d+(U ′′) = 1.

If we applied Lemma 3.8 and the hyperbolic singularity was positive re-
spectively negative, then h+(U ′ ∪ U ′′) = h+(U) − 1 respectively e+(U ′ ∪
U ′′) = e+(U) + 1. Hence d+(U ′) + d+(U ′′) = d+(U) + 1 and d+(U) = 1
implies d+(U ′′) = 1 as above.

When γi lies in the complement of U , cutting along γi will not affect U
or d+(U) but the basin of U can change: We might replace a virtual vertex
by a vertex which corresponds to an elliptic singularity, or after the surgery
process some boundary components of the Legendrian polygon might be
mapped to a negative elliptic singularity while they accumulated on a cycle
before. The pseudovertices are not affected. Note also that if α(Q) is a
one-sided neighbourhood of a cycle γv, then the Legendrian polygon which
results from the surgery along γv will be a neighbourhood of the negative
elliptic singularity which results from surgery process.

After finitely many steps we obtain a finite union of embedded spheres
Sj and subsets Uj with the same properties as U ⊂ S or Uj = Sj . The
associated Legendrian polygons (Qj, Vj, αj) have no virtual vertices, ie.
Vj = ∅. Therefore is suffices to prove the claim when B(U) is covered by a
Legendrian polygon (Q, V, α) with V = ∅. Let Γ be a boundary component
of Q.
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We now show (i). Let x ∈ α(Γ) be an elliptic singularity such that α(Q)
is not a neighbourhood of x. Then the connected component of ∂(α(Q))
containing x is a piecewise smooth closed curve c. After a perturbation of
the sphere we may assume that c does not contain corners, x ∈ H(ξ) and c
is embedded (cf. Figure 10). If all singularities on c were negative, then we
would get a contradiction to the tightness of ξ since no integral surface of ξ
can meet x. Since all elliptic singularities on c ⊂ α(∂Q) are attractive and
therefore negative, there must be a positive pseudovertex on c.

It remains to prove (ii). Assume d+(U) = 1 and let x1, . . . , xl, l ≥ 2 be
the pseudovertices separating the edges ei, e

′
i, i = 1, . . . , l.

When α(e′i) = α(e′j) for some i 6= j, then l = 2. Let η, η′ be the two
stable leaves of α(x1). After a small perturbation of S in the complement
of U we may assume that the α-limit sets of η, η′ are contained in U .

If α(e′i) 6= α(e′j) for all i 6= j, then let α(xi), α(xj) be two hyperbolic
singularities which lie on the cycle associated to identified edges (cf. Def-
inition 3.3) and are connected by a piecewise smooth simple oriented path
σ in the complement of U consisting of leaves of S(ξ) and hyperbolic sin-
gularities (as corners) such that σ starts at α(xi) and ends at α(xj) without
passing through images of other pseudovertices. After a small perturbation
of S in the neighbourhood of α(xj) we obtain a sphere S ′ such that the α-
limit sets A(η),A(η′) of the two stable leaves η, η′ of α(xi) are contained
in U .

We may assume that neither A(η) or A(η′) is a hyperbolic singularity or
a singularity of birth-death type. By the Poincaré-Bendixon theorem A(η)
is either an elliptic singularity or a cycle. The same is true for A(η′). Using
Lemma 3.7 and Lemma 3.8 we can ensure that A(η) is an elliptic singu-
larity, which has to be positive. Note that η, η′ lie in the same connected
component of the two spheres obtained by the surgery along cycles in U .

For the same reason we may assume that the α-limit set of each stable
leaf of hyperbolic singularities in U is an elliptic singularity in U . Under
these conditions the hypotheses d+(U) = 1 implies that the graph formed
by positive singularities (except birth-death type singularities) and stable
leaves of hyperbolic singularities is a connected tree.

Both stable leaves of α(x1) together with the simple path on the tree
Γ connecting A(η) with A(η′) form a simple closed curve γ on S which is
Legendrian. All singularities on γ except α(xi) are positive by construction.
Moreover, γ contains an elliptic singularities which lies in H(ξ). If α(xi) is
positive we obtain a contradiction to the tightness of ξ since c cannot bound
an integral disc of ξ. �

In order to apply the previous proposition efficiently it remains to show
that either one of the two parts of Proposition 5.6 can be used or Γ ⊂ ∂Q
does not contain any pseudovertices at all. This is done in the following
lemma.
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Lemma 5.7. In the situation of Proposition 5.6, ∂Q has more connected
components than ∂U or one of the following statements holds for each con-
nected component Γ of ∂Q.

(i) There is a connected component Γ of ∂Q such that α(Γ) is an ellip-
tic singularity and α(Q) is a neighbourhood of x or α(Γ) is a cycle
and α(Q) is a one-sided neighbourhood of that cycle.

(ii) α(Γ) contains a cycle of S(ξ) such that α(Q) is not a one-sided
neighbourhood of α(Γ) or α(Γ) contains an elliptic singularity such
that α(Q) is not a neighbourhood of x.

(iii) α identifies edges on Γ.

Proof. After a small perturbation of S we may assume that all negative
elliptic singularities on S lie in H(ξ) or the interior of the complement of
H(ξ). This perturbation does not affect any of the properties mentioned in
the lemma. As in the proof of the previous proposition the problem can be
reduced to the case when Γ ∩ V = ∅.

We show that if (i) and (ii) do not hold for Γ, then (iii) applies to Γ. In the
following discussion we ignore corners on α(Γ) if two of their separatrices
lie in the complement of α(Q).

Let y1 ∈ α(Γ) be an elliptic singularity. Since α(Γ) 6= y1 there is an
unstable leaf η′1 of a pseudovertex x1 which ends at y1. Let η1 be the other
unstable leaf of x1.

If the ω-limit set of η1 is a negative elliptic singularity, then y1 is con-
tained in the interior of α(Q) and α identifies two pairs of edges of Γ, each
pair being separated by a pseudovertex. Otherwise the ω-limit set of η1 is
a hyperbolic singularity x2 and we can assume that x2 is a pseudovertex of
Γ. There is a unique unstable leaf η2 of x2 which is not contained in the
interior of α(Q). In particular the ω-limit set of η2 cannot by an elliptic
singularity. Thus the ω-limit set of η2 is the image x3 of a pseudovertex of
Q. If x3 = x1, then α identifies the edges such that η1, η2 form a non-trivial
cycle of S(ξ).

Otherwise we continue as above until a pseudovertex appears for the sec-
ond time. This happens after finitely many steps since Γ contains only
finitely many pseudovertices. If we obtained a sequence x1, x2, . . . , xr, r ≥
2 with x1 = xr, then α identifies the edges corresponding to the pseudover-
tices x1, . . . , xr−1. Thus if (i) and (ii) do not apply, then (iii) is true. �

5.2.2. Taming functions for characteristic foliations on spheres. Taming
functions for characteristic foliations were introduced by Y. Eliashberg in
[8]. In this section we extend the definition of taming functions so that it can
be applied to spheres embedded in manifolds carrying a tight confoliation.

Let S be an embedded sphere in a confoliated manifold such that the
singularities of the characteristic foliation S(ξ) are non-degenerate or of
birth-death type. This assumption holds in particular for spheres in a generic
1-parameter family of embeddings. In order to define taming functions we
still need to introduce more terminology.
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Definition 5.8. A cycle γ of S(ξ) is an internal subcycle if there is another
cycle γ′ of S(ξ) such that γ ∩ γ′ is not empty and the integral disc which
bounds γ′ contains the integral disc which bounds γ.

A leaf γ of S(ξ) is called internal if there are two cycles of S(ξ) which
bound discs tangent to ξ whose interiors are disjoint. We say that a hyper-
bolic singularity on γ is essential if it is not lying on an internal subcycle of
γ.

The union of singular points and cycles of S(ξ) will be denoted by Σ(S).

Σ(S) is compact. An example of an internal subcycle is shown in Fig-
ure 14. Note that one can create internal cycles intersecting a fixed cycle
of S(ξ) with arbitrary sign using an inverse of the construction explained in
Lemma 3.8.

Definition 5.9. Let U ⊂ S be a compact submanifold of dimension 2 in S
whose boundary is piecewise smooth and does not intersect Σ(S). More-
over, we assume that every connected component Γ ⊂ ∂U satisfies one of
the following conditions:

(1) Γ is smooth and either transverse or tangent to S(ξ).
(2) Γ is piecewise smooth, each smooth segment is transverse to S(ξ)

and intersects one separatrix of a hyperbolic singularity in U .
(3) U is disc and a neighbourhood of a birth-death type singularity of

S(ξ) such that ∂U consists of two smooth segments transverse to
S(ξ).

A function f : U −→ R is a taming function for S(ξ) if it has the following
properties.

(o) If a component Γ ⊂ ∂U belongs to the class (1), then f is assumed
to be constant along Γ. If Γ is of class (2) or (3) we require that f

∣∣
Γ

has exactly one critical point in the interior of each of the smooth
segments of Γ.

(i) The union of the singular points of S(ξ) with all points on internal
leaves coincides with the set of critical points of f . The function is
strictly increasing along leaves of S(ξ) which are not part of a cycle
and f is constant along cycles of S(ξ).

(ii) Positive respectively negative elliptic points of S(ξ) are local min-
ima respectively maxima of f .

(iii) If the level set {f = C} contains only hyperbolic singularities, then
as a increases from a − ε to a + ε for sufficiently small ε > 0 the
number of closed connected components of {f = C} changes by
h−({f = C})− h+({f = C}).

Requirement (i) in Definition 5.9 is slightly more complicated than one
might expect. Figure 14 gives an example of a sphere S in R3 equipped
with the foliation by horizontal planes and cooriented by dz where z is the
vertical coordinate: The left part of the figure shows the intersection of S
with a vertical plane while the right part depicts a part of S(ξ). the internal
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subcycle is the interior part of the thickened curve. If one requires that only
singular points of S(ξ) are critical points of the taming function, then S(ξ)
cannot be tamed although the confoliation in question is tight.

+

+

−

+++
+

z

FIGURE 14.

Assume that (X, ω) is a symplectic filling of (M, ξ) and a compatible
almost complex structure on M is fixed such that ξ consists of complex
lines. By Theorem 1 of [19] an embedded 2-sphere S ⊂ M can be filled
by holomorphic discs when the embedding of S satisfies several technical
conditions. The singular foliation in the formulation of Theorem 1 in [19] is
very similar to the singular foliation formed by level sets of a taming func-
tion. The appearance of internal cycles should be compared with Remark 2
in [19].

5.2.3. Construction and deformations of taming functions. Let S ⊂ M an
embedded oriented 2-sphere. The tightness of ξ leads to several restrictions
on the combinatorics of the cycles of S(ξ) and their holonomy. This will be
used to construct a taming function for S(ξ).

Recall that the orientations of S and ξ induce an orientation of S(ξ) and
integral surfaces of ξ are oriented by the orientation of ξ. If γ is a cycle of
S(ξ), then by tightness there is an integral disc Dγ of ξ such that ∂Dγ = γ
but the orientation of ∂Dγ as boundary of Dγ does not coincide with the
orientation of γ in general. Recall also that Dγ is uniquely determined
because ξ is not a foliation by spheres.

For a 2-dimensional submanifold U ⊂ S with piecewise smooth bound-
ary we define the following quantities:

d+(U) = e+(U)− h+(U)

N−(U) = Number of connected components Γ of ∂U where S(ξ)

points transversally into U or Γ is tangent to S(ξ)

and Γ is potentially repulsive on the side of U.

Ns(U) = Number of boundary components of ∂U through which
stable leaves of negative hyperbolic singularities enter.

Ps(U) = Number of stable leaves of positive hyperbolic singularities in U

which intersect ∂U.
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Lemma 5.10. For each path connected component Σ0 of Σ(S) there is a
neighbourhood U0 of Σ0 and a taming function f : U0 −→ R such that no
connected component of ∂U0 is tangent to S(ξ) and

(7) d+(U0) = 1−N−(U0)− Ps(U0)−Ns(U0).

Proof. We will construct U0 and f : U0 −→ R inductively. The starting
point are connected cycles γ and singularities of S(ξ) in Σ0 which belong
to the following classes.

(i) Positive elliptic singularities and hyperbolic or birth-death type sin-
gularities which do not belong to a cycle.

(ii) Closed leaves with sometimes attractive (non-trivial) one-sided ho-
lonomy.

(iii) Cycles containing hyperbolic singularities which satisfy the follow-
ing conditions:

– The only cycle of S(ξ) containing γ is γ.
– If γ0 ⊂ γ is a subcycle with potentially attractive one-sided

holonomy, then this one-sided holonomy is not trivial.
If the positive elliptic singularity y in (i) is dynamically hyperbolic, then
it is a source and there is a taming function on a neighbourhood U whose
boundary is transverse to S(ξ). If the elliptic singularity is not dynamically
hyperbolic, then one obtains a taming function using the holonomy of an
interval [0, η), η > 0 which is transverse to S(ξ) except at y and y cor-
responds 0 (cf. Lemma 3.1). If the holonomy is non-trivial, then we can
choose the domain U of the taming function such that ∂U is transverse to
S(ξ) and U0 = U . Otherwise we choose U such that ∂U is a closed leaf of
S(ξ). Moreover, U satisfies (7).

If x is a hyperbolic singularity or a singularity of birth-death type, then
the existence of a taming function on a neighbourhood U0 which satisfies
(7) is obvious.

For a closed leaf γ of S(ξ) as in (ii) we choose an embedded interval
(−η, η), η > 0 transverse to S(ξ) such that 0 corresponds to a point in γ
and (−η, 0] corresponds to the side where the holonomy of γ is sometimes
attractive. This choice determines f along the transverse segment and f can
be extended to a taming function on a neighbourhood of γ. If the holonomy
on the side {f ≥ 0} is non-trivial (respectively trivial) we choose U to be an
annulus with transverse boundary (respectively such that ∂U ∩ {f > 0} is
a leaf of S(ξ) and the other component of ∂U0 is transverse to S(ξ)). Thus
N−(U) = 1 and U contains no singular points of S(ξ). This means that (7)
holds for U . If ∂U is transverse to S(ξ) we set U0 = U .

Now let γ be a cycle containing hyperbolic singularities. For each subcy-
cle with potentially attractive (respectively repelling) one-sided holonomy
fix a transversal (−ε, 0] (respectively [0, ε)) with 0 lying on γ and construct
taming functions on collars of discs bounding the subcycle.

If γ contains a corner such that only one stable leaf of the hyperbolic
singularity is part of a cycle. Then the levelsets of f near γ can be chosen
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as suggested in Figure 15. The thick curve represents a critical level of f
while the dashed curve corresponds to a regular level of f . In Figure 15 the
one-sided holonomy along the cycle is repulsive.

FIGURE 15.

Whenever the germ of the one-sided holonomy is nontrivial, we choose
the boundary corresponding boundary component of the domain U of f to
be transverse to S(ξ), otherwise we choose the boundary of the domain to
be tangent to a leaf of S(ξ). In this way, we obtain a function f : U −→ R
on a neighbourhood of γ.

Before we continue with the construction of U0 we show that f : U −→
R satisfies the requirements (i) and (iii) from Definition 5.9. It will follow
from the iteration used to construct U0, that is enough to show that the
extension f : U0 −→ R obtained in that process is a taming function.

By construction f is constant along cycles and increasing along leaves of
S(ξ) which are not part of cycles. Singular points of S(ξ) clearly are critical
points of f and all critical points of f lie on cycles of S(ξ). In order to show
that requirement (i) of Definition 5.9 is satisfied by f we first consider an
internal leaf γ0 ⊂ γ.

Let D0,1, D0,2 ⊂ S be discs with disjoint interiors such that γ0 ⊂ ∂D0,i

for i = 1, 2 and whose interiors contain no subcycle of γ. By tightness
∂D0,1, ∂D0,2 bound integral discs D′

0,1, D
′
0,2 of ξ whose intersection with S

consists of cycles which also lie in the interior of D0,1 and D0,2. By our
assumptions this intersection is empty, therefore the one-sided holonomy
along ∂D0,1, ∂D0,2 is well defined.

Now one of the cycles, say ∂D0,1, is oriented as the boundary of D′
0,1

while the orientation of the other cycle, say ∂D0,2, is the opposite of the
orientation of the integral disc bounding it. Moreover, the collars of ∂D0,1

and ∂D0,2 lie on opposite sides of D′
0,1 ∪D′

0,2. It follows from Lemma 2.1
that the one-sided holonomy along ∂D0,1 is potentially attractive (repulsive)
if and only if the same is true for D0,2. Hence all points of γ0 are critical
points of f .

Conversely, if γ0 is not an interior leaf, then there are cycles γ0,1, γ0,2

such that the one-sided holonomy along these cycles is well defined on
opposite sides of γ0. Again there are integral discs D′

0,1, D
′
0,2 of ξ which

bound γ0,1, γ0,2, but now one of these discs is contained in the other one.
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In contrast to the previous case, both γ0,1, γ0,2 are oriented as the bound-
ary of the corresponding integral disc or their orientations are opposite to
that orientation. Therefore Lemma 2.1 implies that the holonomy along γ0,1

is potentially attractive if and only if γ0,2 is potentially repelling and vice
versa.

Using induction on the number of hyperbolic singularities in γ we now
prove (iii) from Definition 5.9 and (7) for f : U −→ R. We have already
treated the case when γ contains no hyperbolic singularity.

Given a cycle γ and a fixed hyperbolic singularity x0 we isotope S in a
neighbourhood of x0, the resulting sphere will be denoted by S ′. We want
to achieve that segments of S(ξ) in S ∩ S ′ which ended at x0 before the
perturbation are now connected be non-singular segments of S ′(ξ). In this
way obtain a cycle γ′ or a pair of cycles γ′, γ′′ on S ′ which contains one
singularity less than γ.

In order to construct the desired isotopy one moves x0 away from the in-
tegral surface of ξ which contains the cycle γ. When x0 is part of an internal
cycle or not all stable/unstable leaves of x0 are contained in γ we move x0

into the interior of an integral surface of ξ and then slightly above or below
the integral surface with respect to the coorientation of ξ. Choosing to push
upwards or downwards one can make sure that one obtains a cycle on the
perturbed surface which is contained in the interior of the integral surface
of ξ which contains γ. Figure 16 shows one particular instance of the iso-
topy in a neighbourhood of x0. In that figure, we move x0 downwards. In
the left part of the figure all lines are part of S while in the right part they
straight line do not belong to S ′. The cycles γ respectively γ′ correspond to
the thickened lines in the left respectively right part of Figure 16.

S
S

x
0

γ

γ
γ,

,

integral surface

integral surface

FIGURE 16.

In the following we explain the relation between properties of γ and the
perturbed cycle. First, we show (iii) of Definition 5.9.

If there is a hyperbolic singularity x0 ∈ γ such that γ contains only one
stable leaf γ0 of x0, then x0 is automatically an essential singularity on
γ. Because ξ is tight, there is an integral disc D′ of ξ whose boundary is
contained in γ and γ0 ⊂ ∂D′. As before, γ0 is contained in a cycle γc

0 with
well defined one-sided holonomy (on the side of γ which does not contain
the stable leaf of x).
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The following table contains the sign of x0 depending on the nature of the
holonomy along γc

0 and the orientation of γc
0 compared with the orientation

of ∂D′. We also indicate the side of D′ (with respect to the coorientation
given by the coorientation of ξ) on where the holonomy along γc

0 of γ0 is
well defined, this information follows immediately from Lemma 2.1. Using
this, the sign of x0 is easily determined by our orientation convention for
S(ξ).

γ0 oriented as ∂D′ γ0 oriented as −∂D′

γc
0 attractive domain of holonomy

above D′, x0 is positive
domain of holonomy

below D′, x0 is positive

γc
0 repulsive domain of holonomy

below D′, x0 is negative
domain of holonomy

above D′, x0 is negative

This table shows that when γc
0 has attractive holonomy, then x0 is positive.

It follows from he construction of f that two components of the level set
f−1(C) merge when C passes f(γ). This finishes the inductive step for this
case.

Now assume that there are exactly two integral discs D′
1, D

′
2 of ξ with

x0 ∈ ∂D′
i, i = 1, 2 whose boundaries are cycles γ′1, γ

′
2 with well defined

one-sided holonomy of S(ξ). Then each stable leaf of x0 is contained in
exactly one of the discs D′

1, D
′
2. In particular, the one-sided holonomy of

∂D′
1 is potentially attractive if and only if the same is true for ∂D′

2 and the
domains of the one-sided holonomies lies on the same side of D′

1 ∪D′
2 =:

D′.
If one replaces γ0 and γc

0 by γi and D′ by D′
i for i = 1, 2 in the table

above, then the resulting table summarizes the relation between the orien-
tations of γi and ∂D′

i, the nature of the pone-sided holonomy along γi, the
sign of x0 and the location of the domain of the one-sided holonomy with
respect to D′ for both i = 1, 2. Hence two connected components of f−1(c)
merge at x0 when c passes the critical value f(γ) if and only if x0 is positive.
Otherwise the level set splits into two connected components at x0.

In order to show that f : U −→ R satisfies (iii) of Definition 5.9 we
now treat the case when there are exactly three integral discs D′

1, D
′
m, D′

2

of ξ which contain x0 and such that their boundaries γ′1, γ
′
m, γ′2 of each disc

is a cycle of S(ξ) with well defined one-sided holonomy. The notations
for these discs are chosen such that Di and Dm both contain a stable or
unstable leaf of x0 while D1 ∩D2 contains no separatrix of x0. As before,
it follows that the one-sided holonomies are either all potentially attractive
or all potentially repulsive.

The perturbation of S can be arranged such that the stable and the unsta-
ble leaf of x0 lying in D′

i get connected for i = 1, 2. The resulting cycle
γ′ ⊂ S ′ is then connected. Let #(f, c) := |π0 (f−1(c))| for c ∈ R. Near
γ′ we construct a taming function f ′ with f ′(γ′) = f(γ) := c as before.
The following table summarizes the relation between f ′ and f , we fix ε > 0
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such that the levelset of f, f ′ corresponding to the value c ± ε is a closed
submanifold of U,U ′.

γm attractive
x0 positive

#(f ′, c− ε) = #(f, c− ε)− 1
#(f ′, c + ε) = #(f, c + ε)

h+(U ′) = h+(U)− 1
h−(U ′) = h−(U)

γm repulsive
x0 negative

#(f ′, c− ε) = #(f, c− ε)
#(f ′, c + ε) = #(f, c + ε)− 1

h+(U ′) = h+(U)
h−(U ′) = h−(U)− 1

This table implies that f : U −→ R satisfies (iii) of Definition 5.9 if and
only if the same is true for f ′ : U ′ −→ R. Because γ was assumed to be
connected it is not necessary to treat the case when each stable leaf of x0

lies in an integral disc of ξ with the same properties as D′
1, D

′
m above. By

induction, this finishes the proof of (iii) of Definition 5.9.
We use a similar procedure to prove (7). We start with the case that

x0 is a hyperbolic singularity such that exactly one stable leaf of x0 is a
After an isotopy of S in a neighbourhood of x0 we obtain a cycle γ′ which
contains one singularity less than γ. The following table summarizes the
relation between d+(U ′), d+(U), . . . if x0 is positive and negative. When x0

is negative, one has to consider two cases: Either (Case 1) the stable leaf
of x0 is the only stable leaf of a negative hyperbolic singularity intersecting
the connected component of ∂U or not (Case 2).

x0 is positive d+(U ′) = d+(U) + 1
N−(U ′) = N−(U)

Ns(U ′) = Ns(U)
Ps(U ′) = Ps(U)− 1

x0 is negative
(Case 1)

d+(U ′) = d+(U)
N−(U ′) = N−(U) + 1

Ns(U ′) = Ns(U)− 1
Ps(U ′) = Ps(U)

x0 is negative
(Case 2)

d+(U ′) = d+(U)
N−(U ′) = N−(U)

Ns(U ′) = Ns(U)
Ps(U ′) = Ps(U)

The validity of (7) for U follows from (7) for U ′. For the proof of (7) we
may assume from now on that all stable and unstable leaves of all hyperbolic
singularities on γ are contained in γ. In particular Ns = Ps = 0 in the
sequel.

Now assume that x0 ∈ γ be a hyperbolic singularity such that both stable
leaves of x0 are contained in exactly one integral disc of ξ whose boundary
is a cycle of S(ξ) with well defined one-sided holonomy. In this case, the
cycle on S ′ obtained by a controlled isotopy of ξ consists of two connected
components γ′1, γ

′
2. As before, we define functions f ′i : U ′

i −→ R, i = 1, 2.
The following table contains the relations between d+(U), d+(Ui) and

N−(U), N−(U ′
i) with i = 1, 2

x0 is positive
d+(U) = d+(U ′

1) + d+(U ′
2)− 1

N−(U) = N−(U ′
1) + N−(U ′

2)

x0 is negative
d+(U) = d+(U ′

1) + d+(U ′
2)

N−(U) = N−(U ′
1) + N−(U ′

2)− 1

Hence (7) is true for U because it is satisfied for U ′
1, U

′
2.
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Now we assume that x0 is a hyperbolic singularity such that one stable
leaf is part of an internal cycle and the other one is part of a subcycle of
γ which is not internal (if there are internal subcycles, then there must be
singularities with this property because γ is connected). We isotope S as
before, in particular γ′ remains connected. The following table contains
the relations between d+(U), d+(U ′) and N−(U), N−(U ′) depending on the
sign of x0.

x0 is positive d+(U ′) = d+(U) + 1
N−(U ′) = N−(U ′

1)

x0 is negative d+(U ′) = d+(U)
N−(U ′) = N−(U)

As above, this shows (7) for the neighbourhood U of γ and f : U −→ R
has the desired properties.

This finishes the first step in the construction of a taming function on a
neighbourhood of Σ0. If all components of ∂U are transverse to S(ξ), then
U0 := U and f tames S(ξ) on U0. Otherwise we proceed as follows.

Assume we have constructed a taming function f : U −→ R and Γ ⊂
∂U is a closed leaf of S(ξ) with trivial holonomy. By construction the
holonomy is potentially attractive on the side of Γ which is contained in
U . Then there is a cylinder S1 × (0, 1) ⊂ S such that S(ξ) corresponds to
the foliation by the first factor and C consists of two cycles γ0, γ1 such that
γ0 ⊂ U and γ1 lies in the complement of U . We choose C maximal among
cylinders with these properties. Then γ1 can not be a closed leaf with trivial
holonomy. Therefore γ1 belongs to one of the following classes.

(i) γ1 is a negative elliptic singularity or a closed leaf such that the
holonomy on the side which is not contained in C is non-trivial and
potentially repulsive. In this case it is easy to extend f to a taming
function on U ∪ C such that (7) is satisfied.

(ii) γ1 is a cycle containing hyperbolic singularities. If we did not yet
define a taming function near γ1, then we apply the above procedure
to construct a taming function g : V −→ R on a set V with U∩V =
∅. In particular, V satisfies (7). We add a constant to g to ensure
that g

∣∣
γ1

> f
∣∣
Γ
. Then we extend g ∪ f : U ∪ V −→ R to a

taming function on U ∪ V ∪ C. Note that N−(U ∪ V ∪ C) =
N−(U) + N−(V )− 1. Therefore (7) holds for U ∪ V ∪ C.

After finitely many steps we have constructed a taming function on a neigh-
bourhood U0 of Σ0 with the desired properties. It is clear how to adapt the
construction in the presence of birth-death type singularities. �

The following lemma implies that the existence of a taming function on
a neighbourhood U of Σ is a property which is stable under C0-small per-
turbations of ξ if U is small enough.
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Lemma 5.11. Let Σ0 be a path connected component of Σ(S) and Σ̃0 the
union of all discs tangent to ξ which bound cycles in Σ0. There is a neigh-
bourhood Σ̃0 ⊂ W ⊂ M and ε > 0 such that for every confoliation ξ′ on
M which is ε-close (in the C0-topology) to ξ there is a confoliation ξ′c on R3

which is transverse to the fibers of R3 −→ R2 and complete as connection
together with an embedding

ϕ :
(
W, ξ′

∣∣
W

)
−→

(
R3, ξ′c

)
such that ϕ∗(ξ

′) = ξ′c. If ξ′ is a contact structure, then ξ′
∣∣
W

is tight.

Proof. Note that the integral discs which bound a cycle depend continu-
ously on the cycle because the integral discs are uniquely determined. On
Σ̃0 we define an equivalence relation as follows: x ∼ y for x, y ∈ Σ̃0 if and
only if there is a piecewise smooth path in Σ̃0 tangent to ξ which connects
x and y.

The space T := Σ̃0/ ∼ should be thought of as a directed graph: Discs
bounding singular cycles and closed leaves with non-trivial holonomy cor-
respond to vertices while edges of T correspond to families of integral discs
of ξ which bound a maximal connected cycle in Σ0. (Because a disc in Σ̃0

may be part of a bigger disc in Σ̃0, a point in Σ̃0/ ∼ does not correspond to
a unique cycle of S(ξ) in general. This happens for example in Figure 14.)
The orientation of an edge is induced by the coorientation of ξ.

T is a connected tree because Σ̃0 is connected and S is a sphere. We em-
bed T in the y, z-plane in R3 such that dz is consistent with the orientation
of the edges of T .

Let L be the foliation on R3 by straight lines parallel to the x-axis and Z
the foliation by planes parallel to the x, y-plane. We replace T by a family
of discs tangent to Z: For each vertex of T we choose a collection of discs
Di such that

• each Di is tangent to the leaf of Z containing the vertex,
• ∪iDi is diffeomorphic to the union of integral discs in M which

bound the corresponding cycle in M and∪iDi intersects the original
tree T in exactly one point.

Then we connect the discs which correspond to vertices of T by families
of discs tangent to Z as prescribed by the edges of T , ie. by the configu-
ration of integral discs in M . This is done in such a way that outside of a
small neighbourhood of the discs which correspond to vertices of the tree
each leaf of L intersects at most one disc and this intersection is connected.
(In the presence of some configurations of critical points on cycles in Σ0 it
may be impossible to satisfy the last requirement everywhere without vio-
lating the requirement that each leaf of L intersects at most one disc.)

So far we have obtained an embedding ϕ0 : Σ̃0 −→ R3 with ϕ0∗(ξ) = Z
and the Legendrian foliation ϕ−1

0∗ (L) on Σ̃0. We extend this foliation to a
Legendrian foliation L0 on an open neighbourhood Σ̃ of Σ̃0 and we extend
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the embedding ϕ0 such that the extended Legendrian foliation is mapped to
L, the extension of ϕ0 is the desired embedding ϕ : Σ̃ −→ R3 but we still
have to find the right domain and the neighbourhood W .

We may assume that Σ̃ was chosen such that the intersection of each leaf
of L with ϕ(Σ̃) is connected and ϕ∗(ξ) is transverse to ∂z. By construction
ϕ∗
(
ξ
∣∣eΣ) is the kernel of the 1-form α = dz + f(x, y, z)dy with ∂xf ≥ 0

and f ≡ 0 on Σ̃0.
By extending f to a function on R3 we can extend α to a 1-form αc on R3

whose kernel is a confoliation ξc with the desired properties: If we extend
f to a function on R3 with ∂xf ≥ 0 and f ≡ 0 for |z| big enough, then ξc is
a complete connection.

For each plane field ζ on ϕ(Σ̃) such that ζ is transverse to ∂z we define a
foliation L(ζ) which is tangent to the projection of ∂x to ζ along ∂z. There
is a neighbourhood W ⊂ M of Σ̃0 and ε > 0 with the following properties:

• ∂W is piecewise smooth and never tangent to ∂x.
• If ξ′ is ε-close to ξ, then ϕ∗(ξ) is transverse to ∂z.
• For every plane field ξ′ which is ε-close to ξ there is an open set W ′

with Σ̃0 ⊂ W ⊂ W ′ ⊂ U such that the intersection of ϕ(W ′) with
leaves of L(ϕ∗(ξ

′)) is connected.
This implies the claim of the lemma: If a confoliation ξ′ is sufficiently

close to ξ in the C0-topology, then we can extend ϕ∗(ξ
′
∣∣
W

) by extending
(as above) the confoliation ϕ∗(ξ

∣∣
W ′) along leaves of a foliation L′ of R3

by lines transverse to the planes {x = const} and which coincides with
L outside of ϕ(Σ̃). Thus we have found a confoliation ξ′c on R3 with the
desired properties.

The statement about the tightness of ξ′
∣∣
W

follows from Proposition 2.5.
�

Next we show that the taming functions which we have constructed on
pieces of S in Lemma 5.10 can be combined to obtain a taming function on
a given generically embedded sphere.

Proposition 5.12. If (M, ξ) is tight and S is an embedded sphere such that
S(ξ) has isolated singularities which are either non-degenerate or of birth-
death type, then S admits a taming function.

Proof. We construct f in a finite number of steps. By Lemma 5.10 we can
cover the compact set Σ(S) by a finite collection U0 of pairwise disjoint
submanifolds U1, . . . , Ul such that ∂Ui is transverse to S(ξ) and there are
taming functions fj : Uj −→ R for i = 1, . . . , l. Recall that

(8) d+(Uj) = 1−N−(Uj)− Ps(Uj)−Ns(Uj)

for all j = 1, . . . , l. For later applications we assume that each Uj ∈ U0, j =
1, . . . , l has the property described in Lemma 5.11 for εj > 0.

We define a partial order � on U0 as follows: Uj � Uk if and only if
either j = k or Uk has a boundary component which bounds a disc in S
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not containing Uk and a leaf of the characteristic foliation coming from Uj

enters Uk through this boundary component.
By definition every cycle of S(ξ) which intersects Uj is completely con-

tained in Uj . This implies that Uj � Uk and Uk � Uj if and only if j = k
and there is a set Uj ∈ U0 which is minimal with respect to�. All connected
components of ∂Uj are transverse to S(ξ), the characteristic foliation points
outwards along the boundary and (8) implies d+(Uj) = 1.

Let fj be a taming function on Uj and consider the basin B(Uj) of Uj .
According to Lemma 3.4 the closure of B(Uj) is covered by a Legendrian
polygon (Qj, Vj, αj). We consider four cases which correspond to the con-
clusion of Lemma 5.7. Let us assume that there are no birth-death type
singularities. This assumption will be removed below.

Case (o): Qj has more boundary components than Uj . This means that
in the construction of (Qj, Vj, αj) in Lemma 3.4 we did attach 1-handles to
Uj .

Let γj be the stable leaf of a hyperbolic singularity hj such that γj leaves
Uj and hj is a corner in a cycle η. This cycle is contained in one of the
sets Ui(η) ∈ U0 with i(η 6= j. Using the taming function fi(η) we extend fj

to a taming function on a neighbourhood U ′
j of γj ∪ Uj ∪ Ui(η) (it may be

necessary to add a sufficiently large constant to fi(η)).
The extended function tames the characteristic foliation on its domain

and U ′
j can be chosen transverse to S(ξ). By construction

N−
(
U ′

j

)
= N−(Ui(η))

Ps

(
U ′

j

)
=

{
Ps(Ui(η))− 1 if hj is positive
Ps(Ui(η)) if hj is negative

Ns

(
U ′

j

)
=

{
Ns(Ui(η)) if hj is positive
Ns(Ui(η))− 1 if hj is negative.

This implies d+(U ′
j) = 1−N−(U ′

j)− Ps(U
′
j)−Ns(U

′
j).

In the following cases we consider a fixed connected component Γ ⊂
∂Qj which was not covered in case (o).

Case (i): αj(Γ) is an elliptic singularity (and αj(Qj) is a neighbourhood
of x) or αj(Γ) is a cycle and αj(Qj) is a one-sided neighbourhood of that
cycle.

Let us start with the case when αj(Γ) is an elliptic singularity. Because
it is attractive, it must be negative and it is contained in Ui(Γ) with i(Γ) 6= j.
One can easily extend fj to a taming function on the union U ′

j of Uj ∪Ui(Γ)

with all leaves passing through Γ. Obviously (8) holds for U ′
j .

If αj(Γ) is a closed leaf or a cycle, then αj(Γ) belongs to one of the
sets Ui(Γ) with i(Γ) 6= j. After eventually adding a constant to the taming
function on Ui(Γ) one obtains a taming function on the union of the flow
lines leaving Uj through Γ with Uj and Ui(Γ). As before we denote the new
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domain by U ′
j . From

N−
(
U ′

j

)
= N−(Ui(Γ))− 1

Ps

(
U ′

j

)
= Ps(Ui(Γ))

Ns

(
U ′

j

)
= Ns(Ui(Γ)).

it follows that d+(U ′
j) = 1− U−(U ′

j)− Ps(U
′
j)−Ns(U

′
j).

Case (ii): αj(Γ) contains an elliptic singularity such that αj(Qj) is not a
neighbourhood of this singularity or there is vj ∈ Vj ∩ Γ such that γvj

is a
cycle of S(ξ) and αj(Qj) is not a one sided neighbourhood of γvj

or
According to Proposition 5.6 there is a positive pseudovertex x on αj(Γ)

such that αj(Qj) is not a neighbourhood of x. Let η be the stable leaf of
x which is not contained in αj(Qj). The α-limit set of η is contained in a
set Ui(η) while x ∈ Ui(x). We obtain a taming function on the union of U ′

j

of Uj ∪ Ui(η) ∪ Ui(x) with a neighbourhood of the stable leaves of x (after
adding a constant to fi(x)).

Because x is positive the requirements in the definition of taming func-
tions are satisfied. Moreover, we can choose the domain U ′

j of the taming
function such that its the new boundary component is transverse to S(ξ).
The equality d+(U ′

j) = 1−N−(U ′
j)− Ps(U

′
j)−Ns(U

′
j) follows from

N−
(
U ′

j

)
= N−

(
Ui(η)

)
Ps

(
U ′

j

)
= Ps

(
Ui(η)

)
Ns

(
U ′

j

)
= Ns

(
Ui(η)

)
and the fact that x is positive.

Case (iii): (o)-(ii) do not hold for (Qj, Vj, αj). Then αj identifies edges
on Γ by Lemma 5.7. We shall use the notation from the proof of that lemma.

Let e1, . . . , el be edges on Γ from the proof of Lemma 5.7. The cycle
η := γe1...el

is contained in Ui(η) ∈ U0 and we denote the stable leaves of
the pseudovertices on η which are not part of η by σ1, . . . , σl. Let U ′

j be
the union of Uj ∪ Ui(η) with neighbourhoods of σ1, . . . , σl. No other stable
leaves of hyperbolic singularities enter Ui(η) and all pseudovertices on η are
negative. After we add a sufficiently big constant to fi(η) we obtain a taming
function f ′j on U ′

j .The following relations imply (7):

N−
(
U ′

j

)
= N−

(
Ui(η)

)
Ps

(
U ′

j

)
= Ps

(
Ui(η)

)
Ns

(
U ′

j

)
= Ns

(
Ui(η)

)
− 1.

We have now considered all cases occurring in Lemma 5.7. Next we
remove the assumption that there is not birth-death type singularity. Assume
that in the step above we encounter a birth-death type singularity x. Then x
is contained in a set Ui(x) from U0. In an intermediate step we extend f to
the union U int

j of U ∪ Ui(x) with the leaves of S(ξ) which connect Ui(x) to
U . Then we continue as before with U int

j instead of Uj .
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Now we remove Uj together with all Ui which are contained in U ′
j from

the collection U0 and we add U ′
j . This yields a new collection of of subsets

U1 such that each domain in U1 admits a taming function. Notice that the
number of sets in U1 is strictly smaller than the number of sets in U0.

We iterate the procedure after replacing U0 with U1. After finitely many
steps we obtain a taming function on S. �

So far we have established the existence of a taming function on em-
bedded spheres such that S(ξ) has only non-degenerate or birth-death type
singularities. Now we consider an embedding of S2× [0, 1] in M and a C0-
approximation of ξ by a confoliation ξ′. After a C∞-small perturbation of
S2× [0, 1] this family of spheres becomes generic. We want to show that the
characteristic foliation St(ξ

′) admits a taming function if the confoliation ξ′

is close enough to ξ in the C0-topology.

Proposition 5.13. There is a C0-neighbourhood of ξ such that for every
confoliation ξ′ in that neighbourhood St(ξ

′) admits a taming function for
all t ∈ [0, 1] if St is generic with respect to ξ′ for all t.

If ξ′ is a contact structure, then St(ξ
′) admits a taming function which is

strictly increasing along all leaves of St(ξ
′).

Proof. We show that if ξ′ is close enough to ξ in the C0-topology and St(ξ)
has only non-degenerate singularities or singularities of birth death type,
then the iteration process used for the construction of a taming function in
Proposition 5.12 can be carried out to yield a taming function for St(ξ

′) for
each t ∈ [0, 1]. For this we first reconsider the proof of Proposition 5.12
in order to show the existence of ε > 0 with the desired properties for a
fixed sphere St and then we argue that ε can be chosen independently from
t ∈ [0, 1].

Recall that in the proof of Proposition 5.12 we required that all sets Uj ∈
U0 appearing in the initial stage of the construction are contained in a set
Wj with the stability property described in Lemma 5.11 for εj > 0: The
restriction of ξ′ to Wj is tight when ξ′ is εj-close to ξ.

Moreover, we chose the Uj such that each smooth segment in ∂Uj is
transverse to S(ξ). This remains true when ξ′ is εj-close to ξ when εj > 0
is small enough. The iteration process in the proof of Proposition 5.12 stops
after finitely many steps and we choose ε > 0 so small that each smooth
segment contained in the boundary of a set in U0, U1, . . . is transverse to
S(ξ′) when ξ′ is ε-close to ξ. This requirement ensures also that the combi-
natorics of the extensions of f is the same for St(ξ) and St(ξ

′).
It remains to show that we can choose ε > 0 independently from t ∈

[0, 1]. For this note that Σ = ∪tΣ(St) is compact. Thus a finite number of
sets Wj obtained from Lemma 5.11 suffice to cover Σ. If τ is sufficiently
close to t, then Sτ (ξ) is very close to St(ξ) in the C∞-topology and the
combinatorics of extensions of a taming function for St(ξ) and Sτ (ξ) co-
incide, ie. we connect subsets Uj(t) of St which are very close to subsets
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Uj(τ) of Sτ in the same order (with the possible but irrelevant exception of
birth-death type singularities).

When the above procedure for the choice of ε for St yields εt > 0, then
εt/2 has the desired property with respect to the characteristic foliation on
Sτ ′ when τ ′ is close enough to t. Since [0, 1] is compact, this proves the
claim. �

5.2.4. Proof of Theorem 5.1. For the proof of Theorem 5.1 we combine the
results from the previous sections with results from [16].

Proof of Theorem 5.1. Let B ⊂ B1 ⊂ M be an embedded closed ball in a
manifold M with a tight confoliation ξ. We assume that the interior of B1

contains points where ξ is a contact structure since otherwise Theorem 5.1
follows immediately from Lemma 5.11. Moreover, we assume that ∂B1 is
generic.

Let B0 be a ball in the contact region whose characteristic foliation has
exactly two singular points and the leaves of the characteristic foliation con-
nect the two singularities. The existence of such a ball follows from the
fact that every contact structure is locally equivalent to the standard contact
structure ker(dz + xdy) on R3. Moreover, there is an open neighbourhood
of ξ|B0 such that every confoliation in this neighbourhood is tight on B0.

Let ξ′ be a contact structure on B1. If ξ′′ is a contact structure and suf-
ficiently close to ξ′ in the C∞-topology, then ξ′|B is diffeomorphic to the
restriction of ξ′′ to a closed ball in B1. Therefore it is enough to prove
Theorem 5.1 for generic perturbations.

We fix a generic identification B1 \ B̊0 ' S2 × [0, 1] such that ∂Bi =
Si, i = 0, 1. Because the confoliation ξ is assumed to be tight, St(ξ) can be
tamed for all t. By Proposition 5.13 this remains true for generic confolia-
tions ξ′ which are sufficiently close to ξ in the C0-topology.

Recall that an embedded surface in a contact manifold is called convex
if there is a vector field transverse to the surface such that the flow of the
vector field preserves the contact structure. According to [15] convexity is
a C∞-generic property on orientable surfaces, so we may assume that ∂B0

and ∂B1 are convex with respect to ξ′.
We will show that ξ′ can be isotoped on S2×[0, 1] relative to the boundary

such that all leaves of the product foliation on S2 × [0, 1] become convex
with respect to the isotoped contact structure. Since ∂B0 is convex and ξ′ is
tight on a neighbourhood of ∂B0 this implies that ξ′|B is tight by Theorem
2.19 in [16] (and the gluing result in [6]).

In order to prove the existence of the desired isotopy of ξ′ we use the
following lemma. Our formulation is a slight modification of Lemma 2.17
in [16] in the case F ' S2.

Lemma 5.14. Let (M, ξ′) be a contact manifold. Assume that the charac-
teristic foliation on each sphere St from the family S2 × [0, 1] ⊂ M admits
a taming function and S0, S1 are convex. Then there is a contact structure
ξ′′ such that
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• ξ′ and ξ′′ are isotopic relative to the boundary and
• the characteristic foliation of ξ′′ on St has exactly χ(S) = 2 singu-

lar points and St is convex with respect to ξ′′ for all t ∈ [0, 1].

The original statement of Giroux of this lemma contains tightness as an
assumption. However the proof of Lemma 2.17 of [16] requires only prop-
erties of the characteristic foliation on St, t ∈ [0, 1] which follow from the
existence of taming functions.

More specifically, the proof of Lemma 2.17 in [15] yields a proof of
Lemma 5.14 after the following modification: As we have already explained
we may assume that the characteristic foliation of ξ′ on St can also be tamed
for all t ∈ [0, 1] by Proposition 5.13. Moreover, because ξ′ is a contact
structure, the taming functions are strictly increasing along leaves of the
characteristic foliation. Therefore the following statements hold:

(1) There is no closed cycle on S × {t}, t ∈ [0, 1].
(2) The graph Γ+

t (Γ−t ) on F ×{t} formed by positive (negative) singu-
lar points and stable (unstable) leaves of positive (negative) hyper-
bolic singularities is a tree.

Using these two observations one obtains a proof of Lemma 5.14 from the
proof of Lemma 2.17 in [16]. �

6. OVERTWISTED STARS

In this section we introduce overtwisted stars. Their definition is given
in the next section and it is motivated by the discussion of the confoliation
(T 3, ξT ) in Section 4. The absence of overtwisted stars in a tight confoli-
ations implies all Thurston-Bennequin inequalities and we show that sym-
plectically fillable confoliations do not admit overtwisted stars (in addition
to the fact that they are tight).

6.1. Overtwisted stars and the Thurston-Bennequin inequalities. As
we have already mentioned the point where the proof of the Thurston-
Bennequin inequalities for tight confoliations fails is the following: Given
an embedded surface F and a tight confoliation (M, ξ), there may be leaves
of F (ξ) which come from an elliptic singularity and accumulate on closed
leaves γ (or on quasi-minimal sets) of the characteristic foliation such that γ
is part of the fully foliated set of ξ. Even if all singular points on ∂B(x) have
the same sign it may be impossible to construct a disc from B(x) which has
the properties of the disc D appearing in Definition 1.3.

This suggests the following definition of overtwisted stars on generically
embedded surfaces F .

Definition 6.1. An overtwisted star in the interior of a generically em-
bedded compact surface F 6' S2 is the image of a Legendrian polygon
(Q, V, α) with the following properties.

(i) Q is homeomorphic to a disc and α(∂Q) contains singularities of
F (ξ).
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(ii) All singularities of F (ξ) on α(∂Q\V ) have the same sign. There is
a single singularity in the interior of α(Q); it is elliptic and its sign
is opposite to the sign of the singularities on α(∂Q).

(iii) If v ∈ V and γv is a cycle, then γv does not bound an integral disc
of ξ in M .

The torus shown Figure 13 contains two overtwisted stars. Note that
the polygon is not required to be injective. Requirement (i) implies that
either V 6= ∅ or α(∂Q) contains an elliptic singularity of F (ξ) and we may
assume that this singularity is contained in H(ξ) after a small perturbation
of S. In particular discs with the properties of D in Definition 1.3 are not
overtwisted stars.

If ξ is a contact structure and F ⊂ M is a generically embedded closed
surface containing an overtwisted star (Q, V, α), then ξ cannot be tight since
ξ is convex by the genericity assumption (therefore all γv, v ∈ V are cycles)
and has a homotopically trivial dividing curve (this terminology is standard
in contact topology; because we shall not really use it we refer the reader
to [14, 15, 20]). This argument does not apply when F ' S2. Since the
definition of tightness in Definition 1.3 can be applied efficiently to spheres
and discs, the exceptional role of spheres in Definition 6.1 will not play a
role.

The following theorem is proved following Eliashbergs strategy from [8]
and Theorem 5.4.

Theorem 6.2. Let (M, ξ) be an oriented tight confoliation such that no
compact embedded oriented surface contains an overtwisted star. Assume
that (M, ξ) is not a foliation by spheres.

Every embedded surface F whose boundary is either empty or positively
transverse to ξ satisfies the following relations.

a) If F ' S2, then e(ξ)[F ] = 0.
b) If ∂F = ∅ and F 6' S2, then |e(ξ)[F ]| ≤ −χ(F ).
c) If ∂F 6= ∅ is positively transverse to ξ, then sl(γ, [F ]) ≤ −χ(F ).

Proof. The claim a) was already proved in Theorem 5.4. For the proof of b)
and c) we may assume that F is a generic representative of the homology
class [F ] ∈ H2(M, ∂F ) which is incompressible (this means that the map
π1(F ) −→ π1(M) which is induced by the inclusion F ↪→ M is injective).
Recall that if ∂F is positively transverse to ξ, then F (ξ) points out of F
along ∂F and

χ(F )− e(ξ)[F ] = 2(e− − h−)

by (5). If there is no negative elliptic singularity, then −e(ξ)[F ] ≤ −χ(F ).
If there is a negative elliptic singularity x, then we shall use the absence
of overtwisted stars to eliminate x without creating new negative elliptic
singularities. Let Dx be the maximal open disc in F such that

• ∂Dx = Dx \Dx is a cycle of F (ξ) and
• x is the only singularity of F (ξ) in the interior of Dx.
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Unless Dx = ∅ there is an integral disc D′
x of ξ whose boundary is ∂Dx

because ξ is tight. Moreover, the intersection of the interior of D′
x with F

consists of homotopically trivial curves in F (otherwise we get a contradic-
tion to the incompressibility of F ).

Thus we can cut F using Lemma 3.7, Lemma 3.8 and Lemma 3.9 so
that the resulting surface F ′ is the union of spheres and a surface which is
diffeomorphic to F and incompressible. Because e(ξ)[S] = 0 for embed-
ded spheres S we can ignore the spherical components and we denote the
remaining surface by F ′. This surface satisfies e(ξ)[F ] = e(ξ)[F ′].

If we used Lemma 3.8 or Lemma 3.9, then we have reduced the num-
ber of negative elliptic singularities by one. Note that if we have applied
Lemma 3.9, then F ′ might contain a circle of singularities. This means
that F ′ is non-generic near that circle. Since this circle is isolated from the
rest of F ′ by closed leaves of F ′(ξ) and the singularities on this circle do
not contribute to e(ξ)[F ′] or χ(F ′) we can pretend that F ′ is generic and
continue to eliminate the remaining negative elliptic singularities.

If we used Lemma 3.7, then F ′ contains a negative elliptic singularity x′

which lies in H(ξ). In the following we shall denote x′ again by x.
The basin of x is covered by a Legendrian polygon (Q′, V ′, α′) on F ′. By

the maximality property of Dx the boundary of Q′ is not mapped to a cycle
of F ′(ξ). If ∂Q′ has more than one connected component, then there is a
hyperbolic singularity y on α′(∂Q′) which is the corner of a cycle γy. If y
is negative, then we can eliminate the pair x, y.

Now assume that y is positive. If γy does intersect H(ξ), then we can
perturb F ′ in a small neighbourhood of a point on the cycle such that y
is no longer part of a cycle after the perturbation. If γy does not intersect
H(ξ), then we push a part of the cycle into H(ξ) by an isotopy of F ′ without
introducing new singularities of the characteristic foliation.

The isotopy is constructed as follows. Let L be the maximal connected
integral surface of ξ which contains the cycle through y. We choose a simple
curve σ tangent to ξ which connects the cycle to H(ξ) and is disjoint from
F ′. This curve can be chosen close to the stable leaf of y which is connected
to x ∈ H(ξ). We choose a vector field X tangent to ξ with support in a small
neighbourhood of σ such that σ is a flow line of X and F ′ is transverse to
X . We use the flow of X to isotope F ′ such that all unstable leaves of y
are connected to H(ξ) after the isotopy. Since X is transverse to F ′ and
tangent to X the isotopy creates no new singular points of the characteristic
foliation. Figure 17 shows L together with a part of the intersection F ′ ∩
L. The curve σ is represented by the thickened line while the shaded disc
represents another part of H(ξ) or non-trivial topology of L.

By this process we modified the basin of x. Note that there are finitely
many hyperbolic singularities on F and the procedure described above does
not create new ones. Therefore finitely many applications lead to a surface
F ′′ with e(ξ)[F ] = e(ξ)[F ′′] such that the hyperbolic singularities of F ′′(ξ)
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FIGURE 17.

are also hyperbolic singularities of F (ξ) and the basin of x is homeomor-
phic to a disc. Also, the number of negative elliptic singularities did not
increase. Note that F ′′ is not a sphere because F ′′ and F have the same
genus.

The basin of x is covered by a Legendrian polygon (Q′′, V ′′, α′′) on F ′′

such that Q′′ is a disc and α′′(Q′′) is not an elliptic singularity or a cycle of
F ′′(ξ). If necessary, we eliminate all elements of v′′ ∈ V with the property
that γv′′ is null homotopic in F ′′.

Now the assumption of the theorem implies that ∂Q′′ contains a negative
pseudovertex. By Lemma 3.5 we can isotope F ′′ to a surface containing less
negative elliptic singularities than F respectively F ′′. After finitely many
steps we have eliminated all negative elliptic singularities. This finishes the
proof of c) and one of the inequalities in b). The remaining inequality in b)
can be proved by eliminating all positive elliptic singularities. �

6.2. Overtwisted stars and symplectic fillings. In this section we show
that symplectically fillable confoliations do not admit overtwisted stars. In
the proof we C0-approximate a confoliation by another confoliation (cf.
Theorem 1.1). Several techniques used in the proof are adaptations of con-
structions in [9]. Other useful references are [26] (where the proofs of
Lemma 2.5.1 c) and Lemma 2.5.3 from [9] are carried out) and [11]. For
later use we summarize the proof of a lemma used to show Theorem 1.1.

Lemma 6.3 (Lemma 2.5.1 c) in [9]). Let γ be a simple closed curve in
the interior of an integral surface L of ξ. If γ has sometimes attractive
holonomy, then in every C0-neighbourhood of ξ there is a confoliation ξ′

which

(i) is a contact structure on a neighbourhood of γ and
(ii) coincides with ξ outside a slightly larger neighbourhood.

Proof. We only indicate the main stages of the construction. Fix a neigh-
bourhood V ' S1

x× [−1, 1]y× [−1, 1]z and coordinates x, y, z such that the
foliation by the second factor is Legendrian, S1 × [−1,−1]× {0} ⊂ L and
S1 × {(0, 0)} corresponds to γ. We assume that γ has sometimes attractive
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holonomy. As shown in Lemma 2.1.1 of [26] the coordinates can be chosen
such that

• ξ is defined by the 1-form α = dz + a(x, y, z) dx with ∂ya ≤ 0 and
• there are sequences ζ ′n < 0 < ζn converging to zero such that

a(x, 0, ζ ′n) < 0 < a(x, 0, ζn) for all x.
At this point we use the assumption that the holonomy along γ is sometimes
attractive. We fix a pair ζ, ζ ′ of numbers from the sequences (ζn), (ζ ′n).

According to Lemma 2.2.1 in [26] and Lemma 2.5.3 in [9] there is a
diffeomorphism g : [−1, 1] −→ [−1, 1] such that

(i) g is the identity outside of V := (ζ ′, ζ) and
(ii) g′(z)a(x, 0, z) < a(x, 0, g(z)) for all (x, 0, z) ∈ S1 × {0} × V .

It follows that g converges uniformly to the identity as ζ, ζ ′ → 0, but no
claim is made with respect to the C1-topology. A typical graph of g is given
in Figure 18 (cf. [26]). The parameters a, b with ζ ′ < a < 0 < b < ζ are
chosen such that a(x, 0, z) 6= 0 for z ∈ [ζ ′, a] ∪ [b, ζ].

ζ
,

ζ
,

b ζ

ζ

b

a

FIGURE 18.

In order to obtain the desired confoliation in a C0-neighbourhood of ξ,
one proceeds as follows.

Step 1: Replace ξ on S1 × [−1/2,−1/4] × V by the push forward of ξ
with the map G which is defined by

G(x, y, z) := (x, y, u(y)g(z) + (1− u(y))z)

where u is a smooth non-negative function on [−1/2,−1/4] such that u ≡ 0
near −1/2 and u ≡ 1 near −1/4. The dashed respectively the solid lines
in Figure 19 show the characteristic foliations of ξ′ on neighbourhoods of γ
in {y = −1/4} respectively on {y = 1/2} using dashed respectively solid
lines when γ has attractive holonomy.

We extend G to M \ (S1× [−1/4, 1/2]×V ) by the identity. As ζ, ζ ′ → 0
the corresponding diffeomorphism G converges to the identity uniformly
but not with respect to the C1-topology in general. Therefore G∗(ξ) might
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not be C0-close to ξ on S1 × [−1/2,−1/4] × V . This will be achieved in
the third step (at this point we follow the exposition on [26] closely).

Step 2: From G∗(ξ) we construct a smooth confoliation ξ′′ on M such
that ∂y remains Legendrian: The plane field ξ′′ contains the foliation in-
duced by the second factor of S1 × [−1/4, 1/2] × V and rotates around
these lines. This can be done such that the characteristic foliation on S1 ×
{−1/4, 1/2} × V coincides with the characteristic foliation of G∗(ξ) on
these annuli. This is possible by (ii) using the interpretation of the confoli-
ation condition mentioned in Section 2.2 (cf. Figure 19). Note that ξ′′ is a
contact structure on the interior of S1 × [−1/4, 1/2]× V =: Ṽ .

Step 3: We want to construct a diffeomorphism φ of M with support
in V such that φ∗ξ

′′ is C0-close to ξ. For this one has to choose V more
carefully. This is carried out on p. 31–33 of [26]. The argument can be
outlined as follows; cf. p. 16 in [26]: Assume that r is chosen such that
V ⊂ [−r/2, r/2] and ξ is ε-close to the horizontal distribution on S1 ×
[−1, 1] × [−r, r]. As we already mentioned ξ′′ might be very far away
from the horizontal distribution. Choose a very small number δ > 0 and a
diffeomorphism ϕ : [−r, r] −→ [−r, r] such that ϕ([−r/2, r/2]) ⊂ [−δ, δ].
Then the push forward of the restriction of ξ′′ to S1× [−1/2, 1/2]× [−r, r]
is 3ε-close to the horizontal distribution. One has to extend ϕ such that this
property is preserved. �

We will need not only the statement of the lemma, but also the construc-
tion outlined in the proof since we need to understand how the modification
of ξ near a curve γ with sometimes attractive holonomy affects the presence
of overtwisted stars on embedded surfaces in M . The third step of the above
proof is of course irrelevant for this.

Figure 20 shows F (ξ′′) near a closed curve of F (ξ′′) in an embedded
surface F transverse to γ after the second step of the proof of Lemma 6.3.
The dot in the center of the figure represents F ∩ γ while the left inner
rectangle represents the support of G. Finally, ξ′′ is a contact structure in
the inner rectangle on the right (this rectangle corresponds to the region
Ṽ ∩ F in the proof of Lemma 6.3). Recall that the characteristic foliation
F (ξ) was nearly horizontal in the region shown in Figure 20.
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Note that if γ has non-trivial infinitesimal (or only attractive) holonomy,
then the statement of Lemma 6.3 can be sharpened in the sense that the
lemma remains true for C∞-neighbourhoods of ξ because the function g :
[−1, 1] −→ [−1, 1] can be chosen C∞-close to the identity. In the following
we will consider only C0-approximations. This allows us to choose the
approximation of ξ more freely. In particular we can preserve qualitative
features of the characteristic foliation on surfaces transverse to γ.

Lemma 6.4. Let ξ be a Ck-confoliation, k ≥ 1, and γ a simple Legen-
drian segment such that both endpoints of γ lie in the contact region and γ
intersects F transversely and at most once.

Then every Ck-neighbourhood of ξ contains a confoliation ξ′ such that
ξ′ = ξ outside a neighbourhood of γ and ξ′ is a contact structure on a
neighbourhood of γ. Moreover, F (ξ) = F (ξ′).

Proof. The case γ ∩ F = ∅ corresponds to Lemma 2.8.2. in [9], the case
γ∩F = {p} is very similar and only this case uses the assumption that both
endpoints of σ lie in H(ξ). �

The following lemma is standard in the setting of foliations: One can
thicken a closed leaf to obtain a smooth foliation which is close to the orig-
inal one and contains a family of closed leaves. The new difficulty in the
context of confoliations is the fact that now compact leaves of ξ may have
boundary.

Lemma 6.5. Let ξ be a confoliation on M , L ⊂ M a compact embedded
surface tangent to ξ and F ⊂ M a closed oriented surface which is generi-
cally embedded and does not intersect ∂L. We require that each connected
component of ∂L can be connected to H(ξ) by a Legendrian curve which is
disjoint from L̊ ∪ F .

Then there is a smooth confoliation ξ′ which is C0-close to ξ such that
F (ξ′) is homeomorphic to the singular foliation obtained from F (ξ) by
thickening the closed leaves of cycles of F (ξ) which are also contained
in L.
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Proof. Let I = [−1, 1] and J = [−1, 0]. We fix a tubular neighbourhood
U ' L× I of L = L× {0}.

For each boundary component Bi of L we choose Ui ' S1×J×I ⊂ M in
the complement of L̊∪F . We assume that the third factor of Ui is transverse
to ξ while the foliation J whose fibers correspond to the second factor is
Legendrian and that S1 × {(0, 0)} = B0,i and S1 × {(−1, 0)} = B−1,i

intersect H(ξ). Let Aj,i = S1 × {j} × I ⊂ ∂Ui for j ∈ {−1, 0}.
Without loss of generality we may assume that B−1,i is completely con-

tained in the contact region and transverse to ξ. (Otherwise apply Lemma 6.4
to segments of B−1,i and replace Ui with a new set U ′

i with the desired prop-
erty.)

We will now construct a confoliation ξ′ on U ∪
⋃

i Ui which coincides
with ξ near ∂U and has the desired properties.

The restriction of ξ′ to U is defined in two steps. First we flatten ξ in
a neighbourhood U ' L × I using the push forward of ξ using a smooth
homeomorphism g of I which is C∞-tangent to the zero map and coincides
with the identity outside a neighbourhood of 0.

We push forward ξ on L × [0, 1] respectively L × [−1, 0] using orienta-
tion preserving homeomorphism [0, 1] −→ [ε, 1] respectively [−1, 0] −→
[−1,−ε] which is smooth away from 0. The confoliation on (L×[−1,−ε])∪
(L × [−ε, ε]) ∪ (L × [ε, 1]) ' U (with ε > 0), which is the product foli-
ation on L × [−ε, ε], is smooth and contains a family of compact leaves.
We can choose the diffeomorphisms appearing in the construction such that
ξ
∣∣
U

is as close to ξ′
∣∣
U

in the C0-topology as we want. As in the third step
of the proof of Lemma 6.3 one can ensure that the resulting distribution is
C0-close to the original confoliation.

We can choose ξ′
∣∣
U

such that A0,i(ξ) and A0,i(ξ
′) coincide outside of

the region where the slope of A0,i(ξ) is very small compared to the slope
of A−1,i(ξ). By construction the slope of A0,i(ξ

′) is much smaller than
the slope of A−1,i(ξ) = A−1,i(ξ). As in the second step in the proof of
Lemma 6.3 (or Lemma 2.5.1. of [9]) one can extend ξ′ to a smooth confo-
liation on M such that ξ′ is close to ξ (the foliation J corresponds to the
y-coordinate in [9]). The claim about F (ξ′) follows immediately from the
construction. �

Remark 6.6. After a trivially foliated bundle L × [−ε, ε] is added to the
confoliation, it is possible to replace the trivially foliated piece by a foliation
on L × [−ε, ε] such that the boundary leaves L × {±ε} have sometimes
attractive holonomy on side lying in L× [−ε, ε]. The following statements
follow from the construction explained in [9] on p. 39. (This construction
carries over to surfaces with boundary after the surface is doubled.)

When the Euler characteristic of L is negative, then one can replace the
product foliation on L× [−ε, ε] by a foliation such that the holonomy along
every homotopically non trivial curve in L×{ε} or L×{−ε} is sometimes
attractive on the side in L× [−ε, ε].
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If the Euler characteristic of the compact surface with boundary L is not
negative, then L is diffeomorphic to S2, D2, T 2 or S1× I . The case S2 will
not occur unless the confoliation in question is actually a product foliation
by spheres. But these are excluded. If L ' S1 × I , then the suspension of
a suitable diffeomorphism yields the same result as in the case of χ(L) < 0
(without doubling the surface). The case L ' D2 will be excluded by
the last requirement of Definition 6.1 in the application we have in mind.
Finally, the case L ' T 2 is exceptional because of Kopell’s lemma (cf. the
footnote on p. 39 of [9]). But if L = T 2, then it is easy to arrange that the
holonomy is attractive along a given homotopically non-trivial curve.

This modification changes the characteristic foliation on F , but only an
open set which was foliated by closed leaves and cycles before the pertur-
bation. In particular overtwisted stars are not affected.

The following proposition from [9] adapts a famous result of Sacksteder
[28] to laminations so that it can be applied to the fully foliated part of
confoliations.

Proposition 6.7 (Proposition 1.2.13 in [9]). Let (M, ξ) be a Ck-confoliation,
k ≥ 2 which is not a foliation with dense leaves. All minimal sets of the fully
foliated part of ξ are either closed leaves or exceptional minimal sets. Each
exceptional minimal set contains a simple closed curve along which ξ has
non-trivial infinitesimal holonomy.

In particular, exceptional minimal sets are isolated and there are only
finitely many of them.

We denote the finite set consisting of exceptional minimal sets of the fully
foliated part of ξ by E(ξ).

In the following F will be an embedded surface containing an over-
twisted star (Q, V, α). We write ΩQ for ∪v∈V γv. We will be mostly con-
cerned with limit sets γv, v ∈ V which are contained in compact leaves
(with or without boundary) or in exceptional minimal sets of the fully foli-
ated part of M . By Lemma 6.5 and the remark following it, we may assume
that if γv, v ∈ V is a cycle lying in a compact leaf, then γv contains no
hyperbolic singularities.

Lemma 6.8. Let ξ be a confoliation and F an embedded connected surface
containing an overtwisted star (Q, V, α) and v ∈ V . The space of plane
fields on M carries the C0-topology.

a) If γv is contained in a closed leaf of ξ, then in every neighbour-
hood of ξ there is a confoliation ξ′ such that F (ξ′) contains an over-
twisted star (Q′, V ′, α′) which is naturally identified with (Q, V, α)
and γ′v, (v ∈ V ′ ' V ) passes through the contact region of ξ′.

b) Assume that γ is contained in an exceptional minimal set, γ has
attractive linear holonomy, and γ is transverse to F . Then every
C0-neighbourhood of ξ contains a confoliation ξ′ such that F (ξ′)
contains an overtwisted star which can be naturally identified with
(Q, V, α) and |E(ξ′)| < |E(ξ)|.
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Proof. First we prove a). Let L be the closed leaf containing γv. Since γv is
the ω-limit set of leaves in F (ξ) it has attractive holonomy on one side and
F ∩ L consists of a family of cycles. In particular, L ∩ α(Q) = ∅ because
an overtwisted star with virtual vertices does not contain closed cycles of
the characteristic foliation.

We use Lemma 6.5 and Remark 6.6 to ensure that γv has sometimes
attractive holonomy on both sides. Unfortunately this property is not stable
under arbitrary isotopies of γv in general. But by Lemma 2.1 there is an
annulus A ' γv × [0, 1] such that γv = γv × {0} = F ∩ A and all curves
in A have attracting holonomy on the side where α(Q) approaches γv while
isotopies do not change the nature of the holonomy on the other side of L
since by construction the confoliation is actually a foliation there.

Therefore there is a small isotopy of F which maps (Q, V, α) to an over-
twisted star (Q′, V ′, α′) on the isotoped surface F ′ such that γv is mapped
to γv×{ε} where 0 < ε < 1/2. Then we can apply Lemma 6.3 to γv×{0}
and γv × {2ε}.

Now there is a Legendrian arc intersecting F ′ exactly once in a point of
γv and both endpoints of this arc lie in the contact region. Hence this arc
satisfies the assumptions of Lemma 6.4. This yields a confoliation ξ′ with
the desired properties such that F ′(ξ) = F ′(ξ′). This finishes the proof of
a).

Now we prove b). We shall use notations from the proof of Lemma 6.3.
In the proof we will use the freedom in the choice of the function g in
the proof of Lemma 6.3. For this we need the fact that γ has non-trivial
infinitesimal holonomy since then there are only very few restriction on g
in the proof of Lemma 6.3, cf. also Lemma 2.5.2 in [9].

Fix a neighbourhood U ' S1
x × [−1, 1]y × [−1, 1]z such that γ = S1 ×

{(0, 0)} and the coordinates x, y, z have all properties used in the proof of
Lemma 6.3. In particular, the foliation by the second factor is Legendrian
and coincides with F (ξ) on F ∩U while the third factor is positively trans-
verse to ξ. We require that U intersects F only in neighbourhoods of points
in γ ∩ ΩQ =: X .

Let us make an orientation assumption in order to simplify the presenta-
tion: We assume that the orientation of the Legendrian foliation on S1 ×
[−1, 1] × [−1, 1] given by the second factor coincides with the orientation
of F (ξ) near points of γ ∩ γv, v ∈ V , ie. in Figure 20 the foliation is ori-
ented from left to right. When this assumption is not satisfied for some
y ∈ γ ∩ ΩQ, then one has to interchange the roles of τ̂−(y) and τ̂+(y) in
some of the following arguments.

By transversality γ intersects F in a finite number of points. Since γ
is contained in the fully foliated part of ξ, γ cannot intersect α(Q) since
every point of α(Q) is connected to H(ξ) by a Legendrian arc. We can
ignore the points in F ∩ γ which do not belong to α(Q) if we deform ξ on
a neighbourhood of γ which is small enough.



58 T. VOGEL

Because F is smoothly embedded and ξ is C2-smooth, F (ξ) is also of
class C2. As we have already mentioned in Section 3.2 the ω-limit set γv

with v ∈ V is either a quasi-minimal set or we may assume that γv is a
closed leaf of F (ξ). We distinguish the following cases.

(i) γv is quasi-minimal. Since there are interior points of α(Q) arbitrar-
ily close to γv, there is no segment τ transverse to F (ξ) such that
τ ∩γv is dense in τ . Then γv∩τ is a Cantor set (cf. [17]). The inter-
section between two different quasi-minimal sets cannot contain a
recurrent orbit by Maier’s theorem (Theorem 2.4.1 in [24]) and the
number of quasi-minimal sets of F (ξ) is bounded by the genus of
F according to Theorem 2.4.5. in [24].

(ii) γv is a closed leaf of F (ξ) whose holonomy is attractive on the side
from which α(Q) accumulates on γv while it is repulsive on the
other side and α(Q) spirals onto γv on the attractive side. In this
case, α(Q) cannot enter a one-sided neighbourhood of γv on the
side where the holonomy is repulsive.

(iii) γv is a closed leaf of F (ξ) whose holonomy is attractive on one side
and either there is a sequence of closed leaves of F (ξ) on the other
side of γv which converge to γv or γv has attractive holonomy on
both sides.

If γv belongs to class (iii) and U is small enough (ie. contained in the
interior of an annulus each of whose boundary is tangent to F (ξ) or trans-
verse to F (ξ) such that F (ξ) points into the annulus along the boundary),
then any modification of F (ξ) with support in U∩F will result in a singular
foliation on F such that all leaves of the characteristic foliation which enter
a neighbourhood of γv containing U will remain in U forever even after the
modification. When no singularities are created during the modification,
then the modification replaces (Q, V, α) by an overtwisted star (Q′, V ′, α′)
such that |V | = |V ′|. In this case γv 6= γ′v but γ′v is a closed leaf of F (ξ′)
which passes through H(ξ′) (by the proof of Lemma 6.3. We keep this case
separated from the others although all three of them may occur in one single
perturbation of ξ.

The following argument is complicated by a difficulty in case (ii). If
α(Q) accumulates on γv and the holonomy of γv is repulsive on the side
where points of γ are pushed to by the diffeomorphism G appearing in the
proof of Lemma 6.3, then it is impossible to say something about the new
ω-limit set of leaves in α(Q) which accumulated on γv unless G is chosen
carefully: It is possible that leaves which accumulated on γv accumulate
on γv′ when the characteristic foliation is modified near γv. However it is
possible that γv′ is also changed when ξ is replaced by ξ′. Therefore one
has to treat all v ∈ V such that γv belongs to (i),(ii) simultaneously.

For non-empty open intervals τ− ⊂ [−1, 0) and τ+ ⊂ (0, 1] we write
τ̂±(y) := {y} × [−1, 1]× τ± for y ∈ γ. We will fix τ± in the following.

We require that τ+ is chosen such that the ω-limit of a leaf intersecting
τ̂+(y) is never a hyperbolic singularity for all y ∈ X . Because
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• there are only finitely many hyperbolic singularities on F ,
• α(Q) intersects every interval transverse to γv in an open set (note

that there are singular foliations on surfaces with dense quasi-minimal
sets; in particular stable leaves of hyperbolic singularities in such
quasi-minimal sets may be dense in the surface) and

• α(∂Q) is disjoint from those γv, v ∈ V which intersect γ even if γv

is quasi-minimal (this is true because every point of α(Q) is con-
nected to H(ξ) by a Legendrian curve while γ is part of the fully
foliated set)

this condition can be satisfied. Next we impose additional restrictions on
τ−:

We choose τ− such that no point in τ̂+(x) is connected to τ̂−(y) for x, y ∈
X by a leaf of F (ξ) which is disjoint from {(y, 0)}× [sup(τ−), sup(τ+)]. In
other words, we require that leaves of F (ξ) which come from τ̂+(x) do not
intersect τ̂−(y) when they meet the piece of {(y,−1)}× [−1, 1] ⊂ (U ∩F )
which lies between the lower endpoint of τ̂−(y) and the upper endpoint
of τ̂+(y) for the first time. In order to satisfy this condition it might be
necessary to shorten τ+.

There is a choice for τ+, τ− which satisfies these requirements for x, y ∈
X whenever the limit set γv which corresponds to y is not the ω-limit set of
leaves intersecting τ̂+(x).

If y is contained in a closed leaf of F (ξ), then one can also satisfy the
requirement for x, y ∈ X provided that τ+ is so short that the translates of
τ̂+(x) along leaves of F (ξ) do not cover the segment τ̂−(y)). We shorten
τ+ whenever this is necessary. Finally, when y is part of a quasi-minimal
set and the leaves of F (ξ) which intersect τ̂+(x) accumulate on this quasi-
minimal set the above requirement can be satisfied by shortening τ± again.
Now one can construct τ− in a finite number of steps and shortening τ± at
each step.

Let t− ∈ τ−. We fix the diffeomorphism g : [−1, 1] −→ [−1, 1] in
the proof of Lemma 6.3 such that g maps the entire interval (t−, sup(τ+))
into τ+ and the support of g is contained in (inf(τ−), sup(τ+)). The role
of the parameters ζ, ζ ′ from the proof of Lemma 6.3 is now played by
sup(τ+), inf(τ−).

If ξ is modified by the procedure described in the proof of Lemma 6.3
using the diffeomorphism g chosen above, then one obtains a confoliation
ξ′ such that all leaves of F (ξ′) starting at the elliptic singularity in the center
of the original overtwisted whose ω-limit set was γv such that γv ∩ γ 6= ∅
never meet a hyperbolic singularity of F (ξ′).

Since all elliptic singularities on the boundary of the basin of the elliptic
singularity in α(Q) are automatically negative and all hyperbolic singular-
ities on the boundary of the basin where already present in α(∂Q) there is
an overtwisted star (Q′, V ′, α′) and V ′ can be viewed as a subset of V by
construction. Moreover, |E(ξ′)| < |E(ξ)|. �
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Now we can finally show that there are no overtwisted stars when ξ is
symplectically fillable.

Theorem 6.9. Let (M, ξ) be a Ck-confoliation, k ≥ 2, which is symplecti-
cally fillable. Then no oriented embedded surface contains an overtwisted
star.

Proof. Let (X, ω) be a symplectic filling of ξ. Assume that F is an embed-
ded surface containing an overtwisted star (Q, V, α). It is sufficient to treat
only the case of closed surfaces when the elliptic singularity in the interior
of α(Q) is positive.

In the first part of the proof we show how to reduce the number of virtual
vertices. Because overtwisted stars are not required to be injective as Legen-
drian polygons, we show in a second step how to obtain an embedded disc
D such that ∂D is Legendrian and TD|∂D is transverse to ξ|∂D violating
Definition 1.3 starting from an overtwisted star (Q, ∅, α). The confoliation
is modified several times but all confoliations appearing in the proof will be
C0-close to ξ. In particular they are symplectically fillable. Therefore the
assumption that (M, ξ) admits an overtwisted star contradicts Theorem 1.4.

Notice that in the presence of an overtwisted star ξ cannot be a foliation
everywhere. Therefore M is not a minimal set of the fully foliated part of ξ
and ξ is not a foliation without holonomy.

Step 1: If V 6= ∅, then ξ can be approximated by a confoliation which
admits an overtwisted star with less virtual vertices than (Q, V, α).

We fix v0 ∈ V . If γ0 := γv0 intersects H(ξ), then an application of
Lemma 3.6 yields a surface carrying an overtwisted star with less virtual
vertices. Now assume γ0 ∩H(ξ) = ∅.

Let L be the maximal connected open immersed hypersurface of M
which is tangent to ξ and contains γ0. If L = ∅, then there is a Legen-
drian segment σ satisfying the hypothesis of Lemma 6.4. After applying
this lemma, γv intersects the contact region of the modified confoliation
and we are done.

Now assume L 6= ∅ and let L∞ be the space of ends of L. We say
that an end e ∈ L∞ lies in H(ξ) if for every compact set K ⊂ L there
is a Legendrian curve from H(ξ) to the connected component of L \ K
corresponding to e and the curve avoids K.

Step 1a: If L∞ 6= ∅, then we approximate ξ such that all ends of L lies in
the contact region of the modified confoliation.

The set of ends in H(ξ) is open in L∞, therefore its complement L∞fol is
compact. To each e ∈ L∞fol we associate a minimal set M(e) ⊂ lime L of
the fully foliated part of ξ (this is explained in [4], p. 115). Recall that M
cannot be a minimal set of the fully foliated part of ξ. According to [18],
p.19, all minimal sets are either closed leaves or exceptional minimal sets.
Note that L may be contained in M(e).

If M(e) is a closed leaf of ξ whose holonomy along a curve γ trans-
verse to F is sometimes attractive, then we can apply Lemma 6.8 a) to γv
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if there is v ∈ V with γv ⊂ M(e). If L contains no limit set of α(Q), then
the procedure from the proof of Lemma 6.3 can be applied directly to any
curve γ ⊂ M(e) with sometimes attractive holonomy. We can ensure the
existence of such a curve by Lemma 6.5 and Remark 6.6.

If M(e) is an exceptional minimal set, then according to Proposition 6.7
there is a simple closed curve γ in a leaf Lγ ⊂ M(e) with non-trivial in-
finitesimal holonomy. Every curve in Lγ which is isotopic to γ through
Legendrian curves has the same property by Lemma 1.3.17 in [9]. In par-
ticular we may assume that γ is transverse to F . Using Lemma 6.8 b) we
approximate ξ by a confoliation ξ′ such that Lγ meets H(ξ′).

IfM(e) was an exceptional minimal set, this process might have changed
the overtwisted star in the sense that type of the ω-limit sets of virtual ver-
tices may have changed. But recall that by the proof of Lemma 6.8 we can
view V ′ as a subset of V . We use γ′v to denote the ω-limit set of leaves
which start at the elliptic singularity in the center of the overtwisted star
and accumulated on γv, v ∈ V before the modification.

We iterate the procedure from the very beginning with v0 ∈ V ′ and with
an integral surface of ξ′ containing γ′0. Since E(ξ) is finite and |E(ξ′)| <
|E(ξ)| this phenomenon can occur only finitely many times.

In later applications of the above construction γ′0 = γ0 and the maximal
integral surface of ξ′ containing γ′0 is contained in the maximal integral
surface of ξ containing γ0. Because the inclusion induces a continuous
mapping between the spaces of ends and by the compactness of L∞fol we are
done after finitely many steps. We continue to write F for the embedded
surface, ξ for the confoliation, (Q, V, α) for the overtwisted star etc.

Step 1b: We isotope F such that all quasi-minimal sets of the character-
istic foliation on the resulting surface pass through the contact region.

As we have already noted in the proof of Lemma 6.8, F (ξ) has only
finitely many quasi-minimal sets (this number is bounded by the genus of
F ). Let γw, w ∈ V be a quasi-minimal set of F (ξ) which is disjoint from
H(ξ).

According to Theorem 2.3.3 in [24] there is an uncountable number of
leaves of F (ξ) which are recurrent (in both directions) and dense in γw

while (Q, V, α) has only a finite number of pseudovertices and |V | < ∞.
Therefore there is pw ∈ γw which can be connected to H(ξ) by a Legendrian
arc σ transverse to F such that σ does not meet α(∂Q) and σ never intersects
cyclic components of ΩQ. At this point we use that every end of the union
of integral hypersurfaces containing γw lies in H(ξ). If σ intersects ΩQ in
some other quasi-minimal set γw′ , w′ ∈ V before it meets H(ξ), then we
replace γw by γw′ . Thus we may assume that σ meets F in pw and nowhere
else.

By Lemma 2.8.2 in [9] there is a confoliation ξ′ Ck-close to ξ such that
F (ξ′) = F (ξ), σ is tangent to ξ and ξ′ and a neighbourhood of pw in F lies
in H(ξ′). We will denote ξ′ again by ξ.
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Choose a neighbourhood U ' σ×[−1, 1]×[−1, 1] of σ such that σ = σ×
{(0, 0)} and ({pw}× [−1, 1]× [−1, 1]) ⊂ F . Moreover, we require that the
foliation by the first factor is Legendrian while the foliation corresponding
to the second factor is transverse to ξ and Ů ⊂ H(ξ). Finally we assume
that the foliation which corresponds to the second factor is Legendrian when
it is restricted to F .

Now we apply an isotopy to F whose effect on the characteristic foli-
ation on F is the same as the effect of the map G appearing in the proof
of Lemma 6.3. We explain this under the following orientation assump-
tions (the other cases can be treated in the same way): The orientation of
F (ξ) coincides with the second factor of U ' σ× [−1, 1]× [−1, 1] and the
coorientation of F points away from U .

In Figure 20 the left respectively right edge of the rectangle corresponds
to {(pw,−1)} × [−1, 1] respectively {(pw, 1)} × [−1, 1], the foliation is
oriented from left to right, the coorientation of ξ points upwards and the
coorientation of F points towards the reader.

Choose−1 < x < 0 < y < 1 such that the points (pw,−1, x), (pw, 1, y) ∈
F

(i) do not lie on a stable or unstable leaf of a hyperbolic singularity and
they are not connected by a leaf of F (ξ).

(ii) can be connected by a smooth Legendrian arc λ in U whose projec-
tion to σ×[−1, 1] is embedded and λ is C∞ tangent to F . Moreover,
we assume that the projection of λ to σ× [−1, 1] is transverse to the
first factor.

The curve λ and the points x, y exist because of the orientation assumptions
and Lemma 2.1. Now fix x′, y′ close to x, y such that x < x′ < 0 < y′ < y.

Using a flow along the first factor of U we can move {pw} × [−1, 1]
to a curve which is close to the projection of λ to σ × [−1, 1]. When we
apply this flow to F , the surface is pulled into U and we obtain a surface F ′

isotopic to F which coincides with F outside of {pw} × (−1, 1)× (x, y).
By the assumptions on λ we can choose F ′ such that the holonomy of

F ′(ξ) maps the transverse segment {(pw,−1)} × (x′, y) onto {(pw, 1)} ×
(y′, y) such that no leaf of intersecting {(pw, 1)} × (y′, y) is part of a stable
or unstable leaf of F (ξ). Moreover, we may assume that leaves which start
at points of {(pw, 1)}× (y′, y) meet the segment {(pw,−1)}× [x′, y] before
the enter the region where F ′ 6= F for the first time. The new ω-limit set is
now a closed leaf of F ′(ξ) which passes through {(pw, 1)} × (y′, y).

This modification may have created quasi-minimal sets on F ′ which were
not present in F (ξ). But if this happens, then the new quasi-minimal sets
intersect the contact region by construction. After a finite number of steps
(bounded by the genus of F ) we have isotoped F such that all quasi-minimal
sets of the characteristic foliation on the resulting surface pass through the
contact region. Now we apply Lemma 3.6. We obtain a surface F ′′ contain-
ing an overtwisted star (Q′′, V ′′, α′′) such that there is a natural inclusion
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V ′′ ⊂ V and all γv, v ∈ V ′′ are cycles of F ′′(ξ). We will denote F ′′ by F ,
Q′′ by Q, etc.

Step 1c: In this step we reduce the number of virtual vertices.
Let γ0 be the limit set which corresponds to the virtual vertex v0 ∈ V of

an overtwisted star (Q, V, α). We assume that γv is a cycle for all v ∈ V and
all ends of the maximal integral surface L0 containing γ0 lie in the contact
region.

Choose a submanifold L′0 ⊂ L0 of dimension 2 such that L′0 contains
all closed components of ΩQ ∩ L0. Since each end of L0 lies in H(ξ) we
can choose L′0 so that each boundary component is connected to H(ξ) by
a Legendrian curve which does not intersect the interior of L′0. After a
C∞-small perturbation (we use again Lemma 2.8.1 from [9]) of ξ we may
assume that the boundary of L′0 is contained in the contact region of the
resulting confoliation ξ′. This perturbation might affect the characteristic
foliation on F , but since the modification of the confoliation does not affect
ΩQ and all components of ΩQ are cycles of F (ξ) which are also present
in F (ξ′), there still is an overtwisted star (Q′, V ′α′) on F together with a
natural inclusion V ′ ↪→ V .

Now we can apply Lemma 6.5 and Remark 6.6. From Lemma 6.8 a) we
obtain a confoliation ξ′′ which is C0-close to ξ′ such that F (ξ′′) contains an
overtwisted star (Q′′, V ′′, α′′) with V ′′ ⊂ V ′ and all ω-limit sets γ′′w, w ∈ V ′′

which were contained in L0 now intersect the contact region of ξ′′. Using
Lemma 3.6 we reduce the number of virtual vertices.

Step 2: We show that we can assume that the map α associated to the
overtwisted star (Q, ∅, α) in F is injective.

Assume that the Legendrian polygon (Q, ∅, α) is not injective. After a
perturbation of F we may assume that there are two edges e1, e2 of Q such
that α(e1) = α(e2). (If there is a nontrivial cycle γe1...el

corresponding to
identifies edges of the Legendrian polygon, then the cycle is connected to
H(ξ) by Legendrian curves, this allows us to replace (Q, ∅α) by a Leg-
endrian polygon whose image is no longer a neighbourhood of the elliptic
singularities where α(e′i) is connected ends or starts.)

Let y be the image of the pseudovertex on e1 by the map α. Then y is a
negative hyperbolic singularity of F (ξ). The ω-limit sets of the stable leaves
of y are negative elliptic singularities y1, y2 in α(∂Q) and we may assume
that these singularities are contained in H(ξ) (because they are ω-limit sets,
they do not lie in the interior of the foliated part of ξ).

We eliminate y1 and y using Lemma 3.5. This reduces the number of
edges of the polygon which are identified unless y1 = y2. The case when
y1 = y2 requires slightly more work:

After perturbing the surface on a neighbourhood of y1 we may assume
that the two unstable leaves of y form a smooth closed Legendrian curve γ′.
We eliminate y1, y such that γ′ is a closed leaf of the characteristic foliation
on the resulting surface. We obtained a Legendrian polygon (Q′, V ′, α′) on
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a surface F ′ with Q′ ' D2 and V ′ consists of all vertices of Q′ which were
mapped to y1 by α′. By construction γv′ = γ′ for all v′ ∈ V ′.

Since y1 ∈ H(ξ′) we can approximate ξ′ by a confoliation ξ′′ which coin-
cides with ξ′ outside a tubular neighbourhood of γ′ and is a contact structure
near γ′. This can be done without changing the characteristic foliation on
the surface by Lemma 6.4.

Next we apply a standard procedure from contact topology called fold-
ing to γ′. This is described in [20] (on p. 325). We obtain a surface F ′′

which contains an overtwisted star (Q′′, V ′′, α′′) such that V ′ consists of
two elements with Q′′ ' Q′, V ′′ = V ′ but now elements of V ′′ correspond
to different ω-limit sets depending on which side of γ′ the corresponding
leaves of α(Q) accumulated.

In order to continue we create a pair of negative singularities along the
closed leaves in α′′(Q′′). We eliminate all pseudovertices successively and
we obtain a confoliation ξ̃ on M together with an overtwisted star (Q̃, Ṽ =

∅, α̃) on a surface F̃ which has no virtual vertices and is injective as a Leg-
endrian polygon. α̃ becomes injective after finitely many perturbations of
F̃ as in Figure 10.

Because α̃(∂Q̃) passes through the contact region of ξ̃′ the disc D =

α̃(Q̃) violates Definition 1.3. This concludes the proof of the theorem. �

This proof can be modified to yield a proof of Theorem 1.4 using only
the well known fact that symplectically fillable contact structures are tight
without referring to results of R. Hind in [19] which are used in [9]. Let us
outline the argument.

Given a disc D as in Definition 1.3 assume first that the holonomy of
∂D in D is non-trivial. We try to follow the construction above to find
a confoliation ξ′ such that ∂D remains Legendrian and ξ′ is C0-close to ξ.
This attempt must fail since otherwise we could continue to modify ξ′ into a
symplectically fillable contact structure such that D becomes an overtwisted
disc. This contradicts the fact that symplectically fillable contact structures
are tight.

The point at which the above construction breaks down is the application
of Remark 6.6 in the case when ∂D bounds a disc D′ in the maximal sur-
face which contains ∂D and is tangent to the confoliation. In order to show
that e(ξ)[D ∪ D′] = 0 one chooses an embedded sphere S close (and ho-
mologous) to D ∪D′. Then e(ξ)[S] = 0 follows from the tightness contact
structures which are C0-close to the original confoliation.

It remains to treat the case when the holonomy of ∂D in D is trivial.
Then one has to show that either ∂D is a vanishing cycle (cf. Chapter 9 in
[5]) or one can replace D by a smaller disc which has Legendrian boundary
along which the holonomy of the characteristic foliation on the disc is not
trivial. If ∂D is a vanishing cycle, then one uses results due to S. Novikov
[25] to establish the existence of a solid torus whose boundary T is a leaf of
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the confoliation. This contradicts
∫

T
ω > 0 because this inequality means

that T represents a non-trivial homology class.
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