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(1) Topological spaces; open and closed sets; Hausdorffness; continuity.

(2) Metric spaces, and their induced topology. This topology is always Hausdorff.

(3) Euclidean spac®R™ with its metric topology. By considering balls with rational radii cen-
tered at points with rational coordinates, one finds a countable collection of open sets such
that all open sets are suitable unions of these. This is abstracted into the notion of a count-
able basis for the topology.

(4) Topological manifoldsare locally Euclidean spaces that are Hausdorff and have a count-
able basis for their topology.

(5) A differentiable manifold is a topological manifold together with an atlas whose tran-
sition maps are’” diffeomorphisms for some > 1. A differentiable structure is an
equivalence class of atlases, equivalently a maximal atlas.

(6) Every maximalC" atlas withr > 1 contains aC> atlas. Because of this fact (which
we do not prove), we will restrict ourselves ¢&° manifolds throughout. So the word
differentiable will usually mea@' .

(7) For a differentiable manifold we define differentiability of functiohsM — R.
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(8) Differentiable functions and maps; diffeomorphisms vs. homeomorphisms.
(9) Dimensions of manifolds and smooth invariance of domain.

(10) Examples of differentiable manifolds and their dimensions: Euclidean sBacepheres
S™, tori T", GL(n,R),...An open subset of a manifold is a manifold (of the same dimen-
sion); products of manifolds are manifolds (and the dimensions add up).

(11) Every manifold)M is paracompact, meaning that every open cover has an open locally
finite refinement. We prove the following more precise statement. Given an open covering
{U;}icr of M, there is an atla§(V}, ¢ )} such that the covering by thé is a locally finite
refinement of the given covering, and such thatV}) is an open balB; of radius3 for
all £ and the open setd, = cp,;l(Bl) coverM.

Proof. We prove first that there is a sequer€g i = 1,2, ... of open sets with compact
closures, such that th&; cover M and satisfy

G, C Git
for all 7. Tothisend letd;,i = 1,2, ... be a countable basis of the topology consisting of
open sets with compact closures. (This exists becadise second countable, Hausdorff
and locally compact, see the homework assignement.j-Set A;. Suppose inductively
that we have defined
Then letj,,; be the smallest integer greater thiarwith the property that

Gy CAU...UA;

Jk+1 7
and define

Jk+1

Gk+1:A1U...UA
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This defines the sequenck as desired.
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We continue the proof we began last time.

Let {U,;};c; be an arbitrary open covering @ff. For everyz € M we can find a
chart(V,, ¢,) atz with V,, contained in one of thé&/; and such thap,(V,) = Bs. Let
W, = ¢, (B;). We can cover each sét, \ G}._, by finitely many such¥,, such that at
the same time the correspondilig are contained in the open s&t ., , \ G}x_». Taking all
thesel,, asi ranges over the positive integers we obtain the desired atlas. O

(12) We construct smooth bump functions&f and transfer them to differentiable manifolds
via charts. This allows us to construct various kinds of differentiable functions with special
properties.

(13) Every open covering of a differentiable manifold admits a subordinate differenpable
tition of unity . This follows from paracompactness and the existence of smooth bump
functions.

(14) Thetangent bundleT M of a differentiable manifold/ of dimensiom: is itself a manifold
of dimensior2n.
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(15) The projectiont: TM — M is a differentiable map. The preima@eM = n~1(x) of
anyx € M carries a natural vector space structure. We call thisathgent spaceof M at
Z.

(16) For any differentiable map: M — N, we define thederivative Df: TM — TN.
This restricts to every tangent spacg)/ as a linear magD, f to T,)N. This is the
derivative of f atx € M.

(17) Differentiablevector bundlesover manifolds; see [1] Section 3.3. Local vs. global trivi-
ality; isomorphisms of bundles. The tangent bundle as a vector bundle. Sections of vector
bundles.
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(18) The spacé&'(E£) of smooth sections of a vector bundie F — B is a vector space over
R with the operations of addition and scalar multiplication defined point-wise. In the same
way, it is also a module over the ring of smooth functionsgsn

(19) For every € E there exists an elementc I'(E) with s(7(v)) = v.

(20) If both the rank of a vector bundle and the dimension of the base manifold are positive,
thenT'(E) is infinite-dimensional. However, iB is compact, thei'( E') always contains a
finite-dimensional subspadé such that the evaluation map

ev: BxV — F
(z,5) +— s(z)

IS surjective.
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(21) A metric on a vector bundle is a fibre-wise positive definite scalar product that depends
smoothly on the fibre. Using a partition of unity subordinate to a covering by trivial-
izing open sets foF, we show that every vector bundle admits a metric.
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(22) Acurvein a differentiable manifold/ is a map: from R or from some subinterval & to
M. If such a map is differentiable atthen its derivativeD,c applied to the tangent vector
% of R gives a vector iff,;) M denoted by:(¢) and called thevelocity vector of c att (or
atc(t)). Every tangent vector td/ can be realized as a velocity vector of a suitable curve.
(23) A metric on the vector bundIEM is called aRiemannian metric on M. As every vector
bundle admits metrics, every differentiable manifold admits Riemannian metrics. Once
such a metrig is chosen, we can define the length of any (piece-wisejurvec defined
on a compact intervdh, b by

b
le) = [ Voleto ety
Assuming that\/ is connected, we then obtain a function
d: M x M — R

by letting d(x, y) be the infimum of the lengths of all piece-wié8 curves starting at
and ending ap.

Theorem 1. The functiond defines the structure of a metric space dh The metric
topology of the metric spadé/, d) coincides with the manifold topology of .
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(24) Completion of the proof of Theorem 1.
(25) Integration ofvector fields local andglobal flows completenesssee [1] Section 4.1.
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(26) Every vector field with compact support is complete.
(27) Vector fields aslerivations and thelie derivative.
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(28) All derivations on the algebrd> (M) are vector fields.
(29) Commutators and the Lie algebra structure on the space of vector fields, see [1] Sec-
tion 4.2.
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(30) Adifferential form of degree: on a smooth manifold/ is a map
w: X(M)x...x X(M)— C>®(M)
of C*°(M)-modules, in other words, it is function-linear in &larguments. In addition, it
is required to satisfy the following condition:
Q) W(Xo)s - - Xow)) = sign(o)w(Xy, ..., Xy)

for all permutations € Xy.
(31) We have the following:

Lemma 2. If w is a differential form, then the value of the functio(Xy, ..., X}) at a
pointp € M depends on the vector field§ only through their values(;(p) at the point
p-

This means that has a valuev(p) atp, which is ak-multilinear map
w(p): T,M x...xT,M — R

defined on(X(p), ..., Xx(p)) by extending theX;(p) to global vector fields, evaluating
w on these vector fields, and then evaluating the resulting functipn @this multilinear
map of course inherits property (1).)

(32) We build a universal model for multilinear maps, first for vector spaces {liRé), and
then for vector bundles (lik&'A). This will allow us to interpret differential forms as
sections of suitable vector bundles, so that) will be simply the value of the section
atp. The universal model for bilinear maps dnx W is given by theéensor product:

R:VXW —VW.

Iterating this we obtain tensor productsiofector spaces which have the universal property
for k-linear maps. Theensor algebraand of a vector spac¥ is the direct sum of the
tensor productd™(V) of k copies ofV, for k = 0,1,2,... endowed with the natural
mutiplication given by the tensor product. H&r&(1/) is just the ground field, and* (V)
is V itself. (See [1] Section 7.2.).
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(33) Theexterior algebra of a vector space over a field of characteristi. (See [1] Sec-
tion 7.2.).
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(34) Multilinear algebra constructions applied to vector bundles.
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(35) Differential forms as sections of exterior powers of the cotangent bundle.
(36) Theexterior derivative; existence and uniqueness.
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(37) Pullback of forms, contraction and thge derivative on forms, Cartan’s formula
(2) LX:dOix+iXOd.
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(38) Orientability andorientations on vector bundles.
(39) Orientability and orientations on manifolds via the tangent bundle.
(40) Existence and uniqueness of tihéegral of n-forms with compact support on oriented
n-manifolds. (See [1] Section 8.2.)
8 December 2006
(41) Manifolds with boundary .

(42) Orientations of manifolds with boundary and the induced orientation on the boundary.
(43) Stokes’s Theoremfor oriented manifolds with boundary:

/dw:/ w .
M oM

12 December 2006

(See [1] Section 8.2.)

(44) Closedandexactk-forms; the de Rham complex and its cohomology, calledithBham
cohomologyH*,(M) of a differentiable manifold\/.

(45) The forms with compact support form a subcomplex of the de Rham complex. Its coho-
mology is called the (de Rham) cohomology with compact support and dehited ).
For compact manifolds this is of course the same as the ordinary de Rham cohomology
defined above.

(46) For any oriented-dimensional manifold/ without boundary, the integral gives a well-
defined surjective linear map:

: H)(M) — R

’ = [ w.

(47) Any differentiable mag': M — N induces a map on de Rham cohomology
f* Hip(N) — Hip(M)

defined by pulling back closed forms. (Recall that on forms the pullback commutes with
exterior differentiation.)

(48) ThePoincaré lemma If i: M — M x R is the inclusion ofM as M x {0} and
m: M x R — M is the projection, theii andr* are inverses of each other on cohomol-
ogy. ThusM andM x R have isomorphic de Rham cohomology.



(49) As consequences of the Poired@mma we have in particular a complete calculation of
the de Rham cohomology & by induction omn, and the statement that on any manifold
every closed form is locally exact.

15 December 2006

(50) The Poincaré lemmafor de Rham cohomology with compact support&?” (1) and
H*(M x R) are isomorphic for all alk > 0.

(51) By induction om we find the cohomology dR™ with compact supports. It is trivial except
in degreen, where the integration map gives an isomorphism RithWe know from (46)
that the integration map is well-defined, linear and surjective. Now injectivity follows
because we know from the Poinédemma with compact supports thdf (R") = R.

(52) Decomposing™ with n > 1 into the union of two open sets diffeomorphicRg, and ap-
plying both versions of the Poindalemma, for arbitrary forms and for those with compact
supports, we calculate the de Rham cohomology'gfand find that it is isomorphic t&
in degree$) andn, and trivial otherwise.
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(53) For any closed orienteddimensional manifold/ without boundary, we havB}, (M) =
R.

(54) Using the above, we prove Moser’s resultigstopy of volume forms if M is closed and
oriented, then any two volume forms with the same total volume are diffeomorphic to each
other by a diffeomorphism isotopic to the identity.
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(55) In the proof of Moser’s theorem above we integrated a time-dependent vector field to con-
struct a family of diffeomorphisms. This can be understood by translating a time-dependent
vector field on)M into a time-independent one dd x R. The flow onM x R then pro-
duces the desired family; of diffeomorphisms or/, which do not, however, form a flow,
because in general, o p, # @ .

(56) As a further illustration of the theory of differential forms, we discus3akabi invariant
of area-preserving diffeomorphisms. Consider a volume foron the two-diskD?. By
the Poincae lemma it is exact, so we can choose a one-fdrsnch thatv = —d\. Let

Diffo(D* w) = {p € Dif f(D?) | p*w = w}
be the group of diffeomorphisms @¥? preservings and having compact support in the
interior of D?. We define the Calabi invariant of a volume-preserving diffeomorphism by

Cal: Diff.(D* w) — R

o — O (A) AN
D2
Note that becausg has compact support, so does the integrahd\) A A, and thus the
integral makes sense.
(57) The Calabi invariant has the following properties:
e Cal is well-defined, independently of the choice)of
e itis a homomorphism of groups (addition defining the group structuig)pand



e itis surjective.
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(58) We now begin the discussion @dnnectionsandcurvature on vector bundles.
Let E — B be a differentiable vector bundle of raikover a smooth manifold of

dimensionn.
Definition 3. A connectionon E is anR-linear map
3) V:T(E) — QYE)
satisfying the Leibniz rule
(4) V(fs)=df @ s+ fV(s)

forall f € C~(B) ands € I'(E).

HereQ!'(E) = T'(T*B ® E) is the space of-forms on B with values inE. One can
evaluate thd-form on a vector fieldX to obtain
(5) Vx(s):=(V(s),X) e '(E).
(59) We prove the following fundamental properties of connections:
e A connectionV does not increase the support of sections, i. e.df I'(F) vanishes
on some open sét C B, then so doe¥ (s).
e Thevalue ofV(s) ata pointp € B depends only on the restriction ©fo an orbitrarily
small open neighbourhood ¢f (In other words,V is a differential operator, and
V(s)(p) depends only on the germ efatp.)
e If V; andV, are connections, then soti¥; + (1 —t)V, forall t € [0, 1].
e If V; andV, are connections, thevi; — V, € Q' (End(E)) =T (T*B ® E* ® E).
(60) Using these properties and a partition of unity subordinate to a coveriBdgfopen sets
over which the restriction oF is trivial, we prove:
Proposition 4. Every vector bundlégZ admits connections. The space of all connections
on E is an affine space for the spa@(End(E)) of 1-forms onB with values inEnd(E).

(61) Next we extend the differential operator given by a connec¥ido bundle-valued forms
of higher degree.

Lemma 5. For every connectioV on £ — B there is a uniquéR-linear map
V: QYE) — QTY(E)
which satisfies

(6) Vw®s)=do® s+ (—1)'wAV(s)
for all w € Q!(B) ands € I'(E). Moreover, this operator satisfies
(7) V(ifw®s))=([df N\w)®@s+ fV(w® s)

for all smooth functiong on B.
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(62) Consider the operatdr o V: Q°(E) — Q?(FE) associated with a connecticn on E.
It turns out that this is linear ovetf'™(B), and is therefore given by an elemdht <
O*(End(E)). This is called theurvature of V.

(63) A (local) frame for E' is a set of smooth sections, . . ., s, defined over some open set
U C B, whose values are linearly independent at every pomt/.
Thus a set ok local smooth sections,, . . ., s; is a frame if and only ik, (p), . . ., sx(p)

is a basis off, = 7—!(p) for everyp € U. Therefore a frame defined ovérdefines a
trivialization of £/|;;, and, conversely, every such trivialization

Y: N U) — U x R*

defines a local frame by setting(p) = ¥ ~1(p, ¢;), wheree,, . . ., e;, is the standard basis
of R*.
(64) Fix a local framesy, ..., s, for the restriction ofFE to a trivialising open set id/. This

choice determines a connecti®fy defined by the requiremeRty(s;) = 0 for all i. Every
other connectiorV differs from V,, by the addition of al-form with values inEnd(E).

However, the given trivialization of' induces a trivialization oFnd(E), and so d-form

with values inEnd(E) is nothing but & x & matrix of ordinaryl-forms. ThusV can be
expressed by the matrix = (w;;) of 1-forms given by

k
V(s;) = Zwij ® s; .
j=1
(65) From the definition of the curvature we calculate
k
FV(SZ‘) = Z Qij ® Sj
j=1
with

k
Qij = dwij - Z Wil AN Wiy -
=1
We can write this briefly a@ = dw — w A w, where the wedge product on the right-hand-
side includes matrix multiplication, and is therefore not necessarily trivial ukless.
(66) Similarly we computé(2 = w A 2 — Q A w. This is theBianchi identity .
(67) Suppose we have another fraghe. . ., s;. on the same domain of definition as the original
frame. Letw’ and() denote the connection and curvature matrice¥ ofiith respect to

this new frame. If
k
=) 955 s
=1

we find the following relationsw’ = dg g=! + gwg~! andQ’ = ¢Qg ', whereg = (g;).
The change of basig is called agauge transformation and these formulae show how

connection and curvature matrices behave under gauge transformations. The curvature

matrix ) is more invariant than the connection matrix



(68)

(8)

(69)

(70)
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Recall that with respect to a framing . . . , s, of £ a connectiorV is expressed by a ma-
trix (w;;) of one-forms. If we choose a chart for the base manif¢ldith local coordinates
1, - -, Yn, then in the domain of this chart every one-form can be expressed uniquely as a
linear combination of they;. In particular, there are smooth functiang on the domain
of the chart such that
= Zw?jdya .
a=1

Denoting the vector fieldgz—a by 0., we find the following:

k
Vo.8i = (Oa, Vs;) = Z O, Wij)S; ZWUSJ
=1

More generally, if

then

ox;
2N Z Tiw)s
7j=1
Writing A* for the matrix(wy};) of functions we see that the operai@p,, which we ab-
breviate toV,, has the fornv, = 9, + A®.
We can now characterize flathess\othrough the condition that the directional deriva-
tivesV, commute:

Proposition 6. The connectiotV is flat if and only if[V,,, V3] = 0 for every local coordi-
nate systery, ..., y, on the base manifold/.

If £ — B is a vector bundle with a connectiovi, we say that a section € I'(E) is
parallel with respect tov if Vs = 0. In the special case that is the connection given by
some trivialization, a section is parallel if and only if it is constant in the given trivialization.
Thus parallel sections should be thought of as the analogs of constant sections for nontrivial
bundles.

We will want to prove the following:

Proposition 7. Letw: £ — B be a vector bundle with a connecti®h andc: [0,1] — B
a smooth curve in the base space. Then for everyr—!(c(0)) there is a unique smooth
curvec: [0,1] — Ewithmoé = ¢ ¢0) = vandV.s = 0, wheres sendsc(t) to é(t).
Moreover, the map — ¢(1) defines a linear map of vector spaces (c(0)) — 7~ *(c(1)).
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(71) In Proposition 7 the conditiok.s = 0 makes sense althoughis not a section over all
of B because the covariant derivative is only considered in the directionvafieres is
defined.
The Proposition follows from the existence and uniqueness of the solutions of systems of
linear ordinary differential equations with given initial conditions, together with the linear
dependence of the solutions on the initial values.

Definition 8. The linear map
Py: Eco) — Eep
v — ¢&(t)
is called theparallel transport alongec. It is an isomorphism of vector spaces.

(72) As a consequence of Proposition 7 we have:

Corollary 9. Over a curve every vector bundle with connection admits a framing by par-
allel sections. Over a one-dimensional base every vector bundle with connection admits
local trivializations by parallel frames.

Here the existence of a parallel frame is over the interval parametrizing the curve. Even
if the endpoint of the curve agrees with the starting point, the same may not be true for the
initial and ending frames. This is why the second statement is only local.

(73) This corollary fails for base spaces which are not one-dimensional, and this leads to geo-
metric interpretations of the curvature. It will turn out that the corollary encodes the fact
that on a one-manifold there is no curvature (as every two-form vanishes identically).

(74) We now prove:

Theorem 10. A vector bundle? — B with connectioriv admits local frames consisting
of parallel sections if and only i is flat, i. e. F¥ = 0.
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