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17 October 2006

(1) Topological spaces; open and closed sets; Hausdorffness; continuity.
(2) Metric spaces, and their induced topology. This topology is always Hausdorff.
(3) Euclidean spaceRn with its metric topology. By considering balls with rational radii cen-

tered at points with rational coordinates, one finds a countable collection of open sets such
that all open sets are suitable unions of these. This is abstracted into the notion of a count-
able basis for the topology.

(4) Topological manifoldsare locally Euclidean spaces that are Hausdorff and have a count-
able basis for their topology.

(5) A differentiable manifold is a topological manifold together with an atlas whose tran-
sition maps areCr diffeomorphisms for somer ≥ 1. A differentiable structure is an
equivalence class of atlases, equivalently a maximal atlas.

(6) Every maximalCr atlas withr ≥ 1 contains aC∞ atlas. Because of this fact (which
we do not prove), we will restrict ourselves toC∞ manifolds throughout. So the word
differentiable will usually meanC∞.

(7) For a differentiable manifold we define differentiability of functionsf : M −→ R.

20 October 2006

(8) Differentiable functions and maps; diffeomorphisms vs. homeomorphisms.
(9) Dimensions of manifolds and smooth invariance of domain.

(10) Examples of differentiable manifolds and their dimensions: Euclidean spacesR
n, spheres

Sn, tori T n, GL(n,R),. . . An open subset of a manifold is a manifold (of the same dimen-
sion); products of manifolds are manifolds (and the dimensions add up).

(11) Every manifoldM is paracompact, meaning that every open cover has an open locally
finite refinement. We prove the following more precise statement. Given an open covering
{Ui}i∈I ofM , there is an atlas{(Vk, ϕk)} such that the covering by theVk is a locally finite
refinement of the given covering, and such thatϕk(Vk) is an open ballB3 of radius3 for
all k and the open setsWk = ϕ−1

k (B1) coverM .

Proof. We prove first that there is a sequenceGi, i = 1, 2, . . . of open sets with compact
closures, such that theGi coverM and satisfy

Gi ⊂ Gi+1

for all i. To this end letAi, i = 1, 2, . . . be a countable basis of the topology consisting of
open sets with compact closures. (This exists becauseM is second countable, Hausdorff
and locally compact, see the homework assignement.) SetG1 = A1. Suppose inductively
that we have defined

Gk = A1 ∪ . . . ∪ Ajk .
Then letjk+1 be the smallest integer greater thanjk with the property that

Gk ⊂ A1 ∪ . . . ∪ Ajk+1
,

and define
Gk+1 = A1 ∪ . . . ∪ Ajk+1

.
1
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This defines the sequenceGk as desired.

24 October 2006

We continue the proof we began last time.
Let {Ui}i∈I be an arbitrary open covering ofM . For everyx ∈ M we can find a

chart(Vx, ϕx) at x with Vx contained in one of theUi and such thatϕx(Vx) = B3. Let
Wx = ϕ−1

x (B1). We can cover each setGk \ Gk−1 by finitely many suchWxj such that at
the same time the correspondingVxj are contained in the open setGk+1 \Gk−2. Taking all
theseVxj asi ranges over the positive integers we obtain the desired atlas. �

(12) We construct smooth bump functions onRn and transfer them to differentiable manifolds
via charts. This allows us to construct various kinds of differentiable functions with special
properties.

(13) Every open covering of a differentiable manifold admits a subordinate differentiablepar-
tition of unity . This follows from paracompactness and the existence of smooth bump
functions.

(14) Thetangent bundleTM of a differentiable manifoldM of dimensionn is itself a manifold
of dimension2n.

27 October 2006

(15) The projectionπ : TM −→ M is a differentiable map. The preimageTxM = π−1(x) of
anyx ∈M carries a natural vector space structure. We call this thetangent spaceof M at
x.

(16) For any differentiable mapf : M −→ N , we define thederivative Df : TM −→ TN .
This restricts to every tangent spaceTxM as a linear mapDxf to Tf(x)N . This is the
derivative off atx ∈M .

(17) Differentiablevector bundlesover manifolds; see [1] Section 3.3. Local vs. global trivi-
ality; isomorphisms of bundles. The tangent bundle as a vector bundle. Sections of vector
bundles.

31 October 2006

(18) The spaceΓ(E) of smooth sections of a vector bundleπ : E −→ B is a vector space over
R with the operations of addition and scalar multiplication defined point-wise. In the same
way, it is also a module over the ring of smooth functions onB.

(19) For everyv ∈ E there exists an elements ∈ Γ(E) with s(π(v)) = v.
(20) If both the rank of a vector bundle and the dimension of the base manifold are positive,

thenΓ(E) is infinite-dimensional. However, ifB is compact, thenΓ(E) always contains a
finite-dimensional subspaceV such that the evaluation map

ev : B × V −→ E

(x, s) 7−→ s(x)

is surjective.
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(21) A metric on a vector bundle is a fibre-wise positive definite scalar product that depends
smoothly on the fibre. Using a partition of unity subordinate to a covering ofB by trivial-
izing open sets forE, we show that every vector bundle admits a metric.

3 November 2006

(22) A curve in a differentiable manifoldM is a mapc fromR or from some subinterval ofR to
M . If such a map is differentiable att, then its derivativeDtc applied to the tangent vector
∂
∂t

of R gives a vector inTc(t)M denoted bẏc(t) and called thevelocity vectorof c at t (or
at c(t)). Every tangent vector toM can be realized as a velocity vector of a suitable curve.

(23) A metric on the vector bundleTM is called aRiemannian metric onM . As every vector
bundle admits metrics, every differentiable manifold admits Riemannian metrics. Once
such a metricg is chosen, we can define the length of any (piece-wise)C1 curvec defined
on a compact interval[a, b] by

l(c) =

∫ b

a

√
g(ċ(t), ċ(t))dt .

Assuming thatM is connected, we then obtain a function

d : M ×M −→ R

by lettingd(x, y) be the infimum of the lengths of all piece-wiseC1 curves starting atx
and ending aty.
Theorem 1. The functiond defines the structure of a metric space onM . The metric
topology of the metric space(M,d) coincides with the manifold topology ofM .

7 November 2006

(24) Completion of the proof of Theorem 1.
(25) Integration ofvector fields; local andglobal flows; completeness, see [1] Section 4.1.

10 November 2006

(26) Every vector field with compact support is complete.
(27) Vector fields asderivations and theLie derivative.

14 November 2006

(28) All derivations on the algebraC∞(M) are vector fields.
(29) Commutators and the Lie algebra structure on the space of vector fields, see [1] Sec-

tion 4.2.
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(30) A differential form of degreek on a smooth manifoldM is a map

ω : X (M)× . . .×X (M) −→ C∞(M)

of C∞(M)-modules, in other words, it is function-linear in allk arguments. In addition, it
is required to satisfy the following condition:

(1) ω(Xσ(1), . . . , Xσ(k)) = sign(σ)ω(X1, . . . , Xk)

for all permutationsσ ∈ Σk.
(31) We have the following:

Lemma 2. If ω is a differential form, then the value of the functionω(X1, . . . , Xk) at a
point p ∈ M depends on the vector fieldsXi only through their valuesXi(p) at the point
p.

This means thatω has a valueω(p) atp, which is ak-multilinear map

ω(p) : TpM × . . .× TpM −→ R

defined on(X1(p), . . . , Xk(p)) by extending theXi(p) to global vector fields, evaluating
ω on these vector fields, and then evaluating the resulting function atp. (This multilinear
map of course inherits property (1).)

(32) We build a universal model for multilinear maps, first for vector spaces (likeTpM ), and
then for vector bundles (likeTM ). This will allow us to interpret differential forms as
sections of suitable vector bundles, so thatω(p) will be simply the value of the sectionω
atp. The universal model for bilinear maps onV ×W is given by thetensor product:

⊗ : V ×W −→ V ⊗W .

Iterating this we obtain tensor products ofk vector spaces which have the universal property
for k-linear maps. Thetensor algebraand of a vector spaceV is the direct sum of the
tensor productsT k(V ) of k copies ofV , for k = 0, 1, 2, . . . endowed with the natural
mutiplication given by the tensor product. HereT 0(V ) is just the ground field, andT 1(V )
is V itself. (See [1] Section 7.2.).

21 November 2006

(33) Theexterior algebra of a vector space over a field of characteristic6= 2. (See [1] Sec-
tion 7.2.).

24 November 2006

(34) Multilinear algebra constructions applied to vector bundles.

28 November 2006

(35) Differential forms as sections of exterior powers of the cotangent bundle.
(36) Theexterior derivative; existence and uniqueness.
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(37) Pullback of forms, contraction and theLie derivative on forms, Cartan’s formula

(2) LX = d ◦ iX + iX ◦ d .

5 December 2006

(38) Orientability andorientations on vector bundles.
(39) Orientability and orientations on manifolds via the tangent bundle.
(40) Existence and uniqueness of theintegral of n-forms with compact support on oriented

n-manifolds. (See [1] Section 8.2.)

8 December 2006

(41) Manifolds with boundary .
(42) Orientations of manifolds with boundary and the induced orientation on the boundary.
(43) Stokes’s Theoremfor oriented manifolds with boundary:∫

M

dω =

∫
∂M

ω .

(See [1] Section 8.2.)

12 December 2006

(44) Closedandexactk-forms; the de Rham complex and its cohomology, called thede Rham
cohomologyHk

dR(M) of a differentiable manifoldM .
(45) The forms with compact support form a subcomplex of the de Rham complex. Its coho-

mology is called the (de Rham) cohomology with compact support and denotedHk
c (M).

For compact manifolds this is of course the same as the ordinary de Rham cohomology
defined above.

(46) For any orientedn-dimensional manifoldM without boundary, the integral gives a well-
defined surjective linear map:∫

M

: Hn
c (M) −→ R

[ω] 7−→
∫
M

ω .

(47) Any differentiable mapf : M −→ N induces a map on de Rham cohomology

f ∗ : Hk
dR(N) −→ Hk

dR(M)

defined by pulling back closed forms. (Recall that on forms the pullback commutes with
exterior differentiation.)

(48) ThePoincaré lemma: If i : M −→ M × R is the inclusion ofM asM × {0} and
π : M ×R −→M is the projection, theni∗ andπ∗ are inverses of each other on cohomol-
ogy. ThusM andM × R have isomorphic de Rham cohomology.
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(49) As consequences of the Poincaré lemma we have in particular a complete calculation of
the de Rham cohomology ofRn by induction onn, and the statement that on any manifold
every closed form is locally exact.

15 December 2006

(50) The Poincaré lemma for de Rham cohomology with compact supports:Hk
c (M) and

Hk+1
c (M × R) are isomorphic for all allk ≥ 0.

(51) By induction onnwe find the cohomology ofRn with compact supports. It is trivial except
in degreen, where the integration map gives an isomorphism withR. We know from (46)
that the integration map is well-defined, linear and surjective. Now injectivity follows
because we know from the Poincaré lemma with compact supports thatHn

c (Rn) = R.
(52) DecomposingSn with n ≥ 1 into the union of two open sets diffeomorphic toRn, and ap-

plying both versions of the Poincaré lemma, for arbitrary forms and for those with compact
supports, we calculate the de Rham cohomology ofSn, and find that it is isomorphic toR
in degrees0 andn, and trivial otherwise.

19 December 2006

(53) For any closed orientedn-dimensional manifoldM without boundary, we haveHn
dR(M) =

R.
(54) Using the above, we prove Moser’s result onisotopy of volume forms: if M is closed and

oriented, then any two volume forms with the same total volume are diffeomorphic to each
other by a diffeomorphism isotopic to the identity.

22 December 2006

(55) In the proof of Moser’s theorem above we integrated a time-dependent vector field to con-
struct a family of diffeomorphisms. This can be understood by translating a time-dependent
vector field onM into a time-independent one onM × R. The flow onM × R then pro-
duces the desired familyϕt of diffeomorphisms onM , which do not, however, form a flow,
because in generalϕt ◦ ϕs 6= ϕt+s.

(56) As a further illustration of the theory of differential forms, we discuss theCalabi invariant
of area-preserving diffeomorphisms. Consider a volume formω on the two-diskD2. By
the Poincaŕe lemma it is exact, so we can choose a one-formλ such thatω = −dλ. Let

Diffc(D
2, ω) = {ϕ ∈ Diffc(D2) | ϕ∗ω = ω}

be the group of diffeomorphisms ofD2 preservingω and having compact support in the
interior ofD2. We define the Calabi invariant of a volume-preserving diffeomorphism by

Cal : Diffc(D
2, ω) −→ R

ϕ 7−→
∫
D2

ϕ∗(λ) ∧ λ .

Note that becauseϕ has compact support, so does the integrandϕ∗(λ) ∧ λ, and thus the
integral makes sense.

(57) The Calabi invariant has the following properties:
• Cal is well-defined, independently of the choice ofλ,
• it is a homomorphism of groups (addition defining the group structure onR), and
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• it is surjective.

9 January 2007

(58) We now begin the discussion ofconnectionsandcurvature on vector bundles.
Let E → B be a differentiable vector bundle of rankk over a smooth manifoldB of

dimensionn.
Definition 3. A connectiononE is anR-linear map

(3) ∇ : Γ(E) −→ Ω1(E)

satisfying the Leibniz rule

(4) ∇(fs) = df ⊗ s+ f∇(s)

for all f ∈ C∞(B) ands ∈ Γ(E).
HereΩ1(E) = Γ(T ∗B ⊗ E) is the space of1-forms onB with values inE. One can

evaluate the1-form on a vector fieldX to obtain

(5) ∇X(s) := 〈∇(s), X〉 ∈ Γ(E) .

(59) We prove the following fundamental properties of connections:
• A connection∇ does not increase the support of sections, i. e. ifs ∈ Γ(E) vanishes

on some open setU ⊂ B, then so does∇(s).
• The value of∇(s) at a pointp ∈ B depends only on the restriction ofs to an orbitrarily

small open neighbourhood ofp. (In other words,∇ is a differential operator, and
∇(s)(p) depends only on the germ ofs atp.)
• If ∇1 and∇2 are connections, then so ist∇1 + (1− t)∇2 for all t ∈ [0, 1].
• If ∇1 and∇2 are connections, then∇1 −∇2 ∈ Ω1(End(E)) = Γ(T ∗B ⊗ E∗ ⊗ E).

(60) Using these properties and a partition of unity subordinate to a covering ofB by open sets
over which the restriction ofE is trivial, we prove:
Proposition 4. Every vector bundleE admits connections. The space of all connections
onE is an affine space for the spaceΩ1(End(E)) of 1-forms onB with values inEnd(E).

(61) Next we extend the differential operator given by a connection∇ to bundle-valued forms
of higher degree.
Lemma 5. For every connection∇ onE → B there is a uniqueR-linear map

∇̄ : Ωl(E) −→ Ωl+1(E)

which satisfies

(6) ∇̄(ω ⊗ s) = dω ⊗ s+ (−1)lω ∧∇(s)

for all ω ∈ Ωl(B) ands ∈ Γ(E). Moreover, this operator satisfies

(7) ∇̄(f(ω ⊗ s)) = (df ∧ ω)⊗ s+ f∇̄(ω ⊗ s)
for all smooth functionsf onB.



8

12 January 2007

(62) Consider the operator̄∇ ◦ ∇ : Ω0(E) −→ Ω2(E) associated with a connection∇ onE.
It turns out that this is linear overC∞(B), and is therefore given by an elementF∇ ∈
Ω2(End(E)). This is called thecurvature of∇.

(63) A (local) frame for E is a set of smooth sectionss1, . . . , sk defined over some open set
U ⊂ B, whose values are linearly independent at every pointp ∈ U .

Thus a set ofk local smooth sectionss1, . . . , sk is a frame if and only ifs1(p), . . . , sk(p)
is a basis ofEp = π−1(p) for everyp ∈ U . Therefore a frame defined overU defines a
trivialization ofE|U , and, conversely, every such trivialization

ψ : π−1(U) −→ U × Rk

defines a local frame by settingsi(p) = ψ−1(p, ei), wheree1, . . . , ek is the standard basis
of Rk.

(64) Fix a local frames1, . . . , sk for the restriction ofE to a trivialising open set inM . This
choice determines a connection∇0 defined by the requirement∇0(si) = 0 for all i. Every
other connection∇ differs from∇0 by the addition of a1-form with values inEnd(E).
However, the given trivialization ofE induces a trivialization ofEnd(E), and so a1-form
with values inEnd(E) is nothing but ak × k matrix of ordinary1-forms. Thus∇ can be
expressed by the matrixω = (ωij) of 1-forms given by

∇(si) =
k∑
j=1

ωij ⊗ sj .

(65) From the definition of the curvature we calculate

F∇(si) =
k∑
j=1

Ωij ⊗ sj

with

Ωij = dωij −
k∑
l=1

ωil ∧ ωlj .

We can write this briefly asΩ = dω − ω ∧ ω, where the wedge product on the right-hand-
side includes matrix multiplication, and is therefore not necessarily trivial unlessk = 1.

(66) Similarly we computedΩ = ω ∧ Ω− Ω ∧ ω. This is theBianchi identity .
(67) Suppose we have another frames′1, . . . , s

′
k on the same domain of definition as the original

frame. Letω′ andΩ′ denote the connection and curvature matrices of∇ with respect to
this new frame. If

s′i =
k∑
i=1

gijsj ,

we find the following relations:ω′ = dg g−1 + gωg−1 andΩ′ = gΩg−1, whereg = (gij).
The change of basisg is called agauge transformation, and these formulae show how
connection and curvature matrices behave under gauge transformations. The curvature
matrix Ω is more invariant than the connection matrixω.
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(68) Recall that with respect to a framings1, . . . , sk of E a connection∇ is expressed by a ma-
trix (ωij) of one-forms. If we choose a chart for the base manifoldB with local coordinates
y1, . . . , yn, then in the domain of this chart every one-form can be expressed uniquely as a
linear combination of thedyi. In particular, there are smooth functionsωαij on the domain
of the chart such that

(8) ωij =
n∑

α=1

ωαijdyα .

Denoting the vector fields∂
∂yα

by ∂α, we find the following:

∇∂αsi = 〈∂α,∇si〉 =
k∑
j=1

〈∂α, ωij〉sj =
k∑
j=1

ωαijsj .

More generally, if

s =
k∑
i=1

xisi ,

then

∇∂αs =
k∑
j=1

(
∂xj
∂yα

+
k∑
i=1

xiω
α
ij)sj .

Writing Aα for the matrix(ωαij) of functions we see that the operator∇∂α , which we ab-
breviate to∇α, has the form∇α = ∂α + Aα.

We can now characterize flatness of∇ through the condition that the directional deriva-
tives∇α commute:
Proposition 6. The connection∇ is flat if and only if[∇α,∇β] = 0 for every local coordi-
nate systemy1, . . . , yn on the base manifoldM .

(69) If E → B is a vector bundle with a connection∇, we say that a sections ∈ Γ(E) is
parallel with respect to∇ if ∇s = 0. In the special case that∇ is the connection given by
some trivialization, a section is parallel if and only if it is constant in the given trivialization.
Thus parallel sections should be thought of as the analogs of constant sections for nontrivial
bundles.

(70) We will want to prove the following:
Proposition 7. Letπ : E → B be a vector bundle with a connection∇, andc : [0, 1]→ B
a smooth curve in the base space. Then for everyv ∈ π−1(c(0)) there is a unique smooth
curve c̃ : [0, 1] → E with π ◦ c̃ = c, c̃(0) = v and∇ċs = 0, wheres sendsc(t) to c̃(t).
Moreover, the mapv 7→ c̃(1) defines a linear map of vector spacesπ−1(c(0))→ π−1(c(1)).
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(71) In Proposition 7 the condition∇ċs = 0 makes sense althoughs is not a section over all
of B because the covariant derivative is only considered in the direction ofc, wheres is
defined.

The Proposition follows from the existence and uniqueness of the solutions of systems of
linear ordinary differential equations with given initial conditions, together with the linear
dependence of the solutions on the initial values.
Definition 8. The linear map

Pt : Ec(0) −→ Ec(t)

v 7−→ c̃(t)

is called theparallel transport alongc. It is an isomorphism of vector spaces.
(72) As a consequence of Proposition 7 we have:

Corollary 9. Over a curve every vector bundle with connection admits a framing by par-
allel sections. Over a one-dimensional base every vector bundle with connection admits
local trivializations by parallel frames.

Here the existence of a parallel frame is over the interval parametrizing the curve. Even
if the endpoint of the curve agrees with the starting point, the same may not be true for the
initial and ending frames. This is why the second statement is only local.

(73) This corollary fails for base spaces which are not one-dimensional, and this leads to geo-
metric interpretations of the curvature. It will turn out that the corollary encodes the fact
that on a one-manifold there is no curvature (as every two-form vanishes identically).

(74) We now prove:
Theorem 10. A vector bundleE → B with connection∇ admits local frames consisting
of parallel sections if and only if∇ is flat, i. e.F∇ = 0.
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