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(1) In this course we shall assume a basic knowledge of smooth manifolds and smooth vector
bundles.

(2) Firstwe recall the notion of a connection on a vector bundle ELet B be a differentiable
vector bundle of rank over a smooth manifol@® of dimensionn.

Definition 1. A connectionon F is anRR-linear map
V:T'(E) — QYE)
satisfying the Leibniz rule
V(fs)=df @ s+ fV(s)

forall f € C>~(B) ands € I'(E).

HereQ!'(E) = T'(T*B ® E) is the space of-forms on B with values inE. One can
evaluate thd-form on a vector fieldX to obtain

Vx(s):=(V(s),X) e ['(E).
The Leibniz rule is then equivalent to

Vx(fs) = (Lxf)s+ fVx(s)

forall X € X(B).
(3) If E — B is a vector bundle with a connectidn, then the dual bundl&* — B carries a
well-defineddual connectionV* characterized by the identity

d(s,a) = (Vs,a) + (s, V'a)

forall s € T'(F) anda € T'(E*). (The brackets here denote the natural pairing between a
bundle and its dual bundle, not a metric.)

(4) In the definition of a connection, see (2) aboxejs a section offl B — B ands is a
section of K — B. Consider now the case when the two bundles coincidé; sjust
the tangent bundle of a smooth manifdifl. An affine connectionon M is a connection
on its tangent bundle. For affine connections the varialillemnds in Vxs are on equal
footing, as they are both sections of the tangent bundle. This leads to possible symmetries
which make no sense in the more general setting of arbitrary vector bundles.

(5) Thetorsion of an affine connectio¥ is defined by

TV(X,Y)=VxY —VyX — [X,Y]
forall X,Y € X(M).
Lemma 2. The torsion defines a skew-symmetric map
TV: X(M) x X(M) — X(M)
that is bilinear overC>°(M).

This means that we can think of the torsibM as a two-form onV/ with values in the

tangent bundleT € Q?(TM).
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(6) If we choose a reference connectidly on 7'M, then the affine space of connections on
TM — M is identified with its vector space of translatiany( End(7'M)). The torsion
then becomes a map

T: QYEnd(TM)) — Q*(TM)

A TV(H—A

Note that
TYVHAX,Y) = TV (X, Y) + (A(X))Y — (A(Y))X,

so that when addingd, the torsion changes by a certain skew-symmetrizatiof. of
(7) An affine connectiorV/ is calledsymmetric if it is torsion-free, i. e TV vanishes identi-
cally.
To explain why torsion-freeness is a symmetry condition, we consider the expression of
an affine connection in a local coordinate system. .., x,) on M. We write 9, for the
coordinate vector field%, and use the local fram®, ..., 0,. Then

Vo; = Xn:wij(gaj?

j=1

with the connection matrix
wij = wajdmk )
k=1
This gives
Vaiaj = Zw;-k(“)k s

k=1

which is usually written as
Vo dj =Y Tl
k=1

in classical notation. Therefore, we define @laristoffel symbols of the affine connection
V with respect to the coordinate system, . . ., z,) to bel'’j; = wi;.
Returning to the definition of torsion, we see that

n n

TV(0:,0) = D (wp — wh)dk = Y (T = T30k

k=1 k=1
As the torsion is linear over the smooth functions, we obtain the following:

Lemma 3. An affine connectiolV is torsion-free if and only i"}, = I'%; for any local
coordinate system.

Thus symmetry of the affine connection really refers to a symmetry of the Christoffel
symbols expressing this connection in local coordinates.
(8) The dual connectioR* gives us the following characterization of torsion-freeness:

INote that requiring the naive symmeffyx Y = Vy X for all X andY leads to a contradiction.
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Proposition 4. An affine connectio’/ on M is torsion-free if and only if the exterior
derivative on one-forms is given by the composition

D(T*M) 5 T(T*M @ T*M) 2 T(A*T*M) .
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(9) We now begin with the consideration of metrics on manifolds.

Definition 5. A pseudo-Riemannian metricon a manifold)M is a non-degenerate sym-
metric bilinear formg defined on all tangent spacés)\/ depending smoothly op
A pseudo-Riemannian metric is call®lemannianif it is positive definite.

As usual, smooth dependence pis defined via charts fol/. Equivalently it means
that for all smooth vector fieldX” andY’, the functiong(X,Y") is also smooth.
(10) Given a pseudo-Riemannian metsion M, we say that an affine connecti@nis com-
patible with g if
d(g(X,Y)) = g(VX,Y) + g(X,VY)

for all vector fieldsX andY . Such a connection will be called metric (with respeci)o
We know that for Riemannian metrics there always exist compatible connections (see
the proof for arbitrary positive definite scalar products on arbitrary vector bundles last
semester). Itis not clear a priori whether this remains true in the pseudo-Riemannian case.
(11) Given a pseudo-Riemannian metgiocon M, we can define what it means for an en-
domorphism of7’M to be symmetric or skew-symmetric with respectgto We write
Skew — End(T M) for the vector bundle of skew-symmetric endomorphism$ df, su-
pressingy in the notation. The difference of two connections that are both compatible with
g is a one-form with values ivkew — End(TM). Thus, if there are any connections
compatible withg, then they form an affine space whose vector space of translations is
QY (Skew — End(TM)).
(12) We now prove the following:
Proposition 6. On any pseudo-Riemannian manifglty, ¢) there is a unique affine con-
nectionV that is compatible witly and has a given two-forf with values in’’M as its
torsion.

First proof. Let us suppose that there are affine connections compatiblegwithd pick
one, calledV, as a reference. Then the space of all affine connections compatible with
is identified with

Q' (Skew — End(TM)) = T'(T*M @ Skew — End(TM)) C T(T*"M @ T*M @ TM) .
The torsion is a map from this space to
QX (TM) =T(A*T*M @ TM)

sendingA to TV plus the skew-symmetrization of, see (6) above.

Assume thatV, + A; andV, + A, have the same torsion. Then we can calculate
that A, = A,. Thus the torsion map is injective. But, at every point, it is an affine map
between the fibers of two vector bundles of the same rank. Thus, if it is injective, it is also
surjective. O



(13) We want to give an alternative proof for Proposition 6, which produces a formula for the
desired connection and therefore does not assume that connections compatiblexngth
Instead of assuming this, we prove it as a consequence of the following argument.

Second proofWe first prove uniqueness. So léthe an affine connection compatible with
g having torsion tensdf’. Then using compatibility witly and the formula for the torsion
alternately three times, we find th&tmust be determined by the following formula:

g(vXY7 Z) = %(9([‘}(? Y]vZ) - g([Y, Z]>X) +9([ZaX]>Y) - g(X,T(Y, Z))"’

+9(V\T(Z, X)) +9(Z, T(X,Y)) + Lx(9(Y, Z2)) + Ly (9(Z, X)) = Lz(9(X,Y))) .

To prove uniqueness, we use this equation as a definitiow fdr. This defines a connec-
tion, and one can check that it is both compatible witnd hasi’v = T. O

(14) As a special case of Proposition 6 we note the following:

Corollary 7. On every pseudo-Riemannian manifoMd, g) there is a unique torsion-free
metric affine connection.
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(15) By Corollary 7 every pseudo-Riemannian manifgld, g) has a unique torsion-free affine
connection compatible with the metric. This connectidns called thelevi-Civit a con-
nectionof (M, g), or of g.

(16) TheRiemann curvature tensor R of a pseudo-Riemannian manifold/, ¢) is defined
using its Levi-Civitr connection:

R: X(M) x X(M) x X(M) — X (M)
(XY, Z)— R(X,Y)Z =VxVyZ —VyVxZ -V xy|Z .

Recall that for an arbitrary connectidnon a vector bundlé”, the curvatureV is a two-
form on the base with values ifind(F). Here R = FV for the Levi-Civita connection
V. The notationR(X,Y)Z means that the two-form is evaluated &nhandY’, and the
resulting endomorphism is then applied4o

(17) The most important properties of the Riemann curvature are the following:

(i) itis trilinear overC'> (M),
(i) it is skew-symmetric in the first two arguments,
(iii) it satisfies thefirst Bianchi identity : R(X,Y)Z + R(Y, Z)X + R(Z,X)Y = 0 for
all X, Y andZ,

(iv) g(R(X,Y)Z, W) = —g(R(X, Y)W, Z) forall X,Y, ZandW, and
V) g(RIX, Y)Z, W) =g(R(ZW)X,Y)forall X,Y, Z andWV.

(18) LetV be areal vector space with a non-degenerate symmetric bilineayf(emg. a tangent
space of a pseudo-Riemannian manifold). A subspaceV’ is callednon-degeneratef
the restrictiory|; is non-degenerate. A non-zero vecfore V' is callednull if it spans a
degenerate subspace.

(19) For a two-dimensional subspatce- VV non-degeneracy is equivalent to the non-vanishing
of Q(X,Y) = g(X, X)g(Y,Y) — (9(X,Y))?, for any basisX andY of ¢.

(20) Now let(M, g) be a pseudo-Riemannian manifold with Riemann tersor
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Definition 8. For a non-degenerate tangent two-plange define thesectional curvature

to be
~g(R(X, Y)Y, X)

Fo) =0y
This depends only on ando, and not on the basis chosen tar
(21) By definition, the sectional curvature @f/, g) is determined by its Riemann tensor. How-
ever, the converse is also true:

Proposition 9. The collection of sectional curvatures for all non-degenerate two-planes
o C T'M determines the Riemann curvature tengoof (1, g).

In the proof we use the following:

Lemma 10. Every pair of vectorsY andY can be approximated arbitrarily closely by’
andY” such that the span of’ andY” is a non-degenerate two-plane.
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(22) The proof of Proposition 9 can easily be adapted to prove the following characterization of
spaces with constant sectional curvature:

Proposition 11. A pseudo-Riemannian manifold/, g) has sectional curvature equal to
a fixed real numbef, € R for all non-degenerate two-planesC 7'M if and only if the
following identity holds for allX, Y, Z andT € X (M ):

g(R(X,Y)Z,T) = —Ko(g9(X, Z2)g(Y,T) — g(Y, Z)9(X,T)) .

(23) For a pseudo-Riemannian manifold with Riemann teisare define theRicci tensor to
be
P(X,)Y)=—tr(Z— R(X,2)Y),
for all X andY € X(M). Heretr(A) denotes the trace, i. e. the sum of the diagonal
entries of any matrix representing the linear map
Definition 12. The Ricci curvature of an n-dimensional pseudo-Riemannian manifold
(M, g) in the direction ofX € X' (M) is
1
n—1

Ric(X) = P(X,X).
Clearly the Ricci curvature determines the Ricci tensor by polarization.
(24) We want to work out concrete formulae for the Ricci tensor and the Ricci curvature in terms
of sectional curvatures. For this purpose we use a local orthonormal tkame. , X,.
Here orthonormal means that th& are pairwise orthogonal with respect gpand that
9(X;, X;) = £1 for all i. (For a Riemannian manifold all these scalar productstarg
With respect to such a local frame the trace of an endomorpHisin7’M can be written
as

tr(A) = Z (9(AX:, Xi) - 9(Xi, X))
=1
Thus, we have

P(X.Y)=— Z (9(R(X, X3)Y, X;) - g(Xi, X3))

i=1



and

1 n
Rie(X) = ———P(X, X)

R(X, X)X, Xi) - g(Xi, Xi))

=1

R(X, X)X, X) - g(X;, X)) .

=1

If X is not a null vector, we may assume that

so that the above formula becomes

Ric(X) = - i - i (g(R(X, X)X, X) - (X, X2))
- X0 D RO, X)X, X)X, X0)
= X0 g 3 (RS {0 X 500 50 - X, X))
= g(X, %) Z:; K(Span{X,, X.}) .

The last line shows that the Ricci curvature is essentially an average of sectional curvatures.
(25) We now want to define a scalar measure of curvatusg taking the trace of the Ricci

tensor with respect to the metric Becausey is hon-degenerate, there exists a unique
A e I'(End(TM)) such that

P(X,Y) =g(AX,Y)
holds for all vector fields{ andY'.

Definition 13. Thescalar curvature of a pseudo-Riemannian manifdld/, ¢) is the func-
tion sc C*°(M) defined bys = tr(A).
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Using a local orthonormal frame as before, and substituting from the above formula
expressing the Ricci curvature in terms of sectional curvatures, we have the following:
s =tr(A) = Z (9(AX;, X;) - 9(Xi, X3))

=1

- Z (P(Xi, X3) - 9(Xi, X3)

=(n—=1) ) (Ric(X;) - 9(X;, X))

=1

=(n—-1) Z <<g(Xi, X;) - ﬁ Z K(Span{Xi,Xj})> -g(Xi,Xi))

i=1 i

= K(Span{X;, X;})
i#j
=2 K(Span{X;, X;}) .
1<j
(26) Here are some remarks and examples for curvature calculations. We say that a pseudo-
Riemannian manifold iflat if its Riemann tensor vanishes identically. Equivalently, all
sectional curvatures vanish.

e If M is R™ andg is given by a constant scalar product, then the coordinate vector
fields are parallel, and the Levi-Cigitonnection is flat. SQV/, g) is flat as a pseudo-
Riemannian manifold.

e Suppose we scale a given metgidy replacing it withA\2¢g for some non-zero real
number). Then the Levi-Civih connection of; is also compatible with\?¢, and is
therefore the Levi-Civi connection of this new metric. This implies that the Riemann
tensor is unchanged. Looking at the definition of sectional curvature, we see that a
two-planes is non-degenerate fox?g if and only if it is non-degenerate fay, and
that the two sectional curvatures are related as follows:

2 1
KY9(o) = FKQ(U) .
The formula expressing the Ricci curvature in terms of sectional curvatures shows

Ric*9(X) = Ric?(X)

for all non-isotropicX. By continuity we have the same conclusion for.gll Finally,
the formula expressing the scalar curvature in terms of sectional curvatures shows

1
\2g
9 = FS‘(] .
e If M is two-dimensional and oriented apds Riemannian, then the sectional curva-
ture of 7),M equals the Gaussian curvatu@), and the scalar curvature is twice the

Gaussian curvature.

S
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(27) We now consider the following situationilV, ¢) is a pseudo-Riemannian manifold, and

(28)

(29)

(30)

M C N is a smooth hypersurface, for which we assume #dt C 7,N is a non-
degenerate subspace with respegt for all p € M. This assumption ensures tHatV =
T,M & (T,M)* for all p € M, where(T,M)"* is the orthogonal space with respect to
g. (This is not just a direct sum, but also an orthogonal sum with respeg) tés M

is a hypersurface it follows thdf,,A/)* is one-dimensional, spanned by a vectorBy
non-degeneracy this vector cannot be null, so that by scaling we may aggume = +1.

The non-degeneracy of the subspdgé/ C 7, N for all p € M means that the restric-

tion of g to T'M is a pseudo-Riemannian metficon M. The Levi-Civita connectiorv

of (M, h) can be obtained from the Levi-CigittonnectiorV of (N, g) as follows:

VAY =7ViY |

whereX andY are local extensions of, Y € X(M)to N andr: TN|y — TM is the
projection with kernelT,,M)~*. As this is independent of the choices of local extensions
for X andY’, we will not specify the extensions in later formulae.

Suppose we have chosen a normal vector fidlst M C N, normalized so thaj(n, n) =

+1.

Definition 14. TheWeingarten mapatp € M is the linear map
L:T,M — T,M
X +— Vxn.

Again we need to choose a local extensiomah a neighborhood op, but the result
we get is independent of the choice of extension. It follows from the constangy.of)
thatV xn is orthogonal to» and therefore contained if,A/. Note that the normalization
determines: uniquely up to sign. If we replace by —n, then we obtain- L instead ofL.

The Weingaten map has the following easily proved property, see [2], Section 10.3.

Lemma 15. The Weingarten map is symmetric with respect to the metrich(&.X),Y) =
(X,L(Y)) forall X,Y e T,M.

ForX,Y,Z € T,M we can relate the value @f(X,Y")Z, the curvature of N, ¢g), and of
RM(X,Y)Z, the curvature of M, h), through the Weingarten map. In the special case that
the Levi-Civita connectiorV of (IV, g) is flat we obtain:

Theorem 16(Gauss Equation)f the pseudo-Riemannian manifdly, g) is flat, andM C
N is a hypersurface for which the restrictidnof g to M is also pseudo-Riemannian, then
the curvature of the Levi-Civdtconnection of M, h) is given by

RY(X,Y)Z = g(n,n) (ML(Y), Z)L(X) — h(L(X), Z)L(Y)) ,
wheren is a normal vector tal/ normalized so thag(n,n) = +1.

Notice that this formula is unchanged if we replacby —n.
As an example for the above situation we take= R"*!, with ¢ given by the standard
positive definite scalar product. Note that becaps® positive definite, all subspaces are
positive definite as well, and are therefore non-degenerate.

For the hypersurfacé/ we take the unit spher§” c R"*!. As normal vector field
we take the outer unit normal to the sphere, whicj at S™ is justp itself. Now we can
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calculate that in this case the Weingarten map the identity, so that the curvature tensor
of the unit sphere endowed with the induced Riemannian meisgiven by

R (X,Y)Z =WY,2)X —hX,Z)Y .

Comparing this with Proposition 11 we see tlj8t, h) has constant sectional curvature
equal to+1.

(31) A property (potentially) weaker than that of having constant sectional curvature is to have
constant Ricci curvaure:

Definition 17. A pseudo-Riemannian manifold//, ¢) is said to beEinstein if there is a
real constant such thatP(X,Y") = ug(X,Y) for all X andY'.

By polarization this is equivalent to the existence of a constaniR such thatRic(X) =
Ag(X, X) for all X.

Note that constant sectional curvature implies the Einstein condition, which in turn im-
plies that the scalar curvature is constant(Mf, ¢) is two-dimensional and Riemannian,
then all these conditions are in fact equivalent, and are equivalent to constancy of the Gauss-
ian curvature.

REFERENCES

1. R. L. Bishop and R. J. Crittendeieometry of Manifolds, Academic Press 1964; reprinted by the American
Mathematical Society 2001.

2. L. Conlon,Differentiable Manifolds — A First Course, Birkhauser Verlag 1993.

3. B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Pres 1983.

4. P. PetersemRiemannian Geometry, Graduate Texts in Mathematit31, Springer Verlag1998.



