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(1) In this course we shall assume a basic knowledge of smooth manifolds and smooth vector
bundles.

(2) First we recall the notion of a connection on a vector bundle. LetE → B be a differentiable
vector bundle of rankk over a smooth manifoldB of dimensionn.

Definition 1. A connectiononE is anR-linear map

∇ : Γ(E) −→ Ω1(E)

satisfying the Leibniz rule

∇(fs) = df ⊗ s+ f∇(s)

for all f ∈ C∞(B) ands ∈ Γ(E).

HereΩ1(E) = Γ(T ∗B ⊗ E) is the space of1-forms onB with values inE. One can
evaluate the1-form on a vector fieldX to obtain

∇X(s) := 〈∇(s), X〉 ∈ Γ(E) .

The Leibniz rule is then equivalent to

∇X(fs) = (LXf)s+ f∇X(s)

for all X ∈ X (B).
(3) If E → B is a vector bundle with a connection∇, then the dual bundleE∗ → B carries a

well-defineddual connection∇∗ characterized by the identity

d〈s, α〉 = 〈∇s, α〉+ 〈s,∇∗α〉
for all s ∈ Γ(E) andα ∈ Γ(E∗). (The brackets here denote the natural pairing between a
bundle and its dual bundle, not a metric.)

(4) In the definition of a connection, see (2) above,X is a section ofTB −→ B ands is a
section ofE −→ B. Consider now the case when the two bundles coincide, soE is just
the tangent bundle of a smooth manifoldM . An affine connectiononM is a connection
on its tangent bundle. For affine connections the variablesX ands in ∇Xs are on equal
footing, as they are both sections of the tangent bundle. This leads to possible symmetries
which make no sense in the more general setting of arbitrary vector bundles.

(5) Thetorsion of an affine connection∇ is defined by

T∇(X, Y ) = ∇XY −∇YX − [X, Y ]

for all X, Y ∈ X (M).

Lemma 2. The torsion defines a skew-symmetric map

T∇ : X (M)×X (M) −→ X (M)

that is bilinear overC∞(M).

This means that we can think of the torsionT∇ as a two-form onM with values in the
tangent bundle:T∇ ∈ Ω2(TM).
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(6) If we choose a reference connection∇0 on TM , then the affine space of connections on
TM −→ M is identified with its vector space of translationsΩ1(End(TM)). The torsion
then becomes a map

T : Ω1(End(TM)) −→ Ω2(TM)

A 7−→ T∇0+A .

Note that

T∇0+A(X, Y ) = T∇0(X,Y ) + (A(X))Y − (A(Y ))X,

so that when addingA, the torsion changes by a certain skew-symmetrization ofA.
(7) An affine connection∇ is calledsymmetric if it is torsion-free, i. e.T∇ vanishes identi-

cally1.
To explain why torsion-freeness is a symmetry condition, we consider the expression of

an affine connection in a local coordinate system(x1, . . . , xn) onM . We write∂i for the
coordinate vector fields∂

∂xi
, and use the local frame∂1, . . . , ∂n. Then

∇∂i =
n∑
j=1

ωij ⊗ ∂j ,

with the connection matrix

ωij =
n∑
k=1

ωkijdxk .

This gives

∇∂i∂j =
n∑
k=1

ωijk∂k ,

which is usually written as

∇∂i∂j =
n∑
k=1

Γkij∂k

in classical notation. Therefore, we define theChristoffel symbolsof the affine connection
∇ with respect to the coordinate system(x1, . . . , xn) to beΓkij = ωijk.

Returning to the definition of torsion, we see that

T∇(∂i, ∂j) =
n∑
k=1

(ωijk − ω
j
ik)∂k =

n∑
k=1

(Γkij − Γkji)∂k .

As the torsion is linear over the smooth functions, we obtain the following:

Lemma 3. An affine connection∇ is torsion-free if and only ifΓkij = Γkji for any local
coordinate system.

Thus symmetry of the affine connection really refers to a symmetry of the Christoffel
symbols expressing this connection in local coordinates.

(8) The dual connection∇∗ gives us the following characterization of torsion-freeness:

1Note that requiring the naive symmetry∇XY = ∇YX for all X andY leads to a contradiction.
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Proposition 4. An affine connection∇ on M is torsion-free if and only if the exterior
derivative on one-forms is given by the composition

Γ(T ∗M)
∇∗−→ Γ(T ∗M ⊗ T ∗M)

∧−→ Γ(Λ2T ∗M) .
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(9) We now begin with the consideration of metrics on manifolds.

Definition 5. A pseudo-Riemannian metricon a manifoldM is a non-degenerate sym-
metric bilinear formg defined on all tangent spacesTpM depending smoothly onp.

A pseudo-Riemannian metric is calledRiemannian if it is positive definite.

As usual, smooth dependence onp is defined via charts forM . Equivalently it means
that for all smooth vector fieldsX andY , the functiong(X, Y ) is also smooth.

(10) Given a pseudo-Riemannian metricg onM , we say that an affine connection∇ is com-
patible with g if

d(g(X, Y )) = g(∇X, Y ) + g(X,∇Y )

for all vector fieldsX andY . Such a connection will be called metric (with respect tog).
We know that for Riemannian metrics there always exist compatible connections (see

the proof for arbitrary positive definite scalar products on arbitrary vector bundles last
semester). It is not clear a priori whether this remains true in the pseudo-Riemannian case.

(11) Given a pseudo-Riemannian metricg on M , we can define what it means for an en-
domorphism ofTM to be symmetric or skew-symmetric with respect tog. We write
Skew − End(TM) for the vector bundle of skew-symmetric endomorphisms ofTM , su-
pressingg in the notation. The difference of two connections that are both compatible with
g is a one-form with values inSkew − End(TM). Thus, if there are any connections
compatible withg, then they form an affine space whose vector space of translations is
Ω1(Skew − End(TM)).

(12) We now prove the following:

Proposition 6. On any pseudo-Riemannian manifold(M, g) there is a unique affine con-
nection∇ that is compatible withg and has a given two-formT with values inTM as its
torsion.

First proof. Let us suppose that there are affine connections compatible withg, and pick
one, called∇0, as a reference. Then the space of all affine connections compatible withg
is identified with

Ω1(Skew − End(TM)) = Γ(T ∗M ⊗ Skew − End(TM)) ⊂ Γ(T ∗M ⊗ T ∗M ⊗ TM) .

The torsion is a map from this space to

Ω2(TM) = Γ(Λ2T ∗M ⊗ TM)

sendingA to T∇0 plus the skew-symmetrization ofA, see (6) above.
Assume that∇0 + A1 and∇0 + A2 have the same torsion. Then we can calculate

thatA1 = A2. Thus the torsion map is injective. But, at every point, it is an affine map
between the fibers of two vector bundles of the same rank. Thus, if it is injective, it is also
surjective. �
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(13) We want to give an alternative proof for Proposition 6, which produces a formula for the
desired connection and therefore does not assume that connections compatible withg exist.
Instead of assuming this, we prove it as a consequence of the following argument.

Second proof.We first prove uniqueness. So let∇ be an affine connection compatible with
g having torsion tensorT . Then using compatibility withg and the formula for the torsion
alternately three times, we find that∇ must be determined by the following formula:

g(∇XY, Z) =
1

2
(g([X,Y ], Z)− g([Y, Z], X) + g([Z,X], Y )− g(X,T (Y, Z))+

+ g(Y, T (Z,X)) + g(Z, T (X, Y )) + LX(g(Y, Z)) + LY (g(Z,X))− LZ(g(X, Y ))) .

To prove uniqueness, we use this equation as a definition for∇XY . This defines a connec-
tion, and one can check that it is both compatible withg and hasT∇ = T . �

(14) As a special case of Proposition 6 we note the following:

Corollary 7. On every pseudo-Riemannian manifold(M, g) there is a unique torsion-free
metric affine connection.
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(15) By Corollary 7 every pseudo-Riemannian manifold(M, g) has a unique torsion-free affine
connection compatible with the metric. This connection∇ is called theLevi-Civit à con-
nectionof (M, g), or of g.

(16) TheRiemann curvature tensorR of a pseudo-Riemannian manifold(M, g) is defined
using its Levi-Civit̀a connection:

R : X (M)×X (M)×X (M) −→ X (M)

(X,Y, Z) 7−→ R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z .

Recall that for an arbitrary connection∇ on a vector bundleE, the curvatureF∇ is a two-
form on the base with values inEnd(E). HereR = F∇ for the Levi-Civit̀a connection
∇. The notationR(X, Y )Z means that the two-form is evaluated onX andY , and the
resulting endomorphism is then applied toZ.

(17) The most important properties of the Riemann curvature are the following:
(i) it is trilinear overC∞(M),

(ii) it is skew-symmetric in the first two arguments,
(iii) it satisfies thefirst Bianchi identity : R(X, Y )Z + R(Y, Z)X + R(Z,X)Y = 0 for

all X, Y andZ,
(iv) g(R(X, Y )Z,W ) = −g(R(X, Y )W,Z) for all X, Y , Z andW , and
(v) g(R(X, Y )Z,W ) = g(R(Z,W )X, Y ) for all X, Y , Z andW .

(18) LetV be a real vector space with a non-degenerate symmetric bilinear formg (e.g. a tangent
space of a pseudo-Riemannian manifold). A subspaceU ⊂ V is callednon-degenerateif
the restrictiong|U is non-degenerate. A non-zero vectorX ∈ V is callednull if it spans a
degenerate subspace.

(19) For a two-dimensional subspaceσ ⊂ V non-degeneracy is equivalent to the non-vanishing
of Q(X, Y ) = g(X,X)g(Y, Y )− (g(X, Y ))2, for any basisX andY of σ.

(20) Now let(M, g) be a pseudo-Riemannian manifold with Riemann tensorR.
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Definition 8. For a non-degenerate tangent two-planeσ we define thesectional curvature
to be

K(σ) =
g(R(X, Y )Y,X)

Q(X, Y )
.

This depends only ong andσ, and not on the basis chosen forσ.
(21) By definition, the sectional curvature of(M, g) is determined by its Riemann tensor. How-

ever, the converse is also true:

Proposition 9. The collection of sectional curvatures for all non-degenerate two-planes
σ ⊂ TM determines the Riemann curvature tensorR of (M, g).

In the proof we use the following:

Lemma 10. Every pair of vectorsX andY can be approximated arbitrarily closely byX ′

andY ′ such that the span ofX ′ andY ′ is a non-degenerate two-plane.
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(22) The proof of Proposition 9 can easily be adapted to prove the following characterization of
spaces with constant sectional curvature:

Proposition 11. A pseudo-Riemannian manifold(M, g) has sectional curvature equal to
a fixed real numberK0 ∈ R for all non-degenerate two-planesσ ⊂ TM if and only if the
following identity holds for allX, Y , Z andT ∈ X (M):

g(R(X,Y )Z, T ) = −K0(g(X,Z)g(Y, T )− g(Y, Z)g(X,T )) .

(23) For a pseudo-Riemannian manifold with Riemann tensorR we define theRicci tensor to
be

P (X, Y ) = −tr(Z 7−→ R(X,Z)Y ) ,

for all X andY ∈ X (M). Heretr(A) denotes the trace, i. e. the sum of the diagonal
entries of any matrix representing the linear mapA.

Definition 12. The Ricci curvature of an n-dimensional pseudo-Riemannian manifold
(M, g) in the direction ofX ∈ X (M) is

Ric(X) =
1

n− 1
P (X,X) .

Clearly the Ricci curvature determines the Ricci tensor by polarization.
(24) We want to work out concrete formulae for the Ricci tensor and the Ricci curvature in terms

of sectional curvatures. For this purpose we use a local orthonormal frameX1, . . . , Xn.
Here orthonormal means that theXi are pairwise orthogonal with respect tog, and that
g(Xi, Xi) = ±1 for all i. (For a Riemannian manifold all these scalar products are+1.)
With respect to such a local frame the trace of an endomorphismA of TM can be written
as

tr(A) =
n∑
i=1

(g(AXi, Xi) · g(Xi, Xi)) .

Thus, we have

P (X, Y ) = −
n∑
i=1

(g(R(X,Xi)Y,Xi) · g(Xi, Xi)) ,
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and

Ric(X) =
1

n− 1
P (X,X) = − 1

n− 1

n∑
i=1

(g(R(X,Xi)X,Xi) · g(Xi, Xi))

=
1

n− 1

n∑
i=1

(g(R(X,Xi)Xi, X) · g(Xi, Xi)) .

If X is not a null vector, we may assume that

X1 =
1√

|g(X,X)|
X ,

so that the above formula becomes

Ric(X) =
1

n− 1

n∑
i=1

(g(R(X,Xi)Xi, X) · g(Xi, Xi))

= |g(X,X)| · 1

n− 1

n∑
i=2

(g(R(X1, Xi)Xi, X1) · g(Xi, Xi))

= |g(X,X)| · 1

n− 1

n∑
i=2

(
K(Span{X1, Xi}) · g(X1, X1) · g(Xi, Xi)

2
)

= g(X,X) · 1

n− 1

n∑
i=2

K(Span{X1, Xi}) .

The last line shows that the Ricci curvature is essentially an average of sectional curvatures.
(25) We now want to define a scalar measure of curvatures by taking the trace of the Ricci

tensor with respect to the metricg. Becauseg is non-degenerate, there exists a unique
A ∈ Γ(End(TM)) such that

P (X, Y ) = g(AX, Y )

holds for all vector fieldsX andY .

Definition 13. Thescalar curvature of a pseudo-Riemannian manifold(M, g) is the func-
tion s∈ C∞(M) defined bys = tr(A).
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Using a local orthonormal frame as before, and substituting from the above formula
expressing the Ricci curvature in terms of sectional curvatures, we have the following:

s = tr(A) =
n∑
i=1

(g(AXi, Xi) · g(Xi, Xi))

=
n∑
i=1

(P (Xi, Xi) · g(Xi, Xi))

= (n− 1)
n∑
i=1

(Ric(Xi) · g(Xi, Xi))

= (n− 1)
n∑
i=1

((
g(Xi, Xi) ·

1

n− 1

∑
j 6=i

K(Span{Xi, Xj})

)
· g(Xi, Xi)

)
=
∑
i6=j

K(Span{Xi, Xj})

= 2
∑
i<j

K(Span{Xi, Xj}) .

(26) Here are some remarks and examples for curvature calculations. We say that a pseudo-
Riemannian manifold isflat if its Riemann tensor vanishes identically. Equivalently, all
sectional curvatures vanish.
• If M is Rn andg is given by a constant scalar product, then the coordinate vector

fields are parallel, and the Levi-Cività connection is flat. So(M, g) is flat as a pseudo-
Riemannian manifold.
• Suppose we scale a given metricg by replacing it withλ2g for some non-zero real

numberλ. Then the Levi-Civit̀a connection ofg is also compatible withλ2g, and is
therefore the Levi-Civit̀a connection of this new metric. This implies that the Riemann
tensor is unchanged. Looking at the definition of sectional curvature, we see that a
two-planeσ is non-degenerate forλ2g if and only if it is non-degenerate forg, and
that the two sectional curvatures are related as follows:

Kλ2g(σ) =
1

λ2
Kg(σ) .

The formula expressing the Ricci curvature in terms of sectional curvatures shows

Ricλ
2g(X) = Ricg(X)

for all non-isotropicX. By continuity we have the same conclusion for allX. Finally,
the formula expressing the scalar curvature in terms of sectional curvatures shows

sλ
2g =

1

λ2
sg .

• If M is two-dimensional and oriented andg is Riemannian, then the sectional curva-
ture ofTpM equals the Gaussian curvatureκ(p), and the scalar curvature is twice the
Gaussian curvature.
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(27) We now consider the following situation:(N, g) is a pseudo-Riemannian manifold, and
M ⊂ N is a smooth hypersurface, for which we assume thatTpM ⊂ TpN is a non-
degenerate subspace with respect tog for all p ∈M . This assumption ensures thatTpN =
TpM ⊕ (TpM)⊥ for all p ∈ M , where(TpM)⊥ is the orthogonal space with respect to
g. (This is not just a direct sum, but also an orthogonal sum with respect tog.) As M
is a hypersurface it follows that(TpM)⊥ is one-dimensional, spanned by a vectorn. By
non-degeneracy this vector cannot be null, so that by scaling we may assumeg(n, n) = ±1.

The non-degeneracy of the subspaceTpM ⊂ TpN for all p ∈ M means that the restric-
tion of g to TM is a pseudo-Riemannian metrich onM . The Levi-Civit̀a connection∇M

of (M,h) can be obtained from the Levi-Cività connection∇ of (N, g) as follows:

∇M
X Y = π∇X̃ Ỹ ,

whereX̃ andỸ are local extensions ofX, Y ∈ X (M) toN andπ : TN |M → TM is the
projection with kernel(TpM)⊥. As this is independent of the choices of local extensions
for X andY , we will not specify the extensions in later formulae.

(28) Suppose we have chosen a normal vector fieldn for M ⊂ N , normalized so thatg(n, n) =
±1.

Definition 14. TheWeingarten mapatp ∈M is the linear map

L : TpM −→ TpM

X 7−→ ∇Xn .

Again we need to choose a local extension ofn in a neighborhood ofp, but the result
we get is independent of the choice of extension. It follows from the constancy ofg(n, n)
that∇Xn is orthogonal ton and therefore contained inTpM . Note that the normalization
determinesn uniquely up to sign. If we replacen by−n, then we obtain−L instead ofL.

The Weingaten map has the following easily proved property, see [2], Section 10.3.

Lemma 15.The Weingarten map is symmetric with respect to the metric, i. e.h(L(X), Y ) =
(X,L(Y )) for all X,Y ∈ TpM .

(29) ForX, Y, Z ∈ TpM we can relate the value ofR(X, Y )Z, the curvature of(N, g), and of
RM(X, Y )Z, the curvature of(M,h), through the Weingarten map. In the special case that
the Levi-Civit̀a connection∇ of (N, g) is flat we obtain:

Theorem 16(Gauss Equation). If the pseudo-Riemannian manifold(N, g) is flat, andM ⊂
N is a hypersurface for which the restrictionh of g toM is also pseudo-Riemannian, then
the curvature of the Levi-Cività connection of(M,h) is given by

RM(X,Y )Z = g(n, n) (h(L(Y ), Z)L(X)− h(L(X), Z)L(Y )) ,

wheren is a normal vector toM normalized so thatg(n, n) = ±1.

Notice that this formula is unchanged if we replacen by−n.
(30) As an example for the above situation we takeN = R

n+1, with g given by the standard
positive definite scalar product. Note that becauseg is positive definite, all subspaces are
positive definite as well, and are therefore non-degenerate.

For the hypersurfaceM we take the unit sphereSn ⊂ Rn+1. As normal vector fieldn
we take the outer unit normal to the sphere, which atp ∈ Sn is justp itself. Now we can
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calculate that in this case the Weingarten mapL is the identity, so that the curvature tensor
of the unit sphere endowed with the induced Riemannian metrich is given by

RSn(X, Y )Z = h(Y, Z)X − h(X,Z)Y .

Comparing this with Proposition 11 we see that(Sn, h) has constant sectional curvature
equal to+1.

(31) A property (potentially) weaker than that of having constant sectional curvature is to have
constant Ricci curvaure:
Definition 17. A pseudo-Riemannian manifold(M, g) is said to beEinstein if there is a
real constantµ such thatP (X, Y ) = µg(X, Y ) for all X andY .

By polarization this is equivalent to the existence of a constantλ ∈ R such thatRic(X) =
λg(X,X) for all X.

Note that constant sectional curvature implies the Einstein condition, which in turn im-
plies that the scalar curvature is constant. If(M, g) is two-dimensional and Riemannian,
then all these conditions are in fact equivalent, and are equivalent to constancy of the Gauss-
ian curvature.
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