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(1) This is a course on the geometry of principal bundles, connections, curvature and gauge
transformations. All this material is used in physics for the discussions of classical gauge
theories such as electromagnetism and QCD.

(2) You are assumed to be familiar with smooth manifolds and smooth maps, with tangent
bundles, vector fields and their flows, and with Lie derivatives.

(3) We begin by recalling some standard material on Lie groups and their Lie algebras, using
mainly [1], Chapter 5, and [2], Chapter 3, as references.

A Lie group G is a smooth manifold with a group structure for which inversion and
multiplication are smooth maps. Discussion of basic properties and examples.

(4) For every element g of a Lie group G we can consider left multiplication lg, also called left
translation, by g:

lg : G −→ G

a 7−→ g · a .
Right translation rg is defined analogously, and is usually different from left translation
because G need not be commutative. Left and right translations are diffeomorphisms of G.

(5) A Lie algebra V (over R) is a vector space (over R) together with a bilinear map
[ , ] : V × V → V which is skew-symmetric and satisfies the Jacobi identity

[X, [Y, Z]] + [Z, [X, Y ]] + [Y, [Z,X]] = 0 .

(6) A vector field X on a Lie group G is called left-invariant if it is invariant under left trans-
lation, i. e. (Dalg)(X(a)) = X(g · a) for all g, a ∈ G.

Proposition 1. The subset of left-invariant vector fields inX (G) is a linear subspace which
is closed under commutation, and is therefore a Lie algebra.

Definition 2. The space g of left-invariant vector fields on G is called the Lie algebra of G.

(7) Consider the evaluation map

ev : g −→ TeG

X 7−→ X(e)

which assigns to each left-invariant vector field its value at the neutral element.

Proposition 3. The evaluation map is a linear isomorphism of vector spaces.

This result holds for the evaluation map g→ TgG at any g ∈ G. We shall often implicitly
identify g with TeG, giving the tangent space at the neutral element the Lie algebra structure
induced from that of g via the evaluation isomorphism.
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(8) The Proposition proved at the end of the first lecture has some important consequences.

Corollary 4. Any Lie group G has a well-defined dimension as a manifold (in other words,
all its connected components have the same dimension), and this coincides with the dimen-
sion of its Lie algebra g as a vector space over R.

Proof. Left translation by g is a diffeomorphism, whose inverse is left translation by g−1.
This shows that all components ofG have the same dimension as manifolds. The dimension
of the identity component is the dimension of TeG ∼= g as a vector space. �

Corollary 5. Every Lie group G has trivial tangent bundle. An explicit trivialization is
given by

G× g −→ TG

(g,X) 7−→ X(g) .

(9) Next we discuss homomorphisms between Lie groups. As a first special case consider the
following:

Definition 6. A 1-parameter subgroup of a Lie group G is a smooth map s : R→ G with
the properties s(0) = e and s(t1 + t2) = s(t1) + s(t2) for all t1, t2 ∈ R.

Thus a 1-parameter subgroup is a smooth homomorphism from the Lie group (R,+) to
G.

Proposition 7. Let G be a Lie group, and X ∈ g. Then
(a) X is complete, i. e. it generates a global flow.
(b) There is a unique 1-parameter subgroup sX : R → G such that ṡX(0) = X(e). The

flow of X is given by φt(g) = g · sX(t).

(10) In the case when G is GL(n,R) we can identify TeG, and therefore g, with Mat(n ×
n,R). The 1-parameter subgroup corresponding to some X ∈ Mat(n × n,R) is given
by sX(t) = exp(tX), where the exponential is calculated using the matrix X in the usual
series expansion. This motivates the following:

Definition 8. For any Lie group G, its exponential map is defined by

exp : g −→ G

X 7−→ sX(1) .

This is well-defined because every left-invariant vector field is complete. The following
is immediate:

Lemma 9. For all t ∈ R we have sX(t) = exp(tX).

(11) As in the case of the exponential map of a Riemannian manifold, defined using unit-speed
geodesics with given initial values, we have:

Proposition 10. The exponential map is smooth, and its derivative at the origin is the
identity map of TeG.
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Here again we have identified g with TeG. As an immediate consequence of the above,
the inverse function theorem tells us that the exponential map is a local diffeomorphism.
The proof of this Proposition is left as an exercise on the first homework assignment.

(12) In general, a homomorphism of Lie groups is a smooth map which is also a homomor-
phism.

Proposition 11. A homomorphism of Lie groups f : G → H induces a homomorphism of
Lie algebras f∗ : g→ h.

Proof. The map f∗ is defined by the composition

g
ev−→ TeG

Def−→ TeH
ev−1

−→ h .

This is clearly a linear map of vector spaces. Thus it remains to prove

(*) f∗[X, Y ] = [f∗X, f∗Y ] .

This is done in the next two lemmas. �

Lemma 12. If f : G→ H is a homomorphism of Lie groups andX ∈ g, then (Dgf)(X(g)) =
(f∗X)(f(g)).

After this, the fact that we are dealing with a homomorphism of Lie groups plays no
further role in the proof.
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(13) We prove the following:

Lemma 13. Let f : M → N be a smooth map between smooth manifolds. Let X, Y ∈
X (M) and X̄, Ȳ ∈ X (N) be vector fields with the properties (Dpf)(X(p)) = X̄(f(p))
and (Dpf)(Y (p)) = Ȳ (f(p)). Then (Dpf)([X, Y ](p)) = [X̄, Ȳ ](f(p)).

Applying this to a Lie group homomorphism, Lemma 12 shows that we may set X̄ =
f∗X and Ȳ = f∗Y to complete the proof of (*).

(14) Before proceeding with the discussion of Lie subgroups, we need to prepare some facts
concerning subbundles of the tangent bundle of a smooth manifold. These will also be
useful later on for the discussion of flat connections on principal bundles. We refer ro
Chapter 4 of [1] or pages 41–49 of [2] for this material on integrability.

Theorem 14. Let X1, . . . , Xk ∈ X (M) be vector fields with [Xi, Xj] = 0 for all i and j. If
X1(p), . . . , Xk(p) are linearly independent in TpM , then there is a chart (U,ϕ) with p ∈ U
such that Dϕ(Xi|U) = ∂

∂xi
for all i = 1, . . . , k.

(15) A distribution E of rank k on a smooth manifold M is a smooth subbundle E ⊂ TM of
rank k. The commutator of vector fields with values in E defines a bilinear map Γ(E) ×
Γ(E)→ X (M), which usually does not take values in Γ(E) only.

Definition 15. A distribution E is involutive, if Γ(E) is closed under [ , ].

Definition 16. A distribution E of rank k is integrable, if through every point p ∈M there
is a submanifold N with TN = E|N . Such an N is called an integral manifold for E.
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Theorem 17 (Frobenius Theorem). For a rank k distribution E ⊂ TM the following
conditions are equivalent:
(1) E is integrable,
(2) E is involutive,
(3) there is a covering of M by domains of charts (U,ϕ) such that Dϕ(E|U) contains ∂

∂xi

for all i = 1, . . . , k.

That (3) implies (1) is easy to see. Further, (1) implies (2) by Lemma 13. Finally, the
implication from (2) to (3) is the interesting part. One chooses a local frame for E around
a point p ∈ M , and argues that this can be arranged to consist of commuting vector fields
using (2). Then the local flows of these (local) vector fields also commute, and one can use
Theorem 14.
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(16) A subset H ⊂ G is said to be a Lie subgroup if it can be given the structure of a Lie
group in such a way that the inclusion map i : H → G is a homomorphism and an injective
immersion. Note that i is not required to be an embedding, because the subspace topology
on H may not agree with its abstract Lie group topology.

Theorem 18. There is a bijection between connected Lie subgroups H ⊂ G of G and Lie
subalgebras h ⊂ g of g.

In one direction, if H ⊂ G is a Lie subgroup, then i∗ : h → g is injective and the image
is a Lie subalgebra of g.

For the converse suppose we are given a Lie subalgebra h ⊂ g. By evaluation at all
points of G this defines a left-invariant distribution E on G. The assumption that h ⊂ g
is a subalgebra, i. e. it is closed under commutation, implies that E is involutive. By the
Frobenius theoremE is integrable. LetH be the leaf of the corresponding foliation through
the neutral element e ∈ G. The leaf through a ∈ G is then obtained by left translation with
a applied to H . It turns out that H is then a Lie subgroup, and is the only connected such
group with Lie algebra h ⊂ g. This completes the proof of Theorem 18.

(17) Lie subgroups are not usually closed subsets. The easiest example of this phenomenon is a
densely immersed copy of R in T 2.

(18) We state the following theorem without giving the proof. For the proof, see [1], p. 139–141.

Theorem 19. If G is a Lie group and H ⊂ G is a closed subset that is also an abstract
subgroup, then H is a Lie subgroup.

(19) We now begin the discussion of Lie group actions on manifolds. All our actions will be
smooth:

Definition 20. A (left) action of a Lie group G on a smooth manifold M is a smooth map
µ : G×M →M such that
• µ(e, p) = p for all p ∈M , and
• µ(g1, µ(g2, p)) = µ(g1g2, p) for all p ∈M , g1, g2 ∈ G.

When it is clear which action ofG onM we have in mind, we often simplify the notation
and write g(p) or g·p instead of µ(g, p). Then the second defining property can be expressed
as g1(g2(p)) = (g1g2)(p).
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(20) Right actions are defined analogously, so that e(p) = p and g1(g2(p)) = (g2g1)(p). One can
convert left and right actions into each other, but it is sometimes important to distinguish
them.

(21) An action is said to be effective if for all g 6= e ∈ G there exists a p ∈ M such that
g(p) 6= p. An action is transitive if for all p, q ∈M there exists a g ∈ G such that g(p) = q.
The orbit of a point p ∈M under the action consists of all the points g(p). Partitioning M
into the orbits of the action defines an equivalence relation on M . Transitivity is equivalent
to the requirement that there is only one orbit.
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(22) Let f : G −→ H be a homomorphism of Lie groups. Then it induces the homomorphism
f∗ : g −→ h between the Lie algebras, and this satisfies exp ◦ f∗ = f ◦ exp.

(23) Whenever an action of G on M fixes a point p ∈M , we can take derivatives at p to obtain
a representation G −→ GL(TpM). This is called the isotropy representation at p.

(24) Conjugation defines a left action of a Lie group G on itself. This action fixes the neutral
element e ∈ G, and the isotropy representation at e is called the adjoint representation
Ad : G −→ GL(g), where we identify g with TeG via the evaluation map using Proposi-
tion 3.

(25) Ad is a Lie group homomorphism inducing a map Ad∗ between Lie algebras. This is
denoted ad : g −→ End(g), and is also called the adjoint representation, but this is a
representation of g, not of G.

(26) Item (22) above gives us various commutative diagrams intertwining Ad and ad, see [2,
p. 114]. In the special case where G = GL(V ) for some vector space V , we have
Adg(M) = gMg−1.

(27) For all G we have adX(Y ) = LXY = [X, Y ].
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(28) Definition of the center of G and of g.
(29) The center of a connected Lie group G is precisely the kernel of Ad.
(30) Let G be a Lie group, and H ⊂ G a closed subgroup. The set G/H of left cosets of H in

G is a topological space with the quotient topology, and is called a homogeneous space.

Theorem 21. For every closed Lie subgroup H ⊂ G the corresponding homogeneous
space G/H has a natural structure as a smooth manifold of dimension dim(G)−dim(H),
such that the projection π : G→ G/H is smooth and admits smooth local sections.

In fact the projection will turn out to be a submersion. In the proof we shall use the no-
tation la : G/H → G/H for the continuous maps induced on G/H by the left translations
on G. These are all homeomorphisms, and will turn into diffeomorphisms once we have
defined the smooth structure on G/H .

Proof. By definition, a subset U ⊂ G/H is open if and only if its preimage π−1(U) ⊂ G
is open. Therefore, a countable basis for the topology of G induces a countable basis for
the topology of G/H .

The assumption that H ⊂ G is a closed subset implies that its preimage R ⊂ G × G
under the map (g1, g2) 7→ g−1

1 g2 is also closed. If aH 6= bH , then (a, b) /∈ R, so we can
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find open neighbourhoods U and V of a respectively b in G so that (U ×V )∩R = ∅. Then
π(U) and π(V ) are disjoint open neighbourhoods of aH respectively bH in G/H . Thus
G/H has the Hausdorff property.

It remains to construct an atlas with smooth transition maps. First, let (V, φ) be a chart
for G around e. As H ⊂ G is closed, we may assume that H ∩ V is connected. We choose
φ so that it maps the intersections of the cosets of H with V to the subsets Rk × {c} ⊂
Rk × Rn−k = Rn = φ(V ). By shrinking V , we find smaller open sets U and V1 which
have the same properties and in addition satisfy U−1 · U ⊂ V1 and V1 · V1 ⊂ V . It follows
that every coset of H either does not meet V1 at all, or meets it in a connected subset
diffeomorphic via φ to Rk.

Define φ̃−1 : Rn−k → π(U) by π ◦ φ−1, where Rn−k = {0} × Rn−k ⊂ Rn. This
map is bijective, continuous and an open map, and so is a homeomorphism. We define
φ̃ : π(U) → Rn−k by inversion, and this is then also a homeomorphism. We shall use this
as a chart for G/H around the point eH = H .

For any a ∈ G we obtain a chart for G/H around aH by taking (π(la(U)), φ̃aH =

φ̃ ◦ la−1). Thus, we have the structure of a topological manifold on G/H . To see that
this atlas actually defines a smooth structure, it remains to check that the transition maps
between different charts are smooth. Suppose that π(la(U))∩π(lb(U)) 6= ∅. Then we have
to prove that φ̃bH ◦ φ̃−1

aH is smooth on X = φ̃aH(π(la(U)) ∩ π(lb(U))). Note that

φ̃bH ◦ φ̃−1
aH = (φ̃ ◦ lb−1) ◦ (φ̃ ◦ la−1)−1 = φ̃ ◦ lb−1a ◦ φ̃−1 .

Let p ∈ X . Then lb−1a◦φ̃−1(p) ∈ π(U), so there exists a g ∈ H such that lb−1a◦φ−1(p)·g ∈
U . There is a neighbourhood W of p in X such that lb−1a ◦φ−1(W ) · g ⊂ U . On W we can
rewrite φ̃bH ◦ φ̃−1

aH as
π2 ◦ φ ◦ rg ◦ lb−1a ◦ φ−1 ,

where π2 is the projection from Rk×Rn−k to the second factor. This composition is clearly
smooth.

Thus, we have finally checked that G/H is a smooth manifold. In the charts we have
constructed π corresponds to π2 and is therefore smooth. The smooth local sections are
provided by the left translations of the restriction of φ−1 to the second factor in Rk ×
Rn−k. �
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