THE MANIFOLD STRUCTURE OF G/H

PATRICK EBERLEIN

Let G be a connected Lie group, and let H be a closed subgroup of G. We show that the coset space G/H has the structure of a C^{∞} manifold of dimension dim G – dim H. Let \mathfrak{G} and \mathfrak{H} denote the Lie algebras of G and H.

1. CONSTRUCTION OF THE COORDINATE CHARTS

Let \mathfrak{P} denote a vector space complement of \mathfrak{H} in \mathfrak{G} so that $\mathfrak{G} = \mathfrak{P} \oplus \mathfrak{H}$. Define a map $\psi : \mathfrak{P}$ x $\mathfrak{H} \to G$ by $\psi(X, Y) = \exp(X) \cdot \exp(Y) = \mu(\exp(X), \exp(Y))$, where $\mu : G \times G \to G$ is the \mathbb{C}^{∞} multiplication map. Clearly ψ is a \mathbb{C}^{∞} map.

Lemma 1.1. ψ is nonsingular at (0,0)

Proof. Let $X \in \mathfrak{P}$, and let $\alpha(t) = \psi(tX, 0) = \exp(tX)$. Then $X(e) = \psi_*(X, 0)$, which shows that $\psi_*(T_{(0,0)}(\mathfrak{P} \times \mathfrak{H}))$ contains \mathfrak{P} . A similar argument shows that $\psi_*(T_{(0,0)}(\mathfrak{P} \times \mathfrak{H}))$ contains \mathfrak{H} and hence also $\mathfrak{P} \oplus \mathfrak{H} = \mathfrak{G} = T_e \mathfrak{G}$. It follows that $\psi_*: T_{(0,0)}(\mathfrak{P} \times \mathfrak{H}) \to T_e \mathfrak{G}$ is an isomorphism since dim $\mathfrak{G} = \dim(\mathfrak{P} \times \mathfrak{H})$.

Lemma 1.2. Let $O_1 \subset \mathfrak{P}$ and $O_2 \subset \mathfrak{H}$ be open sets containing the origins in \mathfrak{P} and \mathfrak{H} such that $\psi : O_1 \times O_2 \to U$ is a diffeomorphism onto an open subset U of G containing e. Then there exists an open set $U_1 \subset O_1$ such that $\{exp(O_1)^{-1} \cdot exp(O_1)\} \cap H = \mu(exp(O_1)^{-1}, exp(O_1)) \cap H \subset exp(O_2).$

Proof. The set $\exp(O_2)$ is an open subset of H that contains the identity by the choice of O_1 and O_2 . The group H is an imbedded submanifold of G and has the induced topology since H is closed in G (cf. Broecker-tom Dieck pp. 28-29). Choose an open set W in G that contains the identity such that $W \cap H \subset \exp(O_2)$. Now choose an open set $U_1 \subset O_1$ such that $\{exp(O_1)^{-1} \cdot exp(O_1)\} \subset W$. \Box

In the sequel we shall assume that $O_1 = U_1$ satisfies the conditions of Lemma 1.2. We continue to let O_2 and $U = \psi : O_1 \ge O_2$ have the meanings above. We let $\pi : G \to G/H$ denote the natural projection map. Recall that π is an open map, and in particular $\pi(U)$ is an open subset of G/H containing the identity coset eH.

Lemma 1.3. Define $\varphi_0 : O_1 \to \pi(U)$ by $\varphi_0(X) = exp(X)H$. Then φ_0 is a bijection.

Proof. By definition $U = \psi(O_1 \ge O_2) = exp(O_1) \cdot exp(O_2)$, and therefore $\pi(U) = \pi(exp(O_1)) = \varphi_0(O_1)$ since $exp(O_2) \subset H$. Hence $\varphi_0 : O_1 \to \pi(U)$ is surjective. Now suppose that $\varphi_0(X) = \varphi_0(Y)$ or equivalently that exp(X)H = exp(Y)H for some elements $X, Y \in O_1$. Then $exp(X)^{-1} \cdot exp(Y) \in \{exp(O_1)^{-1} \cdot exp(O_1)\} \cap H \subset exp(O_2)$. Choose $Z \in O_2$ such that $exp(X)^{-1} \cdot exp(Y) = exp(Z)$. Then $\psi(Y, 0) = exp(Y) = exp(X) \cdot exp(Z) = \psi(X, Z)$, and it follows that (Y, 0) = (X, Z) since $\psi : O_1 \ge O_2 \to U$ is a diffeomorphism. Hence X = Y and φ_0 is one-one.

Date: February 26, 2005.

PATRICK EBERLEIN

Definition of the coordinate charts

For each $g \in G$ we define $\varphi_g = L_g \circ \varphi_0 : O_1 \to g \cdot \pi(U)$. Each map φ_g is a bijection by Lemma 1.3, where L_g denotes left multiplication by g on both G and G/H. Let $U_g = \varphi_g(O_1) = g \cdot \pi(U)$. We show that the maps $\{\varphi_g : O_1 \to U_g : g \in G\}$ form a family of smoothly overlapping coordinate charts for G/H.

The set O_1 , which is the domain of all charts { $\varphi_g : g \in G$ }, is an open subset of \mathfrak{P} , whose dimension is dim G – dim H since $\mathfrak{G} = \mathfrak{P} \oplus \mathfrak{H}$. Hence it will follow that dim G/H = dim G – dim H once we have proved that the charts overlap smoothly.

2. THE CHARTS OVERLAP SMOOTHLY

Suppose $\xi \in U_q \cap U_a$ for some elements $a, g \in G$. Then

(1) $\xi = a \cdot exp(X)H = g \cdot exp(Y)H$ for some elements X,Y of O₁. Moreover, $(\varphi_g^{-1} \circ \varphi_a) : \varphi_a^{-1}(U_g \cap U_a) \to \varphi_g^{-1}(U_g \cap U_a)$ is defined by $(\varphi_g^{-1} \circ \varphi_a)(X) = Y$. Next we observe

(2) $p_0 \cdot h_0 = q_0$ for some element h_0 of H, where $p_0 = \exp(X)$, $q_0 = (a^{-1}g) \cdot \exp(Y)$ and $X, Y \in O_1$.

Note that $q_0 = R_{h_0}(p_0) = R_{h_0}(exp(X)) \in L_{a^{-1}g}(U)$ and $\mathbf{X} = \varphi_a^{-1}(\xi) \in \varphi_a^{-1}(U_g \cap U_a)$, which is open in \mathbf{O}_1 . By (2) and the continuity of the multiplication $\mu : \mathbf{G} \times \mathbf{G} \to \mathbf{G}$ there exists an open set $\mathbf{A} \subset \varphi_a^{-1}(U_g \cap U_a) \subset O_1$ with $\mathbf{X} \in \mathbf{A}$ such that $R_{h_0}(exp(A)) \subset L_{a^{-1}g}(U)$.

Define C^{∞} maps $\sigma = R_{h_0} \circ exp : A \to L_{a^{-1}g}(U)$ and $\rho = \pi_1 \circ \psi^{-1} \circ L_{g^{-1}a} : L_{a^{-1}g}(U) \to O_1$, where $\pi_1 : O_1 \ge O_2 \to O_1$ is the projection, and $\psi : O_1 \ge O_2 \to U$ is the diffeomorphism defined at the beginning of this discussion. To conclude that $(\varphi_g^{-1} \circ \varphi_a) : \varphi_a^{-1}(U_g \cap U_a) \to \varphi_g^{-1}(U_g \cap U_a)$ is C^{∞} it suffices to show that $\varphi_g^{-1} \circ \varphi_a = \rho \circ \sigma$ on $A \subset \varphi_a^{-1}(U_g \cap U_a) \subset O_1$.

If $X' \in A$, then $\sigma(X') = exp(X')h_0 \in L_{a^{-1}g}(U)$ by the definition of A. Hence

(3) $exp(X')h_0 = (a^{-1}g) \cdot exp(Y'_1) \cdot exp(Y'_2)$ for a unique pair $(Y'_1, Y'_2) \in O_1 \times O_2 = \psi^{-1}(U)$. From (3) we see that $a \cdot exp(X')H = g \cdot exp(Y'_1)H$ since $exp(Y'_2) \in H$. By (1) we see that $(\varphi_g^{-1} \circ \varphi_a)(X') = Y'_1$. From (3) we obtain $(\rho \circ \sigma)(X') = \rho((a^{-1}g) \cdot exp(Y'_1) \cdot exp(Y'_2)) = \rho(L_{a^{-1}g}\psi(Y'_1, Y'_2)) = Y'_1$ by the definition of ρ . Hence $\varphi_g^{-1} \circ \varphi_a = \rho \circ \sigma$ on $A \subset \varphi_a^{-1}(U_g \cap U_a) \subset O_1$.

3. The projection $\pi: G \to G/H$ is \mathbb{C}^{∞}

It suffices to show that $\pi : U \to \pi(U)$ is \mathbb{C}^{∞} , where $U = \psi(O_1 \times O_2)$ as above. Since $\pi \circ L_g = L_g \circ \pi$ for all $g \in G$ it will then follow that $\pi : L_g(U) \to L_g\pi(U)$ is \mathbb{C}^{∞} . This will complete the proof that $\pi : G \to G/H$ is \mathbb{C}^{∞} since $L_g(U)$ is an open set containing gH for all $g \in G$.

Using the coordinate charts $\psi : O_1 \ge O_2 \to U$ and $\varphi_0 : O_1 \to \pi(U)$ we must show that $\varphi_0^{-1} \circ \pi \circ \psi$ $\psi : O_1 \ge O_2 \to O_1$ is \mathbb{C}^{∞} . By definition $\varphi_0^{-1} \circ \pi \circ \psi(X, Y) = (\varphi_0^{-1} \circ \pi)(exp(X) \cdot exp(Y)) = (\varphi_0^{-1} \circ \pi)(exp(X) \text{ (since exp(Y) } \in H) = X$ by the definition of φ_0 . Hence $\varphi_0^{-1} \circ \pi \circ \psi : O_1 \ge O_2 \to O_1$ is projection on the first factor, which is a \mathbb{C}^{∞} map.

4. The projection $\pi : \mathbf{G} \to \mathbf{G}/\mathbf{H}$ has maximal rank

Extend the subspaces \mathfrak{P} and \mathfrak{H} of $\mathfrak{G} = T_e G$ to left invariant distributions on G by defining $\mathfrak{P}(g) = L_{g*}(\mathfrak{P}) \subset T_g G$ and $\mathfrak{H}(g) = L_{g*}(\mathfrak{H}) \subset T_g G$ for all $g \in G$. Then $T_g G = \mathfrak{P}(g) \oplus \mathfrak{H}(g)$ for all $g \in G$. We observe that since the elements of \mathfrak{G} are left invariant vector fields on G we have $\mathfrak{P}(g) = \{X(g) : X \in \mathfrak{P}\}$ and $\mathfrak{H}(g) = \{X(g) : X \in \mathfrak{H}\}$.

Proposition 4.1. Let π : $G \rightarrow G/H$ denote the natural projection. Then

(a) $\pi_* : \mathfrak{P}(g) \to T_{gH}(G/H)$ is an isomorphism for all $g \in G$. In particular, $\pi_* : T_g G \to T_{gH}(G/H)$ is surjective for all $g \in G$.

(b) $\mathfrak{H}(g) = Ker \ \pi_* : T_g G \to T_{gH}(G/H) \text{ for all } g \in G.$

Proof. a) For $g \in G$ we have the coordinate chart $\varphi_g : O_1 \to g \cdot \pi(U)$ at the point $gH \in G/H$. Let $\xi \in T_{gH}(G/H)$ be given. Since $(\varphi_g)_* : T_0O_1 \to T_{gH}(G/H)$ is an isomorphism there exists $X \in O_1 \subset \mathfrak{P}$ such that $\xi = \alpha'(0)$, where $\alpha(t) = \varphi_g(exp(tX)) = g \cdot exp(tX)H = \pi(g \cdot exp(tX))$. Hence $\xi = \pi_*((L_g)_*X(e))$, where $(L_g)_*X(e)) = X(g) \in \mathfrak{P}(g) \subset T_gG$. This proves that $\pi_* : \mathfrak{P}(g) \to T_{gH}(G/H)$ is surjective for all $g \in G$. It follows that dim $\mathfrak{P} = \dim \mathfrak{P}(g) \ge \dim G/H$ $= \dim \mathfrak{G} - \dim \mathfrak{H} = \dim \mathfrak{P}$. Hence equality must hold in the previous line, which implies that $\pi_* : \mathfrak{P}(g) \to T_{gH}(G/H)$ is an isomorphism.

(b) Since $T_gG = \mathfrak{P}(g) \oplus \mathfrak{H}(g)$ it follows from a) that dim Ker $\pi_* : T_gG \to T_{gH}(G/H) = \dim G - \dim G/H = \dim G - \dim \mathfrak{P} = \dim \mathfrak{H}$. Hence (b) will follow for reasons of dimension when we show that $\mathfrak{H}(g) \subset Ker \pi_* : T_gG \to T_{gH}(G/H)$.

Let $\xi \in \mathfrak{H}(g)$. Then we may write $\xi = (L_g)_*(X(e)) = X(g)$ for some $X \in \mathfrak{H}$. Since $\pi_*(\xi) = (L_g)_*(\pi_*X(e))$ it suffices to prove that $\pi_*X(e)) = 0$ for every $X \in \mathfrak{H}$. If $X \in \mathfrak{H}$, then $\pi_*X(e)) = \alpha'(0)$, where $\alpha(t) = \pi(exp(tX)) = exp(tX)H$. However, $\alpha(t) = eH$ for all t since exp(tX) $\in \mathbb{H}$ for all t, and we conclude that $\alpha'(0) = 0$.