
THE MANIFOLD STRUCTURE OF G/H

PATRICK EBERLEIN

Let G be a connected Lie group, and let H be a closed subgroup of G. We show that the coset
space G/H has the structure of a C∞ manifold of dimension dim G − dim H. Let G and H denote
the Lie algebras of G and H.

1. CONSTRUCTION OF THE COORDINATE CHARTS

Let P denote a vector space complement of H in G so that G = P ⊕ H. Define a map ψ : P
x H → G by ψ(X,Y ) =exp(X) · exp(Y) = µ(exp(X),exp(Y)), where µ : G x G → G is the C∞

multiplication map. Clearly ψ is a C∞ map.

Lemma 1.1. ψ is nonsingular at (0,0)

Proof. Let X ∈ P, and let α(t) = ψ(tX, 0) = exp(tX). Then X(e) = ψ∗(X, 0), which shows that
ψ∗(T(0,0)(P x H)) contains P. A similar argument shows that ψ∗(T(0,0)(P x H)) contains H and
hence also P⊕ H = G = TeG. It follows that ψ∗ : T(0,0)(P x H) → TeG is an isomorphism since
dim G = dim (P x H). �

Lemma 1.2. Let O1 ⊂ P and O2 ⊂ H be open sets containing the origins in P and H such that
ψ : O1 x O2 → U is a diffeomorphism onto an open subset U of G containing e. Then there exists
an open set U1 ⊂ O1 such that {exp(O1)−1 · exp(O1)} ∩ H = µ(exp(O1)−1, exp(O1)) ∩ H ⊂
exp(O2).

Proof. The set exp(O2) is an open subset of H that contains the identity by the choice of O1 and O2.
The group H is an imbedded submanifold of G and has the induced topology since H is closed in G
(cf. Broecker-tom Dieck pp. 28-29). Choose an open set W in G that contains the identity such that
W ∩ H ⊂ exp(O2). Now choose an open set U1 ⊂ O1 such that {exp(O1)−1 · exp(O1)} ⊂W . �

In the sequel we shall assume that O1 = U1 satisfies the conditions of Lemma 1.2. We continue
to let O2 and U = ψ : O1 x O2 have the meanings above. We let π : G → G/H denote the natural
projection map. Recall that π is an open map, and in particular π(U) is an open subset of G/H
containing the identity coset eH.

Lemma 1.3. Define ϕ0 : O1 → π(U) by ϕ0(X) = exp(X)H. Then ϕ0 is a bijection.

Proof. By definition U = ψ(O1 x O2) = exp(O1) · exp(O2), and therefore π(U) = π(exp(O1)) =
ϕ0(O1) since exp(O2) ⊂ H. Hence ϕ0 : O1 → π(U) is surjective. Now suppose that ϕ0(X) =
ϕ0(Y ) or equivalently that exp(X)H = exp(Y)H for some elements X,Y ∈ O1. Then exp(X)−1·
exp(Y) ∈ {exp(O1)−1 · exp(O1)} ∩H ⊂ exp(O2). Choose Z ∈ O2 such that exp(X)−1· exp(Y) =
exp(Z). Then ψ(Y, 0) = exp(Y ) = exp(X) · exp(Z) = ψ(X,Z), and it follows that (Y,0) = (X,Z)
since ψ : O1 x O2 → U is a diffeomorphism. Hence X = Y and ϕ0 is one-one. �
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Definition of the coordinate charts
For each g ∈ G we define ϕg = Lg ◦ ϕ0 : O1 → g · π(U). Each map ϕg is a bijection by Lemma

1.3, where Lg denotes left multiplication by g on both G and G/H. Let Ug = ϕg(O1) = g · π(U).
We show that the maps {ϕg : O1 → Ug : g ∈ G} form a family of smoothly overlapping coordinate
charts for G/H.

The set O1, which is the domain of all charts { ϕg : g ∈ G }, is an open subset of P, whose
dimension is dim G − dim H since G = P⊕ H. Hence it will follow that dim G/H = dim G − dim
H once we have proved that the charts overlap smoothly.

2. THE CHARTS OVERLAP SMOOTHLY

Suppose ξ ∈ Ug ∩ Ua for some elements a,g ∈ G. Then
(1) ξ = a · exp(X)H = g · exp(Y )H for some elements X,Y of O1. Moreover, (ϕ−1

g ◦ ϕa) :
ϕ−1

a (Ug ∩ Ua) → ϕ−1
g (Ug ∩ Ua) is defined by (ϕ−1

g ◦ ϕa)(X) = Y .
Next we observe
(2) p0 · h0 = q0 for some element h0 of H, where p0 = exp(X), q0 = (a−1g)· exp(Y) and X,Y ∈

O1.
Note that q0 = Rh0(p0) = Rh0(exp(X)) ∈ La−1g(U) and X = ϕ−1

a (ξ) ∈ ϕ−1
a (Ug ∩Ua), which

is open in O1. By (2) and the continuity of the multiplication µ : G x G → G there exists an open set
A ⊂ ϕ−1

a (Ug ∩ Ua) ⊂ O1 with X ∈ A such that Rh0(exp(A)) ⊂ La−1g(U).

Define C∞ maps σ = Rh0 ◦exp : A→ La−1g(U) and ρ = π1 ◦ψ−1 ◦Lg−1a : La−1g(U) → O1,
where π1 : O1 x O2 → O1 is the projection, and ψ : O1 x O2 → U is the diffeomorphism defined at
the beginning of this discussion. To conclude that (ϕ−1

g ◦ ϕa) : ϕ−1
a (Ug ∩ Ua) → ϕ−1

g (Ug ∩ Ua) is
C∞ it suffices to show that ϕ−1

g ◦ ϕa = ρ ◦ σ on A ⊂ ϕ−1
a (Ug ∩ Ua) ⊂ O1.

If X ′ ∈ A, then σ(X ′) = exp(X ′)h0 ∈ La−1g(U) by the definition of A. Hence
(3) exp(X ′)h0 = (a−1g) · exp(Y ′1) · exp(Y ′2) for a unique pair (Y ′1 , Y

′
2) ∈ O1 x O2 = ψ−1(U).

From (3) we see that a · exp(X ′)H = g · exp(Y ′1)H since exp(Y ′2) ∈ H. By (1) we see that
(ϕ−1

g ◦ ϕa)(X ′) = Y ′1 . From (3) we obtain (ρ ◦ σ)(X ′) = ρ((a−1g) · exp(Y ′1) · exp(Y ′2)) =
ρ(La−1gψ(Y ′1 , Y

′
2)) = Y ′1 by the definition of ρ. Hence ϕ−1

g ◦ ϕa = ρ ◦ σ on A ⊂ ϕ−1
a (Ug ∩Ua) ⊂

O1.

3. THE PROJECTION π : G→ G/H IS C∞

It suffices to show that π : U → π(U) is C∞, where U = ψ(O1 x O2) as above. Since
π ◦ Lg = Lg ◦ π for all g ∈ G it will then follow that π : Lg(U) → Lgπ(U) is C∞. This will
complete the proof that π : G→ G/H is C∞ since Lg(U) is an open set containing gH for all g ∈ G.

Using the coordinate charts ψ : O1 xO2 → U and ϕ0 : O1 → π(U) we must show that ϕ−1
0 ◦ π ◦

ψ : O1 x O2 → O1 is C∞. By definition ϕ−1
0 ◦ π ◦ ψ(X,Y ) = (ϕ−1

0 ◦ π)(exp(X) · exp(Y )) =
(ϕ−1

0 ◦ π)(exp(X) (since exp(Y) ∈ H) = X by the definition of ϕ0. Hence ϕ−1
0 ◦ π ◦ ψ : O1 x

O2 → O1 is projection on the first factor, which is a C∞ map.
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4. THE PROJECTION π : G → G/H HAS MAXIMAL RANK

Extend the subspaces P and H of G = TeG to left invariant distributions on G by defining
P(g) = Lg∗(P) ⊂ TgG and H(g) = Lg∗(H) ⊂ TgG for all g ∈ G. Then TgG = P(g) ⊕ H(g)
for all g ∈ G. We observe that since the elements of G are left invariant vector fields on G we have
P(g) = {X(g) : X ∈ P} and H(g) = {X(g) : X ∈ H}.

Proposition 4.1. Let π : G → G/H denote the natural projection. Then
(a) π∗ : P(g) → TgH(G/H) is an isomorphism for all g ∈ G. In particular, π∗ : TgG →

TgH(G/H) is surjective for all g ∈ G.
(b) H(g) = Ker π∗ : TgG→ TgH(G/H) for all g ∈ G.

Proof. a) For g ∈ G we have the coordinate chart ϕg : O1 → g · π(U) at the point gH ∈ G/H. Let
ξ ∈ TgH(G/H) be given. Since (ϕg)∗ : T0O1 → TgH(G/H) is an isomorphism there exists X
∈ O1 ⊂ P such that ξ = α′(0), where α(t) = ϕg(exp(tX)) = g · exp(tX)H = π(g · exp(tX)).
Hence ξ = π∗((Lg)∗X(e)), where (Lg)∗X(e)) = X(g) ∈ P(g) ⊂ TgG. This proves that π∗ :
P(g) → TgH(G/H) is surjective for all g ∈ G. It follows that dim P = dim P(g) ≥ dim G/H
= dim G− dim H = dim P. Hence equality must hold in the previous line, which implies that
π∗ : P(g) → TgH(G/H) is an isomorphism.

(b) Since TgG = P(g) ⊕ H(g) it follows from a) that dim Ker π∗ : TgG → TgH(G/H) = dim
G − dim G/H = dim G − dim P = dim H. Hence (b) will follow for reasons of dimension when
we show that H(g) ⊂ Ker π∗ : TgG→ TgH(G/H).

Let ξ ∈ H(g). Then we may write ξ = (Lg)∗(X(e)) = X(g) for some X ∈ H. Since π∗(ξ) =
(Lg)∗(π∗X(e)) it suffices to prove that π∗X(e)) = 0 for every X ∈ H. If X ∈ H, then π∗X(e)) =
α′(0),where α(t) = π(exp(tX)) = exp(tX)H . However, α(t) = eH for all t since exp(tX) ∈ H
for all t, and we conclude that α′(0) = 0. �


