Prof. D. Kotschick:
Seminar on Manifolds: Hodge-de Rham Theory
Sheaves, Cohomology, and the de Rham Theorem
| 31 Oct / 7 Nov | S. Eberle: | Sheaves and Presheaves:    5.1 - 5.15 
 Definitions, tensor products, fine sheaves  | 
| 7 / 14 Nov | J. Wehrheim: | Sheaf cohomology:     5.16 - 5.25 
 Cochain complexes, axioms for sheaf cohomology  | 
| 21 Nov | J. Kedra: | Classical Cohomology theories:     5.26 - 5.33
 Alexander-Spanier Cohom., de Rham Cohom., Singular Cohom., Cech Cohom.  | 
| 28 Nov | M. Hamilton: | The de Rham theorem:     5.34 - 5.46 
 Proof  | 
The Hodge Theorem
| 5 Dec | M. Hamilton: | The Laplace-Beltrami operator:     6.1 -6.14 
 Definitions, formulation of the regularity theorem, the Hodge Theorem, the Poincaré Theorem  | 
| 12 Dec | E. Volkov | Analytic preparations:     6.15 - 6.27
 Fourier transform, Sobolev spaces, inequalities  | 
| 19 Dec | V. Strazdin | Proof of the  regularity theorems:     6.28
- 6.36 
 elliptic operators, reduction to the periodic case  | 
Harmonic Forms on Kähler Manifolds
The following talks are all based on the book Differential Analysis on Complex Manifolds by R. Wells.| 9 / 17 Jan | S. Eberle: | Hermitian Differential Geometry: III.1 and V.1 | 
| 17 Jan | S. Eberle: | Harmonic Theory on Compact Manifolds: V.2 | 
| 24 Jan | no seminar | |
| 31 Jan | J. Kedra: | Differential Operators on a Kähler Manifold: V.3 | 
| 6 Feb | J. Kedra: | The Hodge Decomposition Theorem for Kähler Manifolds: V.4 | 
[
Mathematischen
Instituts|
Arbeitsgruppe Differentialgeometrie
und Topologie]