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(1) In this course we shall assume a basic knowledge of smooth manifolds and smooth vector
bundles.

(2) First we recall the notion of a connection on a vector bundle. LetE → B be a differentiable
vector bundle of rank k over a smooth manifold B of dimension n.

Definition 1. A connection on E is an R-linear map

∇ : Γ(E) −→ Ω1(E)

satisfying the Leibniz rule

∇(fs) = df ⊗ s+ f∇(s)

for all f ∈ C∞(B) and s ∈ Γ(E).

Here Ω1(E) = Γ(T ∗B ⊗ E) is the space of 1-forms on B with values in E. One can
evaluate the 1-form on a vector field X to obtain

∇X(s) := 〈∇(s), X〉 ∈ Γ(E) .

The Leibniz rule is then equivalent to

∇X(fs) = (LXf)s+ f∇X(s)

for all X ∈ X (B).
(3) A trivialization always induces a connection, called the product connection, or trivial con-

nection. In particular, trivial bundles have connections.
(4) We prove the following fundamental properties of connections:

• A connection ∇ does not increase the support of sections, i. e. if s ∈ Γ(E) vanishes
on some open set U ⊂M , then so does∇(s).
• The value of∇(s) at a point p ∈ B depends only on the restriction of s to an orbitrarily

small open neighbourhood of p. (In other words, ∇ is a differential operator, and
∇(s)(p) depends only on the germ of s at p.)
• If ∇1 and ∇2 are connections, then so is t∇1 + (1− t)∇2 for all t ∈ R.
• If ∇1 and ∇2 are connections, then∇1 −∇2 ∈ Ω1(End(E)) = Γ(T ∗B ⊗ E∗ ⊗ E).

(5) Using these properties and a partition of unity subordinate to a covering of M by open sets
over which the restriction of E is trivial, we prove:

Proposition 2. Every vector bundleE admits connections. The space of all connections on
E is an affine space for the space Ω1(End(E)) of 1-forms on M with values in End(E).
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(6) A metric of signature (p, q) with p + q = k = rk(E) on a vector bundle E is a fiber-
wise non-degenerate symmetric bilinear form of signature (p, q) on the fibers, which varies
smoothly with the basepoint of the fiber.

(7) Definite metrics (with q = 0 or q = 0) always exist (use partitions of unity), but indefinite
ones may or may not exist.
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(8) A connection∇ is said to be compatible with a given metric g if

d(g(s, t)) = g(∇s, t) + g(s,∇t)
for all s, t ∈ Γ(E).

(9) The product connection with respect to a local trivialization given by an orthonormal frame
is compatible with the metric.

(10) Using again a partition of unity subordinate to a covering of B by open sets over which the
restriction of E is trivialized by orthonormal frames, we prove:

Proposition 3. Every vector bundle E with a metric g admits compatible connections.
The space of all compatible connections is an affine space for the space Ω1(SEnd(E))
of 1-forms on B with values in SEnd(E), the bundle of endomorphisms which are skew-
symmetric with respect to g.

(11) Fix a local frame s1, . . . , sk for the restriction of E to a trivializing open set in M . This
choice determines a product connection ∇0 defined by the requirement ∇0(si) = 0 for all
i. Every other connection ∇ differs from ∇0 by the addition of a 1-form with values in
End(E). However, the given trivialization of E induces a trivialization of End(E), and so
a 1-form with values in End(E) is nothing but a k × k matrix of ordinary 1-forms. Thus
∇ can be expressed by the matrix ω = (ωij) of 1-forms given by

∇(si) =
k∑

j=1

ωij ⊗ sj .

(12) If E is equipped with a metric of signature (p, q) and the frame is orthonormal in the sense
that g(si, sj) vanishes for i 6= j, is +1 for i = j ≤ p, and is −1 for i = j ≥ p + 1, then
for a g-compatible connection the local connection matrix ω = (ωij) has the following
skew-symmetry property:

ωijg(sj, sj) = −ωjig(si, si) .
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(13) Next we extend the differential operator given by a connection ∇ to bundle-valued forms
of higher degree.

Lemma 4. For every connection∇ on E → B there is a unique R-linear map

∇̄ : Ωl(E) −→ Ωl+1(E)

which satisfies

(1) ∇̄(ω ⊗ s) = dω ⊗ s+ (−1)lω ∧∇(s)

for all ω ∈ Ωl(M) and s ∈ Γ(E). Moreover, this operator satisfies

(2) ∇̄(f(ω ⊗ s)) = (df ∧ ω)⊗ s+ f∇̄(ω ⊗ s)
for all smooth functions f on B.

(14) Consider the operator ∇̄ ◦ ∇ : Ω0(E) −→ Ω2(E) associated with a connection ∇ on E.
It turns out that this is linear over C∞(B), and is therefore given by an element F∇ ∈
Ω2(End(E)). This is called the curvature of∇.
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(15) The curvature F∇ can be evaluated on pairs of vector fields X, Y ∈ X (B) to obtain an
endomorphism, which is then applied to a section s of E. We have the following identity,
whose proof we left as an exercise:

F∇(X, Y )(s) = ∇X∇Y s−∇Y∇Xs−∇[X,Y ]s .

Therefore, for commuting vector fields X and Y , the curvature measures the deviation
from commutativity for the covariant derivatives∇X and ∇Y .

(16) Fix a local frame s1, . . . , sk for the restriction of E to a trivialising open set in M . We saw
already that a connection∇ can be expressed by the matrix ω = (ωij) of 1-forms given by

∇(si) =
k∑

j=1

ωij ⊗ sj .

From the definition of the curvature we calculate

F∇(si) =
k∑

j=1

Ωij ⊗ sj

with

Ωij = dωij −
k∑

l=1

ωil ∧ ωlj .

We can write this briefly as Ω = dω − ω ∧ ω, where the wedge product on the right-hand-
side includes matrix multiplication, and is therefore not necessarily trivial unless k = 1.

(17) Similarly we compute dΩ = ω ∧ Ω− Ω ∧ ω. This is the Bianchi identity.
(18) As an example we consider vector bundles of small rank equipped with connections. If the

rank is = 1, then the curvature is given by a single 2-form Ω11 = dω11. This is locally
exact, and therefore closed.

If ∇ is compatible with a metric and the trivializing section is of unit length in this
metric, then the skew-symmetry of the connection matrix means that ω11 vanishes, and
therefore the curvature vanishes as well. As every bundle admits a metric and a compatible
connection, we conclude that all rank one bundles admit connections with zero curvature.

If the rank is = 2 and the connection is compatible with a metric, then again the connec-
tion and curvature matrices with respect to a local orthonormal frame are skew-symmetric,
and therefore are determined by just one entry, ω12 respectively Ω12. Again we have that
Ω12 = dω12, so the curvature form is closed.
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(19) We now discuss the Euler class of oriented rank 2 bundles π : E −→ B. We choose a
positive definite metric and a compatible connection. With respect to an oriented orthonor-
mal frame the curvature is determined by the closed 2-form Ω12. This closed form is the
same for all oriented orthonormal frames, and is therefore defined globally, even if the or-
thonormal frame is only defined locally. Therefore, we can define the Euler class by the
formula

e(E) = − 1

2π
[Ω12] ∈ H2

dR(B) .
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(20) Changing the orientation of E changes the sign of its Euler class, since it interchanges Ω12

and Ω21 = −Ω12.
(21) The Euler class does not depend on the metric connection ∇. Furthermore, it does not

depend on the metric either, and is therefore a topological invariant of vector bundles.
(22) If E admits a nowhere vanishing section, then e(E) = 0. In the course of the proof we

showed that an oriented rank 2 bundle is trivial if and only if it has a nowhere vanishing
section.

(23) If an oriented rank 2 bundle admits a metric of signature (1, 1), then its Euler class vanishes.
(24) If Σ is an oriented surface, then TΣ is an oriented rank 2 bundle. One of the significant

properties of the Euler class is that if Σ is compact without boundary then

− 1

2π

∫
Σ

Ω12 = χ(Σ) = 2− 2g(Σ)

is the Euler characteristic of Σ, where g(Σ) is the genus of the surface. This is the Gauss–
Bonnet theorem, which we do not prove today.

(25) On a smooth manifold M we now consider connections ∇ on the tangent bundle TM →
M . These are sometimes called affine connections. In this case the variables X and s in
∇Xs are on equal footing, as they are both sections of the tangent bundle. This leads to
possible symmetries which make no sense in the more general setting of arbitrary vector
bundles.

(26) The torsion of a connection∇ on TM is defined by

T (X, Y ) = ∇XY −∇YX − [X, Y ]

for all X, Y ∈ X (M).

Lemma 5. The torsion defines a skew-symmetric map

T : X (M)×X (M) −→ X (M)

that is bilinear over C∞(M).

A connection∇ is called symmetric if it is torsion-free, i. e. if T vanishes identically1.
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(27) We now prove the following:

Proposition 6. On any pseudo-Riemannian manifold (M, g) there is a unique affine con-
nection ∇ that is compatible with g and has a given two-form T with values in TM as its
torsion.

(28) As a special case of Proposition 6 we note the following:

Corollary 7. On every pseudo-Riemannian manifold (M, g) there is a unique torsion-free
metric affine connection.

This connection is called the Levi-Civita connection of (M, g).

1Note that requiring the naive symmetry∇XY = ∇Y X for all X and Y leads to a contradiction.
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(29) First proof of Proposition 6. Let us suppose that there are affine connections compatible
with g, and pick one, called ∇0, as a reference. Then the space of all affine connections
compatible with g is identified with

Ω1(SEnd(TM)) = Γ(T ∗M ⊗ SEnd(TM)) ⊂ Γ(T ∗M ⊗ T ∗M ⊗ TM) .

The torsion is a map from this space to

Ω2(TM) = Γ(Λ2T ∗M ⊗ TM)

sending A to T∇0 plus the skew-symmetrization of A, see (6) above.
Assume that ∇0 + A1 and ∇0 + A2 have the same torsion. Then we can calculate

that A1 = A2. Thus the torsion map is injective. But, at every point, it is an affine map
between the fibers of two vector bundles of the same rank. Thus, if it is injective, it is also
surjective. �

(30) We want to give an alternative proof for Proposition 6, which produces a formula for the
desired connection and therefore does not assume that connections compatible with g exist.
Instead of assuming this, we prove it as a consequence of the following argument.

Second proof of Proposition 6. We first prove uniqueness. So let∇ be an affine connection
compatible with g having torsion tensor T . Then using compatibility with g and the formula
for the torsion alternately three times, we find that∇ must be determined by the following
formula:

g(∇XY, Z) =
1

2
(g([X, Y ], Z)− g([Y, Z], X) + g([Z,X], Y )− g(X,T (Y, Z))+

+ g(Y, T (Z,X)) + g(Z, T (X, Y )) + LX(g(Y, Z)) + LY (g(Z,X))− LZ(g(X, Y ))) .

To prove existence, we use this equation as a definition for ∇XY . This defines a connec-
tion, and one can check that it is both compatible with g and has T∇ = T . �

(31) We consider the expression of an affine connection in a local coordinate system (x1, . . . , xn)
on M . We write ∂i for the coordinate vector fields ∂

∂xi
, and use the local frame ∂1, . . . , ∂n.

Then

∇∂i =
n∑

j=1

ωij ⊗ ∂j ,

with the connection matrix

ωij =
n∑

k=1

ωk
ijdxk .

This gives

∇∂i∂j =
n∑

k=1

ωi
jk∂k ,

which is usually written as

∇∂i∂j =
n∑

k=1

Γk
ij∂k

in classical notation. Therefore, we define the Christoffel symbols of the affine connection
∇ with respect to the coordinate system (x1, . . . , xn) to be Γk

ij = ωi
jk.
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Returning to the definition of torsion, we see that

T∇(∂i, ∂j) =
n∑

k=1

(ωi
jk − ω

j
ik)∂k =

n∑
k=1

(Γk
ij − Γk

ji)∂k .

As the torsion is linear over the smooth functions, we obtain the following:

Lemma 8. An affine connection ∇ is torsion-free if and only if Γk
ij = Γk

ji for any local
coordinate system.

Thus symmetry of an affine connection really refers to a symmetry of the Christoffel
symbols expressing this connection in local coordinates.
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(32) Continuing the discussion from the previous lecture, the Levi-Civita connection of a pseudo-
Riemannian manifold (M, g) has the following local expression in a local coordinate sys-
tem (x1, . . . , xn):

Γl
ij =

1

2

n∑
k=1

(∂igjk − ∂kgij + ∂jgki)g
lk ,

where gij = g(∂i, ∂j), and (glk) is the matrix inverse to gij).
(33) By Corollary 7 every pseudo-Riemannian manifold (M, g) has a unique torsion-free affine

connection compatible with the metric. This is called the Levi-Civita connection of
(M, g), or of g.

(34) The Riemann curvature tensor R of a pseudo-Riemannian manifold (M, g) is defined
using its Levi-Cività connection:

R : X (M)×X (M)×X (M) −→ X (M)

(X, Y, Z) 7−→ R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z .

Recall that for an arbitrary connection ∇ on a vector bundle E, the curvature F∇ is a two-
form on the base with values in End(E). Here R = F∇ for the Levi-Civita connection
∇. The notation R(X, Y )Z means that the two-form is evaluated on X and Y , and the
resulting endomorphism is then applied to Z.

(35) The most important properties of the Riemann curvature are the following:
(i) it is trilinear over C∞(M),

(ii) it is skew-symmetric in the first two arguments,
(iii) it satisfies the first Bianchi identity: R(X, Y )Z + R(Y, Z)X + R(Z,X)Y = 0 for

all X , Y and Z,
(iv) g(R(X, Y )Z,W ) = −g(R(X, Y )W,Z) for all X , Y , Z and W , and
(v) g(R(X, Y )Z,W ) = g(R(Z,W )X, Y ) for all X , Y , Z and W .

(36) Let V be a real vector space with a non-degenerate symmetric bilinear form g (e.g. a tangent
space of a pseudo-Riemannian manifold). A subspace U ⊂ V is called non-degenerate if
the restriction g|U is non-degenerate. A non-zero vector X ∈ V is called null if it spans a
degenerate subspace.

(37) For a two-dimensional subspace σ ⊂ V non-degeneracy is equivalent to the non-vanishing
of Q(X, Y ) = g(X,X)g(Y, Y )− (g(X, Y ))2, for any basis X and Y of σ.

(38) Now let (M, g) be a pseudo-Riemannian manifold with Riemann tensor R.
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Definition 9. For a non-degenerate tangent two-plane σ we define the sectional curvature
to be

K(σ) =
g(R(X, Y )Y,X)

Q(X, Y )
.

This depends only on g and σ, and not on the basis chosen for σ.
(39) By definition, the sectional curvature of (M, g) is determined by its Riemann tensor. How-

ever, the converse is also true, by the following result we will not prove here.

Proposition 10. The collection of sectional curvatures for all non-degenerate two-planes
σ ⊂ TM determines the Riemann curvature tensor R of (M, g).

The proof uses the following:

Lemma 11. Every pair of vectors X and Y can be approximated arbitrarily closely by X ′

and Y ′ such that the span of X ′ and Y ′ is a non-degenerate two-plane.
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(40) We now work out the following special case of Proposition 10, characterizing spaces with
constant sectional curvature:

Proposition 12. A pseudo-Riemannian manifold (M, g) has sectional curvature equal to
a fixed real number K0 ∈ R for all non-degenerate two-planes σ ⊂ TM if and only if the
following identity holds for all X , Y , Z and T ∈ X (M):

g(R(X, Y )Z, T ) = −K0(g(X,Z)g(Y, T )− g(Y, Z)g(X,T )) .

(41) For a pseudo-Riemannian manifold with Riemann tensor R we define the Ricci tensor to
be

P (X, Y ) = tr(Z 7−→ R(Z,X)Y ) ,

for all X and Y ∈ X (M). Here tr(A) denotes the trace, i. e. the sum of the diagonal
entries of any matrix representing the linear map A.

Definition 13. The Ricci curvature of an n-dimensional pseudo-Riemannian manifold
(M, g) in the direction of X ∈ X (M) is

Ric(X) =
1

n− 1
P (X,X) .

Clearly the Ricci curvature determines the Ricci tensor by polarization.
(42) We want to work out concrete formulae for the Ricci tensor and the Ricci curvature in terms

of sectional curvatures. For this purpose we use a local orthonormal frame X1, . . . , Xn.
Here orthonormal means that the Xi are pairwise orthogonal with respect to g, and that
g(Xi, Xi) = ±1 for all i. (For a Riemannian manifold all these scalar products are +1.)
With respect to such a local frame the trace of an endomorphism A of TM can be written
as

tr(A) =
n∑

i=1

(g(AXi, Xi) · g(Xi, Xi)) .
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Thus, we have

P (X, Y ) = −
n∑

i=1

(g(R(X,Xi)Y,Xi) · g(Xi, Xi)) ,

and

Ric(X) =
1

n− 1
P (X,X) = − 1

n− 1

n∑
i=1

(g(R(X,Xi)X,Xi) · g(Xi, Xi))

=
1

n− 1

n∑
i=1

(g(R(X,Xi)Xi, X) · g(Xi, Xi)) .

If X is not a null vector, we may assume that

X1 =
1√

|g(X,X)|
X ,

so that the above formula becomes

Ric(X) =
1

n− 1

n∑
i=1

(g(R(X,Xi)Xi, X) · g(Xi, Xi))

= |g(X,X)| · 1

n− 1

n∑
i=2

(g(R(X1, Xi)Xi, X1) · g(Xi, Xi))

= |g(X,X)| · 1

n− 1

n∑
i=2

(
K(Span{X1, Xi}) · g(X1, X1) · g(Xi, Xi)

2
)

= g(X,X) · 1

n− 1

n∑
i=2

K(Span{X1, Xi}) .

The last line shows that the Ricci curvature is essentially an average of sectional curvatures.
(43) We now want to define a scalar measure of curvature s by taking the trace of the Ricci

tensor with respect to the metric g. Because g is non-degenerate, there exists a unique
A ∈ Γ(End(TM)) such that

P (X, Y ) = g(AX, Y )

holds for all vector fields X and Y .

Definition 14. The scalar curvature of a pseudo-Riemannian manifold (M, g) is the func-
tion s∈ C∞(M) defined by s = tr(A).
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Using a local orthonormal frame as before, and substituting from the above formula
expressing the Ricci curvature in terms of sectional curvatures, we have the following:

s = tr(A) =
n∑

i=1

(g(AXi, Xi) · g(Xi, Xi))

=
n∑

i=1

(P (Xi, Xi) · g(Xi, Xi))

= (n− 1)
n∑

i=1

(Ric(Xi) · g(Xi, Xi))

= (n− 1)
n∑

i=1

((
g(Xi, Xi) ·

1

n− 1

∑
j 6=i

K(Span{Xi, Xj})

)
· g(Xi, Xi)

)
=
∑
i 6=j

K(Span{Xi, Xj})

= 2
∑
i<j

K(Span{Xi, Xj}) .
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(44) We now consider the following situation: (N, g) is a pseudo-Riemannian manifold, and
M ⊂ N is a smooth hypersurface, for which we assume that TpM ⊂ TpN is a non-
degenerate subspace with respect to g for all p ∈M . This assumption ensures that TpN =
TpM ⊕ (TpM)⊥ for all p ∈ M , where (TpM)⊥ is the orthogonal space with respect to
g. (This is not just a direct sum, but also an orthogonal sum with respect to g.) As M
is a hypersurface it follows that (TpM)⊥ is one-dimensional, spanned by a vector n. By
non-degeneracy this vector cannot be null, so that by scaling we may assume g(n, n) = ±1.

The non-degeneracy of the subspace TpM ⊂ TpN for all p ∈ M means that the restric-
tion of g to TM is a pseudo-Riemannian metric h on M . The Levi-Civita connection ∇M

of (M,h) can be obtained from the Levi-Civita connection∇ of (N, g) as follows:

∇M
X Y = π∇X̃ Ỹ ,

where X̃ and Ỹ are local extensions of X, Y ∈ X (M) to N and π : TN |M → TM is the
projection with kernel (TpM)⊥. As this is independent of the choices of local extensions
for X and Y , we will not specify the extensions in later formulae.

(45) Suppose we have chosen a normal vector field n for M ⊂ N , normalized so that g(n, n) =
±1.

Definition 15. The Weingarten map at p ∈M is the linear map

L : TpM −→ TpM

X 7−→ ∇Xn .

Again we need to choose a local extension of n in a neighborhood of p, but the result
we get is independent of the choice of extension. It follows from the constancy of g(n, n)

9



that ∇Xn is orthogonal to n and therefore contained in TpM . Note that the normalization
determines n uniquely up to sign. If we replace n by −n, then we obtain −L instead of L.

The Weingaten map has the following easily proved property, see [2], Section 10.3.

Lemma 16. The Weingarten map is symmetric with respect to the metric, i. e. h(L(X), Y ) =
(X,L(Y )) for all X, Y ∈ TpM .

(46) For X, Y, Z ∈ TpM we can relate the value of R(X, Y )Z, the curvature of (N, g), and of
RM(X, Y )Z, the curvature of (M,h), through the Weingarten map. In the special case that
the Levi-Civita connection∇ of (N, g) is flat we obtain:

Theorem 17 (Gauss Equation). If the pseudo-Riemannian manifold (N, g) is flat, andM ⊂
N is a hypersurface for which the restriction h of g to M is also pseudo-Riemannian, then
the curvature of the Levi-Cività connection of (M,h) is given by

RM(X, Y )Z = g(n, n) (h(L(Y ), Z)L(X)− h(L(X), Z)L(Y )) ,

where n is a normal vector to M normalized so that g(n, n) = ±1.

Notice that this formula is unchanged if we replace n by −n.
(47) As an example for the above situation we take N = Rn+1, with g given by the standard

positive definite scalar product. Note that because g is positive definite, all subspaces are
positive definite as well, and are therefore non-degenerate.

For the hypersurface M we take the unit sphere Sn ⊂ Rn+1. As normal vector field n
we take the outer unit normal to the sphere, which at p ∈ Sn is just p itself. Now we can
calculate that in this case the Weingarten map L is the identity, so that the curvature tensor
of the unit sphere endowed with the induced Riemannian metric h is given by

RSn

(X, Y )Z = h(Y, Z)X − h(X,Z)Y .

Comparing this with Proposition 12 we see that (Sn, h) has constant sectional curvature
equal to +1.
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