

Sobolew-Räume (Wdh.)

Sobolew-Räume

Definition: Sei $U \in \mathbb{R}$ offen und 1 .

Der Sobolew-Raum $W^{k,p}(U)$ ist der Raum aller lokal integrierbaren Funktionen $u:U\mapsto\mathbb{R}$, sodass für jeden Multiindex $\alpha:=(\alpha_1,...,\alpha_n)$ mit $|\alpha| < k$ die schwache Ableitung $D^{\alpha}u$ in $L^{p}(U)$ existiert.

Erinnerung: $v = D^{\alpha}u$ ist die α -te schwache Ableitung von u, falls

$$\int_{U} uD^{\alpha} \Phi dx = (-1)^{|\alpha|} \int_{U} v\Phi dx \quad \forall \Phi \in C_{c}^{\infty}(U)$$

Maximilian Kling Spursatz 2/15

Der Sobolew-0-Raum

Sobolew-Räume

Definition: Die <u>Sobolew-Norm</u> ist definiert als:

$$||u||_{W^{k,p}(U)} := \begin{cases} \left(\sum_{|\alpha| \le k} \int_{U} |D^{\alpha}u|^{p} dx\right)^{\frac{1}{p}} & 1 \le p < \infty \\ \sum_{|\alpha| \le k} \operatorname{ess} \sup |D^{\alpha}u| & p = \infty \end{cases}$$

Definition Der Sobolew-0-Raum $W_0^{k,p}(U)$ ist der Abschluss von $C_c^{\infty}(U)$ in $W^{k,p}(U)$.

u liegt also in $W_0^{k,p}(U)$ gdw. $\exists (u_m)_{m\in\mathbb{N}}\subset C_c^\infty(U)$ sodass $u_m\to u$ im Sinne der Sobolew-Norm.

Maximilian Kling Spursatz 3/15

Der Spuroperator - Motivation

Sei im Folgenden wieder $U \in \mathbb{R}^n$ offen.

Definition Der Rand ∂U ist C^k , wenn $\forall x_0 \in \partial U \exists r > 0$ und eine C^k Funktion $\gamma : \mathbb{R}^{n-1} \mapsto \mathbb{R}$, sodass unter eventueller Änderung der Koordinatenachsen gilt:

$$U \cap B_r(x_0) = \{x \in B_r(x_0) | x_n > \gamma(x_1, ..., x_{n-1})\}$$

Sei nun ∂U C^1 und $u \in W^{1,p}(U)$.

Problem bei Berechnung von RWP: $u \in W^{1,p}(U)$ ist auf ∂U schwer zu definieren, da ∂U Lebesgue-Nullmenge und u auf Nullmengen nicht definiert. Lösung:

Maximilian Kling Spursatz 4/15

Spursatz

Sei U beschränkt und ∂U C^1 . Dann existiert ein beschränkter linearer Operator

$$T:W^{1,p}(U)\mapsto L^p(\partial U)$$

sodass:

- $Tu = u|_{\partial U}$ wenn $u \in W^{1,p}(U) \cap C(\bar{U})$
- $||Tu||_{L^p(\partial U)} \le C||u||_{W^{1,p}(U)}$

 $\forall u \in W^{1,p}(U)$, wobei C nur von U und p abhängt.

Wir nennen Tu die **Spur** von u auf ∂U .

Maximilian Kling

Beweis des Spursatzes (I/IV)

Sei zunächst $u\in C^1(\bar U)$, $x^0\in\partial U$ und ∂U flach bei x^0 , in der Ebene $\{x_n=0\}$ liegend.

Dann existiert ein offener Ball $B := B_r(x^0)$ mit

$$B^+:=B\cap\{x_n\geq 0\}\subset \bar U$$

Definiere $\hat{B}:=B_{\frac{r}{2}}(x^0)$ und wähle $\eta\in\mathcal{C}_c^\infty(B)$ mit $\eta|_B\geq 0$ und $\eta|_{\hat{B}}=1$.

Zuletzt sei
$$\Gamma := \partial U \cap \hat{B}$$
 und $x' = (x_1, ..., x_{n-1}) \in \mathbb{R} = \{x_n = 0\}.$

Maximilian Kling Spursatz 6/15

Beweis des Spursatzes (II/IV)

Es ergibt sich:

$$\begin{split} &\int_{\Gamma} |u|^p dx' \leq \int_{\{x_n = 0\}} \eta |u|^p dx' \stackrel{\mathsf{Gauß}}{=} - \int_{B^+} (\eta |u|^p)_{x_n} dx \stackrel{\mathsf{Prod}.\mathsf{Regel}}{=} \\ &- \int_{B^+} |u|^p \eta_{x_n} + p|u|^{p-1} (\mathsf{sgn}\ u) u_{x_n} \eta dx \stackrel{\mathsf{Young-Ungl.}}{\leq} C \int_{B^+} |u|^p + |Du|^p dx \end{split}$$

Im Fall $x^0 \in \partial U$, aber einem nicht-flachen Rand, wird der Rand in einer Umgebung von x^0 verflacht und es ergibt sich mit Veränderung der Variablen:

$$\int_{\Gamma} |u|^p dS \le C \int_{U} |u|^p + |Du|^p dx$$

wobei mit dS das jeweilige Oberflächenmaß gemeint ist.

Maximilian Kling Spursatz

Beweis des Spursatzes (III/IV)

 ∂U ist kompakt $\Rightarrow \exists (x_i^0)_{i \in \{1,\dots,N\}}, \quad N < \infty$ und entsprechend $(\Gamma_i)_{i \in \{1,\dots,N\}}$ sodass $\partial U = \cup_{i=1}^N \Gamma_i$ und

$$||u||_{L^p(\Gamma_i)} \le C||u||_{W^{1,p}(U)} \quad \forall i \in \{1,...,N\}$$

Mit der Konvention: $Tu = u|_{\partial U}$ gilt also:

$$||Tu||_{L^{p}(\partial U)} \leq \hat{C}||u||_{W^{1,p}(U)}, \qquad \hat{C} \in \mathbb{R}$$

$$\tag{1}$$

wobei \hat{C} nur von U und p abhängt.

8/15

Maximilian Kling Spursatz

Beweis des Spursatzes (IV/IV)

Bisher: $u \in C^1(\bar{U})$. Sei also $u \in W^{1,p}(U)$.

Dann gibt es $(u_m)_{m\in\mathbb{N}}\subset C^\infty(\bar{U})$ sodass $u_m\overset{W^{1,p}(U)}{\longrightarrow}u$. Mit (1) gilt also:

$$||Tu_m - Tu_l||_{L^p(\partial U)} \le \hat{C}||u_m - u_l||_{W^{1,p}(U)}$$

Also ist $(Tu_m)_{m\in\mathbb{N}}$ Cauchy-Folge in $L^p(\partial U)$. Definiere $Tu:=\lim_{m\to\infty}Tu_m$ in $L^p(\partial U)$.

Ist $u \in W^{1,p} \cap C(\bar{U})$, liefert ein Approximationsargument auch gleichmäßige Konvergenz von u_m gegen u und:

$$Tu = u|_{\partial U}$$

Maximilian Kling Spursatz 9/15

Nullspurfunktionen in $W^{1,p}(U)$

Im Folgenden werden Funktionen mit Nullspur betrachtet.

Satz Sei *U* beschränkt, ∂U C^1 und $u \in W^{1,p}(U)$. Dann:

$$u \in W_0^{1,p}(U) \Longleftrightarrow Tu = 0$$
 auf ∂U

Beweis "
$$\Rightarrow$$
" Sei $u \in W_0^{1,p}(U) \Rightarrow \exists (u_m)_{m \in \mathbb{N}} \subset C_c^{\infty}(U) : u_m \stackrel{W^{1,p}(U)}{\longrightarrow} u.$

Da Tu=0 auf $\partial U \ \forall m \in \mathbb{N}$ und $T:W^{1,p}(U) \to L^p(\partial U)$ lin. beschr. Operator, folgt Tu = 0 auf ∂U .

Maximilian Kling Spursatz 10/15

Beweis des Nullspursatzes (I/V)

" \Leftarrow " Sei Tu = 0 auf ∂U . Mit Zerlegung der Eins und erneutem Verflachen von ∂U , kann auch angenommen werden:

$$u \in W^{1,p}(\mathbb{R}^n_+) \ \land \ u$$
 hat kompakten Träger $\land \ Tu = 0$ auf $\partial \mathbb{R}^n_+ = \mathbb{R}^{n-1}$

Dann
$$\exists (u_m)_{m \subset \mathbb{N}} \in C^1(\bar{\mathbb{R}}^n_+) : u_m \xrightarrow{W^{1,p}(\mathbb{R}^n_+)} u$$
 und es gilt: $Tu_m = u_m|_{\mathbb{R}^{n-1}} \to 0$ in $L^p(\mathbb{R}^{n-1})$

Ist nun $x' \in \mathbb{R}^{n-1}$, $x_n \ge 0$, so gilt:

$$|u_m(x',x_n)| \le |u_m(x',0)| + \int_0^{x_n} |u_{m,x_n}(x',t)| dt$$

11/15

Beweis des Nullspursatzes(II/V)

Also:

$$\int_{\mathbb{R}^{n-1}} |u_m(x', x_n)|^p dx' \le C \left(\int_{\mathbb{R}^{n-1}} |u_m(x', 0)|^p dx' + x_n^{p-1} \int_0^{x_n} \int_{\mathbb{R}^{n-1}} |Du_m|^p dx' dt \right)$$

 $m \to \infty$ liefert:

$$\int_{\mathbb{R}^{n-1}} |u(x',x_n)|^p dx' \le C x_n^{p-1} \int_0^{x_n} \int_{\mathbb{R}^{n-1}} |Du|^p dx' dt \text{ für fast jedes } x_n \ge 0$$

$$\tag{2}$$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ■

12/15

Beweis des Nullspursatzes(III/V)

Sei nun $\eta \in C^{\infty}(\mathbb{R}_+)$ mit $\eta \equiv 1$ auf [0,1], $\eta \equiv 0$ auf $\mathbb{R} \setminus [0,2]$ und $0 < \eta < 1 \text{ und}$:

$$\eta_m := \eta(mx_n), \ (x \in \mathbb{R}_+^n)$$

$$w_m := u(x)(1 - \eta_m)$$

Dann:

$$w_{m,x_n} = u_{x_n}(1 - \eta_m) - mu\eta'$$

 $D_{x'}w_m = D_{x'}u(1 - \eta_m)$

Es ergibt sich:

$$\int_{\mathbb{R}^n_+} |Dw_m - Du|^p dx \leq C \int_{\mathbb{R}^n_+} |\eta_m|^p |Du|^p dx + Cm^p \int_0^{\frac{2}{m}} \int_{\mathbb{R}^{n-1}} |u|^p dx' dt$$

←□→ ←同→ ←□→ □ Maximilian Kling Spursatz

Beweis des Nullspursatzes (IV/V)

Nun gilt: $C \int_{\mathbb{R}^n} |\eta_m|^p |Du|^p dx \longrightarrow 0$ und mit (2) lässt sich folgern:

$$Cm^{p} \int_{0}^{\frac{2}{m}} \int_{\mathbb{R}^{n-1}} |u|^{p} dx' dt \leq Cm^{p} \left(\int_{0}^{\frac{2}{m}} t^{p-1} dt \right) \left(\int_{0}^{\frac{2}{m}} \int_{\mathbb{R}^{n-1}} |Du|^{p} dx' dx_{n} \right)$$

$$\leq C \int_{0}^{\frac{2}{m}} \int_{\mathbb{R}^{n-1}} |Du|^{p} dx' dx_{n} \longrightarrow 0 \text{ wenn } m \to \infty$$

Insgesamt also: $Dw_m \to Du$ in $L^p(\mathbb{R}^n_+)$

Maximilian Kling Spursatz 14/15

Beweis des Nullspursatzes

Da offensichtlich auch $w_m=u(1-\eta_m)\to u(1-0)=u$ in $L^p(\mathbb{R}^n_+)$ können wir folgern, dass:

$$w_m \longrightarrow u \text{ in } W^{1,p}(\mathbb{R}^n_+)$$

nach Def. der Sobolew-Norm.

Aber $w_m = 0$, sobald $0 < x_n < \frac{1}{m}$. Deswegen können wir die w_m so modifizieren, dass $\exists (u_m)_{m \in \mathbb{N}} \subset C_c^{\infty}(\mathbb{R}^n_+)$, sodass $u_m \to u$ in $W^{1,p}(\mathbb{R}^n_+)$.

Es ergibt sich
$$u \in W_0^{1,p}(\mathbb{R}^n_+)$$

Maximilian Kling Spursatz 15/15