Maß- und Integralrechnung

Übungsblatt 11

Aufgabe 1: 5 Punkte

Sei \mathcal{H} ein Hilbertraum, $(x_n)_{n\in\mathbb{N}}$ eine Folge in \mathcal{H} . Ferner gebe es ein $x\in\mathcal{H}$, so dass

$$\forall y \in \mathcal{H} : \langle x_n, y \rangle \xrightarrow{n \to \infty} \langle x, y \rangle$$

und

$$||x_n|| \xrightarrow{n \to \infty} ||x||.$$

Zeigen Sie, dass dann

$$x_n \xrightarrow{n \to \infty} x \text{ in } \mathcal{H}.$$

Aufgabe 2: 4 Punkte

Sei \mathcal{H} ein Hilbertraum und $T \in L(\mathcal{H})$. Zeigen Sie:

$$(\operatorname{ran} T^*)^{\perp} = \ker T.$$

Aufgabe 3: 2+1+2+2 Punkte

Sei \mathcal{H} ein Hilbertraum und U ein abgeschlossener Unterraum von \mathcal{H} . In der Vorlesung wurde gezeigt, dass sich dann jedes $x \in \mathcal{H}$ eindeutig in $x = u + u^{\perp}$ zerlegen lässt, wobei $u \in U$ und $u^{\perp} \in U^{\perp}$. Wir definieren die Abbildungen $P_U : \mathcal{H} \to U$ und $P_{U^{\perp}} : \mathcal{H} \to U^{\perp}$ durch

$$P_U x := u \text{ und } P_{U^{\perp}} x := u^{\perp}.$$

- (a) Eine Abbildung $P:\mathcal{H}\to\mathcal{H}$ heisst Projektion, wenn $P^2=P$ gilt. Zeigen Sie, dass P_U und $P_{U^{\perp}}$ lineare Projektionen sind.
- (b) Zeigen Sie: $P_{U^{\perp}} = \mathbb{1} P_U$.
- (c) Zeigen Sie, dass P_U und P_{U^\perp} selbstadjungiert sind.
- (d) Zeigen Sie, dass $\min_{u \in U} ||x u|| = ||x P_U x||$.
- (e) Zeigen Sie ker $P_{U^{\perp}} = \operatorname{ran} P_U$ und ker $P_U = \operatorname{ran} P_{U^{\perp}}$.

Aufgabe 4: 4 Punkte

Sei $w:[0,1]\to\mathbb{R}$ stetig. Betrachten Sie auf $C[0,1]\times C[0,1]$ die Abbildung

$$\langle \cdot, \cdot \rangle_w : (f, g) \mapsto \int_0^1 f(t)g(t)w(t)dt.$$

Geben Sie notwendige und hinreichende Bedingungen dafür an, dass $\langle \cdot, \cdot \cdot \rangle_w$ ein Skalarprodukt ist. Wann ist die von $\langle \cdot, \cdot \cdot \rangle_w$ abgeleitete Norm äquivalent zur vom üblichen Skalarprodukt $(f,g) \mapsto \int_0^1 f(t)g(t)\mathrm{d}t$ abgeleiteten Norm?