Maß- und Integralrechnung

Übungsblatt 10

Aufgabe 1: 2+2+2 Punkte

Sei $(h_n)_{n\in\mathbb{N}}$ eine Folge von C^{∞} -Funktionen $h_n:\mathbb{R}^d\to [0,\infty[$ mit $\operatorname{supp}(h_n)\subset B_{\frac{1}{n}}(0)$ und $\int_{\mathbb{R}^d}h_n(x)\mathrm{d}x=1$.

(a) Zeigen Sie, dass für $p \in [1, \infty]$ gilt

$$u \in L^p(\mathbb{R}^d) \Rightarrow ||h_n * u||_p \le ||u||_p.$$

(b) Zeigen Sie, dass für $p \in [1, \infty[$ gilt

$$u \in L^p(\mathbb{R}^d) \Rightarrow h_n * u \to u \text{ in } \left(L^p(\mathbb{R}^d), \left\| \cdot \right\|_p \right) \text{ für } n \to \infty.$$

(c) Zeigen Sie, dass $C_0^{\infty}(\mathbb{R}^d)$ nicht dicht in $L^{\infty}(\mathbb{R}^d)$ liegt.

Aufgabe 2: 2+2+1 Punkte

Sei (X, \mathcal{A}, μ) ein Maßraum mit $\mu(X) < \infty$. Zeigen Sie:

(a) für $p, q \in [1, \infty[$ mit p > q exisitiert eine Konstante c, die nur von p, q, und $\mu(X)$ abhängt, so dass für alle messbaren Funktionen $f: X \to \mathbb{R}$ gilt:

$$||f||_q \le c||f||_p.$$

(b) für $q \in [1, \infty[$ exisitiert eine Konstante c, die nur von q und $\mu(X)$ abhängt, so dass für alle messbaren Funktionen $f: X \to \mathbb{R}$ gilt:

$$||f||_q \le c||f||_{\infty}.$$

(c) für $1 \le q gilt$

$$L^p(X,\mu) \subset L^q(X,\mu)$$
.

Aufgabe 3: 3+1 Punkte

Sei \mathcal{H} ein Hilbertraum.

- (a) Zeigen Sie, dass der Dualraum \mathcal{H}^* wiederum ein Hilbertraum ist.
- (b) Geben Sie das Skalarprodukt von \mathcal{H}^* explizit an.

Aufgabe 4: 2+3 Punkte

Sei X ein Prähilbertraum.

- (a) Zeigen Sie, dass die Abbildungen $X \to \mathbb{K}$ die durch $x \mapsto \langle x, y \rangle$ und $y \mapsto \langle x, y \rangle$ definiert sind stetig sind.
- (b) Sei $U \subset X$ ein dichter Unterraum und $x \in X$ mit $\langle x, u \rangle = 0$ für alle $u \in U$. Zeigen Sie, dass dann x = 0 gilt.