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Motivation

We would like 6(x) : 6(x) = 0 for x # 0 A [, 6(x) dx = 1.

This allows [, 6(x)e(x) dx = ¢(0), for ¢ € C°(RY).

Consider now:

L 1
L IXlg’(x) dx = —L sign(x)e(x) dx,

j: sign(x)¢’(x)dx = fo —¢'(x) dx + js ¢’ (x) dx = —2¢(0).
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Test functions - D(Q2)

Let Q c RY and C°(Q2) = {¢ € C=(Q)| supp(¢) cc Q.

Whereby supp(¢) = {x € Qlp(x) # 0}.

With the usual pointwise addition and skalar multiplication this is a vector
space (over C).

We further define the following convergence:
lim ¢; = @in C°(Q), if
j—oo
e dK cc Q Vj: supp(¢)) C K,

e Ya € N9 : D%, — D% uniformly, i. e.
limjc0 SUPxek ID%@j(X) — D¥(x)| = 0.
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Distributions - D’(Q)

The map T : D(Q2) — Cis a distribution, if and only if it is a sequentially
continuous linear form, i.e.

(pj = ¢ = T(g) = T(p)) A T(e+ ) =T(g)+AT(¥).
Equivalently:
VK cc Qdc, N constant, such that:

Yy e D(K) : |T(<p)| < cll@lIN,co:k = CZlaISN SUPyek |aa¢(x)|-

If in the above a certain N suffices for all compact K, then the smallest of
those is called the order of T.
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Regular Distributions

Let 0 # Q c RY open, (RY, A%) the Lebesgue measure space and
f e L}.(€), then following is a Distribution of order 0:

TCR@ g [ fpdtl (= ()

If we additionally let & € N9, then

(DTy)() = (—1)“T(D%) = (~1)* fQ - D% d1°

is a Distribution, since for ¢; — ¢:
I(D*Te) (¢ — @)l = IfK f- D%(gj — @) 2% < ID*(¢; — @)lleoiicIfll1: — O
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Properties D'(2)

By definition, 9’ permits a C vectorspace structure. Denoting
T(¢) = (T,¢), we get a bilinear form on 2.

Let now a € C*(2) and a, 8 € NC.
With the following definitions we get:

(aT,p) = (T,ap) = aT € O,
(DT, @) := (—1)l(T,D%) = D*T e D'

And further:

D,-(aT) = D,-(a)T = aD,-(T),
DT = D*(DAT) = DA(DT).
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Localization

For T € 9(£2) we define its restriction on Qq c Q, by
Tlo, () = T(¢) Yo € D(Q).
Using this we define the support of T € D’(Q2):
supp(T) = {(x € Q| Y6 >0: T|QOB§(X) # 0}.
For regular distributions, we have: supp(T¢) = supp(f).
We also have the general implication for T € 9’ and ¢ € D:

supp(T) Nsupp(p) =0 = (T, ) = 0.
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Convolution with functions

For T € '(2) and ¢ € D(Q2) we define their convolution at x € €, by

(T*y)(x) = T(W(x =) = (T.¢(x =-)).

For a regular distribution T we have: (T = y)(x) = [, f(y)¥(x — y) dy.

This convolution has the following properties:
o Txge C®(RY),
e supp(T * ¢) < supp(T) + supp(¢),
© D*(Tx¢)=(D"T) ¢ =T= (D).

Forn € O as well we get further: (T 1) @ = T * (17 * ¢).
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Convergence in 9
We define the following convergence on D’:
I(IEnooTk =T :© VoeD:

Im (Tio ) = (T. ).

This convergence makes 9’ a complete space.
With the mollifier Jy(x) = e 9J(s7'x) = ¢ % exp(—mﬁ”gquﬂ
we get the convergence:

T+xJ.—>T inD.

So the space C* is dense in 9’ and analogously for the space with

compact support.
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Delta Distribution
Let a € Q and define,

6o € D' = do(p) = ¢(0) Yo € D. [fﬂf(X)so

Approximation via Dirac sequences (#)x < L'(RY):
1. Vx eRIVKk e N : (x) >0,
2. Vk eN: [, t(x)dx =1,
3. Ve >0 liMkosoo foa g, o) t(X)dx = 0.

For example:
1 2
t(x) = exp(— X ) or  k(x)=
Vork-1 2k-1
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Radon Measures
Let (X, B, u) with X Hausdorff, such that

 wis locally finite, i.e. Yx € X AU open : u(U) < o,
e pisinnerregular, i.e. YA € 8 : u(A) = sup{u(K)IK c A : K compact}.

Let M(2) be the set of Radon Measures on Q and x € M(2), then
(n @) == f @(x) du(x), for ¢ € D, defines a Distribution.
Q

1, 0€A,

A c RY) gives the
0. 0¢A (ACR%) g

In particular, the Dirac measure 6(A) = {

Delta Distribution: (80, ¢) = f @(x) ddp(x) = ¢(0) = do(¢) forp € D.
Q
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Distributional Solution "
’ d — _
Let Te O, f e C(R%,R) and P(D) = > a0(X)5

lal<k
T is a distributional solution to P(D)u = f, if and only if
P(D)T=T; & (P(D)T - Tr,¢) =0 VYpeD.

For the Laplacian Operator A on T we have:

d
AT = > DDT = (AT,¢) = (T, A¢), forgeD.
i=1

If g € C3(RY,R) and T = T4 we have the classical Green fromula
[(eng-gnp)ax=o.
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Fundamental Solution

601
For P(D) = Z By the solution vy of

le|<k
P(D)u(x) =0, i.e.
is called a fundamental solution.

The inhomogeneous solution to
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Reminder

We have seen:

1 il
I Il (3) o = - f sign(x)e(x) dx

1 1
f sign(x)¢’(x) dx = —2¢(0) = —f 260(X)e(x) dx.
1 —i
So:

(sign’, ¢) = —(sign,¢’) = —=(—280,¢) = sign’ = 24 [ = f260 . dx]

Wolfgang Stefani Distributions - Part Il

4/16



LLLLLLL
AAAAAAAAA
uuuuuuuuuuu

Example - |
1, x>0

For the Heaviside function H(x) = { we have:

0, x<0

(ee)

4 ’ 7 5
(H.¢) =—(H.¢') = —j; 1¢/(x) dx = ¢(0) = (d0,) = Z~H(x) = o(x)
So for the Laplacian A in R:

02 0,0 0

Ay=——=y=—|—y)=0600> —y=H(Xx)+c
7T ox2” 6x<6xy) °= ax’ 9
c=1.c'=0 1
=y =xH(x)+cx+c = v(x) = =Ix|
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Example - I
From classical theory in RY:
1 In(r)|r dr, d=2
s |n(|x|) f | s
y(x) = {2” ] »4 and
EEATLAL |x|<c o 2)f 2dpd-1 g5 o

Then with R sufficiently large,

(By,9) = (7, Ag) = f Y(X)A¢(x) dx = fim f Y(X)Bp(x) dx = m J.

e<|x|<R

Using Green’s second identity:

do
Jp = f Ay dx + f - do
s<IxI<R ey IX|=¢ ( Yoy~ % 8v)
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Example - Il cont.

0 0
Since Ay = 0 for |[x| > € and for [x| = ¢ we have — = —:
4

or’
= [ 6% -Dar= [ (0%-
Jg_\fl)‘d:s(yav (’Dav)da—_ |X|:g(Y(X)ar QD(X)

1 279 9p(x) 1-d
= |x|:g(d—2 o —¢(x)e ) dor

Using the mean value theorem with |x’| = |x”| = &:

1 (82_d a(X’)
d-2 or

As the derivative is finite for € \, 0 we get:

2 _ 1-d
(z_d)wd( d)IxI'"?) do

6 ’
Js = - 81_dtp(x"))wd8d_1 _ 2 %X

wa “d-z ar )

(Ay,¢) = 8'@) Je = ¢(0) = (00, ).
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The Schwartz Space S
The vector space of all rapidly decreasing functions

S(RY) := {¢p € C*(RY) | Va, B € NT : sup [x*DPop(x)| < oo}

xeRd
is called Schwartz space. We have D ¢ S. [e.g. exp(—|x|2)]
Topology and convergence are induced by the seminorms
ol = sup max x*DFe(x)| & pri(¢) = sup(ix* +1) )’ ID°p(x)
xerd laLBI<N XeRd Bl

and ¢k > dinS & YNeNj: ok — dlln — 0.
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Fourier Transform 7
For some ¢ € S its Fourier transform is defined as

7o6) = (20 F [ e™o(qdx, ¢er

which maps as ¥ : S — S and is bijective and bicontinuous with inverse
) = @0 E [ o) pes.

For ¢ € S we also get x*¢, D*¢, F ¢, D*F ¢, F (D) € S and

D*F ¢ = (-i)1F (x70),  &°F¢ = (~)"F(D"¢)

So, in particular  F(D%) = (=i) & F ¢
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Tempered Distributions &’

The space &’ contains all linear forms § — C, which are sequentially
continous, i. e.

Ok = din S = T(dk) — T(d).

Since ok — ¢ inD = ok — ¢ inS = T(¢k) - T(q)),
wehave TeS'= T € 9. And by
FT(p) = T(Fo)

we define the Fourier transform of T € S’.
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Example - llI

The regular distribution T, is not tempered. Let ¢ € D(R), then
Yk(x) = e p(x —k) = 0 in S(R),

with ¥ € D(R), but

Te(yk) = fReX;bk(x) dx = fReXe_kgo(X - k) dx

— [ ety ay # 0= To(0)
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Example - IV.1

Consider the heat equation for distributions:

Gutx)=Dxu(tx) o (FT.0)=(AT.g) (0.00) xRS
u(t, x) = #(t, x) 7 (Te) = (Tre) {t =0} xR

Determine its Fourier transform for x:

Fx(DxT,0) = Fx(T, Axp) = (T, Fx(Lxe)) = (T, (i) 2£O2 F0)

Thus we get:
d d d
Tx(aTa @) = Fx(-T, &‘P) = (-T, ETXSD) =
(2T, 550) = 2(T, Fug) == (~ET, Fug)
51 Tx¥) = 2 (T.5xp) == E°T, Fxp
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Example - IV.2

We have now the ordinary differential equation in 7(T):

LF(T. @) = —IEPF(T. ¢)
Fx(T.¢) = Fx(Tr. )

SF(T) = —ePF(T) (0,00) x RS

e F(T) = F(TH) {t = 0} x B¢

Thus we get:

FT) = e™¥TF(Ty) = (T, Fp) = 40 (T;, Fg)

= 7 (T.7¢) = 75 (T e ¥ 5 ) = (T.9) = (T 75 (674 7))
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Example - IV.3

The convolution theorem for T € S’ and Tz € &'
F (T + Te) = (2m) 27 (T (Te)
With this we get:
7o (¥ Fp) = (2m) 75N (€7) g

Further

1o P — (27)5 f ix-& A=tlE? e f ix-é—tl¢?
Fe(e7F)=(2n)"2 | e"e d¢ Rde d¢

_xP

= (2t) fe i = g(t,x)
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Example - IV.4
So finally:

(Tf,g*go):ff(t 2fgt—t x = XY (t', ') d(t', X') d(t, x) =

Q

d

fgo(t’,x’)(Zn)‘zff(t,x)g(t—t’,x—x’)d(t,x)d(t’,x’):

d

f((27r)‘2ff(t,x)g(t—t’,x—x’)d(t,x))gp(t’,x’)d(t’,x’):

f((47r(t—t)) 3t x)e 5 d(t, x)) (t, ) d(t, x') =

d x=x'|2

f ((47r(—t’))_§ f f(x)e™ T d(x))cp(t’,x’)d(t’,x’).
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Example - IV.5

The solution is the regular distribution Ty, with:
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