

INTRODUCTION TO SEMIGROUP THEORY

Franz X. Gmeineder

LMU München, U Firenze

Bruck am Ziller / Dec 15th 2012

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THE WAY UP: OPENING

The prototype of a parabolic PDE is given by the heat equation, this is

$$(\partial_t - \Delta)u = 0$$
 in $\mathbb{R}^d \times (0, \infty)$
 $u = f$ on $\mathbb{R}^d \times \{t = 0\}$

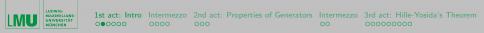
Solutions are given by

$$S(t)f(x) \equiv \frac{1}{(4\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \exp\left(\frac{-|x-\zeta|^2}{4t}\right) f(\zeta) \, d\zeta \tag{1}$$

This is strongly dependent on $f \in X$ - what is X?

 $\longrightarrow \mathcal{S}(\mathbb{R}^d) \subset \bigcap_{1 \leq p \leq \infty} L^p(\mathbb{R}^d) \text{ and thus is well-defined for any} \\ f \in L^q(\mathbb{R}^d), \ 1 \leq q \leq \infty.$

 \longrightarrow Let us investigate S(t)!



PROPERTIES OF S(t)

Recall the Gauss-Weierstraß kernel

$$W_t(x) \equiv rac{1}{(4\pi t)^{d/2}} \exp\left(rac{-|x|^2}{4t}
ight)$$

for t > 0.

Write $S(t)f = W_t * f$ for t > 0 and additionally S(0) = I.

The following is obvious:

- S(t) is a well-defined, bounded linear operator on $L^p(\mathbb{R}^d)$ for all $p < \infty$
- $||S(t)||_{L^p \longrightarrow L^p} \leq 1$

Moreover: S(s + t) = S(s)S(t) for all $s, t \ge 0$

KEY TOPIC: SEMIGROUPS

Definition

Let X be Banach and $\mathfrak{A} \equiv (S(t))_{t \ge 0} \subset \mathcal{L}(X)$ a family of linear, bounded operators $S(t) \colon X \longrightarrow X$ for all $t \ge 0$. \mathfrak{A} is called a *semigroup* if and only if

$$S(0) = I$$
 and $S(s+t) = S(s)S(t) \ \forall t, s \ge 0$

EXAMPLE: EXPONENTIAL SERIES

Let $A \in \mathcal{L}(X)$, X Banach. Then set $S(t) = \exp(tA)$, i.e.

$$\exp(tA) \equiv I + \sum_{n \in \mathbb{N}} \frac{t^k A^k}{k!}$$

Check by

$$||\exp(tA)|| \le \exp(t||A||) < \infty$$

and $A^k A^l = A^l A^k$ that this indeed defines a semigroup. Even more is valid: For any $x \in X$,

$$||S(t)x - x|| \leq \sum_{k \in \mathbb{N}} \frac{t^k}{k!} ||A||^k ||x|| = ||x|| (\exp(t||A||) - 1) \longrightarrow 0, \ t \longrightarrow 0 + t$$

UC and C_0 -semigroups

Due to our last example the following notion makes sense:

Definition

A semigroup $\mathfrak{A} \equiv \{S(t)\}_{t \ge 0} \subset \mathcal{L}(X)$ on X Banach is called a C_0 - or strongly continuous semigroup if and only if

$$||S(t)x - x|| \longrightarrow 0, t \longrightarrow 0^+ \quad \forall x \in X$$

Moreover, it is called a uniformly continuous or UC semigroup if and only if

$$||S(t) - I|| \longrightarrow 0, \quad t \longrightarrow 0^+$$

Clearly, UC \implies C₀. The converse is <u>not</u> true!

Franz X. Gmeineder

INFINITESIMAL GENERATORS

Definition

Let $\mathfrak{A} \equiv (S(t))_{t \geq 0} \subset \mathcal{L}(X)$ be a semigroup on X Banach. Set

$$D(A) \equiv \left\{ x \in X : \exists \lim_{t \to 0^+} \frac{S(t)x - x}{t} \right\}$$
$$Ax \equiv \lim_{t \to 0^+} \frac{S(t)x - x}{t} \text{ for } x \in D(A)$$

A is called the *(infinitesimal) generator* of \mathfrak{A} . We write

$$\langle A
angle_{gen} = \mathfrak{A}$$

INTERMEZZO: EXAMPLE - THE HEAT SEMIGROUP

Recall our basic example

$$S(t)f(x) \equiv \frac{1}{(4\pi t)^{\frac{d}{2}}} \int_{\mathbb{R}^d} \exp\left(\frac{-|x-\zeta|^2}{4t}\right) f(\zeta) \, d\zeta, t > 0$$
$$S(0) = I$$

We refer to this semigroup as the heat semigroup and write \mathfrak{A}_{heat}

Our goal:

We want to show
$$\langle \Delta \rangle_{gen} = \mathfrak{A}_{gen}$$
.

< 日 > < 同 > < 三 > < 三 > < 三 > <

Recall:

- $*: \mathcal{S}(\mathbb{R}^d) \times \mathcal{S}(\mathbb{R}^d) \longrightarrow \mathcal{S}(\mathbb{R}^d)$
- $\mathcal{F} \colon \mathcal{S}(\mathbb{R}^d) \longrightarrow \mathcal{S}(\mathbb{R}^d)$ bijectively
- $\mathcal{F} \colon L^2(\mathbb{R}^d) \stackrel{\cong}{\longrightarrow} L^2(\mathbb{R}^d)$
- Alternative characterization of $W^{m,2}$ -Sobolev functions:

$$\mathcal{W}^m(\mathbb{R}^d)(=\mathcal{W}^{m,2}(\mathbb{R}^d))=\left\{f\in L^2(\mathbb{R}^d)\colon \ (1+|\zeta|^2)^{m/2}\mathcal{F}f\in L^2(\mathbb{R}^d)
ight\}$$

•
$$\mathcal{S}(\mathbb{R}^d)$$
 is dense in $L^2(\mathbb{R}^d)$

Density \longrightarrow it suffices to show the claim for the Schwartz class! Claim:

$$\lim_{t \longrightarrow 0+} \frac{W_t * f - f}{t} = \Delta f \text{ for } f \in \mathcal{S}(\mathbb{R}^d)$$

(L^2 convergence).

Franz X. Gmeineder

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

$$\lim_{t \to 0} \frac{(2\pi)^{d/2} (\mathcal{F} W_t) \cdot (\mathcal{F} f) - (\mathcal{F} f)}{t} = \mathcal{F}(\Delta f)$$

By Cauchy's integral formula we easily check that $\zeta \mapsto \exp(-\zeta^2)$ is a fixed point of \mathcal{F} , whereby a change of variables implies

$$\mathcal{F}W_t(\zeta) = rac{1}{(2\pi)^{d/2}}\exp(-t\zeta^2), \ \mathcal{F}(\Delta f)(\zeta) = -\zeta^2\mathcal{F}f(\zeta)$$

$$\lim_{t \longrightarrow 0} \frac{\exp(-t\zeta^2)g - g}{t} = -\zeta^2 g \quad \text{ for all } g \in \mathcal{S}(\mathbb{R}^d), \zeta \in \mathbb{R}^d$$

or

$$\lim_{t \longrightarrow 0+} \frac{\exp(tv)g - g}{t} = vg \quad \text{ for all } g \in \mathcal{S}(\mathbb{R}^d), \zeta \in \mathbb{R}^d$$

with
$$v(\zeta) = -\zeta^2$$

Franz X. Gmeineder

Set

$$\Phi(z) = rac{\exp(z) - 1}{z} \equiv \sum_{n \ge 2} rac{z^{n-1}}{n!}, \ -1 \le \Phi(z) \le 0 \text{ for } z \le 0$$

Thus

$$\left|\left|\frac{\exp(tv)g-g}{t}-vg\right|\right|^2 = \int_{\mathbb{R}^d} |\Phi(-t\zeta^2)| |\zeta^2 g(\zeta)|^2 \ d\zeta \longrightarrow 0$$

This estimate is valid for **any** v such that $v\mathcal{F}f \in L^2 \longrightarrow W^{2,2}(\mathbb{R}^d)$. Conclusion: $\langle \Delta \rangle_{\text{gen}} = \mathfrak{A}$ and $D(A) = W^{2,2}(\mathbb{R}^d)$

DIFFERENTIAL PROPERTIES OF GENERATORS

Theorem

Assume $u \in D(A)$ and $\sup_{t \ge 0} ||S(t)|| < \infty$. Then

(i)
$$S(t)u \in D(A)$$
 for all $t \ge 0$
(ii) $AS(t)u = S(t)Au$ for all $t \ge 0$
(iii) $t \mapsto S(t)u$ is differentiable for each $t > 0$ and $\frac{d}{dt}S(t)u = AS(t)u$ for $t > 0$

Proof of (iii) & (iv): For $u \in D(A)$, h > 0 and t > 0. Consider

$$\lim_{h \to 0+} \left(\frac{S(t)u - S(t-h)u}{h} - S(t)Au \right)$$

TOPOLOGICAL PROPERTIES OF GENERATORS

<u>Note</u>: Under the assumptions of the last theorem, continuity of $t \mapsto AS(t)u = S(t)Au$ implies that $t \mapsto S(t)u$ is of class $C^1((0,\infty), X)$ for $u \in D(A)$

<u>Recall</u>: An operator $T: X \longrightarrow X$ is called <u>closed</u> iff its graph is closed with respect to the product topology on $X \times X$.

Theorem

The generator of a C_0 -semigroup is densely defined and closed.

EXPONENTIAL BOUNDS FOR C_0 -SEMIGROUPS

Theorem

Let $(S(t))_{t\geq 0}$ be a C_0 -semigroup on X Banach. Then there exist $\omega \in \mathbb{R}$, $M \geq 1$ such that

$$||S(t)|| \leq Me^{\omega t} \quad \forall t > 0$$

Proof. At first, there exists $\tau > 0$ such that

$$M \equiv \sup_{0 \le t \le \tau} ||S(t)|| < \infty$$

Now, rescale: For $t \ge 0$ write $t = n\tau + \theta$ with $n \in \mathbb{N}$ and $0 \le \theta < \tau$.

The goal of the game: Cauchy Problems

Theorem

Let A be the infinitesimal generator of some C_0 -semigroup and let $u \in D(A) \subset X$. Then the mapping $u : [0, \infty) \ni t \mapsto S(t)u \in X$ is C^1 , D(A)-valued and a solution to

$$y' = Ay \& y(0) = u$$

Proof. Differentiability: Compute, compute and estimate. Then: $\frac{d}{dt}S(s-t)v(t) = 0 \text{ for } s \leq t. \Longrightarrow \Phi: [0,s] \ni t \mapsto S(s-t)v(t) \in X$ satisfies $\frac{d}{dt}(\ell \circ \Phi) = \ell \circ \frac{d}{dt}\Phi(t) = 0 + \text{Hahn-Banach} \Longrightarrow \text{Uniqueness.}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

PERIPETY: C_0 -CONTRACTION SEMIGROUPS We have: A generates a UC-semigroup $\iff A \in \mathcal{L}(X)$

Question: A generates a C_0 -semigroup $\iff ???$

We know: If A is a generator of a C_0 -semigroup, then A is densely defined and closed

We need: Criterion to decide whether a densely defined, closed operator generates a C_0 -semigroup \longrightarrow Available for 'Contraction Semigroups'

Recall: Any C_0 -semigroup satisfies $||S(t)|| \le Me^{\omega t}$ for all $t \ge 0$.

Definition

If one can choose $\omega = 0$ and M = 1 in the last theorem, then the C_0 -semigroup is called <u>contractive</u> or contraction semigroup.

On the Road to Hille-Yosida - Spectral Theory

Spectral Theory in Linear Algebra: $\sigma(A) =$ Eigenvalues

Spectral Theory in Functional Analysis: For $A: D(A) \longrightarrow X$ (un)bounded and closed operator, define the resolvent set

$$\lambda \in
ho(A) \subset \mathbb{C} \Longleftrightarrow \lambda - A \colon D(A) \longrightarrow X$$
 bijective

and the resolvent operator

$$R_{\lambda}\colon X\ni u\mapsto (\lambda-A)^{-1}u$$

Then the spectrum is the complement of the resolvent set:

$$\sigma(A) = \rho(A)^c = \mathbb{C} \setminus \rho(A)$$

Standard Assumption from now on: A is a closed linear operator on X Banach.

Franz X. Gmeineder

The Hilla - Yosida Theorem

Theorem

An operator A is the infinitesimal generator of a C_0 -contraction semigroup if and only if A is densely defined and closed, $(0, \infty) \subset \rho(A)$ and $||R_{\lambda}|| \leq \lambda^{-1} \forall \lambda > 0$.

Proof. IDEA: For $\lambda > 0$ define the <u>bounded</u> Yosida approximations

$$A_{\lambda} = \lambda A (\lambda - A)^{-1} = \lambda^2 (\lambda - A)^{-1} - \lambda \in \mathcal{L}(X)$$

and define semigroups $(\exp(tA_{\lambda}))_{t\geq 0}$. Show: $\exists S(t)x \equiv \lim_{\lambda\to\infty} e^{tA_{\lambda}}x$ and this defines semigroup with operator A.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THE HOMOGENEOUS HEAT EQUATION I

$$\begin{split} (\partial_t - \Delta) u &= 0 & \text{in } \Omega \times (0, \infty) \\ u &= f & \text{on } \partial \Omega \times (0, \infty) \\ u(\cdot, 0) &= u_0 & \text{in } \Omega \end{split}$$

where $\Omega \subset \mathbb{R}^d$ bounded, open, $\partial \Omega \in C^{0,1}$.

CLAIM:

Let $u_0 \in H^2(\Omega) \cap H^1_0(\Omega)$. Then there exists exactly one solution $u \in C^1([0,\infty); L^2(\Omega)) \cap C^0([0,\infty); H^2(\Omega) \cap H^1_0(\Omega))$

of the above problem such that $||u(t)||_{L^2} \leq ||u_0||_{L^2} \quad \forall t \geq 0$

THE HOMOGENEOUS HEAT EQUATION II

Proof. Set

$$X = L^2(\Omega), \quad A = \Delta, \quad D(A) = H^2(\Omega) \cap H^1_0(\Omega)$$

Densely defined: Obvious.

 $(0,\infty)\subset \rho(A)$: Show $\forall\lambda\in\mathbb{C},\Re(\lambda)>0$: $\mathcal{R}(\lambda-A)=X$.

Equivalently: For $\lambda \in \mathbb{C}, \Re(\lambda) > 0$ the problem

 $-\Delta u + \lambda u = f \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega$

has a unique solution for every $f \in L^2(\Omega)$.

Apply Lax-Milgram!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

THE HOMOGENEOUS HEAT EQUATION III

Set

$$B[u, v] \equiv \int_{\Omega} \nabla u \cdot \overline{\nabla v} + \lambda u \overline{v} \, dx, \ u, v \in H_0^1(\Omega)$$
$$F(v) \equiv \int_{\Omega} f \overline{v} \, dx \ u \in H_0^1(\Omega)$$

 \implies B bounded and coercive BLF, F bounded linear functional

$$\implies \exists ! u \in H^{1,2}_0(\Omega) \forall v \in H^1_0(\Omega)$$

USE: $u \in H^2(\Omega) \longrightarrow$ Regularity Theory.

 $\implies u \in D(A).$

THE HOMOGENEOUS HEAT EQUATION IV $\forall \lambda > 0: ||R_{\lambda}|| \le \lambda^{-1}:$ Let $\lambda > 0.$ Then

$$\begin{split} \int_{\Omega} |\nabla u|^2 + \lambda |u|^2 dx &= \int_{\Omega} f \overline{u} dx \leq \frac{1}{2\lambda} \int_{\Omega} |f|^2 dx + \frac{\lambda}{2} \int_{\Omega} |u|^2 dx \\ \implies \frac{\lambda}{2} \int_{\Omega} |u|^2 dx \leq \frac{1}{2\lambda} \int_{\Omega} |f|^2 dx \Longrightarrow ||u||_{L^2} \leq \lambda^{-1} ||f||_{L^2} \end{split}$$

For $u_1, u_2 \in D(A)$ solutions to the PDE

$$-\Delta u + \lambda u = f \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega$$

we have $u_1 = u_2$.

 $\implies R_{\lambda}$ exists, is continuous and $||R_{\lambda}f|| \leq \lambda^{-1}||f||$

THE HOMOGENEOUS HEAT EQUATION V <u>A is closed:</u> Let $x_n \in D(A)$, $x_n \longrightarrow x$ in D(A) and $Ax_n \longrightarrow y$ in X, $n \longrightarrow \infty$.

Show: $x \in D(A)$ and Ax = y.

We know: For $x + \lambda y$, there exists $z \in D(A)$ such that $(\lambda I - A)z = \lambda x - y$

$$\begin{split} ||x_n - z|| &\leq \lambda^{-1} ||(\lambda - A)(x_n - z)|| \\ &= \lambda^{-1} ||\lambda x_n - Ax_n - (\lambda x - y)|| \\ &\leq ||x_n - x|| + \lambda^{-1} ||Ax_n - y|| \longrightarrow 0 \Longrightarrow x = z, \ Ax = y \end{split}$$

<u>Hille-Yosida</u> \longrightarrow A generates contraction semigroup $(S(t))_{t\geq 0}$.

 $t \mapsto S(t)u_0 \in D(A)$ continuous $t \mapsto u'(t) = AS(t)u_0 = S(t)Au_0 \in X$ continuous \longrightarrow claim: $A \equiv A = A$ Franz X. Gmeineder INTRODUCTION TO SEMIGROUP THEORY 23/25

Second-order parabolic PDE

Recall that an elliptic differential operator of 2nd order in divergence form is given by

$$Lu \equiv -\sum_{1 \leq i,j \leq d} \partial_{x_j}(a^{ij}(x)\partial_{x_i}u) + \sum_{1 \leq i \leq d} b^i(x)\partial_{x_i}u + c(x)u$$

where $\zeta \cdot A(x)\zeta \ge \theta |\zeta|^2$.

Assume: $a^{ij}, b^i, c \in L^{\infty}(\mathbb{R}^d) \cap C^{\infty}(\mathbb{R}^d)$ for all $i, j \leq d$ and they are not time-dependent. Moreover: $\partial U \in C^{\infty}$. Consider the general parabolic equation

 $\begin{aligned} (\partial_t + L)u &= 0 & \text{in } U_T \\ u &= 0 & \text{on } \partial U \times [0, T] \\ u &= g & \text{on } U \times \{t = 0\} \end{aligned}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FINAL ARIA

Then: A defined by $Au \equiv -Lu$ for $u \in D(A) = H_0^{1,2}(U) \cap H^2(U)$ generates a γ -contraction semigroup! The problem is SOLVED.