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Stationary Navier Stokes equations (1/2)

Find velocity v and pressure q such that

−ν∆v + [∇v]v +∇q = f on Ω,

div v = 0 on Ω,

v = 0 on ∂Ω,

where ν > 0, f is external force and Ω ⊂ R2.

Goal: Find a weak solution v ∈W 1,2
0,div and q ∈ L2

0.
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Stationary Navier Stokes equations (2/2)

Strategy for construction of weak solution:

• Hide pressure in weak formulation: Find v ∈W 1,2
0,div with

ν〈∇v,∇ξ〉+ 〈[∇v]v, ξ〉 = 〈f, ξ〉 for ξ ∈W 1,2
0,div.

• −∆v is monotone operator on W 1,2
0,div

• [∇v]v is compact perturbation (for R2)

• 〈[∇v]v, v〉 = 0, since div v = 0 ⇒ coerciveness.

• Recover pressure by De Rahm (negative norm theorem).

⇒ Existence!
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Power law fluids (1/4)

Find velocity v and pressure q such that

−ν div
(
(1 + |ε(v)|)p−2ε(v)

)
+ [∇v]v +∇q = f on Ω,

div v = 0 on Ω,

v = 0 on ∂Ω,

where 1 < p <∞ and ε(v) = 1
2 (∇u + (∇u)T ) is symmetric gradient.

shear thinning: 1 < p < 2 (ketchup, blood)
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Power law fluids (2/4)

Weak formulation without pressure

ν〈S(ε(v)), ε(ξ)〉+ 〈[∇v]v, ξ〉 = 〈f, ξ〉 for ξ ∈W 1,p
0,div.

with S(ε(v)) := (1 + |ε(v)|)p−2ε(v).

Goal: Find weak solution v ∈W 1,p
0,div

Problem: [∇v]v compact perturbation for p > 3
2 (in R2)

Idea: Rewrite 〈[∇v]v, ξ〉 as 〈v ⊗ v, ε(ξ)〉

Just need v ⊗ v ∈ L1 for distributional solutions, i.e. p > 1 (in R2)
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Power law fluids fluids (3/4)

Weak formulation

ν〈S(ε(v)), ε(ξ)〉+ 〈v ⊗ v, ε(ξ)〉 = 〈f, ξ〉 for ξ ∈W 1,∞
0,div.

Approach for 1 < p ≤ 3
2

• Stabilize system such that 〈v ⊗ v, ε(ξ)〉 is again compact
perturbation

⇒ Approximate solutions vn ∈W 1,p
0,div

• Weak convergent subsequence vn ⇀ v

• Problem: Identify limit S(ε(vn))→ S(ε(v))
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Power law fluids (4/4)

Need: 〈S(ε(vn)), ε(ξ)〉 → 〈S(ε(v)), ε(ξ)〉 for smooth ξ

Rough idea: Test function vn − v ∈ Lp(W 1,p
0 )

0 ≤
〈
S(ε(vn))− S(ε(v)), ε(vn)− ε(v)

〉 equation−−−−−→ 0. (1)

Strict monotonicity implies S(ε(vn))→ S(ε(v)) a.e.

Problem: div(vn ⊗ vn) 6∈ (W 1,p
0 )∗ Only: (W 1,∞

0 )∗

Idea: Approximate wn := vn − v by wn
λ ∈W 1,∞

0

which allows to proceed as in (1).
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Lipschitz truncation – cutting the gradients

• For w ∈W 1,1
0 (Ω) we have

|w(x)−w(y)| ≤ c |x − y |
(
M(∇w)(x) + M(∇w)(y)

)
,

where M(∇w)(x) = sup
B3x
−
∫
B

|∇w| dy .

• w is Lipschitz outside the small bad set {M(∇w) > λ}.

• Cut out the bad set and extend to wλ ∈W 1,∞
0 (Ω) with |∇wλ| ≤ cλ

• By choosing good λ
‖∇wλ χ{w 6=wλ}‖p ≤ ‖λχ{M(∇w)>λ}‖p ≤ δ(λ) ‖∇w‖p.
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Lipschitz truncation – Conclusion

Theorem (Lipschitz truncation; Diening, Málek, Steinhauer ’07)

For wn = vn − v ⇀ 0 ∈W 1,p
0 exists wn,j ∈W 1,∞

0 such that

• ε(wn,j)
n→ 0 *-weakly in L∞,

• lim supn→∞ ‖∇wn,j χ{wn 6=wn,j}‖p ≤ 2−j ,

So we get S(ε(vn))→ S(ε(v)) almost everywhere by

0 ≤
∫
{wn=wn,j}

(S(ε(vn))− S(ε(v))) : (ε(vn)− ε(v)) dx

=

∫
(S(ε(vn))− S(ε(v))) : ε(wn,j) dx

n→ 0 by equation

−
∫
{wn 6=wn,j}

(S(ε(vn))− S(ε(v))) : ε(wn,j) dx ≤ 2−j after n→∞
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Things omitted

• Convective term:

〈vn ⊗ vn, ε(wn,j)〉 n→ 0

by ε(wn,j)
n→ 0 *-weakly in L∞ and W 1,p

0 ↪→↪→ L2 for p > 1

• Pressure: Lipschitz truncation is not solenoidal, i.e. divwn,j 6= 0

Correct wn,j by solution ψn,j ∈W 1,p
0 of divψn,j = χ{wn 6=wn,j} divwn,j .

Theorem (Frehse, Málek, Steinhauer ’03; +Diening ’07)

There exists a weak solution of power-law fluids in R2 for all p > 1.
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Prandtl-Eyring Fluids

Find velocity v and pressure q such that

−ν div(S(ε(v)) + [∇v]v +∇q = f on Ω,

div v = 0 on Ω,

v = 0 on ∂Ω,

with constitutive law

S(ε(v)) =
log(1 + |ε(v)|)
|ε(v)|

ε(v)

• Prandtl-Eyring model is an approximation of perfectly plastic fluids

• features well the behaviour of lubricants
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Weak formulation

Weak formulation without pressure

ν〈S(ε(v)), ε(ξ)〉+ 〈v ⊗ v, ε(ξ)〉 = 〈f, ξ〉 for ξ ∈W 1,∞
0,div.

with S(ε(v)) = log(1+|ε(v)|)
|ε(v)| ε(v).

Natural function space

V :=
{
v ∈W 1,1

0,div : ε(v) ∈ Lt ln(1+t)
}

Corresponds almost to the bad case p = 1.

Need Lipschitz truncation technique, since v ⊗ v ∈ Lt ln2(1+t).

Lars Diening On motions of Prandtl-Eyring fluids in 2D 12/16



Newtonian Fluids Power law fluids Prandtl-Eyring Fluids More

Problems (1/2)

• Korn’s inequality:

Failure: ‖∇v‖t ln(1+t) 6≤c ‖ε(v)‖t ln(1+t),

Only: ‖∇v‖1 ≤ c ‖ε(v)‖t ln(1+t)

Solution: Work directly with ε(v) in space definition.

• Maximal function:

Failure: ‖Mg‖t ln(1+t) 6≤c ‖g‖t ln(1+t),

Only: ‖Mg‖1 ≤ c ‖g‖t ln(1+t)

Solution: Delicate use of weak type estimates.
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Problems (2/2)

• Solenoidal correction: fails on Lt ln(1+t).
Solution: Use Whitney type extension

wλ :=

{
w on good set∑

j ϕjwj on good set

bad set

Ω

Correct divergence of ϕjwj to get divergence free Lipschitz truncation
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Prandtl Eyring fluids – Existence of weak solutions

Theorem (Breit, Diening, Fuchs ’11)

There exists a weak solution v in Ω ⊂ R2 of

−ν div

(
ln(1 + |ε(v)|)
|ε(v)|

ε(v)

)
+ [∇v]v +∇q = f on Ω,

div v = 0 on Ω,

v = 0 on ∂Ω,

Summary of proof:

• Use solenoidal Lipschitz truncation in pressure free formulation

• Recover pressure in L1
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More applications of the Lipschitz truncation

A-harmonic approximation: [in version of Diening, Stroffolini, Verde]

For every almost harmonic function, i.e. (for small δ > 0)

−
∫
Q

∇u · ∇ξ dx ≤ δ−
∫
Q

|∇u| dx ‖∇ξ‖∞ for all ξ ∈ C∞0 (Q)

exists a harmonic h on Q with h = u on ∂Q and

−
∫
Q

|∇u−∇h|2 dx ≤ ε

(
−
∫
Q

|∇u|2s dx

) 1
s

for small ε > 0 and s > 1.

Constructive proof! Also: coefficients, Orlicz spaces, quasi-convex.
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