Topologie und Differentialrechnung mehrerer Variablen Präsenzaufgaben 11

Aufgabe 1:

Sei $n \geq 2$ eine natürliche Zahl und sei $\Omega \subset \mathbb{R}^n$ eine offene Menge. Beweisen oder widerlegen Sie:

- (a) Sind $v, w : \Omega \to \mathbb{R}^n$ Gradientenfelder, so ist auch v + w ein Gradientenfeld.
- (b) Ist $f:\Omega\to\mathbb{R}$ eine stetig differenzierbare Funktion und $v:\Omega\to\mathbb{R}^n$ ein Gradientenfeld, so ist auch fv ein Gradientenfeld.

Aufgabe 2:

Für $\alpha \geq 1$ sei

$$\gamma:[0,1]\to\mathbb{R}^2, \qquad \gamma(t):=(t^\alpha,t),$$

und

$$v: \mathbb{R}^2 \to \mathbb{R}^2, \qquad v(x,y) := (y^3, x^2).$$

Berechnen Sie das Wegintegral $\int_{\gamma} v \cdot ds$.

Aufgabe 3:

Sei $X := \{a, b, c\}$ und $\mathcal{T} := \{\emptyset, \{a\}, \{b\}, \{a, c\}, X\}.$

- (a) Ist \mathcal{T} eine Topologie auf X?
- (b) Was ist die kleinste Topologie auf X, die \mathcal{T} enthält?

Aufgabe 4:

Es sei $\mathcal{T} := \{ A \subseteq \mathbb{R} : A^{\complement} \text{ ist abz\"{a}hlbar} \} \cup \{\emptyset, \mathbb{R}\}.$ Ist \mathcal{T} eine Topologie auf \mathbb{R} ?

Aufgabe 5:

Sei (X, \mathcal{T}) ein kompakter topologischer Raum und $K \subseteq X$ abgeschlossen. Zeigen Sie, dass K kompakt ist.