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What is unsupervised learning:
Learn patterns from “unlabeled data”.

(classification is not included in the observation)
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-Inance and marketing

Stock market / forex trading Costumer segmentation
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Bioinformatic

Brain MR image segmentation

Genetic clustering of the Europeans by Principal Component Analysis
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Clustering

Task: group a set of objects in such a way that
objects in the same group (called a cluster) are more
similar (in some sense or another) to each other than
to those In other groups.

A A

A more formal definition:

Given a data set {x1, x2, .., XN} consisting of N
observations of a random D-dimensional variable x,
partition the data set into k number of clusters.
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Clustering — typical models

Depending on how a cluster is defined, there are ditferent
types of clustering models.
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e Connectivity based clustering (also

BT known as hierarchical clustering) is
nased on the core idea of objects being
more related to nearby objects than to
objects tarther away.

connectivity

centroid
core idea: distance

distribution
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density
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333.,'.'( . What constitutes a connectivity clustering algorithm:
MR
Fe . VAN . . . . .
s TR 1. distance function: distance between two objects (Ex: Euclidean
e ..m-;.:f distance, Manhattan distance ...)

2. the linkage criterion: distance between clusters

1. single-linkage clustering (the minimum of object distances)

2. complete linkage clustering (the maximum of object
distances)

connectivity

3. average linkage clustering (the average of object
; distances

centroid )

3. agglomerative (starting with single elements and aggregate

: : : them into clusters)

distribution

divisive (starting with the complete data set and dividing them

into partitions)

e

density
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Example: single linkage, agglomerative

1. Start by assigning each item to its own cluster

2. Find the closest pair of clusters and merge them into a single cluster
3. Compute the distance between the new cluster and old clusters

4. Repeat 2 and 3 until all items are clustered into a single cluster of size N
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connectivity

centroid

distribution
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density

Remark:

e Not robust towards outliers, which will either show

up as additional clusters or even cause other
clusters to merge. (does not have a notion of
“noise”)

* Joo slow for large data set.
In the data mining community, these methods are

recognised as a theoretical foundation of cluster
analysis, but often considered obsolete.
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Clusters are represented by a central
vector, which may not necessarily be a
member of the data set.

connectivity

The similarity of two clusters is defined

centroid as the similarity of their centroids

distribution

density
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o = Example: k-mean (the number of clusters is
- fixed to k)

o Given a set of observations (x1, x2, ..., Xn),
-~ partition the observations into k sets S = {51,
S2, ..., Sk} so as to minimise the within-
cluster sum of squares (WCSS).

connectivity

centroid
argmmz 3 flx =

i=1 x€S;

distribution

density where pi is the mean of points in Si.
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Algorithm (Lloyd’s algorithm)

1. Initialize the center of the clusters W; = some value,i = I,....k

2. Attribute the closest cluster to each data point ¢ = {j dXj,pu;) <dX;,u),l #i,j=1,...,n}

3. Set the position of each cluster to the mean of all data points

1 .
= — ). X:, Vi
belonging to that cluster Hi le:l ZJGC; J

4. Repeat steps 2-3 until convergence

Good example

o8 Issues:

Initialization method: Forgy

08 number of clusters = 4

. Reset | tteate 1. Deciding k

1. Initialize clusters
2. Assign data points to closer cluster
0.2 3. Calculate center of each cluster

2. Initialisation

0.0
0.0 02 0.4 06 08 x

http://www.onmyphd.com/?p=k-means.clustering



http://www.onmyphd.com/?p=k-means.clustering

Introduction Clustering Dimension reduction Summary

It is often generally ambiguous how many clusters there are in the data.

Most common way: manually

. . The elbow method: Try K-means clustering with
*. * . different k and measure the resulting sum of squares.
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Forgy: set the positions of the k clusters to k
observations chosen randomly from the dataset.

Random partition: assign a cluster randomly to each
observation and compute means.

Good example

y

0.8
Initialization method: Forgy %]

08 number of clusters = 4

0.8 Reset Iterate
1. Initialize clusters

2. Assign data points to closer cluster
02 3. Calculate center of each cluster

0.0
0.0 02 0.4 08 08

http:// www.onmyphd.com/?p=k-means.clustering

hitps://www.naftaliharris.com/blog/visualizing-k-means-clustering/
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Remark:

e The algorithm only finds a local optimum. Typically
run multiple times with different random
initialisations.

* Optimises cluster centres, not cluster borders,
which often leads to incorrectly cut borders in
between clusters.



Introduction Clustering Dimension reduction Summary

The k-means algorithm works reasonably well when the data fits the cluster model:
* The clusters are spherical (the data points in a cluster are centered around that cluster)

* The spread/variance of the clusters is similar (Each data point belongs to the closest
cluster)

It any one these principles does not hold, the result will be counter-intuitive:

y
ra
08
Initialization method: rorgy B
number of clusters = 2
06 Oo\
o B Reset Iterate
K 1. Initialize clusters
2. Assign data points to closer cluster
02 3. Calculate center of each cluster
0.0 o
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http:// www.onmyphd.com/?p=k-means.clustering
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Clusters are defined as objects
belonging most likely to the same

connectivity distribution.
centroid Distribution based models suffer from
one key problem known as overfitting,
distribution unless constraints are put on the

model complexity.

density
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Gaussian mixture models (GMM)

The probability given in a mixture of K Gaussians is:

p(x) =2 w; N(x| %))

J=1

where w; isthe prior probability (weight) of the jth Gaussian.

K
> w, =1 and 0<w, <1
=1

J
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 Problem:

Given a set of data X ={x,x,,...,x5} drawn from an
unknown distribution (probably a GMM), estimate the
parameters € of the GMM model that fits the data.

 Solution:

Maximize the likelihood p(X |#) of the data with regard
to the model parameters?

N
0 =arg max p(X|0) =arg mgxnp(xi 10)

i=1
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Expectation - Maximization algorithm

An iterative method to find maximum likelihood or

maximum a posteriori (MAP) estimates of parameters
IN statistical models.

The EM iteration alternates between:

Expectation (E) step: creates a likelihood function
using the current parameters

Maximization (M) step: computes parameters
maximizing the likelihood function from the E step.
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EM for GMM

Expectation (E) Step

Calculate V7, k:
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Maximization (M) Step
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The probability given in a mixture of K Gaussians is:

p(x)=2 w, N(x| ;%))

J=1

where w; isthe prior probability (weight) of the jth Gaussian.

J

K
2w;=1  and  0<w,<I
=1

Goal: maximize

N K
Inp(X|p, E,7) =) In ZEN(xn‘IJ’kr i)
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Delay
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The EM algorithm updating the parameters of a
two component bivariate Gaussian mixture model.
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Remark:

e Assuming gaussian distributions is a rather strong
assumption on the data

EM is very sensitive to Initial conditions —> usually
use the K-Means to get a good initialisation
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""""

s Clusters are defined as ares of higher
R density than the remainder of the data
set.

connectivity
Objects in the sparse areas are usually

centroid considered to be noise and border
points.

distribution

density
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Density-based spatial clustering of applications with noise (DBSCAN)

Connects points that satisfy a density criterion.

* core point: at least minPts points
are within distance €

* reachable: there is a path p1, ..., pn
with p1 = p and pn = g, where each
pi+1 is directly reachable from pi

* outliers: points not reachable from
any other point

minPts = 4
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DBSCAN(D, eps, MinPts) {
cC=0
for each point P in dataset D {
if P is visited
continue next point
mark P as visited
NeighborPts = regionQuery(P, eps)
if sizeof(NeighborPts) < MinPts
mark P as NOISE
else {
C = next cluster
expandCluster (P, NeighborPts, C, eps, MinPts)

} o 8 8
}
} o 3 g
o
expandCluster (P, NeighborPts, C, eps, MinPts) {
add P to cluster C o o °
for each point P' in NeighborPts { :
if P' is not visited { o o o o o
mark P' as visited N N N 0% °°° :°:
NeighborPts' = regionQuery(P', eps)
if sizeof(NeighborPts') >= MinPts . : : : R Z 0o © : o
NeighborPts = NeighborPts joined with NeighborPts' epsilon = 1.00 - o © 5 o o
} minPoints = 4

if P' is not yet member of any cluster
add P' to cluster C

}

regionQuery(P, eps)
return all points within P's eps-neighborhood (including P)
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epsilon =1.60
minPoints = 4

https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/
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Remarks

Advantages:
 The number of clusters is not required, as opposed to k-means.
* Can find arbitrarily shaped clusters. o o

 Has a notion of noise —> robust to outliers Preit®

e Discover essentially the same results in each run (no need to run it
multiple times).

Disadvantages:
e Not entirely deterministic: border points that are reachable from more than

one cluster can be part of either cluster, depending on the order the data
IS processed.
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Clustering Evaluation

internal evaluation: the clustering result is evaluated based
on the data that was clustered itselt. The best score is

assigned to the algorithm that produces clusters with high
similarity within a cluster and low similarity between clusters.

external evaluation: the clustering is compared to an
existing “ground truth” classification (in reality do not have
this “ground truth” labels)

manual evaluation: by a human expert

indirect evaluation: evaluate the utility of the clustering in its
iIntended application



Introduction Clustering Dimension reduction Summary

Clustering — typical models

Depending on how a cluster is defined, there are ditferent
types of clustering models.

ittt

connectivity

™ -
® -
eh .,
Ll Sy R ": %
e ;
N e * e .
. S “k ‘ S v e i
08 . ' 2 St S Sl %
3 e T S S Lo
'.. N V' 1; . .:-.‘:;:&/ akda
" v, e
? e . .

centrolid

centrold models

distribution connectivity models

s 'S
g gath.
T R

|
|
|

" HY S R
d I I t "";' o ﬁ?“'-"
il 5 - > .
W Q' :“ ‘-”o‘:'p ':{,:g :f
: ’ $Y0
- - . . w4 . Al
A LA

-‘“‘:. ,:'~ -. .

distribution models density models



Introduction Clustering Dimension reduction Summary

Image Segmentation with K-Means Clustering

iterating from K=1 to K=80 clusters, with
the last 3 frames being the original image.

https://www.youtube.com/watch?v=gstdP1DSUK
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High-dimensional data

0: Genes (911568)

For example, Data on health status | ooenocarchona 120
of patients can be high-dimensional

5. Hypartension (162)
. b: Infection (3762)
. . Leukemia (3632)

* pblood analysis m:
e Immune system status 5
e genetic background

e nutrition

Summary
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PCA

Many of these dimensions are, however, not
important because they are highly correlated.

"
Reduce the dimension of a
data set such that only
‘Important

dimensions” (red axis) are
taken into account for
further analysis.

0.8}
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PCA

Approach: d —> k dimensions

1. Compute the covariance matrix of the whole data set
2. compute eigenvectors and corresponding eigenvalues

3. choose k eigenvectors with the largest eigenvalues to form a d*k
dimensional matrix (where every column represents an eigenvector)

4. Use this eigenvector matrix to transtorm the samples onto the
new subspace.
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PCA — example
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http://setosa.io/ev/principal-component-analysis/
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Dimension reduction

connectivity models

distribution models

Summary

S
E .
ISR

density models

0: Genes (911568)

1: Adenocarcinoma (166)

3: CarcinomaT34)
4: Hepatitis (1189)

6: Hypertension (162)
b Infection (3762)




https://www.youtube.com/watch?v=I{NVVvOA8
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Extensions

) |Semi-Supervised Learning

Um’u“’e"med All Unlabeled Data > Model
Leaming

semi-supervised learning

graphic models



