.2 Infrared divergences due to the photon field (Vergion [608(5)

In the simple toy model of Section [l we will now observe another well-known problem that oceurs
with magglegs fields called the infrared catagtrophe”. Contrary to the conceptual problem of the
ultraviolet problem discussed in Section L, it is only a repregentational problem and could loosely be
described ag: “Two chargeg dressed with their appropriate fields for different asymptotic velocities do
not live in the same Fock gpace.”

[t wag firgt obgerved in the form that the ground gtate of the gystem cannot be repregented in
standard Fock gpace. Later it wag again discovered in scattering theory when congidering
asymptotic states ag mentioned above.

[t ig important to note that thig problem does not oceur during finite timeg but only in idealizationg,
such ag those employed in scattering theory, when sending time to plug or minug infinity. When
evolving a well-defined state over a finite time period, the new field that may build up during the time
evolution may only have finite spatial support due to the relativistic digpersion relation. Only in the
limit, when gending time to plug or minug infinity, the gpatial support may grow to infinity. Ag
congequence, infinitely many infrared photon modeg may be necessary to represent the change of
the fieldg at gpatial infinity between the initial and final etate and that change may not be
repregentable anymore in one and the came Fock gpace. Furthermore, it should be noted that a non-
zero field mage provides an effective cut-off on the infrared modeg of the boson.



[+ can readily be obgerved in our simple toy model:

For a fixed source at position q¢ R*  we found that the ground etate wag given by

a it .
Duss, s Spo Duss, = 2¢(-3 S&g{‘ ‘%% (aﬁe T_a am))

The factor % aroge from the time integration of the interaction Hamiltonian. Recall
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Carrying out the computation 1o all orderg and employing a similar stationary phage argument, we
find:
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Hence, the state Dxsc, S can be inferpreted ag a charge drecced with ite Yukawa field moving
at agymptotic velocity v.

For a fixed ultraviolet cut-off A <e= and a non-zero mage >0 thig gate i¢ well-defined gince:
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For zero magg thig is not the cage anymore. In fact, already for A <o=
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It ig natural to employ the came trick ag we did when dealing with the ultraviolet problem, namely
changing the representation by defining a new Fock epace I according to
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The trouble ig, however, that all thege repregentationg are not unitary equivalent ag ~ n—> e
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It ia important to note that the proof of elf-adjointnese of the interaction Hamiltonian goeg through
even for m=c . Recall that we only needed the boundednesg of | T\STKT I, which ig given for all
choices of the photon mase.

Houwever, e.g,, the infinite time limit employed computing the ground state wleads out of Fock gpace:
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. Ag an ultraviolet cut-off implies

4/ - extended chargeg, an infrared cut-off
— implieg finite gpatial extend or sufficient
decay. The typical Coulomb potentialg
do not have enough decay, i.e,, "too

many" photong of low energy are
needed to repregent them. However, for
finite time there ig a natural infrared
cut-off due to the gpeed of light.




Further reading:

Single particles interacting with their masgless fielde can nowadays be treated in full rigor. Here some
articles that may aleo gerve ag an introduction to the field:

Dynamics of charged particles and their radiation fields,
H. Spohn, Cambridge, 2004

One particle (improper) eigenstates in Nelson's massless model,
A. Pizzo, AHP, 2004

Infrared-Finite Algorithms in QED: The Groundstate of an Atom Interacting
with the Quantized Radiation Field,
V. Bach, J. Frohlich, A. Pizzo, CMP, 2006



