
Theoretical And Numerical
Investigations Of Domain Adaptation

Methods

David Mihai Mazurencu-Marinescu-Pele

München 2024



Theoretical And Numerical
Investigations Of Domain Adaptation

Methods

David Mihai Mazurencu-Marinescu-Pele

Dissertation

an der Fakultät für Physik

der Ludwig–Maximilians–Universität

München

vorgelegt von

David Mihai Mazurencu-Marinescu-Pele

München, den 12. Dezember 2024



Erstgutachter: Dr. Kosmas V. Kepesidis
Zweitgutachter: Dr. Dirk-André Deckert
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Chapter 1

Introduction

1.1 Abstract

This thesis investigates the domain adaptation problem within the context of a supervised
learning framework for disease detection. The study begins by outlining the mathematical
foundations necessary for understanding domain adaptation, focusing on the PAC-learning
framework and the VC dimension as measures of model complexity and generalization capa-
bility. A toy model is developed to simulate a domain shift, where an affine transformation
is applied to a bivariate Gaussian dataset representing different disease states. Then, a
particularly simple adaptation method is evaluated by comparing its performance across
different learning scenarios, using various fractions of target domain data. A justification
for its effectiveness is sought using the tools of Statistical Learning Theory. Finally, we
numerically investigate several other adaptation methods that have already been imple-
mented in publicly available packages, such as the ADAPT Python toolbox [1]. We con-
clude by proposing an alternative, original approach based on data augmentation, which
has demonstrated success on a real-world dataset.

1.2 Motivation

The motivation behind choosing this topic is rooted in a very practical problem encountered
in data science. We initially encountered this issue during the development of classification
algorithms for a disease detection study. Specifically, the performance of our model suffered
a significant drop when tested on data measured by the same device that produced the
training samples, due to a shift in the data distribution. We refer to this as the domain
adaptation problem, a broad term that encapsulates an effect prevalent in virtually all
machine learning applications. Since this is a sensitive topic with significant potential for
the future of medicine, every model that aspires to become more than a proof-of-concept
must be made as reliable as possible, particularly in detecting and mitigating such shifts.
In the remainder of this section, we provide a brief overview of the increasing role that
data science plays in the medical field.
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Data science and artificial intelligence have significantly transformed medical diagnostics
by leveraging advanced computational techniques and vast amounts of data to enhance
accuracy, efficiency, and personalization in healthcare [2, 3, 4, 5, 6, 7, 8]. One key area
of application is predictive analytics for early disease detection, where machine learning
models analyze patient data to predict the likelihood of diseases such as diabetes, cancer,
and cardiovascular diseases. Early detection facilitates timely intervention and improves
patient outcomes. These algorithms can classify patients into different risk categories
based on their health data, enabling healthcare providers to prioritize care, particularly
for high-risk individuals.

Another crucial application of data science in medical diagnostics is medical imaging anal-
ysis [9, 10, 11]. In radiology, for instance, deep learning models, especially convolutional
neural networks (CNNs), are employed to interpret medical images such as X-rays, MRIs,
and CT scans. These models can detect a wide range of abnormalities, including tumors,
fractures, and infections, with remarkable accuracy. Additionally, in pathology, automated
image analysis in histopathology helps identify cancerous cells and other anomalies in tissue
samples, supporting pathologists in making accurate diagnoses.

Furthermore, data science plays a pivotal role in genomics and personalized medicine [12,
13]. Techniques used to analyze genomic data can identify genetic variants associated with
diseases, which in turn guide the development of personalized treatment plans. In the field
of pharmacogenomics, understanding how different patients respond to medications based
on their genetic makeup allows for personalized drug prescriptions, minimizing adverse
effects and maximizing therapeutic efficacy.

1.3 Additional information

A few words on the overall structure of the thesis are in order. Chapters 2 is written in
as close a mathematical fashion as possible, following more or less standard literature in
the field. Chapter 3 serves as a less formal intermezzo that introduces the actual problem
and the toy model that aims to reflect it. Chapter 4 presents a possible theoretical jus-
tification of the FEDA method via two different approaches. Finally, Chapter 5 presents
several adaptation methods and their application to a real-world dataset for the binary
classification task of gender prediction, along with an original approach based on data
augmentation.

The reference to each mathematical statement (definition, theorem, etc.) is either explicitly
mentioned or provided just before the actual text as a number in brackets, corresponding
to an item in the References section. For example, the VC generalisation bound theorem
as it appears in [14] is introduced as ”Theorem 2.15 (VC generalisation bound). [14]”.

All code used in the development of this thesis for model simulations, result visualizations
and numerical experiments that involve artificially generated data are publicly available
on GitHub at DavidMazurencuPele/DA-Methods-Investigation. Due to ethical considera-

https://github.com/DavidMazurencuPele/DA-Methods-Investigation/tree/main
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tions, the remaining code is available upon reasonable request by contacting Dr. Kosmas
V. Kepesidis at kosmas.kepesidis@physik.uni-muenchen.de.



Chapter 2

Theoretical Foundations

2.1 Introduction to Statistical Machine Learning

Following the approach outlined in [15], this section introduces the foundational concepts
of data generation, statistical environment, feature maps, and the learning process, which
together form the basis of statistical machine learning.

A learning machine refers to a system that processes data to approximate patterns and
relationships within its environment, enabling predictions and decision-making under un-
certainty. A statistical environment refers to the complete set of observable events or
phenomena that could serve as input to the learning process. These events are essen-
tially snapshots of the learning machine’s environment over a particular time period and
in a particular location, These can include anything from a patient’s symptoms to stock
market fluctuations or pixel values in an image. They are assumed to be generated by
sampling from an unknown and inaccessible probability distribution, often referred to as
the environmental distribution.

To represent these events numerically, a feature map is employed. A feature map is a
function that maps each event in the statistical environment to a finite-dimensional real
feature vector. This feature vector provides a numerical representation of the event’s essen-
tial properties and is commonly referred to as a data point. A learning machine, equipped
with this representation, aims not to memorize observed data but to approximate, via the
learning process, the underlying environmental distribution as closely as possible. This
approximation should enable the machine to generalize beyond the training data, making
accurate predictions even on previously unseen samples.

While the concepts briefly discussed in this section provide an intuitive foundation for
understanding the broader framework, we continue this chapter by discussing the central
objects from a mathematical perspective. This is necessary in order to arrive at several
fundamental results, which are invoked in the remaining part of this thesis.
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2.2 Definitions and Notation

We begin our list of definitions by concretizing the collection of feature vectors using the
language of probability theory. The primary references for the remainder of this chapter
are [16], [14], [17], and [18]. For the proof of several implicit mathematical claims, we refer
the reader to [19].

Definition 2.1 (Feature space). Let X denote the set of feature vectors, let FX be a σ-
algebra on X , and let PX : FX → [0, 1] be a probability measure. Then we call the tuple
(X ,FX ,PX ) the feature space, and we refer to it by the shorthand notation X .

The set X is typically a subset of a finite-dimensional real vector space Rd, and PX captures
the distribution of feature vectors induced by the data-generating process.

After establishing the structure of the feature space, we proceed in the same manner with
the outputs of the learning machine.

Definition 2.2 (Label space). Let Y denote the set of possible labels, let FY be a σ-algebra
on Y, and let PY : FY → [0, 1] be a probability measure. Then we call the tuple (Y ,FY ,PY)
the label space, and we refer to it by the shorthand notation Y.

For example, in a classification problem, the outputs of a learning machine belong to a
discrete label space, with Y = {1, . . . , K} =: [K], for some K ∈ N.

Having defined the feature space X and the label space Y , we now formalize the supervised
learning setting.

Definition 2.3 (Supervised Learning (SL)). Let (X ,FX ,PX ) be the feature space, and let
(Y ,FY ,PY) be the label space. The joint probability space of features and labels is defined
as the tuple (X × Y ,FX×Y ,P), where X × Y is the Cartesian product of the two sets,
FX×Y = FX ⊗FY is the natural product σ- algebra on X ×Y and P is the joint probability
measure, defined by

∀A ∈ FX , ∀B ∈ FY : P(A×B) =

∫
A

∫
B

dP(x, y).

In the supervised learning setting, the data-generating process is assumed to sample inde-
pendently and identically distributed (i.i.d.) pairs (x, y) ∈ X × Y from P. This motivates
the following definition.

Definition 2.4 (Sample of size N). Consider a supervised learning scenario with the prod-
uct probability space (X × Y ,FX×Y ,P). For N ∈ N, the Cartesian product of N such
probability spaces is the tuple ((X × Y)N ,FN

X×Y ,PN), where:

• (X × Y)N = (X × Y) × (X × Y) × · · · × (X × Y) denotes the (N-fold Cartesian
product.
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• FN
X×Y = FX×Y ⊗ FX×Y ⊗ · · · ⊗ FX×Y denotes (N-fold product σ-algebra), i.e., the

smallest σ-algebra that makes all projections onto individual components measurable.

• PN is the product probability measure, defined on FN
X×Y , which satisfies:

PN(A1 × A2 × · · · × AN) =
N∏
i=1

P(Ai),

for all Ai ∈ FX×Y , i = 1, . . . , N.

Then, a sample of size N is a collection of N independent and identically distributed (i.i.d.)
random variables {Zi = (Xi, Yi)}Ni=1 defined on the same product probability space X × Y.
Formally, the sample is represented as:

SN = {(xi, yi)}Ni=1 ∈ (X × Y)N .

The goal of a learning machine is to infer a hypothesis h : X 7→ Y that approximates the
relationship between inputs (features) and outputs (labels).

Definition 2.5 (Hypothesis Space). Let (X ,FX ) be the feature space and (Y ,FY) the label
space.The tuple (H,FH) is then called the hypothesis space, where H ⊂ YX is the set of
hypotheses h and FH is a σ-algebra on H.

To formalize the learning process, we introduce the concept of a learning algorithm, which
serves as the computational mechanism by which a learning machine operates. In this
regard, we closely follow the definition of a learner in [20].

Definition 2.6 (SL algorithm). Let (X ,FX ) be the feature space, (Y ,FY) the label space,
and (H,FH) the hypothesis space. Considering the supervised learning scenario, a super-
vised learning algorithm is a measurable mapping:

A :
∞⋃

N=1

(X × Y)N → H,

where measurability is defined with respect to FH and the σ-algebra generated by the union
over N of FN

X×Y .

The learning algorithm A maps a finite sample S of any size N to a hypothesis h ∈ H,
such that we can define

hS ≡ hSN
:= A(SN). (2.1)

as the hypothesis returned by the learning algorithm upon inspecting sample SN .

For several SL scenarios one can define a deterministic function

c : X → Y ,
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called the (deterministic) concept function, which represents the true relationship that the
learning algorithm aims to discover or approximate and that lies within the range of A.
However, not only might c /∈ H, but it might not exist at all. This can occur, for example,
when dealing with a supposedly random outcome, as in the case of a dice roll, or when
dealing with a highly non-linear, high-variability relationship between input and output,
such as predicting age based on height.

The practitioner’s prior knowledge constrains H to a proper subset of the entire function
space YX , for example, by considering only linear transformations of the input.

Example 2.7 (Binary classification via separating hyperplanes). A binary classification
task with X = Rd and Y = {−1, 1} that is performed on a linearly separable dataset, i.e.,
the two classes can be completely differentiated by a hyperplane w = (w0,w) ∈ Rd+1, will
have an associated hypothesis space

Hhp =
{
h ∈ YX | h : x 7→ sign(w0 +w · x), (w0,w) ∈ R× Rd, w ̸= 0

}
.

For a hypothesis h, the discrepancy between the predicted output h(x) and the true label
y is measured by a loss function

l : Y × Y → R+ ∪ {0},

which can take various forms depending on the specific task.

Example 2.8 (Common loss functions). Let Y = R. Then, among the loss functions that
are heavily used in practice, we mention the following:

• 0-1 loss: l01 : R× R 7→ {0, 1}, l01(y, h(x)) = 1y ̸=h(x)

• Mean squared error (MSE) loss: lMSE : R×R 7→ R+∪{0}, lMSE(y, h(x)) = (y−h(x))2

• Hinge loss: lHL : R× R 7→ R+ ∪ {0}, lHL(y, h(x)) = max(0, 1− y · h(x))
Most supervised learning algorithms operate by solving an optimization problem defined
in terms of a quantity known as the risk functional R[h]. This functional evaluates the
predictive power of a given hypothesis by taking the expectation of the loss function under
the joint probability distribution:

R[h] := E(X,Y )∼P[l(Y, h(X))]. (2.2)

Since the joint distribution P is typically inaccessible to us, the true risk cannot be com-
puted. However, we can use the data sample SN that we have at our disposal in order to
construct a related quantity

R̂SN
[h] ≡ R̂S[h] :=

1

N

N∑
i=1

l(yi, h(xi)),

called the empirical risk.

The intuitive idea that the empirical risk should approximate the true risk is formally
supported by the following result:
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Theorem 2.9 (Expectation of the Empirical Risk). [17] For any hypothesis h and any
given sample S, the following holds:

ES∼PN [R̂S[h]] = R[h]. (2.3)

Proof. Using the linearity of the expectation operator, we get

ES∼PN [R̂S[h]] =
1

N

N∑
i=1

E(xi,yi)∼P [l(yi, h(xi))]

= E(x,y)∼P[l(y, h(x))]

= R[h].

where we used that (xi, yi) are i.i.d., meaning that each term in the sum is identical.

Since we now have a relevant computable quantity, namely R̂S[h], the most natural ap-
proach to finding a hypothesis is to search for a minimizer:

ĥS := argmin
h∈range(A)

R̂S[h].

This is known as Empirical Risk Minimization (EMR) and defining F := range(A) ⊆ H,
we assume that the algorithm will always output such a hypothesis hS:

∀h ∈ F : R̂S(hS) ≤ R̂S(h).

However, the learned model hS might not be a minimizer of the true risk, potentially leading
to poorer performance on test data, i.e., data that is not part of the training process. To
analyze this discrepancy further, we introduce the notion of a theoretically best hypothesis
h∗, defined by

R[h∗] := inf
h∈H

R[h].

Since the algorithm might not be able to exhaust H, we introduce the optimal hypothesis
hF , defined by:

R[hF ] = inf
h∈F

R[h]. (2.4)

We can now inspect how badly does a given h do compared to the benchmark h∗ using a
trick called error decomposition. Thus, for all h ∈ F :

R[h]−R[h∗] = (R[h]−R[hS]) + (R[hS]−R[hF ]) + (R[hF ]−R[h∗]), (2.5)

where hS is the output model after looking at S.

The last error term depends solely on how well can our algorithm approximate the best
solution, so there is little one can do about it. Nevertheless, we can see that enlarging F
could only decrease this type of error.
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On the other hand, it is true that

R[hS]−R[h] = (R[hS]−RS[hS]) + (RS[hS]−RS[h]) + (RS[h]−R[h]) (2.6)

≤ |R[hS]−RS[hS]|+ |RS[h]−R[h]| (2.7)

≤ 2 sup
h̃∈F

∣∣∣R[h̃]−RS[h̃]
∣∣∣ , (2.8)

which implies that the second error term can only increase with a larger F , since the above
inequality must also hold for h = hF .

This trade-off is commonly referred to in the statistics community as the bias-variance
trade-off, while in machine learning, it is recognized in terms of underfitting and overfitting.
Specifically, if the model class is too restrictive, it results in higher bias and a larger gap
between the achievable best and the theoretical best. As a result, the learned predictor may
overlook the nuances of the training data, leading to poor performance on the training set
but potentially better performance on the test set (underfitting). Conversely, a sufficiently
rich model class increases variability, resulting in a greater deviation between what is
learned and what could be learned. This suggests that the model has adapted too closely
to the training data, thereby reducing its ability to generalize (overfitting).

So far, the whole discussion has been based on the assumption that one is dealing with
i.i.d. train and test data, drawn from the same underlying distribution P. However, this
assumption is rarely met in real-world scenarios, where the non-stationarity of P is almost
inevitable when transitioning from training to testing. A substantial amount of research
has been dedicated to investigating and addressing this issue, which will be introduced
in the next chapter. To fully understand it, we must first become familiar with the tools
developed based on the foundations presented thus far. This is the purpose of the next
section.

2.3 PAC-learning

Learning from data has historically been a successful endeavor. Alongside the practical
advancements in the field, a substantial body of theory has developed to justify the heuris-
tics that have guided practitioners since the field’s birth. A central question that arises is:
how can we guarantee that a learning algorithm will perform well on unseen data, given
only a finite set of training examples? The Probably Approximately Correct (PAC) learn-
ing framework, introduced by Leslie Valiant in 1984 [21], provides a formal foundation for
answering this question.

PAC learning offers a rigorous approach to understanding the conditions under which a
hypothesis, learned from a finite set of examples, will generalize well to the entire input
space. In this framework, learning is considered successful if, with high probability, the
hypothesis is approximately correct, i.e., it has a low error rate on unseen data. This
probability is computed using the probability measure PN that governs the distribution of
the samples seen during training.
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The strength of PAC learning lies in its ability to quantify the trade-offs between the
number of training samples, the complexity of the hypothesis class, and the accuracy and
confidence of the learned model. By framing the learning process in probabilistic terms,
PAC theory enables us to derive bounds on the sample complexity, that is, the number of
training examples required to ensure that the learning algorithm achieves a desired level
of performance.

Moreover, PAC learning provides insights into the feasibility of learning various classes
of functions. It introduces key concepts such as the VC dimension (Vapnik-Chervonenkis
dimension) [22], which measures the capacity of a hypothesis class and plays a crucial
role in determining whether a class is PAC-learnable. Through the analysis of the VC
dimension, PAC learning theory helps us understand the limitations of certain algorithms
and guides the design of more efficient learning methods. The first part of the present
section is dedicated to a discussion of this complexity measure.

The second part of this section will cover the Fundamental Theorem of Binary Classifica-
tion, a result that links the complexity of a hypothesis class to the feasibility of learning
within that class. In essence, the theorem implies that if the VC dimension of a hypothesis
class is finite, there exists an algorithm that can learn any target function within that
class with high probability, given a sufficient number of training examples. Conversely, if
the VC dimension is infinite, no PAC learning algorithm can guarantee learning the class
within the PAC framework, regardless of the number of samples.

2.3.1 PAC-learnability and the VC dimension

Let us recall that for a given hypothesis class F of a learning algorithm A, the hypothesis
hF was defined in equation 2.4 as the best possible hypothesis within F . Now, considering
the hypothesis hS returned by A, and given the sample size N of S, we seek to evaluate
how well the algorithm approximates hF by examining the deviation ϵ ∈ (0, 1), referred to
as the error tolerance, between their respective true risks. Due to the inherent randomness
in the selection of the sample S, we can only make a probabilistic statement, estimating
this deviation using a confidence parameter δ ∈ (0, 1). We present the following definition.

Definition 2.10 (Agnostic PAC-learning). [23] Given a set F of achievable hypotheses
by an algorithm A, we call A an F-agnostic PAC-learning algorithm if and only if there
exists a polynomial p such that:

∀ϵ, δ ∈ (0, 1) : ∀PX×Y : ∀N ≥ p

(
1

ϵ
,
1

δ

)
: PrS∼PN (R[hS]−RF ≥ ϵ) ≤ δ. (2.9)

The difference that defines the event in the statement above was previously discussed in
equation 2.6. There, we observed that an upper bound is related to another important
quantity known as the generalization gap, which for a given hypothesis h is expressed as

|RS[h]−R[h]| .
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The bounds on this quantity are known in the literature as generalization bounds. As
discussed in the closing remarks of section 2.2, this difference tends to increase with the
complexity of the hypothesis class F , primarily due to overfitting. But how should we
define this complexity? A natural suggestion might be to consider the cardinality of the
hypothesis space, |F|. However, this approach is often inadequate. For instance, it is easy
to imagine scenarios where this cardinality doesn’t exist or is infinite, even in the simplest
cases.

Consider, for example, a classification task with a one-dimensional feature space X =
R, where H represents the set of all possible threshold functions. Since each threshold
corresponds to a real number, the hypothesis space is uncountably infinite, making a
cardinality-based bound ineffective. Furthermore, even if H were finite, selecting from a
finite set of thresholds could lead to redundancies, as different thresholds might result in
identical labelings, thus allowing for too loose bounds.

In practice, however, any hypothesis space F will be finite due to the discretization of data
and the limited storage capacity of the device in use. However, this remains unsatisfactory
because the number of possible hypotheses is often astronomically large, given the nature
of the problems we typically face. Therefore, we must consider alternative measures, with
the VC dimension emerging as a particularly suitable indicator. The remainder of this
chapter will focus exclusively on the binary classification task.

Definition 2.11 (Bit sequences sets). [14] Let F be a hypothesis space over a feature space
X and let C ⊆ X , C = {x1, . . . , xr}. We call F|C the set of r-bit sequences (also known as
dichotomies)

F|C := {(h(x1), . . . , h(xr)) | h ∈ F} ⊆ {0, 1}r.

Moreover, we say that the set C is shattered by F if and only if F|C = {0, 1}r.

Example 2.12. Let X = R and let F be the set of all possible threshold functions param-
eterized by real numbers. For any set C = {a, b} where a < b, the set of all possible 2-bit
sequences that can be realized is {(0, 0), (0, 1), (1, 1)}. On the other hand, any singleton
C = {a} is shattered by this F .

Definition 2.13 (Growth function). [23] Let F be a hypotheses set over feature space X .
The growth function mF : N → N is defined as

mF(n) = max
C⊆X
|C|=n

∣∣F|C
∣∣ .

The growth function captures the effective number of hypotheses in F . In terms of the
example described above, given any n = 2 points on the real line, the effective number of
hypotheses is 3, since, for example, the infinity of thresholds t > b that produce the (0, 0)
sequence are counted as one.



2.3 PAC-learning 12

Definition 2.14 (VC dimension). [23] Let F be a hypotheses set over feature space X .
The VC dimension VC(F) is defined as

VC(F) :=

{
max {n ∈ N0 | mF(n) = 2n} if it exists,

∞ otherwise.

In other words, since 2n is the maximum number of possible binary n-sequences, we say
that F has VC(F) = n if there exists at least one subset of n elements that is shattered
by F , and no subset of n+ 1 elements can be shattered by F .

We are going to cite a result that provides a combinatorial bound on the growth function
and that allows us to see the VC dimension from another point of view. The proof can be
found on pages 74–75 in [17].

Lemma 2.15 (Sauer’s lemma). [17] Let H be a hypothesis class with d := VC(H) < ∞.
Then, for all n ∈ N,

mH(n) ≤
d∑

i=0

(
m

i

)
. (2.10)

Moreover, if n > d+ 1, then

mH(n) ≤
(en
d

)d
. (2.11)

As a corollary to Sauer’s lemma, the growth function can be expressed as follows:

mF(n)

{
= 2n, if n ≤ d,

≤
(
en
d

)d
, if n > d.

This allows us to interpret the VC dimension as the transition point from an exponential
behaviour in the subset size n (of the effective number of hypotheses) to a polynomial one.
Next, we will provide some examples of VC dimension computations.

Example 2.16 (Fixed slope linear classifiers). Consider X = R2 and the hypothesis class
Fm = {hc(x) = w ·x+ c | c ∈ R} for some fixed slope w ∈ R2. Any singleton C = {x1} can
be shattered by Fm, but this no longer holds for more than one point. This is because the
restriction of being allowed to only move vertically induces an order relation that makes
the problem equivalent to the one shown in Example 2.12. More concretely,

∀c1, c2 ∈ R2 : c1 ⪯w c2 ⇔ |w · c1| ≤ |w · c2|.

Hence, VC(Fm) = 1.

The previous example is relevant for the discussion concerning the second approach that
we suggest in Chapter 4. There we make use of this geometric constraint (fixed slope) in
order to justify the remarkable efficiency of the adaptation method described at the end of
the next chapter.
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Example 2.17 (Axis-aligned rectangles in R2). Consider a hypothesis set of axis-aligned
rectangles Frec, i.e., hypotheses of the form

ha1a2b1b2(x) =

{
1, if (x1 ∈ [a1, a2]) ∧ (x2 ∈ [b1, b2]),

0, otherwise.

We can always identify a set C = {x1, x2, x3, x4} of four distinct points where x1 and
x2 have the extreme values in the x-dimension, and x3 and x4 have the extreme values
in the y-dimension. It is straightforward to see that the set C can be shattered by Frec.
However, for any set of five points, one of three situations occurs. First, it might be
possible to select four distinct points, each representing an extremal component, with the
fifth point x5 necessarily lying within the convex hull formed by these four points, making
the labeling (1, 1, 1, 1, 0) unachievable. Second, if one point x1 has both components as
extremal values and two points x2 and x3 each have one extremal component, then the
dichotomy (1, 1, 1, 0, 0) cannot be realized. Lastly, if only two points x1 and x2 account for
all four extremal components, then the sequence (1, 1, 0, 0, 0) becomes impossible. Examples
of these scenarios are illustrated in Figure 2.1. Consequently, the VC dimension of Frec is
VC(Frec) = 4.

(a) All dichotomies possible (b) (1, 1, 1, 1, 0) impossible

(c) (1, 1, 1, 0, 0) impossible (d) (1, 1, 0, 0, 0) impossible

Figure 2.1: Examples of subsets in the VC computation of axis aligned rectangles.
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The VC dimension is notoriously difficult to compute. However, there are a few results
that make its computation straightforward, such as the following:

Theorem 2.18 (VC dimension for linear spaces). [23] Let G be a finite-dimensional R-
vector space of functions of the form g : X → R. Let ϕ : X → R be an additional fixed
function. Then, for some threshold function τ : R → [0, 1], the hypothesis space

F := {x 7→ τ (ϕ(x) + g(x)) | g ∈ G} ⊆ {−1,+1}X

has VC dimension
VC(F) = dimR(G).

Coming back to the generalization gap, we can now cite one of the most important results
in the theory of learning. The proof can be found in the Appendix of [24].

Theorem 2.19 (VC generalisation bound). [14] Let H be a hypothesis class with VC
dimension d. Consider a sample S of size N drawn independently from a distribution P
over the feature space. For any hypothesis h ∈ H, holds with probability at least 1− δ:

R[h] ≤ R̂S[h] +

√
8d log

(
N
d

)
+ 8 log

(
4
δ

)
N

.

The power of this statement lies in its generality. It proves that every hypothesis from
a class with finite VC dimension will eventually generalize well, even if |H| = ∞. The
reverse of the medal is that the bound proves to be too loose in most practical applications.
Nevertheless, it can still serve as a useful rule of thumb in comparing models, owing to the
fact that smaller VC dimensions lead to better generalization.

Now that we are familiarised with probabilistic statements involving learnability and VC
dimensions, we will discuss a fundamental result in the next subsection.

2.3.2 The fundamental theorem of binary classification

We complete our mathematical discussion with the most important theoretical result con-
cerning the task of binary classification:

Theorem 2.20 (Fundamental theorem of binary classification). [23] Let F ⊆ {−1, 1}X be
a hypothesis class, S a sample of size N drawn according to PN and R the 0-1 risk. Then,
the following are equivalent:

I. VC(F) < ∞ .

II. There is a polynomial p
(
1
δ
, 1
ϵ

)
such that for any measure P and pair (ϵ, δ) ∈ (0, 1)2:

N ≥ p

(
1

δ
,
1

ϵ

)
⇒ PN [∃h ∈ F : |R̂S[h]−R[h]| ≥ ϵ] ≤ δ. (2.12)
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III. There is a polynomial p
(
1
δ
, 1
ϵ

)
and A : S 7→ hS such that for any measure P and pair

(ϵ, δ) ∈ (0, 1)2:

N ≥ p

(
1

δ
,
1

ϵ

)
⇒ PN [|R̂S[hS]−RF | ≥ ϵ] ≤ δ. (2.13)

IV. There is a polynomial p
(
1
δ
, 1
ϵ

)
such that for any measure P, any pair (ϵ, δ) ∈ (0, 1)2

and any empirical risk minimiser hERM
S :

N ≥ p

(
1

δ
,
1

ϵ

)
⇒ PN [|R̂S[h

ERM
S ]−RF | ≥ ϵ] ≤ δ. (2.14)

A comprehensive proof can be found in [17]. This result naturally fuses the concepts of
learnability and VC dimension, as the theorem implies that a hypothesis class with a finite
VC dimension is PAC-learnable. In other words, there exists a learning algorithm that can,
with high probability, produce a hypothesis whose risk is close to the minimum possible
within the class, given a sufficiently large sample size. Conversely, if the VC dimension
is infinite, the class is not PAC-learnable, as no polynomially bounded sample size can
guarantee such performance.

The theorem also provides a bound on the sample complexity required to achieve a specified
accuracy and confidence level in learning, which is directly tied to the VC dimension.
Specifically, the number of samples N needed grows polynomially with 1/ϵ and 1/δ, and
is also influenced by the VC dimension of the hypothesis class. This relationship between
sample complexity and VC dimension is fundamental to understanding the feasibility of
learning within the PAC framework.



Chapter 3

The domain adaptation problem

We aim to introduce the domain adaptation problem using the terminology developed in
Chapter 2. In that chapter, we assumed the existence of a probability measure P on the
product space X ×Y , which governed the data generation process. A natural relaxation of
this assumption allows the distribution to vary when transitioning from training to testing.
This approach directly accounts for any significant observed decline in the generalization
performance of a machine learning algorithm. For instance, a straightforward method to
test for the presence of such a distribution shift, beyond simple visualization techniques, is
to train a classifier that distinguishes between the two datasets. Based on the classifier’s
performance, one can determine whether applying domain adaptation (DA) methods could
mitigate the identified discrepancy or if other factors are affecting the model’s behavior.
The general framework for addressing this type of problem is known as Transfer Learning
(TL) and for a comprehensive overview of the field, we recommend consulting the survey
by Pan et al. [25].

As a first step towards generalization, we define objects called domains, which are tuples
denoted as Di = (Xi,PXi

), consisting of a feature space Xi and a (marginal) distribution
PXi

. Similarly, a learning task, particularly in a deterministic supervised learning scenario,
can be described as a tuple Tj = (Yj, cj). The domains and tasks used in the training
process are referred to as source domain(s) and source task(s), while their counterparts in
the testing scenario are referred to as target domain(s) and target task(s). The indices i
and j represent positive integers corresponding to the number of such domains or tasks.
However, since we are only considering one of each, it is notationally more convenient to
use i, j ∈ {s, t}.
Using these definitions for domains and tasks, there are multiple possible ways in which
they can differ. Based on the categorization of TL techniques indicated in [25], what we
will focus exclusively on is a specific setting known as transductive transfer learning, as
is going to become evident from the description of the toy model in section 3.2. For a
visual representation of how DA fits within the broader field of transfer learning and its
relationship to the setup discussed in Chapter 2, please refer to Figure 3.1.
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Figure 3.1: The DA problem in the TL framework. The mathematical setup of Chapter 2
concerns only the node outside the purple box. Taken from [26].

3.1 Real-life example

We begin by discussing a challenge encountered in the real-world application of a classifi-
cation algorithm in a disease detection study.

Consider an experimental group that possesses a set of N ideally preserved blood samples.
These samples were collected as part of a case-control study aimed at detecting a specific
disease. Each blood sample i is labeled with a value yi, indicating the presence or absence
of the disease: ”1” for sick patients (cases) and ”0” for healthy patients (controls).

Furthermore, suppose the group has a measurement device that captures all relevant char-
acteristics of a blood sample as a sequence of numbers, such as the absorbance at each
wavenumber of a laser pulse directed at the sample. These measurements can be organized
into a feature vector xi, forming a pair (xi, yi) that represents the disease status of patient
i based on the physical properties of their blood. The key assumption is that the device
captures sufficient information to be used in a subsequent supervised classification task.

The group conducts an initial round of measurements at time t1 for the N samples. The
data collected by the device is used to train a logistic regression model, which achieves a
ROC-AUC of approximately 0.92 on a held-out portion of the samples that were not used
during training. Later, the group performs a second round of measurements at time t2.
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The practitioners aim to use the previously trained model to make predictions on the new
measurements of the same samples. However, when evaluated using the same metric, the
new ROC-AUC drops to around 0.82. This 10% reduction is attributed to a shift in the
probability distribution of the measured features, inherent to the measurement process. A
similar pattern is observed when using two distinct devices, which are presumed to be as
similar as possible. This is not surprising, as treating a single device at two different time
points can effectively be considered equivalent to using two different devices in terms of
the measurement process.

Addressing this domain adaptation challenge is essential in areas where the reliability of
a model can significantly impact human lives, such as in disease detection or self-driving
cars.

3.2 The toy model

The aim of this section is to create a conceptually straightforward and easy-to-visualize
toy model that clearly demonstrates the domain adaptation (DA) problem introduced
above. To achieve this, we generate two datasets that differ by an affine shift, resulting in
a manageable change in their underlying distributions. The data drift will be physically
described in alignment with the previous experiment.

We begin by simulating an approximately linearly separable dataset of size N = 1000,
sampled from two bivariate Gaussian distributions, G(µ1,Σ1) and G(µ2,Σ2), corresponding
to the two classes: controls (y = 0) and cases (y = 1). For convenience, we artificially
added a ”constant-1 feature” to account for the bias term in the model. Consequently, in
our toy model, we consider a source domain Ds = (Xs,PXs), where Xs

∼= R2 × {1} ∼= R2,
and a Gaussian mixture distribution given by

PXs =
1

2
G(µ1,Σ1) +

1

2
G(µ2,Σ2).

We then applied an affine transformation ∆ : Xs → Xs of the form

∆ : x 7→ λRφ⃗(x) + t,

representing the shift experienced by the source dataset, where λ ∈ R is a scaling param-
eter, Rφ⃗ denotes a rotation parameterized by φ⃗ ∈ R, and t ∈ R2 is a constant translation.
The resulting scenario is depicted in Figure 1a in Appendix A. The physical interpreta-
tion that connects the toy model to the real-life setup begins with the unknowable ob-
jective characteristics of each measurement sample. Their objective existence is posited
by considering an oracle that possesses the ground truth information the devices aim to
retrieve. These characteristics are transformed into features corresponding to the source
and target distributions through inaccessible mappings, D̃ and D, which represent the two
measurement processes. Assuming these transformations are invertible, the shift ∆ can be



3.2 The toy model 19

expressed through an appropriate composition. The resulting scheme is depicted in Figure
3.2.

Figure 3.2: Physical interpretation of the drift.

We trained a logistic regression model (Figure 3.3) on the source dataset to determine
the parameters of the separating plane, specifically the components of the model’s weight
vector. Given the properties of the cross-entropy loss function,

lCE(ŷ, y) = −(y log(ŷ) + (1− y) log(1− ŷ)), (3.1)

where

ŷ = ŷ(w, x) =
1

1 + exp (−w · x)
(3.2)

is the predicted output before applying a threshold function, the resulting optimization
problem is convex. As a result, gradient descent is guaranteed to converge to the global
minimum. Accordingly, we selected a small set of hyperparameters that achieved good in-
distribution accuracy (approximately 96%): a learning rate of α = 0.1, number of iterations
niter = 500, and train-heldout ratio thr = 0.8. After training, the output hypothesis is given
by

hã(x) = τ(ã · x),

where ã ∈ R3 represents the learned parameters and τ : (0, 1) → {0, 1} is the composition
of the threshold function

τ0.5(x) =

{
1 if x > 0.5,

0 otherwise,
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with the sigmoid function defined in Eq. 3.2. Since the resulting plane has virtually no
predictive power on the target data, we employ an adaptation method introduced in [27].
This is the focus of the next section.

Figure 3.3: The design of a generic logistic regression model, taken from [28].

3.3 The FEDA method

The ”Frustratingly Easy Domain Adaptation” (FEDA) method seeks to enhance perfor-
mance on target data by making straightforward modifications to the feature space. This
approach falls under the category of feature-based methods, as opposed to instance-based
and parameter-based techniques, which focus on reweighting labeled training data and di-
rectly adjusting model parameters, respectively. The original paper introduces it in the
context of a natural language processing task, specifically sentiment classification. Despite
achieving better-than-baseline performance, a rigorous explanation for its success is still
lacking, as highlighted by the author in a subsequent paper [29]: ”Theoretically analyzing
the superior performance of EA and EA++ and providing generalization guarantees is an
interesting line of future work.” and ”It would be interesting to formally frame these ap-
proaches and see whether their empirical performance can be justified within a theoretical
framework.”

Feature adaptation in FEDA is achieved through two augmentation maps, ϕ̃ and ϕ:

ϕ̃ : x 7→ (x, x,0),

ϕ : x 7→ (x,0, x).
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They map each feature vector from their respective domains to a tripled version, where
each of the three components represents a different type of general feature. Intuitively,
the first component captures features common to both domains, the second component is
reserved for source-specific features (hence ϕ maps it to 0), and the third component is
dedicated to target-specific features (hence ϕ̃ maps it to 0).

As with any adaptation method, the central question is how this approach compares in
performance to fully retraining on the target data, assuming full retraining is feasible.
Specifically, given access to a small annotated subset SM

t ⊆ St of target data of size
M := γN , where γ ≪ 1, can a clever manipulation of the feature space help reduce the
gap in model accuracy? Although our toy model provides access to all labeled data in the
target domain, we will use this as a reference scenario (II) only. To evaluate the adaptation
technique, we developed additional learning scenarios (I, III, IV) based on different training
sets, selecting the most effective one for detailed analysis in the next chapter. The scenarios
are as follows:

I. Train on source and annotated target Ss ∪ SM
t

II. Fully retrain on target St

III. Train on augmented annotated target ϕ(SM
t )

IV. Train on all augmented source data and annotated target data ϕ̃(Ss) ∪ ϕ
(
SM
t

)
The form of the learned hypothesis in the augmented cases differs as follows. To leverage
the previously learned information, represented by ã, we fix it as the first component of
the new transformation in both cases. In scenario III, we set the middle component to
be a constant zero vector, allowing only c ∈ R3 to be updated. Scenario IV follows the
same approach, except that the middle component is not constrained and is allowed to
vary freely.

Each scenario is repeated three times, using different fractions of target points: 5%, 10%
and 20% . The performance of the models is summarized in Figure 2, Appendix A. It is
evident that the third model achieved results closest to full retraining, with an impressive
accuracy of approximately 95%, nearly identical to the initial hypothesis on the source
data. The two decision boundaries are shown in Figure 1b. In the next chapter, we will
explore the effectiveness of this method for such small values of γ, both theoretically and
heuristically.



Chapter 4

The effectiveness of FEDA

We would like to return now to the question formulated at the end of Chapter 3. We will
focus our efforts on justifying the efficiency of the particularly simple adaptation method
described, using the tools provided by the PAC-learning framework.

4.1 A first approach

The third (III) learning scenario of 3.3 showed that only a small fraction γ of target points
is needed in order to match the performance of a full retraining. An intuitive explanation
would imply that there is no need for a large number of training points, since the model
capitalizes on the information already learned in the source training. Consequently, this
second learning problem should be less complex than the original one, and we hope to
capture this behavior in the VC dimensions of the following hypothesis classes:

I. Hhp = {τ ◦ Aa | Aa : x 7→ a · x+ a0, (a0, a) =: a ∈ Rd+1}

II. Ha
D−1 = {τ ◦ Aa ◦∆ | ∆ ∈ D−1}

where d = dimRX and D−1 is the set of inverse drifts, assuming that all admissible data
shifts are invertible, which is indeed the case for our toy model. Denoting byD the quantity
VC(Hhp) and by d the quantity VC(Ha

D−1), our hope is to find an expression of the form

γ = γ

(
d

D

)
. (4.1)

Using the result on the VC dimension of linear spaces of functions from Theorem 2.18,
we infer that the casual hyperplane learning problem I has D = d + 1. Upon further
investigation of the second class Ha

D−1 , one realizes that the chosen form of ∆ provides
enough ”freedom” in adjusting the initially learned hyperplane a that the two classes
become equivalent. Hence, VC(Hhp) = VC(Ha

D−1), and an expression of the form in Eq.
4.1 would have no explanatory power, since in this setup, we expect γ ≈ 1.
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Nevertheless, we believe that finding such an expression for γ can still be instructive,
as it becomes relevant when considering models other than logistic regressors, such as
neural networks. In such cases, it will typically be true that D ≫ d, allowing us to
draw meaningful conclusions about the FEDA method, particularly regarding the learning
scenarios in which it ceases to be efficient. Therefore, the first step is to define a measure
of efficiency, which requires a clearly specified goal and a threshold.

Suppose that an initial source training yields a hypothesis hI with performance R̂s[hI]. The
goal is to implement a method that returns a model hII with empirical performance r̂t[hII]
satisfying

R̂s[hI] ≈ r̂t[hII]. (4.2)

As is usually the case in DA problems, there is an associated cost c for labeling a single
target data point. Depending on an available budget B, this goal should be achieved by
spending as few resources as possible. We can then call an adaptation method efficient
by employing a threshold of efficiency, say γthr = 20%, representing a maximum fraction
of the budget spent by an efficient method. For example, in our real-life application of
Section 3.1, B could be given by the worst possible scenario, i.e., a full retraining. Taking
c = 10 $ makes the cost of acquiring a labeled target dataset of size M = N = 1000 be
C := Mc = 10,000 $, which is the size needed for a full retraining to satisfy condition 4.2.
We have empirically determined that in this example, FEDA is more than efficient (Figure
2), achieving a performance satisfying 4.2 with only γ = 5% < γthr or M = 50, yielding a
cost of only C = 500 $.

Of course, condition 4.2 alone does not rule out the possibility of a lucky choice of target
data. Therefore, what we are really interested in is making sure that the true risks obey

R[hI] ≈ r[hII]. (4.3)

We know that both quantities are related to their empirical counterparts by generalisation
bounds. Hence, one way to enforce this approximate equality is by making the error
functions in the VC generalisation bound for binary classification (Theorem 2.19) match:

ϵ(N,D, δ)
!
= ϵ(M,d, δ) = ϵ(γ, d, δ), (4.4)

which is equivalent to solving for γ the following equation:√
8D log

(
N
D

)
+ 8 log

(
4
δ

)
N

=

√
8d log

(
M
d

)
+ 8 log

(
4
δ

)
M

. (4.5)

This is because the number of source data points N is fixed, since an initial training cannot
be bypassed. So is the confidence level δ associated to the probability with which the bound
holds true, along with the VC dimensions D and d. Manipulating Equation 4.5 leads to
the implicit equation

γN
δ =

d

D

(
N

D

)γN
δ D/d−1(

4

δ

)(γN
δ −1)/d

. (4.6)
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Cast in this form, this quantity represents the fraction of target data needed to ensure
good generalization performance (condition 4.3), given the well-performing (condition 4.2)
hypotheses hI and hII, the confidence level δ, the size of the source dataset N , and the
complexities of the learning tasks, D and d.

Returning to our original example, let us fix δ = 0.05 and γthr = 20%. The numerical
solution of Equation 4.6, obtained using the Newton-Raphson method, is shown in Figure
4.1 for several values of source data points N . This plot confirms the intuition that for
similarly complex problems (d/D ≈ 1), one needs about the same number of training
points to achieve similar performances, regardless of how many samples were available in
the initial training. In fact, the (small) N -dependence becomes apparent only in the lower
and middle regimes, where once again we encounter an expected result: using more points
results in a better fitted hyperplane. The method did not converge for larger values of N .

Figure 4.1: The behaviour of γN
δ in terms of the complexity ratio d/D.

Another conclusion that can be drawn from the behavior of γN
δ is that FEDA is guaranteed

to be efficient, in terms of our (subjective) previously defined threshold, if the originally
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trained model is at least 10 times more complex than learning an affine shift. This seems
to be the case for a wide range of currently used, state-of-the-art classifiers. It remains,
then, to explain this efficiency in our simple toy model as well.

4.2 A second approach

We will heuristically argue why only a small fraction of target data points is needed in
our toy model to achieve source-matching performance, without relying on potentially
difficult-to-compute VC dimensions. In order to illustrate the idea, we firstly restrict the
set of possible affine shifts and allow only translations by a constant vector, as in Figure
4.2. The red decision boundary represents the initially learned hypothesis on the source
dataset, while the magenta plane is the optimal separation in the target set.

Figure 4.2: The target is the translation of the source by a constant amount.

Adaptation in this setup amounts to adjusting the bias term such that the initial plane
converges to the optimal boundary. Since we do not expect the adaptation to be perfect,
that is, to end up with the translated source boundary, we impose a convergence criterion
of being within an ϵ > 0 interval away from hw(0) . The adjustments are performed through
a sequence of updates that begin by randomly (uniformly) selecting a target point and
determining whether it is an outlier with respect to the current hypothesis. If the randomly
selected point is not an outlier, i.e., it is correctly classified, then another point is selected.
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If the new point is indeed an outlier, the update is performed such that the new plane
now passes through the identified outlier. This process is repeated until the accuracy on
the remaining target data either exceeds or falls within the tolerated value away from the
source-level performance.

Mathematically speaking, the description above is equivalent to introducing a sequence of
random variables X

(k)
i that correspond to sampling a point xi from the target distribution

at every update step k, such that

X
(k)
i (xi) =

{
1, if hw(k)(xi) ̸= yi

0, otherwise.

For a sufficiently large shift (such as the one in Figure 4.2), the initial probability of picking
an outlier with respect to the source boundary w(0) is

p0 := P
(
X

(0)
i = 1

)
=

1

2
, (4.7)

since the numbers of cases and controls are equal and thus half of the test points are
misclassified. This means that we initially expect to update the boundary after seeing at
most two target points.

After the first update, the decision boundary improves, reducing the number of outliers.
Let

pk := P
(
X

(k)
i = 1

)
denote the probability of selecting an outlier with respect to w(k). As the boundary becomes
more aligned with the target distribution, pk decreases. Furthermore, let Zk be a random
variable that corresponds to the number of points randomly chosen in the k-th update
step. Then, the probability of needing m iterations until an outlier is picked is given by
the geometric distribution

P (Zk = m) = (1− pk)
m−1pk. (4.8)

Thus, we define the expected number of target points needed per update step k by

Mk := ⌈E[Zk]⌉ =
⌈
1

pk

⌉
, (4.9)

where the expected value is rounded up to the next integer value, and the last equality
follows due to the well-known geometric series property for |x| < 1:

∞∑
n=1

nxn−1 =
1

(1− x)2
. (4.10)
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Consequently, the number of points that need to be seen before the next update, which is
inversely proportional to pk, increases. If we denote the last update step by k∗, then the
total number of expected target points,

M =
k∗∑
k=1

Mk,

will play the same role as in the previous section, i.e., the number of training target points
required for a successful adaptation. If N denotes the number of source training points,
the fact that M ≪ γthrN can be attributed to the rapidly decaying probabilities of finding
an outlier with every update step k.

Figure 4.3 depicts an example of the approach discussed so far, in which only two updates
(k∗ = 2) had to be performed before converging to the optimal boundary. Only seven
iterations (M = 7) were needed before the probability of detecting an outlier dropped
enough (Figure 4.4) to achieve a performance comparable to the source one, leading to a
fraction γk∗ = 0.7% ≪ γthr.

Figure 4.3: Example of a sequence of updates. The second boundary is already within an
admissible tolerance value away from the optimal boundary.
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Figure 4.4: The probability of picking an outlier is constant within each update step.

We performed 1000 simulations in order to compute γk∗ , twice. The results are shown in
Figure 4.5 and Figure 4.6.

Figure 4.5: Histogram showing the distribution of γk∗ over the 1000 runs.
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Figure 4.6: The values of γk∗ over 1000 runs.

In summary, the rapid decrease in the estimated outlier probability pk after each update
leads to fewer necessary updates, which in turn keeps the total number of points seen M
relatively low. Early updates, when relatively few points are needed per update, account
for most of the boundary’s improvement. This explains why, despite only sampling a small
fraction of the target dataset, the adapted boundary can achieve a performance comparable
to that of the source-level boundary.

This description of the adaptation process aligns with a constructivist viewpoint, as it
begins with an initial boundary and iteratively tracks the update steps until convergence
is achieved. However, there is an equivalent way of approaching this process by leveraging
the simple relationship between the minimum accepted accuracy aϵ (corresponding to the
boundary hw(ϵ)) and the probability pϵ of detecting an outlier with respect to hw(ϵ) :

aϵ = 1− 2pϵ. (4.11)

The above relationship arises because we assume that the selection of target data points
is conducted according to a uniform distribution. We can then bypass the sequence of
updates by looking directly at the number of points that need to be selected before we
arrive at an outlier with respect to the desired boundary hw(ϵ) . This can be represented by
a random variable K satisfying

P (K = k) = (1− pϵ)
k−1pϵ. (4.12)
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As we have seen before, the expected value of K is given by

E[K] =
1

pϵ
. (4.13)

The cumulative probability of a variable obeying a geometric distribution with parameter
pϵ is given by

P (K ≤ N) = 1− (1− pϵ)
N . (4.14)

Given δ ∈ [0, 1], setting the rightside term of this equation to a specific value 1−δ, i.e., the
probability with which we would like our inequality to hold, enables us to derive a bound
on N :

P (K ≤ N) ≥ 1− δ ⇔ (1− pϵ)
N ≤ δ (4.15)

⇔ N ln(1− pϵ) ≤ ln δ (4.16)

⇔ N ≥ ln δ

ln(1− pϵ)
. (4.17)

For δ = 0.05 and an accuracy of aϵ = 90%, these results indicate that, on average, 20 target
points are required to achieve an accuracy of 90%. Additionally, with 95% confidence, no
more than 60 points are needed to attain the same performance. Considering that the
number of source samples used was N = 1000, this explains why, for successful adaptation,
the majority of the target fractions in the simulations fall well below 10%.



Chapter 5

Numerical experiments

This chapter delves into the numerical experiments conducted to analyze the behavior and
performance of various domain adaptation methods implemented in the ADAPT package
[1], an open source library implementing the main transfer learning and domain adaptation
methods.

For a binary classification task (sex prediction) we tested 12 adaptation methods on a real-
world dataset consisting of blood-based spectroscopic measurements. The measurements
are part of a longitudinal sample collection framework of healthy individuals, with study
code H4H HU 2020 Sample Collection (approval reference number 2754-11/2020/EÜIG)
and were performed by two identical devices in two different facilities, one in Garching
(Germany) and one in Szeged (Hungary), resembling the situation described as a real-life
example in Chapter 3. We split the dataset into four parts: the source data consists of
measurements performed at the Szeged site, which are further divided into train and test
sets, while target data is the one measured in Garching, again split into train and test sets.

An L2-regularized logistic regression model is fitted to the source training set. Its per-
formance on both the within-site (source) and the cross-site (target) test sets is evaluated
using two metrics: accuracy and ROC-AUC. These results serve as benchmarks for all sub-
sequent adaptation methods. In order to construct a meaningful ranking of the methods,
we have consistently used the same subset of target data in the adaptation process. As
expected, some methods exhibited a more pronounced trade-off between source and tar-
get performance, which may not be desirable. Ideally, adaptation should maximize target
performance while maintaining strong performance on the original source task. To encode
this goal, we designed a custom performance metric that favors methods maximizing target
performance while penalizing large discrepancies between target and source evaluations.
For a given adaptation method i, the formula is defined as

CS(i) = wacc · acct(i) +wauc · auct(i)−wd · (|acct(i)− accs(i)|+ |auct(i)− aucs(i)|), (5.1)

where acct (accs) is the accuracy on the target (source) test data, auct aucs denotes the
ROC-AUC score on the target (source) test data and wacc, wauc and wd are the importance
weights associated to each term in the equation. For example, if the primary interest is to
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maximize the ROC-AUC score on the target test data, the weights for the accuracy and the
discrepancy between source and target can simply be set to 0. The corresponding values
of this metric are presented in the ”Composite Score” column of Table 5.1, where, for the
sake of simplicity, we used wacc = wauc = wd = 1. The plots containing the accuracy and
ROC-AUC comparisons for each method discussed are presented in Appendix B.

5.1 The ADAPT package

The algorithms provided in the ADAPT package aim to resolve problems related to transfer
learning, such as sample bias, fine-tuning and domain adaptation. Following the logic
of their implementation, the methods are categorized into three families: feature-based,
instance-based and parameter-based. This classification is based on the nature of the
transformation suffered by the base hypothesis (base estimator), i.e., the hypothesis learned
initially using only the source data. Within the same family, the meta-structure of the
adaptation algorithm is essentially the same, with possible differences coming from the
particularities of the internal transformations, as well as from the potential usage of labeled
target data.

Feature-based methods try to find a feature space transformation that aligns the source
and target distributions in an encoded representation. The adapted estimator is then the
hypothesis learned on the transformed data. On the other hand, instance-based methods
look for suitable weights that aim to account for the differences in the two distributions.
The weighting procedure is not considered an actual transformation of the dataset, but
rather as an amplification of the individual losses of certain training instances. Finally,
parameter-based methods transform the parameters of pre-trained models (fitted on train-
ing source data) such that the new estimator performs better on the target domain. In
the following, we are going to briefly describe each method that we utilized in descending
order of their respective composite scores. Their performances are summarized Table 5.1.

Table 5.1: Comparison of adaptation methods provided by the ADAPT package

Method Family Adaptation Method Composite Score
Source Test Target Test

Accuracy ROC-AUC Accuracy ROC-AUC

Feature-Based

FA 1.74 0.87 → 0.84 0.90 → 0.90 0.66 → 0.87 0.74 → 0.92
SA 1.74 0.87 → 0.87 0.90 → 0.93 0.66 → 0.89 0.74 → 0.90

PRED 1.66 0.87 → 0.79 0.90 → 0.87 0.66 → 0.88 0.74 → 0.94
TCA 1.43 0.87 → 0.84 0.90 → 0.91 0.66 → 0.79 0.74 → 0.80
fMMD 1.22 0.87 → 0.86 0.90 → 0.90 0.66 → 0.74 0.74 → 0.75
CORAL 1.21 0.87 → 0.87 0.90 → 0.90 0.66 → 0.71 0.74 → 0.77

Instance-Based

BW 1.76 0.87 → 0.87 0.90 → 0.93 0.66 → 0.86 0.74 → 0.92
KMM 1.59 0.87 → 0.75 0.90 → 0.84 0.66 → 0.78 0.74 → 0.85
KLIEP 1.18 0.87 → 0.83 0.90 → 0.87 0.66 → 0.66 0.74 → 0.78
LDM 1.01 0.87 → 0.46 0.90 → 0.71 0.66 → 0.54 0.74 → 0.63
ULSIF 0.98 0.87 → 0.83 0.90 → 0.88 0.66 → 0.63 0.74 → 0.71

Parameter-Based LinInt 1.71 0.87 → 0.82 0.90 → 0.90 0.66 → 0.95 0.74 → 0.99
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5.1.1 Feature-based methods

The Feature Augmentation (FA) Method

a The feature-based method with the highest composite score is FA, an alternative abbre-
viation for FEDA. While the ADAPT implementation differs slightly from the one used
in the toy model example, the underlying principle remains the same, as described in the
original paper [27]. The toy model exemplified its effectiveness in binary classification
tasks. Although this chapter does not primarily focus on the efficiency of the methods
(defined by the fraction of labeled target data required for source-matching performance),
we observe that the method was successful also on real-world datasets. Moreover, the
adapted estimator performed better on the target domain than the initial hypothesis did
on source data.

The Subspace Alignment (SA) Method

The SA adaptation method was introduced by Fernando et al. [30] and performed almost as
well as the FA method. This method first performs a Principal Component Analysis (PCA)
on the two domains in order to find the subspaces spanned by the returned eigenvectors.
The number of components d returned by the PCA needs to be specified when calling SA’s
fit method. Table 5.1 contains the results corresponding to the value of this parameter that
maximized the composite score. After determining the respective subspaces (the d basis
vectors of each subspace, denoted by XS and XT ), a subspace-alignment transformation
matrix M∗ is computed via the following optimization problem:

M∗ = argmin
M

∥XSM −XT∥2F , (5.2)

where ∥·∥F is the Frobenius norm. Due to its invariance under orthonormal transforma-
tions, one can use that X t

SXS = Id in order to obtain the closed-form solution

M∗ = X t
SXT . (5.3)

The source data is then projected on the aligned subspace, while the target data pro-
jected on the original subspace. Adaptation then consists in training a classifier on these
transformed source and target datasets.

The PRED Method

PRED is introduced as a baseline model in the same paper that proposed the FEDA
algorithm [27]. The method begins by training a base estimator solely on source data.
The fitted model is then evaluated on the target data, and the predictions are used as
additional features to construct an augmented target feature space. The adapted model is
subsequently represented by an estimator trained on this augmented target data. In the
ranking based on the composite score, PRED occupies the third position, primarily due to
a decrease in accuracy on the source data. However, its performance on the target data is
comparable to that of the top two methods.
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The Transfer Component Analysis (TCA) Method

Similarly to the SA method, TCA, introduced in [31], addresses domain adaptation by
finding a common subspace where the discrepancy between source and target domain data
distributions is minimized. This is achieved by learning a set of transfer components in
a Reproducing Kernel Hilbert Space (RKHS) using Maximum Mean Discrepancy (MMD)
as a measure of distributional distance [32]. This distance measure is desirable due to its
non-parametric nature, as opposed to parametric ones, which might require a computa-
tionally expensive density estimation. More concretely, given two sets of random variables
X = {x1, . . . , xn}, Y = {y1, . . . , ym} and a class of real-valued functions F , the empirical
estimate of the maximum mean discrepancy is defined as

MMD[F , X, Y ] := sup
f∈F

(
1

n

n∑
i=1

f(xi)−
1

m

m∑
i=1

f(yi)

)
. (5.4)

Without delving deeper into the details, it was proven [32] that selecting a reasonably
rich F , such as the unit ball in an RKHS, is enough to conclude that the MMD measure
vanishes for identical distributions.

The method transforms the data from both domains into this subspace, ensuring that the
transformed distributions are closer while preserving the data’s geometric and statistical
properties. As in the case of other feature-based methods, the adapted model will then
consist in a supervised classifier trained on the embedded source data.

The Feature Selection with MMD (fMMD) Method

The fMMD method was introduced in the paper ”Feature Selection for Transfer Learning”
[33] and is based, just like TCA, on the MMD distance. If ϕ : X 7→ H is a feature map
and H a universal RKHS, the distance between the source and target domains can be
empirically computed using the norm

dist(XS, XT ) :=

∥∥∥∥∥ 1

nS

nS∑
i=1

ϕ(XSi
)
1

nS

nT∑
i=1

ϕ(XTi
)

∥∥∥∥∥
2

H

. (5.5)

Using the kernel trick, i.e., given a kernel function k, it holds that

∀xi, xj ∈ X : k(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩H, (5.6)

one can rewrite equation 5.5 as

dist(XS, XT ) = tr(KL), (5.7)

where K is the composite matrix defined on the source, target and across domains, while
L is the matrix accounting for the corresponding coefficients. The objective is to identify
the features that contribute the most to the distance between the two distributions. This
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is done by introducing a diagonal weighting matrix W that induces a transformed kernel
function k′,

k′(xi, xj) =
〈
ϕ
(
W 1/2xi

)
, ϕ
(
W 1/2xj

)〉
H . (5.8)

One would then look for the W that minimizes this distance in the solution of the following
convex optimization problem

W ∗ = argmin
W

−tr(K ′L) subject to

{
diag(W )t diag(W ) ≤ 1,

W > 0.
(5.9)

Finally, for a given weight threshold λ, one is able to distinguish between variant (wi > λ)
and invariant (wi < λ) features. Once again, the adapted model consists in a classifier
trained on the transformed source data, i.e., the source instances after removing the variant
features.

The CORrelation ALignment (CORAL) Method

The final feature-based method that we investigated is the CORAL method, proposed in
[34]. It aims to mitigate the dataset shift by aligning the second-order statistics (covariance
matrices) of the source and target distributions. This is done by computing the linear
transformation A that minimizes the distance

∥CŜ − CT∥2F ,

where CŜ is the covariance matrix of the transformed source features, CT is the covariance
matrix of the target data and ∥·2F∥ is once again the Frobenius norm. For the technical
details of the solution to this optimization problem, we refer the reader to the original
paper. After the source data is transformed, a classifier is trained on the adjusted features.

This algorithm is relatively simpler than the ones described above, but its performance on
the target data is the least impressive. This is most likely due to the fact that distance
used almost vanishes on our datasets, resulting in very little adaptation.

5.1.2 Instance-based methods

The Balanced Weighting (BW) Method

The BW method was initially introduced [35] as a means to leverage abundant and low-
quality auxiliary data in order to improve classification accuracy in scenarios where primary
data is scarce. This case is particularly relevant for the domain adaptation problem,
since one can treat the auxiliary data as data sampled from a source distribution, while
the insufficient primary data is sampled from the target distribution. This supervised
DA method is straightforward: it suggests replacing the initial (possibly regularized) risk
functional, defined during the training of the base estimator, with a balanced version that
takes into account the target data. Specifically, if l(yS, h(XS)) is the loss function used in
the fitting of the base estimator, then the new optimization problem is given by

min
h

(1− γ)l(yS, h(XS)) + γl(yT , h(XT )), (5.10)
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where γ ∈ [0, 1] is a free parameter of the method. The degree of balancing was determined
as the importance coefficient given to the target data that yielded the best performance
relative to the composite score.

The Kernel Mean Matching (KMM) Method

Kernel Mean Matching (KMM) is a method designed to correct sample selection bias by
reweighting the training data points such that their weighted distribution better matches
the test distribution in a high-dimensional Reproducing Kernel Hilbert Space (RKHS).
The optimal weights β(x) ∈ RnS are found by solving a quadratic programming problem
that minimizes the discrepancy between the two means while maintaining normalization
constraints:

min
β

1

2
β⊤Kβ − κ⊤β,

subject to

∣∣∣∣∣
nS∑
i=1

βi − nS

∣∣∣∣∣ ≤ nSϵ,

0 ≤ βi ≤ B, ∀i = 1, . . . , nS.

(5.11)

where K is the kernel matrix over the training data, κ is a vector reflecting the relationship
between training and test data, whose components are given by

κi =
nS

nT

∑
xj∈XT

k(xi, xj). (5.12)

The B and ϵ free parameters have been set by looking at the best performance in terms
of the composite score. The bound on the range of possible weight values is necessary in
order to avoid over-reliance on individual samples. The adapted model is the estimator
trained on the weighted training data.

The Kullback–Leibler Importance Estimation Procedure (KLIEP) Method

The KLIEP method, introduced in [36], starts by assuming that the importance weights
for each source sample x are given by the linear relationship

β(x) =

nT∑
i=1

αiK(x, xi), (5.13)

where xi are the target training data, x is a source instance, αi are the linear expansion
coefficients and K(x, xi) are basis functions, usually in the form of kernel models. Fur-
ther assuming that XS = XT = X , these weights are supposed to reflect the pointwise
ratio between the target and source distributions, such that one might estimate the target
probability from the source distribution:

P̂T (x) = β(x)PS(x) (5.14)
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One can then compute the Kullback-Leibler divergence of the estimated and true target
distributions:

KL
(
PT (x)||P̂T (x)

)
=

∫
X
PT (x) log

PT (x)

β(x)PS(x)
dx = (5.15)

=

∫
X
PT (x) log

PT (x)

PS(x)
dx−

∫
X
PT (x) log β(x)dx. (5.16)

The αi expansion coefficients are found by minimizing the KL divergence, or, equivalently,
by maximizing the empirical approximation of the αi-dependent term:

J :=
1

nT

nT∑
j=1

log

(
nT∑
i=1

αiK(xj, xi)

)
. (5.17)

The constraint of this optimization problem comes from the following normalization con-
dition:

nS∑
j=1

β(xj) =

nS∑
j=1

nT∑
i=1

αiK(xj, xi) = nS. (5.18)

In order to get the adapted model, a new classifier should be trained with the reweighted
instances.

The Linear Discrepancy Minimization (LDM) Method

In a similar fashion to the CORAL method, LDM, introduced in [37], seeks to align the
covariance matrices of the source and target data by a suitable transformation of the
source. However, instead of looking for an embedding transformation, LDM computes
the weights that contribute to the minimization of the maximum discrepancy between
reweighted source data and target. The objective function is given by

min
∥w∥1=1,w>0

max
∥u∥=1

∣∣u⊤M(w)u
∣∣ , (5.19)

where

M(w) =
1

nT

X⊤
T XT −X⊤

S diag(w)XS. (5.20)

After computing the weights, the adapted model is obtained by training the specified base
estimator on the reweighted source data.

The Unconstrained Least-Squares Importance Fitting (ULSIF) Method

Following almost the same recipe as the KLIEP method, ULSIF [38] is another procedure
of estimating the importance weights without explicitly estimating the density functions.
Keeping the same linear expression as in equation 5.13, the difference comes from using
a different objective function for finding the expansion coefficients αi. More concretely,
instead of the KL divergence, ULSIF minimizes the squared error between the estimated
and the true values of the importance weights:

J =

∫
X
PS(x)

(
β̂(x)− β(x)

)2
dx. (5.21)
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Further manipulation results in the following form of the optimization problem, after the
empirical approximations have been introduced:

max
α

1

2
α⊤Hα− h⊤α +

λ

2
α⊤α, (5.22)

where

Hkl =
1

nS

∑
xi∈XS

K(xi, xk)K(xi, xl) (5.23)

hk =
1

nT

∑
xi∈XT

K(xi, xk). (5.24)

The regularization parameter λ controls the tradeoff between minimizing the squared loss
and avoiding overfitting. To find its optimal value, ULSIF implements leave-one-out cross-
validation (LOOCV). The computational efficiency comes from the existence of a closed-
form solution:

α∗ = (H + λInS
)−1h. (5.25)

The adapted model is fitted using the reweighted source instances.

5.1.3 Parameter-based methods

The Linear Interpolation (LinInt) Method

The LinInt model has appeared as a baseline in the FEDA paper [27], along with the
PRED method, and it essentially consists in predicting labels as a weighted combination
of the outputs of a source-only (SrcOnly) model and a target-only (TgtOnly) model. The
adapted hypothesis has the form

hLinInt = αhsrc + (1− α)htgt, (5.26)

where the interpolation parameter α is learned with a linear regression model trained on
the (1−γ) fraction of the input target data. The method’s free parameter γ represents the
fraction of the input target data that ought to be used when training the TgtOnly model.
We settled for the value that indicated the best performance with respect to our composite
score.

5.2 An original data-augmentation method

In the continuation of this numerically focused chapter, we propose an original adaptation
method [39] that is based on a different type of transformation compared to those used in
the methods discussed thus far. In order to better explain the line of thought at the origin
of this approach, a more complete description of the dataset is in order.



5.2 An original data-augmentation method 39

We are considering the same task as before, namely, binary classification. As mentioned
earlier in this chapter, the data we have been working with consists of N blood-based spec-
tra measured using two seemingly identical, spatially separated devices. In the language
of domain adaption, this corresponds to assigning a ”source” and a ”target” label for each
site. Each measured spectrum belongs to an individual i ∈ P = {1, . . . , P} and accounts
for a specific visit j ∈ V = {1, . . . , V }. All blood samples, collected in any given visit of an
individual, are measured by the two devices. Out of the total number of individuals, we
select a subset of H subjects that generates nC spectra which are to be used as a calibra-
tion set between the two sites. Then, there will remain nS source spectra and nT target
spectra, nS = nT , such that

N = nC + nS + nT . (5.27)

For a given individual i and a visit j, a data point in our dataset is represented by a
random vector

xα
ij =

(
xα1
ij , . . . , x

αW
ij

)
∈ RW , (5.28)

where α ∈ {S, T} specifies the domain and W is the number of features, commonly referred
to as wavenumbers in spectroscopy. We can then define the components of the covariance
matrix over a set of visits of an individual i by

[Σα
i ]mn :=

1

|V t|

|Vt|∑
j=1

(
xαm
ij − ⟨xαm

i ⟩
) (

xαn
ij − ⟨xαn

i ⟩
)
, (5.29)

where V t ⊆ V refers to the subset of visits that is used during training. In the same fashion,
with a slight abuse of notation we define the components of the mean spectrum of each
individual by

⟨xαm
i ⟩ := 1

|V t|

|Vt|∑
j=1

xαm
ij (5.30)

The idea of our method is the following. Using the elementwise-averaged covariance matrix
over the calibration set,

[Σ
C
]mn :=

1

H

H∑
i=1

[Σi]
C
mn, (5.31)

together with the mean spectrum of each individual as defined in equation 5.30, one can
associate to each individual a multivariate Gaussian distribution (MVG) with the first two
moments specified by these quantities:

GW

(
xα
ij | ⟨xα

i ⟩,Σ
C
)
=

exp
(
−1

2
(xα

ij − ⟨xα
i ⟩)tΣ

−1
(xα

ij − ⟨xα
i ⟩)
)

(2π)W/2|Σ|1/2
. (5.32)

The associated MVGs can then be used to simulate visits for each individual in the training
set. The adapted model is then given by a classifier trained on the augmented dataset.
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The results of our method are shown in Figure 5.1. The first subfigure illustrates the
performance of the base estimator, i.e., the one trained on the original data. The following
two subfigures correspond to slightly different attempts at adaptation, using different forms
of the covariance matrix that defines the MVG. The performance of the method described
so far in this section is shown in the last subfigure (Model 3). We observe that initially
the base estimator had a ROC-AUC score of 92% on test data coming from the same
distribution, with slightly more modest values in cross-site prediction: 86% and 81%.
After adaptation, we notice an increase in the target performances that is comparable to
the adapted method’s within-site scores, demonstrating the success of our approach.

(a) Base estimator (b) Model 1

(c) Model 2 (d) Model 3

Figure 5.1: Performances of several models. The base estimator is shown in subfigure a),
while the method described in this section is illustrated in d). Figure reproduced from the
original paper [39].



Chapter 6

Conclusions

This thesis set out to address a significant challenge in the field of machine learning:
the domain adaptation problem, particularly as it applies to sensitive applications like
disease detection. Our research was driven by the practical observation that machine
learning models often suffer from a substantial performance drop when applied to data
that, although related, comes from a different distribution than the training data. This
issue is particularly critical in medical diagnostics, where models need to generalize reliably
across different patient populations, measurement times, or even devices.

To tackle this problem, we first explored a specific domain adaptation method known as
Frustratingly Easy Domain Adaptation (FEDA). The method’s simplicity contrasts with its
effectiveness, making it an attractive option for practitioners who require robust solutions
without the complexity of more intricate models. The FEDA method works by augmenting
the feature space in a way that helps the model bridge the gap between the source and
target domains with minimal additional data. The next step was to employ a simple toy
model designed to simulate a domain shift. This model involved generating a dataset from
two bivariate Gaussian distributions and applying an affine transformation to simulate a
shift in the data distribution. This setup provided a controlled environment to test the
FEDA method and compare it with other learning scenarios, such as full retraining on the
target domain data.

As we have seen, the FEDA method can achieve near-optimal performance using only
a small fraction of the target domain data. Specifically, the method has demonstrated
the ability to reach performance levels comparable to full retraining with as little as 5%
of the target data. This outcome is particularly significant in scenarios where acquiring
labeled target data is costly or logistically challenging. We also looked into the theoretical
foundations that explain why FEDA is so effective. By analyzing the VC dimensions of the
involved hypothesis classes, it was demonstrated that the method is guaranteed to work
with very little target data if the complexity ratio between the two classes is sufficiently
small. However, this was not the case for the simple model used in the initial training,
i.e., logistic regression combined with general affine shifts, as the ratio in this instance
turned out to be 1. Consequently, we developed a heuristic explanation for the observed
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efficiency, showing that the rapid reduction in the probability of encountering misclassified
target points after each update plays a crucial role in the method’s success.

The previous chapter focused on testing various domain adaptation (DA) methods on a
real-world dataset, also for the task of binary classification. To this end, we explored
several models implemented in the ADAPT Python toolbox and analyzed their perfor-
mance in terms of accuracy, ROC-AUC, and a custom composite score. Additionally, we
provided a brief overview of each method, emphasizing the similarities and structural dif-
ferences that justified their classification into three families: feature-based, instance-based,
and parameter-based. Next, we proposed an alternative adaptation method that, unlike
those described in the first section, involves a different type of transformation. Instead
of identifying a feature-space transformation, this approach augments the training dataset
by fitting multivariate Gaussian distributions using the individual mean spectra and the
elementwise-averaged covariance matrix over a calibration set, followed by sampling visits
for each subject. Training on the enhanced dataset yielded a model with an improved
target performance, almost equal to the within-site results, thus demonstrating the success
of our method.

One natural extension of this work would be to test these domain adaptation methods
on tasks beyond binary classification. The ADAPT package already includes methods
specifically tailored for linear regression, enabling their application to a broader range of
predictive tasks involving continuous outputs. Furthermore, it also offers methods custom-
designed for neural networks, which could be explored for more complex, non-linear prob-
lems. Widening the range to include multi-class classification or unsupervised learning
tasks, such as clustering or dimensionality reduction, would provide insights into the gen-
eralizability and adaptability of the approaches in various domains.
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Appendix A

Details on the toy model
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(a) Affine transformation in the toy
model.

2 0 2 4 6 8 10 12
Feature 1

4

2

0

2

4

6

8

Fe
at

ur
e 

2

Pre- and post-augmentation boundaries
Cases @ t1
Controls @ t1
Cases @ t2
Controls @ t2

pre-aug
post-aug III
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Figure 1: Subfigure a) Toy model dataset. Subfigure b) Pre- and post- adaptation decision
boundaries.

Figure 2: The four learning scenarios and the accuracies of the models for varying
fractions γ.
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Appendix B

ADAPT package results
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(a) FA Method
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(b) CORAL Method

Base Source Base Target Adapted Source Adapted Target
0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

0.87

0.66

0.86

0.74

fMMD method: Accuracy Comparison

(c) fMMD Method
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(d) PRED Method
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(e) SA Method
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(f) TCA Method
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(g) BW Method
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(h) KLIEP Method
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(i) KMM Method
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Figure 3: Comparison of accuracies.
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Figure 4: Comparison of ROC-AUC scores.
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