
Camera RAW Image Demosaicing
Using Modern Neural Networks

Master of Science Thesis
at the Faculty of Mathematics, Computer Science and Statistics
of Ludwig-Maximilians-Universität München in cooperation with

ARRI - Arnold & Richter Cine Technik

Author:
Thomas Eingartner

Supervisor:
Dr. Dirk André Deckert (LMU)

Co-Supervisors:
Harald Brendel (ARRI)
Dr.-Ing. Markus Mayer (ARRI)
Dr. Tamara Seybold (ARRI)

June 27, 2022

ii

Contents

List of Symbols . v

Introduction . 1

1 Regression with CNNs . 3
1.1 Supervised learning setting . 3
1.1.1 The regression problem . 3
1.1.2 Generalisation bounds . 3
1.2 Convolutional neural networks . 5
1.2.1 Tensor products . 6
1.2.2 The convolutional layer . 6
1.2.3 Multiple layers . 11
1.3 Optimisation of CNNs. 12
1.3.1 Gradient decent algorithm for convex functions . 12
1.3.2 Adjoint operators . 14
1.3.3 Backpropagation for generic neural networks . 15
1.3.4 Backpropagation for CNNs . 18

2 Demosaicing with CNNs . 25
2.1 Demosaicing . 25
2.1.1 General formulation . 25
2.1.2 The Bayer pattern . 26
2.2 Challenges . 28
2.2.1 Nyquist–Shannon sampling theorem . 28
2.2.2 Aliasing artefacts. 32
2.2.3 False colour . 34
2.3 Classic debayering strategies . 34
2.3.1 Bilinear interpolation. 35
2.3.2 Gradient based interpolation . 35
2.4 CNN architectures . 37
2.4.1 U-Net . 37
2.4.2 3-stage CNN . 40
2.5 Training . 45
2.5.1 Data . 45
2.5.2 Hyperparameters . 47

iii

3 Generative adversarial networks . 49
3.1 Probabilistic formulation . 49
3.1.1 The general setting . 49
3.1.2 The optimal discriminator . 51
3.2 Algorithmical aspects . 54
3.2.1 Parametrisation . 54
3.2.2 Minimisation of the virtual training criterion . 55
3.3 Application for image processing . 56
3.3.1 Supervised adversarial training . 56
3.3.2 Demosaicing with GANs . 57

Epilogue . 59

Bibliography . 61

iv

List of Symbols

ℕ natural numbers without 0
ℤ integers
ℝ real numbers
ℂ complex numbers
𝔼[𝑋] expected value of 𝑋
𝔼𝜔∼𝐷[𝑋(𝜔)] expected value of 𝑋 with respect to the distribution 𝐷
ℙ𝑋 pushforward measure of the measure ℙ and the random vari-

able 𝑋
𝑋 ∼ 𝑌 𝑋 is distributed as 𝑌
𝜇 ≪ 𝜈 absolute continuity of 𝜇 with respect to 𝜈
𝜆 Lebesguemeasure
𝜆𝑑 𝑑-dimensional Lebesguemeasure
|𝐴| cardinality of the set 𝐴
𝐴∁ complement of the set 𝐴
[𝑛] the set {1, 2, …, n} for 𝑛 ∈ ℕ
𝐶0(𝑋) space of continuous functions from 𝑋 to ℝ
𝐶0(𝑋, 𝑌) space of continuous functions from 𝑋 to 𝑌
𝐶𝑛(𝑋) space of 𝑛-times differentiable functions from 𝑋 to ℝ
𝐶𝑛(𝑋, 𝑌) space of 𝑛-times differentiable functions from 𝑋 to 𝑌
𝐶𝑛

𝑐 (𝑋) space of continuous or 𝑛-times differentiable, compactly sup-
ported functions from 𝑋 to ℝ, 𝑛 ∈ ℕ ∪ {0}

𝟙𝐴 indicator function/characteristic function of the set 𝐴
𝑓 ′ derivative of the univariate function 𝑓
𝜕𝑥𝑓 partial derivative of 𝑓 with respect to the variable 𝑥
𝜕𝑛

𝑥 𝑓 𝑛-th partial derivative of 𝑓 with respect to the variable 𝑥
∇𝑓 gradient of 𝑓
𝐷𝑓 total derivative of 𝑓
⟨𝑥, 𝑦⟩ scalar product of 𝑥 and 𝑦
‖𝑥‖ euclidean norm of 𝑥

̄𝛼 complex conjugate of 𝛼
Hom(𝑋, 𝑌) homomorphisms from 𝑋 to 𝑌
ℒ0(𝑋) space of measurable functions from 𝑋 to ℝ
𝐿0(𝑋) quotient space ofℒ0(𝑋)where functions equaling almost ev-

erywhere are identified
ℒ𝑝(𝑋) space of 𝑝-integrable functions from 𝑋 to ℝ

v

𝐿𝑝(𝑋) quotient space ofℒ𝑝(𝑋)where functions equaling almost ev-
erywhere are identified

ℒ∞(𝑋) spaceof functions from𝑋 toℝ that areboundedalmost every-
where

𝐿∞(𝑋) quotient spaceofℒ∞(𝑋)where functionsequalingalmostev-
erywhere are identified

‖𝑓‖𝐿𝑝(𝑋) 𝐿𝑝-norm of 𝑓, where 𝑝 ∈ ℕ ∪ {0, ∞}
supp(𝑓) support of 𝑓
argmin(𝑓) arguments of the minima of 𝑓
argmax(𝑓) arguments of the maxima of 𝑓

vi

Introduction

Digital cinema cameras require several processing steps to convert raw sensor data into a usable image.
Some critical steps include colour balance, denoising, colour correction and a nonlinear resampling
function to reduce bit depth. These algorithmsmust run in real-time overmillions of pixels on a battery
powered device, and therefore must be as energy and memory efficient as possible without sacrificing
optimal image quality. In the development of new cameras, these algorithms often need to be hand-
tuned as a group in order to achieve the goals of quality and efficiency, and results in the image process-
ing chain being scaled in its computing and storage requirements. The optimisation of the individual
algorithmic complexities can be very laborious with classical algorithms, ideally the entire processing
chain could be optimised in one step. These requirements of utmost quality, full-chain optimisation
and efficient algorithms leads naturally to the advantages offered by neural networks. In recent years,
the hardware for evaluating neural networks in mobile devices has improved significantly in terms of
energy consumption and costs. In addition, neural networks are now capable of efficiently perform-
ing complex image calculations. Convolutional neural networks (CNNs) in particular have established
themselves for this purpose. To prove the initial concepts and to reduce complexity, this work focuses
on the primary element driving image quality, the demosaicing algorithm. We show that CNNs are often
superior to classical algorithms in terms of image quality. This lays the foundation for implementing an
entire image processing pipeline in a single neural network in a camera in the future.

In order to implement a demosaicing algorithm as a neural network and to find an optimal architecture
for this problem, we first investigate the mathematical structure of CNNs and how they can be specif-
ically optimised using a gradient decent algorithm. Secondly, we are discussing the requirements for
a demosaicing algorithm by proving the Nyquist-Shannon sampling theorem and investigating clas-
sical demosaicing algorithms. For the demosaicing problem, in addition to the U-Net, a 3-stage CNN
architecture-, reflecting the algorithmic structure of gradient-based demosaicing algorithms-, is tested.
First, this architecture reconstructs the green channel of the image (which has the most luminance in-
formation) and then calculates the red and blue channels. Synthetic training datawas shown to be best
suited for training, and that the quality of this data is crucial for learning success.

One of the hyperparameters to be defined in optimisation problems is the choice of a loss function.
Especially in image processing tasks, standard loss functions, such as the mean squared error, do not
necessarily reflect theperceptual distancebetween the source imageand its reconstruction. While there
are approaches toother imagequalitymetrics in the fieldof colour scienceand signal processing theory,
this problem leads to the topic of Generative Adversarial Networks (GANs) from the machine learning
perspective. GANs are based on the concept that no loss function is being selected manually. Instead,
another neural network, which is trained simultaneously, takes over the task of a loss function. We will
review the arguments in [13] andprovidemoredetailedproofs that under ideal conditions this interplay
of the generator network and the discriminator network converges to an optimal minimum.

1

2

1 Regression with CNNs

1.1 Supervised learning setting

1.1.1 The regression problem

Machine learning refers to the task of making predictions using experience based on data. This can
mean either searching for a hypothesis that assigns specific, discrete labels to data (classification), or
a hypothesis that assigns real or complex values that are as plausible as possible (regression). In this
thesis we will focus on the latter. We follow the general machine learning setting [20], except that we
consider the problem of regressing multivalued functions instead of scalar functions. Let 𝒳 denote a
set of features and 𝒴 a measurable subset of ℝ𝑑, 𝑑 ∈ ℕ, whose elements we call labels. Let 𝑓 ∶ 𝒳 ⟶ 𝒴
be a target labeling function. Suppose that 𝑓 is unknown but we are given a finite set of samples 𝑆 =
((𝑥1, 𝑦1), … , (𝑥𝑚, 𝑦𝑚)) ∈ (𝒳×𝒴)𝑚 such that𝑦𝑖 = 𝑓(𝑥𝑖) for all 𝑖 ∈ [𝑚], where throughout this thesiswe
write [𝑚] = {1, 2, … , 𝑚}. The points 𝑥1, … , 𝑥𝑚 are independently drawn at random from a probability
distribution D over 𝒳. This is referred to as the deterministic scenario. In the more general stochastic
scenario, both the labels and the targets follow a distribution over 𝒳 × 𝒴.

Given a set of hypotheses 𝐻 ⊆ {ℎ ∣ ℎ ∶ 𝒳 ⟶ 𝒴} the goal of the regression problem is to find a
ℎ ∈ 𝐻, such that ℎ is a good approximation to 𝑓, by using 𝑆. For that, a notion of distance between
𝑓 and candidates from 𝐻 is needed. A loss function 𝐿 ∶ 𝒴 × 𝒴 ⟶ ℝ+ is a measurable function that
measures the magnitude of the error for a single data point. For example, for (𝑥1, 𝑦1) ∈ 𝒳 × 𝒴 the
loss of an hypothesis ℎ ∈ 𝐻 is 𝐿(ℎ(𝑥1), 𝑦1). If there is an 𝑀 > 0 such that 𝐿(ℎ(𝑥), 𝑓(𝑥)) ≤ 𝑀 for all
ℎ ∈ 𝐻, 𝑥 ∈ 𝒳, then we say that 𝐿 is a bounded loss function and the regression problem is referred to
as a bounded regression problem.

1.1.2 Generalisation bounds

In order to compare different candidate hypotheses, we introduce an error that measures how far the
values of the tested hypothesis deviate from the actual values. The problem is that in practice this error
can only be calculated on the training data, but not over the entire distribution on which the training
data is based on. For this reason, only an approximation of the error can be calculated. For this ap-
proximation, however, we need an estimate of how far it is from the actual error. This can be calculated
without the knowledge of the actual distribution, at least probabilistically. These estimates are called
generalisation bounds and can be derived with the help of concentration inequalities, such as the Ho-
effding inequality (see Lemma 1.1).

3

1.1. SUPERVISED LEARNING SETTING CHAPTER 1. REGRESSIONWITH CNNS

The generalisation error with respect to 𝑓 for a hypothesis ℎ ∈ 𝐻 is defined as

𝑅(ℎ) = 𝔼𝑥∼𝐷[𝐿(ℎ(𝑥), 𝑓(𝑥))].

In practice, it is usually not possible to calculate the generalisation error as this could mean summing
over an infinite set. For that, the empirical error is introduced and it is defined as

�̂�𝑆(ℎ) =
1
𝑚

𝑚
∑
𝑖=1

𝐿(ℎ(𝑥𝑖), 𝑦𝑖), 𝑚 ∈ ℕ.

The fact that we only have �̂�𝑆, but not 𝑅 is one of the main challenges. An algorithm

𝒜 ∶ (𝒳 × 𝒴)𝑚 ⟶ 𝐻
𝑆 ⟼ ℎ𝑆

(1.1)

to find an optimal hypothesis only gets feedback on the quality of a hypothesis based on �̂�𝑆.

Since the values of 𝑅 and �̂�𝑆 may differ, it may happen that 𝒜 returns a hypothesis ℎ ∈ 𝐻 such that
there exists another ℎ′ ∈ 𝐻 such that �̂�𝑆(ℎ) < �̂�𝑆(ℎ′) but 𝑅(ℎ) > 𝑅(ℎ′). This means that although
ℎ′ would be the better choice, ℎ achieves a lower value in our training criterion. This phenomenon is
calledoverfitting. Since �̂�𝑆 depends solelyondata from𝑆, overfittingmeans thatℎprobablygeneralises
poorly to previously unseen data from (𝒳 × 𝒴) ⧵ ⋃𝑚

𝑖=1(𝑥𝑖, 𝑦𝑖). For this reason it is of interest that the
deviation of the values of 𝑅 and �̂�𝑆 is as small as possible. The easiest way to achieve this is to choose
𝑚 large. The accuracy of �̂�𝑆 can be estimated by computing �̂� ̃𝑆 on an extra data set ̃𝑆, the so called
validation set which is not shown to 𝒜, and comparing �̂� ̃𝑆 with �̂�𝑆.

Note that generalisation bounds can be given for both, finite, and infinite hypothesis spaces. Because of
the finiteness of computationalmemory thehypothesis space is always finite in practice. For this reason
we restrict to providing a generalisation bound only for the finite case. For that we recall Hoeffding’s
inequality.

Lemma 1.1 (Hoeffding’s inequality) Let 𝑋1, … , 𝑋𝑚 be independent random variables with 𝑋𝑖 taking
values in an interval [𝑎𝑖, 𝑏𝑖] ⊊ ℝ almost surely for all 𝑖 ∈ [𝑚]. Let 𝜖 > 0, then the following inequalities
hold for 𝑆𝑚 = ∑𝑚

𝑖=1 𝑋𝑖:

ℙ[𝑆𝑚 − 𝔼[𝑆𝑚] ≥ 𝜖] ≤ 𝑒
− 2𝜖2

∑𝑚
𝑖=1(𝑏𝑖−𝑎𝑖)2 (1.2)

ℙ[𝑆𝑚 − 𝔼[𝑆𝑚] ≤ −𝜖] ≤ 𝑒
− 2𝜖2

∑𝑚
𝑖=1(𝑏𝑖−𝑎𝑖)2 (1.3)

A proof can be found in [20], Theorem D.1. Now we can formulate the learning guarantee for finite hy-
pothesis sets.

Theorem 1.2 (Generalisation bound for finite hypothesis sets) Let 𝐿 be a loss function bounded by
𝑀 > 0 and assume |𝐻| < ∞. Then, for 𝛿 > 0, the following inequality holds for all ℎ ∈ 𝐻 with
probability at least 1 − 𝛿:

𝑅(ℎ) ≤ �̂�𝑆(ℎ) + 𝑀√ log |𝐻| + log 1
𝛿

2𝑚
.

4

CHAPTER 1. REGRESSIONWITH CNNS 1.2. CONVOLUTIONAL NEURAL NETWORKS

Proof. Since 𝐿 only takes values in [0, 𝑀] we get for ℎ ∈ 𝐻 by Hoeffding’s inequality (inequation (1.2))
that

ℙ [𝑅(ℎ) − �̂�𝑆(ℎ) > 𝜖] ≤ 𝑒− 2𝑚2𝜖2

𝑚𝑀2 = 𝑒− 2𝑚𝜖2

𝑀2 .

Then, by the finiteness of 𝐻 we get

ℙ [∃ℎ ∈ 𝐻 ∣ 𝑅(ℎ) − �̂�𝑠(ℎ) > 𝜖] = ℙ [⋃
ℎ∈𝐻

{𝑅(ℎ) − �̂�𝑆(ℎ) > 𝜖}]

≤ ∑
ℎ∈𝐻

ℙ [𝑅(ℎ) − �̂�𝑆(ℎ) > 𝜖] ≤ |𝐻|𝑒− 2𝑚𝜖2

𝑀2 .
(1.4)

Setting the right-hand side to be equal to 𝛿 yields

−
2𝑚𝜖2

𝑀2 = log
𝛿

|𝐻|
⇒ 𝜖 =

√√√
⎷

−
𝑀2 log 𝛿

|𝐻|

2𝑚
= 𝑀√ log |𝐻| + log 1

𝛿
2𝑚

.

Thus, considering the complementary event as in 1.4 yields

ℙ ⎡
⎢
⎣

∀ℎ ∈ 𝐻 ∶ 𝑅(ℎ) − �̂�𝑆(ℎ) ≤ 𝑀√ log |𝐻| + log 1
𝛿

2𝑚
⎤
⎥
⎦

≥ 1 − 𝛿 �

Generalisation bounds give us a notion of how safe our training will lead to success. Nevertheless, they
are not sufficient in our case, since we need to have concrete influence on algorithm 𝒜 in order to ob-
tain an acceptable hypothesis. In fact, we do not have direct access to the distribution𝐷, but only have
empirical training data and a priori knowledge from the experience of classical algorithms that we can
use. The importance of the latter is underlined by the no-free-lunch theorem, that states that the learn-
ing algorithmwill, without incorporating a priori knowledge, not be better than guessing. The choice of
the hypothesis space 𝐻 is very crucial here. It can be parametrised very generally via neural networks.
Somewhat specialised, and particularly well suited for image processing, are convolutional neural net-
works (CNNs). In the next sections we are going to investigate the mathematical structure and training
techniques of CNNs in order to be able to choose a good hypothesis space of CNNs.

1.2 Convolutional neural networks

In Section 1.1 we formulated the goal of selecting a hypothesis ℎ from 𝐻 in such a way that the error
𝑅(ℎ) isminimised. This is achieved through optimisation. For that, it is necessary to parametrise𝐻 in a
way that𝑅(ℎ) can by optimisedwith respect to the parameters. For applications inwhich images are to
be analysed or processed, it is usually sufficient to restrict𝐻 to translation equivariant functions. These
can be efficiently represented with so-called convolutional neural networks (CNNs).

In this chapterwewant to lay themathematical foundation tobeable todescribeprecisely 2Ddeep con-
volutional networks architectures. For that, we have to fix notation for some preliminary objects such
as tensor products and elementwise functions. We will introduce the convolutional operator, which is
at the heart of CNNs. In order to be able to use this on image data in a practical way, it is necessary to
apply some other supporting operators, such as the padding operator and the cropping operator. In
addition, we will define element-wise functions which are needed such that non-linear functions can
also be represented.

5

1.2. CONVOLUTIONAL NEURAL NETWORKS CHAPTER 1. REGRESSIONWITH CNNS

The composition of the layers justmentioned form the so-called convolutional layer. In order to be able
to represent even more complex functions, the composition of several successive convolutional layers
can be built. This is called a deep CNN.

1.2.1 Tensor products

Often the data to be processed with a CNN consists of two-dimensional arrays with several channels.
For example, when processing image data, these can be red, green and blue channels. In addition, the
number of channels of the layers is often increased in deep CNNs in order to be able to extract abstract
features from the data. For this purpose, it is useful to represent the data as coefficients along an axis
that indexes the channels. This can be done using the tensor product.

Definition 1.3 (Tensor product of vector spaces) Let 𝐾 be a field and 𝑉 , 𝑊 be finite dimensional 𝐾-
vector spaces. Then, the tensor product of 𝑉 and 𝑊 is a pair (𝑉 ⊗ 𝑊, ⊗) of the tensor product space
𝑉 ⊗ 𝑊 together with a bilinearmap⊗ ∶ 𝑉 × 𝑊 ⟶ 𝑉 ⊗ 𝑊, where 𝑉 ⊗ 𝑊 and⊗ are defined as follows:

• Let 𝒱 = {𝑣𝑖 ∈ 𝑉 ∣ 𝑖 ∈ 𝐼} and 𝒲 = {𝑤𝑗 ∈ 𝑊 ∣ 𝑗 ∈ 𝐽} be bases of 𝑉 and 𝑊. Then we define
𝑉 ⊗ 𝑊 as the 𝐾-vector space with basis 𝒱 × 𝒲 = {(𝑣𝑖, 𝑤𝑗) ∣ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽}. Elements of 𝑉 ⊗ 𝑊
are of the form

∑
(𝑖,𝑗)∈𝐼×𝐽

𝑐𝑖𝑗(𝑣𝑖 ⊗ 𝑤𝑗), 𝑐𝑖𝑗 ∈ 𝐾.

• For 𝑣 = ∑𝑖∈𝐼 𝑎𝑖𝑣𝑖 ∈ 𝑉, 𝑤 = ∑𝑗∈𝐽 𝑏𝑗𝑤𝑗 ∈ 𝑊 we define the bilinear map ⊗ by

𝑣 ⊗ 𝑤 = ∑
(𝑖,𝑗)∈𝐼×𝐽

𝑎𝑖𝑏𝑗(𝑣𝑖 ⊗ 𝑤𝑗).

One can now verify that 𝑉 ⊗ 𝑊 is indeed a vector space under addition and scalar multiplication of the
coefficients and that ⊗ is bilinear.

Definition 1.4 (Inner product for direct product- and tensor product spaces) Let 𝐾 be a field and
𝑉1, … , 𝑉𝑟 be finite dimensional𝐾-vector spaces. For vectors 𝑣𝑖, 𝑤𝑖 ∈ 𝑉𝑖, 𝑖 = 1, … , 𝑟wedefine the inner
products of tuples and tensor products as

⟨(𝑣1, … , 𝑣𝑟), (𝑤1, … , 𝑤𝑟)⟩ =
𝑟

∑
𝑖=1

⟨𝑣𝑖, 𝑤𝑖⟩,

⟨𝑣1 ⊗ ⋯ ⊗ 𝑣𝑟, 𝑤1 ⊗ ⋯ ⊗ 𝑤𝑟⟩ =
𝑟

∏
𝑖=1

⟨𝑣𝑖, 𝑤𝑖⟩.

1.2.2 The convolutional layer

We will elaborate 2D convolutional neural networks (2D-CNNs or, throughout this thesis, CNNs) in a
mathematical framework. We use a similar notation as presented in [8], Section 4.2 but several defi-
nitions have been adapted to be inline withmachine learning frameworks like PyTorch, which has been
used for the empirical part of this thesis (see Remark 1.12). We begin by describing the actions of a
generic layer of a CNN. As input of such a layer regard an element

𝑥 =
𝑚1

∑
𝑗=1

𝑥𝑗 ⊗ 𝑒𝑗 ∈ ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1, 𝑚1, 𝑛1, 𝑙1 ∈ ℕ,

6

CHAPTER 1. REGRESSIONWITH CNNS 1.2. CONVOLUTIONAL NEURAL NETWORKS

where {𝑒𝑗}
𝑚1
𝑗=1 denotes an orthonormal basis of ℝ𝑚1. We say that 𝑥 is a 𝑚1-channeled tensor, where

each channel consists of a matrix of size 𝑛1 × 𝑙1. We refer to 𝑥𝑗 ∈ ℝ𝑛1×𝑙1 as a feature map. A CNN-Layer
can be represented as a parameter-dependent map

ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1 ⟶ ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2,

where the parameters are of the form

𝑊 =
𝑚2

∑
𝑗=1

𝑊𝑗 ⊗ ̄𝑒𝑗 ∈ ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2, 𝑝, 𝑞, 𝑚2 ∈ ℕ; 𝑝 ≤ 𝑛1; 𝑞 ≤ 𝑙1

and 𝑉 ∈ ℝ𝑚2, where { ̄𝑒𝑗}
𝑚2
𝑗=1 denotes an orthonormal basis of ℝ𝑚2. We say that each 𝑊𝑗 ∈ ℝ𝑝×𝑞×𝑚1

is a filter of size 𝑝 × 𝑞 used in the convolution and we call 𝑉 the bias. Then, we can write the function
represented by the convolution layer as

𝑓 ∶ (ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1) × ℝ𝑚2 × (ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2) ⟶ ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2,

where �̂�1, ̂𝑙1 ∈ ℕ depend on the particular form of 𝑓. We will define 𝑓 as a composition of a cropping
operator, a convolution/cross-correlation operator and an element-wise applied non-linearity function.
For vector spaces 𝑉1, 𝑉2, 𝑉3 wewriteHom(𝑉1, 𝑉2) to denote the set of linear maps (vector space homo-
morphisms) from 𝑉1 to 𝑉2 andHom(𝑉1, 𝑉2; 𝑉3) to denote set of bilinearmaps from 𝑉1 × 𝑉2 to 𝑉3 (maps
that are vector space homomorphisms in both components). In the context of CNNs we denote arbi-
trary but fixed orthogonal bases as {𝐸𝑗,𝑘}𝑛1,𝑙1

𝑗,𝑘=1 for ℝ𝑛1×𝑙1, { ̃𝐸𝑗,𝑘}𝑝,𝑞
𝑗,𝑘=1 for ℝ𝑝×𝑞, { ̄𝐸𝑗,𝑘}𝑛2,𝑙2

𝑗,𝑘=1 for ℝ𝑛2×𝑙2

and { ̂𝐸𝑗,𝑘}�̂�1, ̂𝑙1
𝑗,𝑘=1 for ℝ�̂�1× ̂𝑙1, where the last space is going to be defined later.

The filters are usually much smaller than the input data to be processed. Convolving the filter means
moving the filter step by step over the input data and computing the inner product of the filter with the
input data it covers. To formulate this mathematically we crop the input data such that its size equals
the filter before applying the inner product.

Definition 1.5 (Cropping operator) The cropping operator Κ𝑘,𝑙 ∈ Hom(ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1, ℝ𝑝×𝑞×𝑚1) for an
input 𝑥 is defined as

Κ𝑘,𝑙 (
𝑚1

∑
𝑗=1

𝑥𝑗 ⊗ 𝑒𝑗) = (𝜅𝑘,𝑙(𝑥𝑗))
𝑚1
𝑗=1,

where we define 𝜅𝑘,𝑙 ∈ Hom(ℝ𝑛1×𝑙1, ℝ𝑝×𝑞) as

𝜅𝑘,𝑙(𝑥𝑗) ≔
𝑝

∑
𝑠=1

𝑞

∑
𝑡=1

⟨𝑥𝑗, 𝐸𝑘+𝑠−1,𝑙+𝑡−1⟩ ̃𝐸𝑠,𝑡,

for any 𝑘 ∈ [𝑛1 − 𝑝 + 1], 𝑙 ∈ [𝑙1 − 𝑞 + 1].

Note, that if {𝐸𝑗,𝑘}𝑛1,𝑙1
𝑗,𝑘=1 and { ̃𝐸𝑗,𝑘}𝑝,𝑞

𝑗,𝑘=1 are the standard basis for their respective spaces, i.e.

(𝐸𝑗,𝑘)𝔧,𝔨 = {
1, (𝑗, 𝑘) = (𝔧, 𝔨)
0, else

for all 𝔧 ∈ [𝑛1], 𝔨 ∈ [𝑙1]

and (̃𝐸𝑗,𝑘)𝔧,𝔨 = {
1, (𝑗, 𝑘) = (𝔧, 𝔨)
0, else

for all 𝔧 ∈ [𝑝], 𝔨 ∈ [𝑞],

7

1.2. CONVOLUTIONAL NEURAL NETWORKS CHAPTER 1. REGRESSIONWITH CNNS

then 𝜅𝑘,𝑙(𝑥𝑗) is the 𝑝 × 𝑞 submatrix of 𝑥𝑗 containing all elements from (𝑘, 𝑙) to (𝑘 + 𝑝 − 1, 𝑙 + 𝑞 − 1).

Definition 1.6 (Convolution operator) The convolution operator

𝐶 ∈ Hom(ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2, ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1; ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2)

is defined as

𝐶(𝑊, 𝑥) ≔
𝑚2

∑
𝑗=1

𝑐𝑗(𝑊, 𝑥) ⊗ ̄𝑒𝑗,

where for 𝑗 ∈ [𝑚2] we define 𝑐𝑗 ∈ Hom(ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2, ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1; ℝ�̂�1× ̂𝑙1) as

𝑐𝑗(𝑊, 𝑥) ≔
�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

⟨𝑊𝑗, Κ𝛾(𝑘,𝑙,𝛿)(𝑥)⟩ ̂𝐸𝑘,𝑙, (1.5)

where 𝑊 = ∑𝑚2
𝑗=1 𝑊𝑗 ⊗ ̄𝑒𝑗 ∈ ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2 and

𝛾(𝑘, 𝑙, 𝛿) ≔ (1 + (𝑘 − 1)𝛿, 1 + (𝑙 − 1)𝛿).

We call 𝛿 the stride of the convolution. The numbers �̂�1, ̂𝑙1 ∈ ℕ are chosenmaximal such that equation
(1.5) is well-defined (see Remark 1.7 for explicit formulas for �̂�1 and ̂𝑙1).

Note that although this operator is referred to as convolution in the machine learning community it is
not a discrete convolution in the mathematical sense but a cross-correlation.

We can think of the input 𝑥 ∈ ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1 as a stack of matrices, where each matrix can be thought
of an image-like array, which consists of multiple channels (or features) of that image. In this sense, the
input can be regarded as an object in 3D-space. Each filter 𝑊𝑗 ∈ ℝ𝑝×𝑞×𝑚1 convolves with the whole
stack of images. This means that the convolution actually operates along all three axes. However, the
operation is referred to as 2D-convolution since the input- and output data is thought of features of 2D-
images. In this sense, the term 2D-convolution refers to the number of degrees of freedom in which the
filter can move.

Figure 1.1: Output component of the convolutional operator for𝑛1, 𝑙1 = (8, 16),𝑚1 = 4, (𝑝, 𝑞) = (2, 2)
and 𝛿 = 1

8

CHAPTER 1. REGRESSIONWITH CNNS 1.2. CONVOLUTIONAL NEURAL NETWORKS

Remark 1.7 (Explicit Formulas for �̂�1 and ̂𝑙1) In order to compute the output dimensions �̂�1, ̂𝑙1 ∈ ℕ of
the convolutional operator for an input 𝑥 ∈ ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1, filters𝑊 ∈ ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2 and stride 𝛿 ∈ ℕ
we observe in view of the definition of the cropping operator that �̂�1, ̂𝑙1 ∈ ℕ are chosen maximal such
that the condition

𝛾(�̂�1, ̂𝑙1, 𝛿) ∈ [𝑛1 − 𝑝 + 1] × [𝑙1 − 𝑞 + 1]

is fulfilled, where 𝛾 is defined as in Definition 1.6. Regarding only the first component, this is equivalent
to

�̂�1 = max{𝑘 ∈ ℕ ∣ 1 + (𝑘 − 1)𝛿 ≤ 𝑛1 − 𝑝 + 1} = max{𝑘 ∈ ℕ ∣ 𝑘 ≤
𝑛1 − 𝑝

𝛿
+ 1} .

The analogous computation applies for ̂𝑙1 and we can conclude

�̂�1 = ⌊
𝑛1 − 𝑝

𝛿
⌋ + 1 and ̂𝑙1 = ⌊

𝑙1 − 𝑞
𝛿

⌋ + 1. (1.6)

Inmany applications of CNNs, such as image to image translation tasks with 𝛿 = 1, it is desired that the
dimension of the output of the convolutional operator coincides with the input dimensions. However,
for example in the frequent case that 𝛿 = 1 and 𝑝, 𝑞 > 1 we get from Remark 1.7 that �̂�1 = 𝑛1 −
𝑝 + 1 < 𝑛1 and ̂𝑙1 = 𝑙1 − 𝑞 + 1 < 𝑙1. Often a padding operator is prefixed in order to maintain the
input dimensions. It works in the way that the input 𝑥 ∈ ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1 is expanded to an element
𝑥′ ∈ ℝ𝑛′

1×𝑙′
1 ⊗ ℝ𝑚1 by adding extra rows and columns, of for example zeros, to 𝑥. There are also other

paddingmethods such as reflecting or repeating the outer rows and columns of𝑥 butwe restrict to zero
padding in this thesis. Regarding the more general case 𝛿 ≥ 1 it can be practical if the output size is
(⌊ 𝑛1

𝛿
⌋, ⌊ 𝑙1

𝛿
⌋). Let the amount of rows and columns be denoted by 𝛼, 𝛽 ∈ ℕ0. Then, 𝑛′

1 = 𝑛1 + 𝛼,
𝑙′1 = 𝑙1 + 𝛽 and if we choose𝛼 ≔ 𝑝 − 𝛿 and 𝛽 ≔ 𝑞 − 𝛿 then, with equation (1.6), we see that for the new
size (�̂�1, ̂𝑙1) of 𝐶(𝑥′) we indeed get

�̂�1 = ⌊
𝑛′

1 − 𝑝
𝛿

⌋ + 1 = ⌊
𝑛1 + 𝛼 − 𝑝

𝛿
⌋ + 1 = ⌊

𝑛1 − 𝛿
𝛿

⌋ + 1 = ⌊
𝑛1

𝛿
⌋ .

Analogously we get ̂𝑙1 = ⌊ 𝑙1

𝛿
⌋. In the following, let {𝐸′

𝑗,𝑘}𝑛′
1,𝑙′

1
𝑗,𝑘=1 denote an orthonormal basis of ℝ𝑛′

1×𝑙′
1.

Definition 1.8 (Padding Operator) Let 𝛼, 𝛽 ∈ ℕ0. The padding operator

𝔓𝛼,𝛽 ∶ ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1 ⟶ ℝ𝑛′
1×𝑙′

1 ⊗ ℝ𝑚1,

where 𝑛′
1 = 𝑛1 + 𝛼, 𝑙′1 = 𝑙1 + 𝛽, is defined as

𝔓𝛼,𝛽(𝑥) ≔
𝑚1

∑
𝑗=1

𝔭𝛼,𝛽
𝑗 (𝑥) ⊗ 𝑒𝑗,

where 𝔭𝛼,𝛽
𝑗 (𝑥) ∈ ℝ𝑛′

1×𝑙′
1 is

𝔭𝛼,𝛽
𝑗 (𝑥) ≔

𝑛1

∑
𝑘=1

𝑙1

∑
𝑙=1

⟨𝑥𝑗, 𝐸𝑘,𝑙⟩𝐸′
𝑘+⌊ 𝛼

2
⌋,𝑙+⌊ 𝛽

2
⌋
.

where 𝑥 = ∑𝑚1
𝑗=1 𝑥𝑗 ⊗ ̄𝑒2 and 𝑥𝑗 ∈ ℝ𝑛1×𝑙1. If for a stride 𝛿 ∈ ℕ and filter size (𝑝, 𝑞) ∈ ℕ2 we have

(𝛼, 𝛽) = (𝑝 − 𝛿, 𝑞 − 𝛿) we write 𝔓same ≔ 𝔓𝛼,𝛽.

9

1.2. CONVOLUTIONAL NEURAL NETWORKS CHAPTER 1. REGRESSIONWITH CNNS

Note that if we write the composition of the padding operator and the convolutional operator, then we
assume the input size of the convolutional operator to be the output size of the padding operator, i.e.

ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1
𝔓

−−−−→ ℝ𝑛′
1×𝑙′

1 ⊗ ℝ𝑚1
𝐶

−−−−→ ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2.

The representability of functions by a CNN is significantly increased if a channel-wise offset is allowed.
This is achieved by the bias operator.

Definition 1.9 (Bias Operator) The bias operator 𝐵 ∶ ℝ𝑚2 × (ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2) ⟶ ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2 is
defined as

𝐵(𝑉 , 𝑥) ≔
𝑚2

∑
𝑗=1

𝑏𝑗(𝑉 , 𝑥) ⊗ ̄𝑒𝑗,

where 𝑏𝑗(𝑉 , 𝑥) ∈ ℝ�̂�1× ̂𝑙1 is

𝑏𝑗(𝑉 , 𝑥) ≔
�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

(⟨𝑥𝑗, ̂𝐸𝑘𝑙⟩ + 𝑉𝑗) ̂𝐸𝑘𝑙,

where 𝑥 = ∑𝑚2
𝑗=1 𝑥𝑗 ⊗ ̄𝑒𝑗 and 𝑥𝑗 ∈ ℝ�̂�1× ̂𝑙1.

With the operators just mentioned, linear functions with offset can already be described. However, the
full potential of neural networks is only revealed by the introduction of an activation function. This is
non-linear and is applied to the input element by element. Especially for networks with several layers,
very complex mappings can thus be represented. In this still somewhat general section, we introduce
element-wise functions. Later, these appear as activation functions.

Definition 1.10 (Elementwise function) Let𝐾 be a field,𝐸 be a𝐾-inner product space and {𝑒𝑘}𝑛
𝑘=1 be

an orthogonal basis of 𝐸. We define an elementwise function as a map Ψ ∶ 𝐸 ⟶ 𝐸 of the form

Ψ(𝑣) =
𝑛

∑
𝑘=1

𝜓(⟨𝑣, 𝑒𝑘⟩)𝑒𝑘,

where 𝜓 ∶ 𝐾 ⟶ 𝐾.

We are now able to explicitly define the composition of the operators just introduced and thus the func-
tion described by a convolutional layer.

Definition1.11 (Convolutional layerwise function) For an input𝑥, filters𝑊, biases𝑉 and theoperators
defined as above we define the layerwise function 𝑓 as

𝑓 ∶ (ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1) × ℝ𝑚2 × (ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2) ⟶ ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2

(𝑥, 𝑉 , 𝑊) ⟼ Ψ(𝐵(𝑉 , 𝐶(𝑊, 𝔓same(𝑥)))),

whereΨ ∶ ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2 ⟶ ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2 is an elementwise functionwith associatedmap𝜓 ∶ ℝ ⟶ ℝ
and write 𝑓 ∈ Conv(𝑚1, 𝑚2, (𝑝, 𝑞), 𝛿)

Remark 1.12 (Differences to [8]) It should be mentioned that our definition of the cropping operator
and the convolution operator differs from the definition in [8]. Our definition complies more with the

10

CHAPTER 1. REGRESSIONWITH CNNS 1.2. CONVOLUTIONAL NEURAL NETWORKS

actual implementation of machine learning frameworks like PyTorch 1 and TensorFlow 2, where in [8]
the cropping operator reduces the dimension of 𝑥 ∈ ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1 by taking the sum over the channel
components, which gives an element ̃𝑥 ∈ ℝ𝑛1×𝑙1. Then ̃𝑥 is convolved with filters of the shape �̃�𝑗 ∈
ℝ𝑝×𝑞. Also, the definition of the convolutional layer in [8] does not include a bias- or padding operator.

1.2.3 Multiple layers

We are going to convey the definitions of operators and the convolutional layerwise function of Section
1.2.2 to a setting withmultiple consecutive convolutional layers. For that we have to specify the spaces
of the corresponding inputs, outputs and parameters. Let 𝐿 ∈ ℕ be the amount of layers, 𝑚 ∈ ℝ𝐿+1

the amount of channels per layer, 𝑛, 𝑙 ∈ ℕ𝐿+1 the sizes of the inputs and outputs per layer, 𝑝, 𝑞 ∈ ℕ𝐿

the filter sizes,𝜓 ∈ {𝜓 ∣ 𝜓 ∶ ℝ ⟶ ℝ}𝐿 the activation functions and 𝛿 ∈ ℕ𝐿 the strides of the layers. For
each 𝑖 ∈ [𝐿] we redefine the padding, cropping, convolution and bias operators and the elementwise
function with new input and output shapes as

𝔓𝛼𝑖,𝛽𝑖
𝑖 ∶ ℝ𝑛𝑖×𝑙𝑖 ⊗ ℝ𝑚𝑖 ⟶ ℝ𝑛′

𝑖×𝑙′
𝑖 ⊗ ℝ𝑚𝑖 for 𝛼𝑖, 𝛽𝑖 ∈ ℕ0 and

𝑥 ⟼ 𝔓𝛼,𝛽
𝑖 (𝑥) 𝑛′

𝑖 = 𝑛𝑖 + 𝛼, 𝑙′𝑖 = 𝑙𝑖 + 𝛽;

Κ𝑘,𝑙
𝑖 ∶ ℝ𝑛′

𝑖×𝑙′
𝑖 ⊗ ℝ𝑚𝑖 ⟶ ℝ𝑝𝑖×𝑞𝑖×𝑚𝑖 for 𝑘 ∈ [𝑛′

𝑖 − 𝑝𝑖 + 1],

𝑥 ⟼ Κ𝑘,𝑙
𝑖 (𝑥) 𝑙 ∈ [𝑙′𝑖 − 𝑞𝑖 + 1];

𝐶𝑖 ∶ (ℝ𝑝𝑖×𝑞𝑖×𝑚𝑖 ⊗ ℝ𝑚𝑖+1) × (ℝ𝑛′
𝑖×𝑙′

𝑖 ⊗ ℝ𝑚𝑖) ⟶ ℝ𝑛𝑖+1×𝑙𝑖+1 ⊗ ℝ𝑚𝑖+1

(𝑊, 𝑥) ⟼ 𝐶𝑖(𝑊, 𝑥);
𝐵𝑖 ∶ ℝ𝑚𝑖+1 × (ℝ𝑛𝑖+1×𝑙𝑖+1 ⊗ ℝ𝑚𝑖+1) ⟶ ℝ𝑛𝑖+1×𝑙𝑖+1 ⊗ ℝ𝑚𝑖+1

(𝑉 , 𝑥) ⟼ 𝐵𝑖(𝑉 , 𝑥);
Ψ𝑖 ∶ ℝ𝑛𝑖+1×𝑙𝑖+1 ⊗ ℝ𝑚𝑖+1 ⟶ ℝ𝑛𝑖+1×𝑙𝑖+1 ⊗ ℝ𝑚𝑖+1;

where Ψ𝑖 is the elementwise function for 𝜓𝑖 on ℝ𝑛𝑖+1×𝑙𝑖+1 ⊗ ℝ𝑚𝑖+1 for 𝑖 ∈ [𝐿]. The exact mapping rules
are as in the correspondingdefinitions. For 𝑖 ∈ [𝐿]wewrite𝔓same

𝑖 = 𝔓𝛼𝑖,𝛽𝑖 if (𝛼𝑖, 𝛽𝑖) = (𝑝𝑖−𝛿𝑖, 𝑞𝑖−𝛿𝑖).

With the new definitions of the operators for each layer 𝑖 ∈ [𝐿] we are able to formulate the function of
the concatenation of multiple convolutional layers. We call such a concatenation convolutional neural
network (CNN).

Definition 1.13 (CNN-function) Let 𝐿, 𝑚, 𝑛, 𝑙, 𝜓, 𝛿 and 𝔓same
𝑖 , Κ𝑘,𝑙

𝑖 , 𝐶𝑖, 𝐵𝑖, Ψ𝑖 for each 𝑖 ∈ [𝐿] be de-
fined as above. Then we define the CNN-function as

𝑓 ∶ (ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1) × ℝ𝑚2 × (ℝ𝑝1×𝑞1×𝑚1 ⊗ ℝ𝑚2) ⟶ ℝ𝑛𝐿+1×𝑙𝐿+1 ⊗ ℝ𝑚𝐿+1

(𝑥, 𝑉 , 𝑊) ⟼ (𝑓𝐿(•, 𝑉𝐿, 𝑊𝐿) ∘ … ∘ 𝑓1(•, 𝑉1, 𝑊1))(𝑥),

where for all 𝑖 ∈ [𝐿]

𝑓𝑖 ∶ (ℝ𝑛𝑖×𝑙𝑖 ⊗ ℝ𝑚𝑖) × ℝ𝑚𝑖+1 × (ℝ𝑝𝑖×𝑞𝑖×𝑚𝑖 ⊗ ℝ𝑚𝑖+1) ⟶ ℝ𝑛𝑖+1×𝑙𝑖+1 ⊗ ℝ𝑚𝑖+1

(𝑥, 𝑉 , 𝑊) ⟼ Ψ𝑖(𝐵𝑖(𝑉 , 𝐶𝑖(𝑊, 𝔓same
𝑖 (𝑥)))).

1See https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html.
2See https://www.tensorflow.org/api_docs/python/tf/nn/conv2d.

11

https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
https://www.tensorflow.org/api_docs/python/tf/nn/conv2d

1.3. OPTIMISATION OF CNNS CHAPTER 1. REGRESSIONWITH CNNS

In the notation of 𝑓𝑖 we suppress the dependence of the stride 𝛿𝑖 and write

𝑓 ∈ CNN𝐿(𝑚1, … , 𝑚𝐿; 𝑝1, … , 𝑝𝐿; 𝑞1, … , 𝑞𝐿; 𝜓1, … , 𝜓𝐿, 𝛿1, … , 𝛿𝐿) = CNN𝐿(𝑚, 𝑝, 𝑞, 𝜓, 𝛿).

If 𝑚1 = ⋯ = 𝑚𝐿 we can also write CNN𝐿(𝑚1; 𝑝, 𝑞, 𝜓) and likewise for 𝑝, 𝑞, 𝜓 and 𝛿.

Note that by Remark 1.7, 𝑛 and 𝑙 are completely determined by the input dimensions (𝑛1, 𝑙1) and the
stride 𝛿. By the definition of 𝔓same

𝑖 we have that if 𝛿 = 1 then 𝑛1 = ⋯ = 𝑛𝐿+1 and 𝑙1 = ⋯ = 𝑙𝐿+1.

Remark 1.14 (Depthwise 2D Convolutions) The convolutional layerwise function from Definition 1.11
applies a weight 𝑊𝑗 ∈ ℝ𝑝×𝑞×𝑚1, 𝑗 ∈ [𝑚2] by cross-correlation to an input element 𝑥 ∈ ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1

for each output dimension 1, … , 𝑚2. Thismeans that although 𝑥 actually spans two directions for each
channel, a calculation is performed along three directions via the channel axis (if 𝑚1 > 1). This makes
it possible to recognise interrelationships across channels. In some cases, it is sufficient to assume the
channels are independent. The input channels can then be processed separately via two-directional
weights. Equivalently we can regard convolutional layerwise functions 𝑓𝑗 ∈ Conv(1, 1, (𝑝, 𝑞), 𝛿), 𝑗 ∈
[𝑚1] and define the depthwise convolutional layerwise function as

𝑓
=

∶ (ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1) × ℝ𝑚1 × (ℝ𝑝×𝑞 ⊗ ℝ𝑚1) ⟶ ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚1

(𝑥, 𝑉 , 𝑊) ⟶
𝑚1

∑
𝑗=1

𝑓𝑗(𝑥𝑗 ⊗ 𝑒𝑗, 𝑉𝑗, 𝑊𝑗 ⊗ ̄𝑒𝑗) ⊗ ̄𝑒𝑗

Wewrite 𝑓
=

∈ Conv
=

(𝑚1, (𝑝, 𝑞), 𝛿).

We are now able to describe CNNs precisely by a mathematical function. So far, we have assumed the
parameters to be arbitrary elements. To actually train CNNs we still need to understand how the result-
ing function depends on the parameters andwe need amethod to optimise the parameters of the CNN.
It has proven useful in the field ofmachine learning to use gradient-based optimisationmethods, which
is why we need to calculate the derivatives of the CNN operators. This will be done in the next section.

1.3 Optimisation of CNNs

We approach the optimisation of CNNs step by step. First, we consider the gradient decent algorithm
for convex functions. Thenwe discuss how it can be applied in general to the structure of generic neural
networks. In a final concretisation, we will derive the gradient decent algorithm explicitly for CNNs.

1.3.1 Gradient decent algorithm for convex functions

The optimisation of neural networks is mostly done by a gradient-based optimisation algorithm. In this
section we consider the ideal case of convex functions with Lipschitz continuous derivatives. For that
we write

𝔉1,1
𝐿 (ℝ𝑑) ≔ {𝑓 ∈ 𝐶1(ℝ𝑑) ∣ ∇𝑓 is Lipschitz continuous with Lipschitz constant 𝐿 > 0}.

Recall that a minimum of a convex function is a global minimum, which is not necessarily unique but
becomes unique if the function is assumed to be strictly convex. The gradient decent algorithm will be
presented in a similar way as in [22], Theorem 2.1.14.

12

CHAPTER 1. REGRESSIONWITH CNNS 1.3. OPTIMISATION OF CNNS

Lemma 1.15 Let 𝑓 ∈ ℱ1,1
𝐿 (ℝ𝑑) be convex. Then, for 𝑥, 𝑦 ∈ ℝ𝑑, the following equations hold:

𝑓(𝑥) + ∇𝑓(𝑥) ⋅ (𝑦 − 𝑥) ≤ 𝑓(𝑦) (1.7)

0 ≤ 𝑓(𝑦) − 𝑓(𝑥) − ∇𝑓(𝑥) ⋅ (𝑦 − 𝑥) ≤
𝐿
2

‖𝑦 − 𝑥‖2 (1.8)

‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖2 ≤ 𝐿(∇𝑓(𝑥) − ∇𝑓(𝑦)) ⋅ (𝑥 − 𝑦) (1.9)

Proof. Let 𝑡 ∈ [0, 1], then by the definition of convexity

𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡𝑓(𝑥) + (1 − 𝑡)𝑓(𝑦)

Note that

−
𝑡

1 − 𝑡
=

1 − 1
1 − 𝑡

−
𝑡

1 − 𝑡
=

1 − 𝑡
1 − 𝑡

−
1

1 − 𝑡
= 1 −

1
1 − 𝑡

. (1.10)

Then we get

𝑓(𝑦) ≥
1

1 − 𝑡
(𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) − 𝑡𝑓(𝑥))

=
1

1 − 𝑡
𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) −

𝑡
1 − 𝑡

𝑓(𝑥)

(1.10)= 𝑓(𝑥) +
1

1 − 𝑡
(𝑓(𝑡𝑥 + (1 − 𝑡)𝑦) − 𝑓(𝑥))

= 𝑓(𝑥) +
1

1 − 𝑡
(𝑓(𝑥 + (1 − 𝑡)(𝑦 − 𝑥)) − 𝑓(𝑥))

𝑡→1
−−→ 𝑓(𝑥) + ∇𝑓(𝑥) ⋅ (𝑦 − 𝑥),

which implies equation (1.7). We get the first inequality of (1.8) from (1.7). For the second inequality
regard

𝑓(𝑦) − 𝑓(𝑥) − ∇𝑓(𝑥)(𝑦 − 𝑥) = ∫
1

0
∇𝑓(𝑥 + 𝑠(𝑦 − 𝑥)) ⋅ (𝑦 − 𝑥) 𝑑𝑠 − ∇𝑓(𝑥) ⋅ (𝑦 − 𝑥)

= ∫
1

0
(∇𝑓(𝑥 + 𝑠(𝑦 − 𝑥)) − ∇𝑓(𝑥)) ⋅ (𝑦 − 𝑥) 𝑑𝑠

≤ ∫
1

0
𝐿(𝑥 + 𝑠(𝑦 − 𝑥) − 𝑥) ⋅ (𝑦 − 𝑥) 𝑑𝑠

= 𝐿‖𝑦 − 𝑥‖2 ∫
1

0
𝑠 𝑑𝑠 =

𝐿
2

‖𝑦 − 𝑥‖2.

Equation (1.9) follows directly from the Lipschitz continuity of ∇𝑓, namely

‖∇𝑓(𝑦) − ∇𝑓(𝑥)‖2 = (∇𝑓(𝑦) − ∇𝑓(𝑥)) ⋅ (∇𝑓(𝑦) − ∇𝑓(𝑥)) ≤ (∇𝑓(𝑦) − ∇𝑓(𝑥))𝐿(𝑦 − 𝑥). �

Theorem 1.16 (Gradient decent) Let 𝑓 ∈ ℱ1,1
𝐿 be convex and 0 < ℎ < 2

𝐿
. Let 𝑥⋆ be such that 𝑓(𝑥⋆) is

minimal. Let 𝑥0 ∈ ℝ𝑑 and define recursively 𝑥𝑘+1 = 𝑥𝑘 − ℎ∇𝑓(𝑥𝑘) for 𝑘 ∈ ℕ. Then

𝑓(𝑥𝑘) − 𝑓(𝑥⋆) ≤
2(𝑓(𝑥0) − 𝑓(𝑥⋆))‖𝑥0 − 𝑥⋆‖2

2‖𝑥0 − 𝑥⋆‖2 + ℎ(2 − 𝐿ℎ)(𝑓(𝑥0) − 𝑓(𝑥⋆))2𝑘
.

In particular, 𝑓(𝑥𝑘)
𝑘→∞
−−−→ 𝑓(𝑥⋆).

13

1.3. OPTIMISATION OF CNNS CHAPTER 1. REGRESSIONWITH CNNS

Proof. For 𝑘 ≥ 1 define 𝑟𝑘 ≔ ‖𝑥𝑘 − 𝑥⋆‖. Then

𝑟2
𝑘+1 = ‖𝑥𝑘+1 − 𝑥⋆‖2 = ‖𝑥𝑘 − 𝑥⋆ − ℎ∇𝑓(𝑥𝑘)‖2

= 𝑟2
𝑘 − 2ℎ∇𝑓(𝑥𝑘) ⋅ (𝑥𝑘 − 𝑥⋆) + ℎ2‖∇𝑓(𝑥𝑘)‖2

(1.9)
≤ 𝑟2

𝑘 − ℎ (
2
𝐿

− ℎ) ‖∇𝑓(𝑥𝑘)‖2,
(1.11)

where in the last inequality we used the fact that ∇𝑓(𝑥⋆) = 0. From equation (1.8) we get

𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘) + ∇𝑓(𝑥𝑘) ⋅ (𝑥𝑘+1 − 𝑥𝑘) +
𝐿
2

‖𝑥𝑘+1 − 𝑥𝑘‖2

= 𝑓(𝑥𝑘) − ℎ (1 −
𝐿
2

ℎ) ‖∇𝑓(𝑥𝑘)‖2

= 𝑓(𝑥𝑘) − 𝜔‖∇𝑓(𝑥𝑘)‖2,

(1.12)

where 𝜔 = ℎ(1 − 𝐿
2

ℎ). Define 𝛿𝑘 ≔ 𝑓(𝑥𝑘) − 𝑓(𝑥⋆). Note that calculation 1.11 implies 𝑟𝑘 ≤ 𝑟0. Then
with the Cauchy-Schwarz inequality we get

𝛿𝑘
(1.7)
≤ ∇𝑓(𝑥𝑘) ⋅ (𝑥𝑘 − 𝑥⋆) ≤ 𝑟𝑘‖∇𝑓(𝑥𝑘)‖ ≤ 𝑟0‖∇𝑓(𝑥𝑘)‖ (1.13)

Thus,

𝛿𝑘+1 = 𝑓(𝑥𝑘+1) − 𝑓(𝑥⋆)
(1.12)
≤ 𝑓(𝑥𝑘) − 𝑓(𝑥⋆) − 𝜔‖∇𝑓(𝑥𝑘)‖2 = 𝛿𝑘 − 𝜔‖∇𝑓(𝑥𝑘)‖2

(1.13)
≤ 𝛿𝑘 −

𝜔
𝑟2

0
𝛿2

𝑘. (1.14)

This implies

1
𝛿𝑘+1

=
1

𝛿𝑘+1

𝛿𝑘+1 + 𝛿𝑘 − 𝛿𝑘+1

𝛿𝑘

(1.14)
≥

1
𝛿𝑘+1

𝛿𝑘+1 + 𝜔
𝑟2

0
𝛿2

𝑘

𝛿𝑘
=

1
𝛿𝑘

+
𝜔
𝑟2

0

𝛿𝑘

𝛿𝑘+1
≥

1
𝛿𝑘

+
𝜔
𝑟2

0
.

Summing this inequality for 𝑘 = 1, … , 𝑘 + 1 we get

1
𝛿𝑘+1

≥
1
𝛿0

+
𝜔
𝑟2

0
(𝑘 + 1).

Finally,

𝑓(𝑥𝑘) − 𝑓(𝑥⋆) ≤
1

1
𝛿0

+ 𝜔
𝑟2

0
𝑘

=
𝛿0𝑟2

0

𝑟2
0 + 𝜔𝛿2

0𝑘
=

2(𝑓(𝑥0) − 𝑓(𝑥⋆))‖𝑥0 − 𝑥⋆‖2

2‖𝑥0 − 𝑥⋆‖2 + ℎ(2 − 𝐿ℎ)(𝑓(𝑥0) − 𝑓(𝑥⋆))2𝑘
. �

1.3.2 Adjoint operators

In order to convey the gradient decent algorithm from Section 1.3.1 to neural networks we have to pre-
pare the notion of adjoint (differential) operators.

Definition 1.17 (Adjoint operator) Let 𝐻1, 𝐻2 be inner product spaces. For a linear operator 𝑇 ∶
𝐻1 ⟶ 𝐻2 we call the operator 𝑇 ⋆ ∶ 𝐻2 ⟶ 𝐻1 the Hermitian adjoint or adjoint of 𝑇 if it fulfils the
property

⟨𝑇 𝑥, 𝑦⟩𝐻2
= ⟨𝑥, 𝑇 ⋆𝑦⟩𝐻1

for all 𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐻2.

14

CHAPTER 1. REGRESSIONWITH CNNS 1.3. OPTIMISATION OF CNNS

Theorem1.18 (Well-definedness and uniqueness of the adjoint operator) Let𝐻1, 𝐻2 be inner product
spaces. For every linear operator 𝑇 ∶ 𝐻1 ⟶ 𝐻2 the Hermitian adjoint exists and is unique.

Proof. For every 𝑦 ∈ 𝐻2 regard the continuous linear functional 𝑥 ⟼ ⟨𝑇 𝑥, 𝑦⟩𝐻2
. By the Riesz-Fréchet

representation theorem (see [7], Theorem 5.5) there is a unique 𝑧 ∈ 𝐻1 such that ⟨𝑇 𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩ for
all 𝑥 ∈ 𝐻1. Now define the operator 𝑇 ⋆ ∶ 𝐻2 ⟶ 𝐻1, 𝑦 ⟼ 𝑧 that assigns 𝑦 to 𝑧 as just described. Then,
⟨𝑇 𝑥, 𝑦⟩ = ⟨𝑥, 𝑇 ⋆𝑦⟩ for all (𝑥, 𝑦) ∈ 𝐻1 × 𝐻2 and 𝑇 ⋆ is unique since 𝑧 is unique. �

We will use the adjoint of the differential operator. Let 𝑓 ∶ ℝ𝑠 ⟶ ℝ𝑡, 𝑠, 𝑡 ∈ ℕ be totally differentiable
and 𝐷𝑓(𝑥) ∈ Hom(ℝ𝑠, ℝ𝑡) be the total differential of 𝑓 at 𝑥 ∈ ℝ𝑠. Then we write 𝐷⋆𝑓(𝑥) instead of
(𝐷𝑓(𝑥))⋆.

Proposition 1.19 (Reversing property) For inner product spaces 𝐻1, 𝐻2, 𝐻3 and linear operators 𝑇1 ∶
𝐻1 ⟶ 𝐻2, 𝑇2 ∶ 𝐻2 ⟶ 𝐻3 it holds that (𝑇2 ∘ 𝑇1)⋆ = 𝑇 ⋆

1 ∘ 𝑇 ⋆
2 .

Proof. For 𝑥 ∈ 𝐻1, 𝑦 ∈ 𝐻3 we compute

⟨(𝑇2 ∘ 𝑇1)𝑥, 𝑦⟩𝐻3
= ⟨𝑇1𝑥, 𝑇 ⋆

2 𝑦⟩𝐻2
= ⟨𝑥, (𝑇 ⋆

1 ∘ 𝑇 ⋆
2)𝑦⟩𝐻1

. �

Proposition 1.20 (Adjoint real matrices) Let 𝑇 ∶ ℂ𝑚 ⟶ ℂ𝑛, 𝑛, 𝑚 ∈ ℕ be a linear bounded operator
with associated matrix 𝐴 = (𝛼𝑖𝑗)𝑖𝑗 ∈ ℂ𝑛×𝑚. Then, the adjoint matrix 𝐴⋆ ≔ (𝛼𝑗𝑖)𝑗𝑖 ∈ ℂ𝑚×𝑛 is the
representing matrix of 𝑇 ⋆.

Proof. Let {𝑒𝑖}𝑚
𝑖=1 and { ̄𝑒𝑖}𝑛

𝑖=1 be the standard bases for ℂ𝑚 and ℂ𝑛 respectively. Then, for all 𝑗 ∈ [𝑚],
𝑖 ∈ [𝑛] we get

𝛼𝑖𝑗 = ⟨𝐴𝑒𝑗, ̄𝑒𝑖⟩ℂ𝑛 = ⟨𝑇 𝑒𝑗, ̄𝑒𝑖⟩ℂ𝑛 = ⟨𝑒𝑗, 𝑇 ⋆ ̄𝑒𝑖⟩ℂ𝑚 = ⟨𝑒𝑗, 𝐵 ̄𝑒𝑖⟩ℂ𝑚.

for a matrix 𝐵 = (𝛽𝑖𝑗)𝑖𝑗 ∈ ℂ𝑚×𝑛. But

⟨𝑒𝑗, 𝐵 ̄𝑒𝑖⟩ℂ𝑚 = ⟨𝐵 ̄𝑒𝑖, 𝑒𝑗⟩ℂ𝑚 = ̄𝛽𝑗𝑖,

which implies 𝐴⋆ = 𝐵. �

1.3.3 Backpropagation for generic neural networks

Now that we have studied the optimisation of convex functions using the gradient decent algorithmwe
can apply the procedure to neural networks. It is important to keep inmind that neural networks almost
never reflect a convex function in terms of its parameters. On the contrary, the topology of minima
can be very complicated and in practice one almost never finds the absolute minimum. Nevertheless,
gradient-based methods of optimisation are used to find at least local minima. To increase the chance
that the local minimum is also globally a low value, one often starts the training with a large learning
rate in the hope to skip local minima and reduces the learning rate later in training.

In this section, we introduce a general description of generic neural networks forwhichwewill carry out
a formulation of the gradient decent algorithm. The notation and the structure of this section is based
on [8] but was made a little more precise in some places.

15

1.3. OPTIMISATION OF CNNS CHAPTER 1. REGRESSIONWITH CNNS

For all 𝑖 ∈ [𝐿], let 𝐸𝑖 = ℝ𝑠𝑖, 𝐻𝑖 = ℝ𝑡𝑖 and 𝐸𝐿+1 = ℝ𝑠𝐿+1, 𝑠𝑖, 𝑠𝐿+1, 𝑡𝑖 ∈ ℕ be inner product spaces. A
deep neural network with 𝐿 ∈ ℕ layers is represented as a composition of 𝐿 functions

𝑓 ∶ 𝐸1 × (𝐻1 × ⋯ × 𝐻𝐿) ⟶ 𝐸𝐿+1

(𝑥, 𝜃) ⟼ (𝑓𝐿(•, 𝜃𝐿) ∘ … ∘ 𝑓1(•, 𝜃1))(𝑥),

where 𝑓𝑖 ∈ 𝐶1(𝐸𝑖 × 𝐻𝑖, 𝐸𝑖+1). Additionally we define the head map at layer 𝑖 ∈ [𝐿] as

𝛼𝑖 ∶ 𝐸1 × (𝐻1 × ⋯ × 𝐻𝑖) ⟶ 𝐸𝑖+1

(𝑥, 𝜃) ⟼ (𝑓𝑖(•, 𝜃𝑖) ∘ … ∘ 𝑓1(•, 𝜃1))(𝑥)

and the tail map at layer 𝑖 ∈ [𝐿] as

𝜔𝑖 ∶ 𝐸𝑖 × (𝐻𝑖 × ⋯ × 𝐻𝐿) ⟶ 𝐸𝐿+1

(𝑥, 𝜃) ⟼ (𝑓𝐿(•, 𝜃𝐿) ∘ … ∘ 𝑓𝑖(•, 𝜃𝑖))(𝑥).

We write 𝑥𝑖+1 ≔ 𝛼𝑖(𝑥) and refer to the 𝑥𝑖+1 as state variables, and the variables 𝜃𝑖 as parameters for
𝑖 ∈ [𝐿]. For convenience we set 𝜔𝐿+1 = id𝐸𝐿+1

.

For𝑓𝑖 ∈ 𝐶1(𝐸𝑖×𝐻𝑖, 𝐸𝑖+1)wewrite𝐷𝑥𝑖
𝑓𝑖(̃𝑥𝑖, ̃𝜃𝑖) ∈ Hom(𝐸𝑖, 𝐸𝑖+1)and𝐷𝜃𝑖

𝑓𝑖(̃𝑥𝑖, ̃𝜃𝑖) ∈ Hom(𝐻𝑖, 𝐸𝑖+1)
for the total derivatives with respect to the state variable at ̃𝑥𝑖 ∈ 𝐸𝑖 or the parameters at ̃𝜃𝑖 ∈ 𝐻𝑖
respectively andweuse the samenotation for all differentiable functions that dependon state variables
and parameters.

It follows directly from the definitions that for 𝑖 ∈ [𝐿] it holds that

𝐹(•, 𝜃) = 𝜔𝑖+1(•, (𝜃𝑖+1, … , 𝜃𝐿)) ∘ 𝛼𝑖(•, (𝜃1, … , 𝜃𝑖)) for 𝜃 ∈ 𝐻1 × ⋯ × 𝐻𝐿,
𝜔𝑖(•, (𝜃𝑖, … , 𝜃𝐿)) = 𝜔𝑖+1(•, (𝜃𝑖+1, … , 𝜃𝐿)) ∘ 𝑓𝑖(•, 𝜃𝑖), for 𝜃 ∈ 𝐻𝑖 × ⋯ × 𝐻𝐿,

and 𝛼𝑖(•, (𝜃1, … , 𝜃𝑖)) = 𝑓𝑖(•, 𝜃𝑖) ∘ 𝛼𝑖−1(•, (𝜃1, … , 𝜃𝑖−1)) for 𝜃 ∈ 𝐻1 × ⋯ × 𝐻𝐿.

The equations imply that for 𝑖 ∈ [𝐿] the output 𝑓 can be decomposed into

𝑓(•, 𝜃) = 𝜔𝑖+1(•, (𝜃𝑖+1, … , 𝜃𝐿)) ∘ 𝑓𝑖(•, 𝜃𝑖) ∘ 𝛼𝑖−1(•, (𝜃1, … , 𝜃𝑖−1)) for 𝜃 ∈ 𝐻1 × ⋯ × 𝐻𝐿. (1.15)

In order to formulate a gradient decent algorithm similar to Theorem 1.16 for generic neural networks
we need the derivative of 𝑓 with respect to 𝜃.

Lemma 1.21 Let 𝑥 ∈ 𝐸1, 𝜃 ∈ 𝐻1 × ⋯ × 𝐻𝐿 and 𝑖 ∈ [𝐿]. Then,

𝐷⋆
𝜃𝑖

𝑓(𝑥, 𝜃) = 𝐷⋆
𝜃 𝑓𝑖(𝑥𝑖, 𝜃𝑖) ⋅ 𝐷⋆

𝑥 𝜔𝑖+1(𝑥𝑖+1, (𝜃𝑖+1, … , 𝜃𝐿)), (1.16)

where 𝑥𝑖+1 = 𝛼𝑖(𝑥, (𝜃1, … , 𝜃𝑖)).

Proof. We compute the derivative of equation (1.15) with respect to 𝜃𝑖:

𝐷𝜃𝑖
𝑓(𝑥, 𝜃) = 𝐷𝜃𝑖

𝜔𝑖+1(𝑓𝑖(𝛼𝑖−1(𝑥, (𝜃1, … , 𝜃𝑖−1)), 𝜃𝑖), (𝜃𝑖+1, … , 𝜃𝐿))
(chain rule) = 𝐷𝑥 𝜔𝑖+1(𝑥𝑖+1, (𝜃𝑖+1, … , 𝜃𝐿)) ⋅ 𝐷𝜃 𝑓𝑖(𝑥𝑖, 𝜃𝑖)

Then, by taking the adjoint and applying Remark 1.19 we obtain equation (1.16). �

16

CHAPTER 1. REGRESSIONWITH CNNS 1.3. OPTIMISATION OF CNNS

As described in Section 1.1 we want to optimise a loss function with respect to the parameters 𝜃 over
a set of 𝑛 network input samples 𝑆 = {(𝑥(1), 𝑦(1)), … , (𝑥(𝑛), 𝑦(𝑛))}, where 𝑥(𝑗) ∈ 𝐸1 is the 𝑗-th input
sample with associated response or target 𝑦(𝑗) ∈ 𝐸𝐿+1. Themost common loss function is the squared
loss, given by

𝐽 ∶ 𝐸1 × 𝐸𝐿+1 × (𝐻1 × ⋯ × 𝐻𝐿) ⟶ ℝ+

(𝑥, 𝑦, 𝜃) ⟼
1
2

‖𝑦 − 𝑓(𝑥, 𝜃)‖2.

In the following proposition we examine how 𝐽 depends on the parameters 𝜃𝑖 of the 𝑖-th layer, 𝑖 ∈ [𝐿].

Proposition 1.22 Let 𝑥 ∈ 𝐸1, 𝑦 ∈ 𝐸𝐿+1, ̂𝑦 ≔ 𝑓(𝑥, 𝜃), 𝜃 ∈ 𝐻1 × ⋯ × 𝐻𝐿 and 𝑖 ∈ [𝐿]. Then, for 𝜁 ∈ 𝐻𝑖
it holds that

𝐷𝜃𝑖
𝐽(𝑥, 𝑦; 𝜃) ⋅ 𝜁 = ⟨𝐷⋆

𝜃𝑖
𝑓𝑖(𝑥𝑖, 𝜃𝑖) ⋅ 𝐷⋆

𝑥 𝜔𝑖+1(𝑥𝑖+1, (𝜃𝑖+1, … , 𝜃𝐿)) ⋅ (̂𝑦 − 𝑦), 𝜁⟩, (1.17)

where 𝑥𝑖 = 𝛼𝑖−1(𝑥).

Proof. Let 𝜁 ∈ 𝐻𝑖 be arbitrary. Then,

𝐷𝜃𝑖
𝐽(𝑥, 𝑦, 𝜃) ⋅ 𝜁 =

1
2

𝐷𝜃𝑖
⟨𝑓(𝑥, 𝜃) − 𝑦, 𝑓(𝑥, 𝜃) − 𝑦⟩ ⋅ 𝜁

(product rule) = ⟨𝑓(𝑥, 𝜃) − 𝑦, 𝐷𝜃𝑖
𝑓(𝑥, 𝜃)⏟⏟⏟⏟⏟

∈Hom(𝐻𝑖,𝐸𝐿+1)

⋅𝜁⟩ = ⟨𝐷⋆
𝜃𝑖

𝑓(𝑥, 𝜃) ⋅ (𝑓(𝑥, 𝜃) − 𝑦), 𝜁⟩

Since 𝑓(𝑥, 𝜃) = ̂𝑦 and 𝐷⋆
𝜃𝑖

𝑓(𝑥, 𝜃) = 𝐷⋆
𝜃 𝑓𝑖(𝑥𝑖, 𝜃𝑖) ⋅ 𝐷⋆

𝑥 𝜔𝑖+1(𝑥𝑖+1, (𝜃𝑖+1, … , 𝜃𝐿)) we get equation (1.17)
by Lemma 1.21. �

According to the Riesz representation theorem this representation of 𝐷𝜃𝑖
𝐽(𝑥, 𝑦, 𝜃) as inner product is

unique. Therefore we allow ourselves the abuse of notation of writing

𝐷𝜃𝑖
𝐽(𝑥, 𝑦; 𝜃) = 𝐷⋆

𝜃 𝑓𝑖(𝑥𝑖, 𝜃𝑖) ⋅ 𝐷⋆
𝑥 𝜔𝑖+1(𝑥𝑖+1, (𝜃𝑖+1, … , 𝜃𝐿)) ⋅ (̂𝑦 − 𝑦). (1.18)

Theorem 1.23 (Backpropagation) For all 𝑥𝑖 ∈ 𝐸𝑖, 𝜃 ∈ 𝐻𝑖 × ⋯ × 𝐻𝐿 it holds that

𝐷⋆
𝑥 𝜔𝑖(𝑥𝑖, (𝜃𝑖, … , 𝜃𝐿)) = 𝐷⋆

𝑥 𝑓𝑖(𝑥𝑖, 𝜃𝑖) ⋅ 𝐷⋆
𝑥 𝜔𝑖+1(𝑥𝑖+1, (𝜃𝑖+1, … , 𝜃𝐿)), (1.19)

where 𝑥𝑖+1 = 𝑓𝑖(𝑥𝑖, 𝜃𝑖) for all 𝑖 ∈ [𝐿].

Proof. By the definition of 𝜔𝑖 we have

𝐷𝑥 𝜔𝑖(𝑥𝑖, (𝜃𝑖, … , 𝜃𝐿)) = 𝐷𝑥 (𝜔𝑖+1(𝑓𝑖(𝑥𝑖, 𝜃𝑖), (𝜃𝑖+1, … , 𝜃𝐿)))
(chain rule) = 𝐷𝑥 𝜔𝑖+1(𝑥𝑖+1) ⋅ 𝐷𝑥 𝑓𝑖(𝑥𝑖, 𝜃𝑖)

Now taking the adjoint and applying the reversing property (1.19) implies equation (1.19) for all 𝑖 ∈ [𝐿]
since 𝜔𝐿+1 = id𝐸𝐿+1

. �

Nowwe are ready to present a gradient decent algorithm for generic neural networks.

17

1.3. OPTIMISATION OF CNNS CHAPTER 1. REGRESSIONWITH CNNS

Algorithm 1.24 (Gradient decent for genereric neural networks) For an input (𝑥, 𝑦) ∈ 𝐸1 × 𝐸𝐿+1,
parameters 𝜃 ∈ 𝐻1 × ⋯ × 𝐻𝐿 and a learning rate 𝜂 > 0 we define the following update rule.
1: 𝑥1 ← 𝑥
2: for 𝑖 = 1, … , 𝐿 do
3: 𝑥𝑖+1 ← 𝑓𝑖(𝑥𝑖, 𝜃𝑖)
4: end for
5: for 𝑖 = 𝐿, … , 1 do
6: ̃𝜃𝑖 ← 𝜃𝑖
7: if 𝑖 = 𝐿 then
8: 𝑒𝐿 ← 𝑥𝐿+1 − 𝑦
9: else

10: 𝑒𝑖 ← 𝐷⋆
𝑥 𝑓𝑖+1(𝑥𝑖+1, ̃𝜃𝑖+1) ⋅ 𝑒𝑖+1

11: end if
12: 𝐷𝜃𝑖

𝐽(𝑥, 𝑦; 𝜃) ← 𝐷⋆
𝜃 𝑓𝑖(𝑥𝑖, ̃𝜃𝑖) ⋅ 𝑒𝑖

13: 𝜃𝑖 ← 𝜃𝑖 − 𝜂𝐷𝜃𝑖
𝐽(𝑥, 𝑦; 𝜃)

14: end for
15: return 𝜃

In the lines 2-4 a forward pass is executed in order to compute and store the state at each layer. This
values are then used in the backpropagation step. In line 12 𝐷𝜃𝑖

𝐽(𝑥, 𝑦; 𝜃) is computed according to
proposition 1.22, where the error vector 𝑒𝑖 is obtained in line 8 or line 10. If 𝑖 = 𝐿we set 𝑒𝐿 ← 𝑥𝐿+1 − 𝑦
since 𝜔𝐿+1 = id and from proposition 1.22, namely

𝐷𝜃𝐿
𝐽(𝑥, 𝑦; 𝜃) = 𝐷⋆

𝜃𝐿
𝑓𝐿(𝑥𝐿, 𝜃𝐿) 𝐷⋆

𝑥 𝜔𝐿+1(𝑥𝐿+1)⏟⏟⏟⏟⏟⏟⏟
=id

⋅𝑒𝐿 = 𝐷⋆
𝜃𝐿

𝑓𝐿(𝑥𝐿, 𝜃𝐿) ⋅ 𝑒𝐿. (1.20)

Otherwise, if 𝑖 ≠ 𝐿, 𝑒𝑖 is obtained by Theorem 1.23 (backpropagation). Note that Algorithm 1.24 can be
easily extended to a batch of input points ((𝑥(𝑗), 𝑦(𝑗)))𝑗∈𝐴, where𝐴 ⊆ [𝑛], by averaging the contribution
to the gradient from each point (𝑥(𝑗), 𝑦(𝑗)) over the batch.

1.3.4 Backpropagation for CNNs

With the knowledgewe have just gained, we can now apply the gradient decent algorithm to CNNs. The
principle is identical to the one in the previous section on generic neural networks. However, in order
to apply backpropagation, we have to explicitly calculate the derivatives of the individual operators of
the CNN layers. The derivative of the entire CNN-Layer can then be derived with the chain rule.

Lemma1.25 (Derivative of the convolutionoperator) In the setting ofDefinition 1.6 for the convolution
operator 𝐶 the derivatives

𝐷𝑥 𝐶(�̃� , ̃𝑥) ∈ Hom(ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1, ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2)

and 𝐷𝑊 𝐶(�̃� , ̃𝑥) ∈ Hom(ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2, ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2)

with respect to the input and the filters respectively at (�̃� , ̃𝑥) ∈ (ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2) × (ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1)
exist and are given by

𝐷𝑥 𝐶(�̃� , ̃𝑥) = 𝐶(�̃� , •) and 𝐷𝑊 𝐶(�̃� , ̃𝑥) = 𝐶(•, ̃𝑥).

18

CHAPTER 1. REGRESSIONWITH CNNS 1.3. OPTIMISATION OF CNNS

Proof. Let 𝜈 ≔ ∑𝑚1
𝑗=1 𝜈𝑗 ⊗ 𝑒𝑗 ∈ ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1. Then, for the cropping operator we have

𝜕𝑡 Κ𝑘,𝑙 (
𝑚1

∑
𝑖=1

̃𝑥𝑗 + 𝑡𝜈𝑗 ⊗ 𝑒𝑗)∣
𝑡=0

= 𝜕𝑡 (
𝑝

∑
𝑠=1

𝑞

∑
𝑡=1

⟨ ̃𝑥𝑗 + 𝑡𝜈𝑗, 𝐸𝑘+𝑠−1,𝑙+𝑡−1⟩ ̃𝐸𝑠,𝑡)
𝑚

𝑗=1

∣

𝑡=0

= (
𝑝

∑
𝑠=1

𝑞

∑
𝑡=1

⟨𝜕𝑡 ̃𝑥𝑗 + 𝑡𝜈𝑗∣𝑡=0
, 𝐸𝑘+𝑠−1,𝑙+𝑡−1⟩ ̃𝐸𝑠,𝑡)

𝑚

𝑗=1

= (
𝑝

∑
𝑠=1

𝑞

∑
𝑡=1

⟨𝜈𝑗, 𝐸𝑘+𝑠−1,𝑙+𝑡−1⟩ ̃𝐸𝑠,𝑡)
𝑚

𝑗=1

= Κ𝑘,𝑙 (
𝑚1

∑
𝑖=1

𝜈𝑗 ⊗ 𝑒𝑗) .

(1.21)

Putting this into the convolution operator we get

𝐷𝑥 𝐶(�̃� , ̃𝑥) ⋅ 𝜈 = 𝜕𝑡

𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

⟨�̃�𝑗, Κ𝛾(𝑘,𝑙,𝛿)(̃𝑥𝑗 + 𝑡𝜈𝑗)⟩ ̂𝐸𝑘,𝑙 ⊗ ̄𝑒𝑗∣
𝑡=0

=
𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

⟨�̃�𝑗, 𝜕𝑡Κ𝛾(𝑘,𝑙,𝛿)(̃𝑥𝑗 + 𝑡𝜈𝑗)∣𝑡=0
⟩ ̂𝐸𝑘,𝑙 ⊗ ̄𝑒𝑗

(1.21)=
𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

⟨�̃�𝑗, Κ𝛾(𝑘,𝑙,𝛿)(𝜈𝑗)⟩ ̂𝐸𝑘,𝑙 ⊗ ̄𝑒𝑗 = 𝐶(�̃� , 𝜈).

Analogously we get for 𝜇 ≔ ∑𝑚2
𝑗=1 𝜇𝑗 ⊗ ̄𝑒𝑗 ∈ ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2

𝐷𝑊 𝐶(�̃� , ̃𝑥) ⋅ 𝜇 = 𝜕𝑡

𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

⟨�̃�𝑗 + 𝑡𝜇𝑗, Κ𝛾(𝑘,𝑙,𝛿)(̃𝑥𝑗)⟩ ̂𝐸𝑘,𝑙 ⊗ ̄𝑒𝑗∣
𝑡=0

=
𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

⟨𝜕𝑡�̃�𝑗 + 𝑡𝜇𝑗∣𝑡=0
, Κ𝛾(𝑘,𝑙,𝛿)(̃𝑥𝑗)⟩ ̂𝐸𝑘,𝑙 ⊗ ̄𝑒𝑗

=
𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

⟨𝜇𝑗, Κ𝛾(𝑘,𝑙,𝛿)(̃𝑥𝑗)⟩ ̂𝐸𝑘,𝑙 ⊗ ̄𝑒𝑗 = 𝐶(𝜇, ̃𝑥). �

Lemma 1.26 (Derivative of the padding operator) In the setting of Definition 1.8, the total derivative of
the padding operator𝔓𝛼,𝛽 exists and is given by𝐷𝑥 𝔓𝛼,𝛽(̃𝑥) ⋅ 𝜈 = 𝔓𝛼,𝛽(𝜈) for all inputs and test points

̃𝑥, 𝜈 ∈ ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1.

Proof. For 𝜈 = ∑𝑚1
𝑗=1 𝜈𝑗 ⊗ 𝑒𝑗 ∈ ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1 we have

𝜕𝑡𝔓𝛼,𝛽(̃𝑥 + 𝑡𝜈)∣
𝑡=0

= 𝜕𝑡

𝑚1

∑
𝑗=1

𝑛1

∑
𝑘=1

𝑙1

∑
𝑙=1

⟨ ̃𝑥𝑗 + 𝑡𝜈𝑗, 𝐸𝑘,𝑙⟩𝐸′
𝑘+⌊ 𝛼

2
⌋,𝑙+⌊ 𝛽

2
⌋

⊗ 𝑒𝑗∣
𝑡=0

=
𝑚1

∑
𝑗=1

𝑛1

∑
𝑘=1

𝑙1

∑
𝑙=1

⟨𝜕𝑡 ̃𝑥𝑗 + 𝑡𝜈𝑗∣𝑡=0
, 𝐸𝑘,𝑙⟩𝐸′

𝑘+⌊ 𝛼
2

⌋,𝑙+⌊ 𝛽
2

⌋
⊗ 𝑒𝑗

19

1.3. OPTIMISATION OF CNNS CHAPTER 1. REGRESSIONWITH CNNS

=
𝑚1

∑
𝑗=1

𝑛1

∑
𝑘=1

𝑙1

∑
𝑙=1

⟨𝜈𝑗, 𝐸𝑘,𝑙⟩𝐸′
𝑘+⌊ 𝛼

2
⌋,𝑙+⌊ 𝛽

2
⌋

⊗ 𝑒𝑗 = 𝔓𝛼,𝛽(𝜈) �

Lemma1.27 (Derivative of the bias operator) In the setting of Definition 1.9, the total derivatives of the
bias operator 𝐵

𝐷𝑥 𝐵(̃𝑉 , ̃𝑥) ∈ Hom(ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2, ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2)

and 𝐷𝑉 𝐵(̃𝑉 , ̃𝑥) ∈ Hom(ℝ𝑚2, ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2)

with respect to the input and the biases respectively at the point (̃𝑉 , ̃𝑥) ∈ (ℝ𝑚2) × ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2 are
given by

𝐷𝑥 𝐵(̃𝑉 , ̃𝑥) = idℝ�̂�1× ̂𝑙1⊗ℝ𝑚2 and 𝐷𝑉 𝐵(̃𝑉 , ̃𝑥) ⋅ 𝜇 =
𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

𝜇𝑗 ̂𝐸𝑘𝑙 ⊗ ̄𝑒𝑗

for all test points 𝜇 ∈ ℝ𝑚2.

Proof. Let 𝜈 = ∑𝑚2
𝑗=1 𝜈𝑗 ⊗ ̄𝑒𝑗 ∈ ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2. Then,

𝜕𝑡𝐵(̃𝑉 , ̃𝑥 + 𝑡𝜈)∣
𝑡=0

= 𝜕𝑡

𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

(⟨ ̃𝑥𝑗 + 𝑡𝜈𝑗, ̂𝐸𝑘𝑙⟩ + ̃𝑉𝑗) ̂𝐸𝑘𝑙 ⊗ 𝑒𝑗∣
𝑡=0

=
𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

𝜕𝑡(⟨ ̃𝑥𝑗 + 𝑡𝜈𝑗, ̂𝐸𝑘𝑙⟩ + ̃𝑉𝑗)∣𝑡=0
̂𝐸𝑘𝑙 ⊗ 𝑒𝑗

=
𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

⟨𝜈𝑗, ̂𝐸𝑘𝑙⟩ ̂𝐸𝑘𝑙 ⊗ 𝑒𝑗

=
𝑚2

∑
𝑗=1

𝜈𝑗 ⊗ 𝑒𝑗 = 𝜈

which proofs 𝐷𝑥 𝐵(̃𝑉 , ̃𝑥) = idℝ�̂�1× ̂𝑙1⊗ℝ𝑚2 . For 𝐷𝑉 𝐵(̃𝑉 , ̃𝑥) let 𝜇 ∈ ℝ𝑚2, then

𝜕𝑡𝐵(̃𝑉 + 𝑡𝜇, ̃𝑥)∣
𝑡=0

= 𝜕𝑡

𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

(⟨ ̃𝑥𝑗, ̂𝐸𝑘𝑙⟩ + ̃𝑉𝑗 + 𝑡𝜇𝑗) ̂𝐸𝑘𝑙 ⊗ 𝑒𝑗∣
𝑡=0

=
𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

𝜕𝑡(⟨ ̃𝑥𝑗, ̂𝐸𝑘𝑙⟩ + ̃𝑉𝑗 + 𝑡𝜇𝑗) ̂𝐸𝑘𝑙∣𝑡=0
⊗ 𝑒𝑗

=
𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

𝜇𝑗 ̂𝐸𝑘𝑙 ⊗ 𝑒𝑗 �

Definition 1.28 (Hadamard product) Let 𝐸 be a vector space and {𝑒𝑘}𝑛
𝑘=1 an orthogonal basis of of

𝐸. Then we define the Hadamard product as a symmetric bilinear operator ⊙ ∈ Hom(𝐸, 𝐸; 𝐸) over
{𝑒𝑘}𝑛

𝑘=1 as
𝑒𝑘 ⊙ 𝑒𝑘′ ≔ Δ𝑘,𝑘′𝑒𝑘, for all 𝑘, 𝑘′ ∈ [𝑛],

where Δ𝑖,𝑗 = {
1, 𝑖 = 𝑗
0, else

is the Kronecker delta.

20

CHAPTER 1. REGRESSIONWITH CNNS 1.3. OPTIMISATION OF CNNS

Example 1.29 (Hadamard product on ℝ𝑛) Let 𝐸 = ℝ𝑛 and {𝑒𝑘}𝑛
𝑘=1 be the standard basis of 𝐸. Then,

for 𝑣, 𝑣′ ∈ 𝐸:

𝑣 ⊙ 𝑣′ = (
𝑛

∑
𝑘=1

𝑣𝑘𝑒𝑘) ⊙ (
𝑛

∑
𝑘′=1

𝑣′
𝑘′𝑒𝑘′) =

𝑛
∑

𝑘,𝑘′=1
𝑣𝑘𝑣′

𝑘′𝑒𝑘 ⊙ 𝑒𝑘′ =
𝑛

∑
𝑘,𝑘′=1

𝑣𝑘𝑣′
𝑘′Δ𝑘,𝑘′𝑒𝑘 =

𝑛
∑
𝑘=1

𝑣𝑘𝑣′
𝑘𝑒𝑘.

For this reason the Hadamard product is also referred to as elementwise multiplication.

Lemma 1.30 (Derivative of elementwise functions) Let𝐾 be a field,𝐸 be a finite-dimensional𝐾-inner
product space, {𝑒𝑘}𝑛

𝑘=1 be an orthogonal basis of 𝐸 and Ψ ∶ 𝐸 ⟶ 𝐸 be an elementwise function for a
function 𝜓 ∶ 𝐾 ⟶ 𝐾. Then, for 𝑣, 𝑧 ∈ 𝐸,

𝐷Ψ(𝑧) ⋅ 𝑣 = Ψ′(𝑧) ⊙ 𝑣,

where Ψ′ is the corresponding elementwise function for the derivative 𝜓′ of 𝜓.

Proof. This can be compute directly.

𝐷Ψ(𝑧) ⋅ 𝑣 = 𝜕𝑡Ψ(𝑧 + 𝑡𝑣)|𝑡=0

= 𝜕𝑡

𝑛
∑
𝑘=1

𝜓(⟨𝑧 + 𝑡𝑣, 𝑒𝑘⟩)𝑒𝑘∣
𝑡=0

(chain rule) =
𝑛

∑
𝑘=1

𝜓′(⟨𝑧, 𝑒𝑘⟩) 𝜕𝑡⟨𝑧 + 𝑡𝑣, 𝑒𝑘⟩|𝑡=0 𝑒𝑘

=
𝑛

∑
𝑘=1

𝜓′(⟨𝑧, 𝑒𝑘⟩)⟨𝑣, 𝑒𝑘⟩𝑒𝑘 = Ψ′(𝑧) ⊙ 𝑣 �

Theorem 1.31 (Derivative of convolutional layerwise function) In the setting of Definition 1.11 for the
convolutional layerwise function 𝑓 ∈ Conv(𝑚1, 𝑚2, (𝑝, 𝑞), 𝛿) the total derivatives

𝐷𝑥 𝑓(̃𝑥, ̃𝑉 , �̃�) ∈ Hom(ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1, ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2),

𝐷𝑉 𝑓(̃𝑥, ̃𝑉 , �̃�) ∈ Hom(ℝ𝑚2, ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2),

and 𝐷𝑊 𝑓(̃𝑥, ̃𝑉 , �̃�) ∈ Hom(ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2, ℝ�̂�1× ̂𝑙1 ⊗ ℝ𝑚2)

with respect to the input, biases and weights respectively at the point (̃𝑥, ̃𝑉 , �̃�) ∈ (ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1) ×
ℝ𝑚2 × (ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2) are given by

𝐷𝑥 𝑓(̃𝑥, ̃𝑉 , �̃�) ⋅ 𝑥 = Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙ 𝐶(�̃� , 𝔓same(𝑥))),

𝐷𝑉 𝑓(̃𝑥, ̃𝑉 , �̃�) ⋅ 𝑉 = Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙
𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

𝑉𝑗 ̂𝐸𝑘𝑙 ⊗ ̄𝑒𝑗,

and 𝐷𝑊 𝑓(̃𝑥, ̃𝑉 , �̃�) ⋅ 𝑊 = Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙ 𝐶(𝑊, 𝔓same(̃𝑥))

for all test points 𝑥 ∈ ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1, 𝑉 ∈ ℝ𝑚2 and 𝑊 ∈ ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2.

Proof. With the chain rule we get

𝐷𝑥 𝑓(̃𝑥, ̃𝑉 , �̃�) = 𝐷𝑥 Ψ(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ∘ 𝐷𝑥 𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))

∘ 𝐷𝑥 𝐶(�̃� , 𝔓same(̃𝑥)) ∘ 𝐷𝑥 𝔓same(̃𝑥)

21

1.3. OPTIMISATION OF CNNS CHAPTER 1. REGRESSIONWITH CNNS

(Lemma 1.30) = (Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙ •) ∘ 𝐷𝑥 𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))

∘ 𝐷𝑥 𝐶(�̃� , 𝔓same(̃𝑥)) ∘ 𝐷𝑥 𝔓same(̃𝑥)

(Lemma 1.27) = (Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙ •) ∘ 𝐷𝑥 𝐶(�̃� , 𝔓same(̃𝑥)) ∘ 𝐷𝑥 𝔓same(̃𝑥)

(Lemma 1.25) = (Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙ •) ∘ 𝐶(�̃� , •) ∘ 𝐷𝑥 𝔓same(̃𝑥)

(Lemma 1.26) = (Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙ •) ∘ 𝐶(�̃� , •) ∘ 𝔓same(•).

This implies that for 𝑥 ∈ ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1 we have

𝐷𝑥 𝑓(̃𝑥, ̃𝑉 , �̃�) ⋅ 𝑥 = Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙ 𝐶(�̃� , 𝔓same(𝑥))).

Analogously,

𝐷𝑊 𝑓(̃𝑥, ̃𝑉 , �̃�) = 𝐷𝑥 Ψ(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ∘ 𝐷𝑥 𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))

∘ 𝐷𝑊 𝐶(�̃� , 𝔓same(̃𝑥))

(Lemma 1.30) = (Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙ •) ∘ 𝐷𝑥 𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))

∘ 𝐷𝑊 𝐶(�̃� , 𝔓same(̃𝑥))

(Lemma 1.27) = (Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙ •) ∘ 𝐷𝑊 𝐶(�̃� , 𝔓same(̃𝑥))

(Lemma 1.25) = (Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙ •) ∘ 𝐶(•, 𝔓same(̃𝑥))

Thus, for 𝑊 ∈ ℝ𝑝×𝑞×𝑚1 ⊗ ℝ𝑚2 we have

𝐷𝑊 𝑓(̃𝑥, ̃𝑉 , �̃�) ⋅ 𝑊 = Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙ 𝐶(𝑊, 𝔓same(̃𝑥))

Finally,

𝐷𝑉 𝑓(̃𝑥, ̃𝑉 , �̃�) = 𝐷𝑥 Ψ(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ∘ 𝐷𝑉 𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))

(Lemma 1.30) = (Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙ •) ∘ 𝐷𝑉 𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))

Hence, with Lemma 1.27 we get for a bias 𝑉 ∈ ℝ𝑚2,

𝐷𝑉 𝑓(̃𝑥, ̃𝑉 , �̃�) ⋅ 𝑉 = Ψ′(𝐵(̃𝑉 , 𝐶(�̃� , 𝔓same(̃𝑥)))) ⊙
𝑚2

∑
𝑗=1

�̂�1

∑
𝑘=1

̂𝑙1

∑
𝑙=1

𝑉𝑗 ̂𝐸𝑘𝑙 ⊗ ̄𝑒𝑗. �

For 𝐿 ∈ ℕ and 𝑛, 𝑙 ∈ ℕ𝐿+1 we denote by { ̂𝐸𝑖
𝑗,𝑘}𝑛𝑖,𝑙𝑖

𝑗,𝑘=1 a orthonormal basis of ℝ𝑛𝑖×𝑙𝑖 for all 𝑖 ∈ [𝐿 + 1].

Corollary 1.32 (Derivative of the CNN-function) For 𝑖 ∈ [𝐿] in the setting of Definition 1.13 for the CNN-
function 𝑓 ∈ CNN𝐿(𝑚, 𝑝, 𝑞, 𝜓, 𝛿) the total derivatives of the 𝑖-th convolutional layerwise function 𝑓𝑖 at
the point (̃𝑥, ̃𝑉 , �̃�) ∈ (ℝ𝑛𝑖×𝑙𝑖 ⊗ ℝ𝑚𝑖) × ℝ𝑚𝑖+1 × (ℝ𝑝𝑖×𝑞𝑖×𝑚𝑖 ⊗ ℝ𝑚𝑖+1) are given by

𝐷𝑥 𝑓𝑖(̃𝑥, ̃𝑉 , �̃�) ⋅ 𝑥 = Ψ′
𝑖(𝐵𝑖(̃𝑉 , 𝐶𝑖(�̃� , 𝔓same

𝑖 (̃𝑥)))) ⊙ 𝐶𝑖(�̃� , 𝔓same
𝑖 (𝑥))), (1.22)

𝐷𝑉 𝑓𝑖(̃𝑥, ̃𝑉 , �̃�) ⋅ 𝑉 = Ψ′
𝑖(𝐵𝑖(̃𝑉 , 𝐶𝑖(�̃� , 𝔓same

𝑖 (̃𝑥)))) ⊙
𝑚𝑖+1

∑
𝑗=1

𝑛𝑖+1

∑
𝑘=1

𝑙𝑖+1

∑
𝑙=1

𝑉𝑗 ̂𝐸𝑖+1
𝑘𝑙 ⊗ ̄𝑒𝑗, (1.23)

and 𝐷𝑊 𝑓𝑖(̃𝑥, ̃𝑉 , �̃�) ⋅ 𝑊 = Ψ′
𝑖(𝐵𝑖(̃𝑉 , 𝐶𝑖(�̃� , 𝔓same

𝑖 (̃𝑥)))) ⊙ 𝐶𝑖(𝑊, 𝔓same
𝑖 (̃𝑥)) (1.24)

for all test points 𝑥 ∈ ℝ𝑛𝑖×𝑙𝑖 ⊗ ℝ𝑚𝑖, 𝑉 ∈ ℝ𝑚𝑖+1 and 𝑊 ∈ ℝ𝑝𝑖×𝑞𝑖×𝑚𝑖 ⊗ ℝ𝑚𝑖+1.

22

CHAPTER 1. REGRESSIONWITH CNNS 1.3. OPTIMISATION OF CNNS

Now,beingable toexplicitly compute thederivativesof layerwise functionswith respect to the inputand
parameters, we are almost ready to formulate the gradient decent algorithm for CNNs. Let ̃𝑥 ∈ ℝ𝑛𝑖×𝑙𝑖 ⊗
ℝ𝑚𝑖, ̃𝑉 ∈ ℝ𝑚𝑖+1 and �̃� ∈ ℝ𝑝𝑖×𝑞𝑖×𝑚𝑖 ⊗ ℝ𝑚𝑖+1. We know from proposition 1.22 that in order to compute
thederivatives of the squared loss for the 𝑖-th layerweneed the adjoints𝐷⋆

𝑥 𝑓𝑖(̃𝑥, ̃𝑉 , �̃�), 𝐷⋆
𝑉 𝑓𝑖(̃𝑥, ̃𝑉 , �̃�)

and 𝐷⋆
𝑊 𝑓𝑖(̃𝑥, ̃𝑉 , �̃�). Let’s consider 𝐷𝑥 𝑓𝑖(̃𝑥, ̃𝑉 , �̃�) ∈ Hom(ℝ𝑛𝑖×𝑙𝑖 ⊗ ℝ𝑚𝑖, ℝ𝑛𝑖+1×𝑙𝑖+1 ⊗ ℝ𝑚𝑖+1) as an ex-

ample. Since ℝ𝑛𝑖×𝑙𝑖 ⊗ ℝ𝑚𝑖 can be identified with ℝ𝑛𝑖⋅𝑙𝑖⋅𝑚𝑖, it is an linear bounded operator between
finite dimensional vector spaces and can as such be represented by a matrix in the canonical basis
which we denote by [𝐷𝑥 𝑓𝑖(̃𝑥, ̃𝑉 , �̃�)] ∈ ℝ𝑛𝑖+1⋅𝑙𝑖+1⋅𝑚𝑖+1×𝑛𝑖⋅𝑙𝑖⋅𝑚𝑖. From proposition 1.20 it follows that the
adjoint matrix [𝐷𝑥 𝑓𝑖(̃𝑥, ̃𝑉 , �̃�)]⋆ (which equals the transpose in this real case) can be identified with
the representing matrix for 𝐷⋆

𝑥 𝑓𝑖(̃𝑥, ̃𝑉 , �̃�). Note that for the sake of simple notation we allow our-
selves the abuse of notation [𝐷𝑥 𝑓𝑖(̃𝑥, ̃𝑉 , �̃�)] ⋅ 𝑥 for an element 𝑥 ∈ ℝ𝑛𝑖×𝑙𝑖 ⊗ ℝ𝑚𝑖 instead of writing
𝜙−1

𝑖+1([𝐷𝑥 𝑓𝑖(̃𝑥, ̃𝑉 , �̃�)] ⋅ 𝜙𝑖(𝑥)), where 𝜙𝑖 ∶ ℝ𝑛𝑖×𝑙𝑖 ⊗ ℝ𝑚𝑖 ⟶ ℝ𝑛𝑖⋅𝑙𝑖⋅𝑚𝑖 is the canonical isomorphism.

Algorithm 1.33 (Gradient decent for CNNs) In the setting of corollary 1.32 the gradient decent algo-
rithm for CNNs for a data point (𝑥, 𝑦) ∈ (ℝ𝑛1×𝑙1 ⊗ ℝ𝑚1) × (ℝ𝑛𝐿+1×𝑙𝐿+1 ⊗ ℝ𝑚𝐿+1) is defined as follows:
1: 𝑥1 ← 𝑥
2: for 𝑖 = 1, … , 𝐿 do
3: 𝑥𝑖+1 ← Ψ𝑖(𝐵(𝑉𝑖, 𝐶(𝑊𝑖, 𝔓same(𝑥𝑖))))
4: end for
5: for 𝑖 = 𝐿, … , 1 do
6: ̃𝑉𝑖 ← 𝑉𝑖
7: �̃�𝑖 ← 𝑊𝑖
8: if 𝑖 = 𝐿 then
9: 𝑒𝐿 ← 𝑥𝐿+1 − 𝑦

10: else
11: 𝑒𝑖 ← [𝐷𝑥 𝑓𝑖+1(𝑥𝑖+1, ̃𝑉𝑖+1, �̃�𝑖+1)]⋆ ⋅ 𝑒𝑖+1
12: end if
13: [𝐷𝑉𝑖

𝐽(𝑥, 𝑦, 𝑉 , 𝑊)] ← [𝐷𝑉 𝑓𝑖(𝑥𝑖, 𝑉𝑖, 𝑊𝑖)]⋆ ⋅ 𝑒𝑖
14: [𝐷𝑊𝑖

𝐽(𝑥, 𝑦, 𝑉 , 𝑊)] ← [𝐷𝑊 𝑓𝑖(𝑥𝑖, 𝑉𝑖, 𝑊𝑖)]⋆ ⋅ 𝑒𝑖
15: 𝑉𝑖 ← 𝑉𝑖 − 𝜂[𝐷𝑉𝑖

𝐽(𝑥, 𝑦, 𝑉 , 𝑊)]
16: 𝑊𝑖 ← 𝑊𝑖 − 𝜂[𝐷𝑊𝑖

𝐽(𝑥, 𝑦, 𝑉 , 𝑊)]
17: end for
18: return 𝑉𝑖, 𝑊𝑖

In the lines 2-4 a forward pass is executed inwhich the state variables are stored for each layer. In lines 6
and7 theparametersof the current layer are saved for later use. Theywouldbeoverwrittenbeforebeing
needed in the next iteration. For the last layer the error vector is initialised as shown in equation (1.20).
In the lines 13 and14 the representingmatrices for thederivatives of the squared losswith respect to the
weights and biases of the 𝑖-th layer are computed according to Theorem 1.23 (backpropagation). Note
that in order to compute the matrices [𝐷𝑉 𝑓𝑖(𝑥𝑖, 𝑉𝑖, 𝑊𝑖)]⋆ and [𝐷𝑊 𝑓𝑖(𝑥𝑖, 𝑉𝑖, 𝑊𝑖)]⋆ explicitly the equa-
tions (1.23) and (1.24) can be evaluated on the corresponding standard bases before taking adjoints.
In the lines 15 and 16 the biases and weights are updated according to the definition of Algorithm 1.16
(gradient decent).

Remark 1.34 (Residual connections) A problem that can arise when optimising the parameters using
backpropagation is that of the vanishing gradient. The activation function (here, the layerwise function
Ψ𝑖) is often chosen sigmoidally (i.e. as a bounded, differentiable, real function), so its gradientmay con-
verge to zero. As can be seen in the backpropagation equation (1.19), the gradients of the back layers
are multiplied to calculate the gradients in the front layers. For small gradients in each layer, this may

23

1.3. OPTIMISATION OF CNNS CHAPTER 1. REGRESSIONWITH CNNS

lead to the dependence of the loss function on the parameters of the front layers decreasing exponen-
tially from layer to layer. This can result in a standstill in the gradient decent updates. One solution to
circumvent this problem is to add residual connections. For example, for 𝑓 ∈ CNN𝐿(𝑚, 𝑝, 𝑞, 𝜓, 𝛿) as in
Definition 1.13 adding a residual connection in the 𝑖-th layer means that the CNN-function becomes

𝑓𝐿(•, 𝑉𝐿, 𝑊𝐿) ∘ … ∘ 𝑓𝑖+1(•, 𝑉𝐿, 𝑊𝐿) ∘ (𝑓𝑖(•, 𝑉𝐿, 𝑊𝐿) + id) ∘ 𝑓𝑖−1(•, 𝑉𝐿, 𝑊𝐿) ∘ … ∘ 𝑓1(•, 𝑉1, 𝑊1).

This allows the network to pass information past the layers and prevent exponential dependency.

24

2 Demosaicing with CNNs

Wewill nowexplicitly apply the theoretical knowledge of statistical learning using CNNs gained in Chap-
ter 1 to the task of demosaicing camera RAW images. For this purpose, we first formulate the demosaic-
ing problem mathematically. To gain a better understanding of the requirements for demosaicing, we
will then consider the problem against the theoretical background of sampling theory and find that the
Nyquist-Shannon sampling theoremgives a notion ofwhich frequencies canbe reconstructedby demo-
saicing. The actual implementation and empirical investigations will then be carried out for the case of
a Bayer pattern, as these are also used in ARRI cameras. We consider classical debayer algorithms and
will find that we can choose CNN architectures that reflect the algorithmic structure of these classical
algorithms. In the last section of this chapter we will implement a CNN and train it with the methods
described in Chapter 1. We will see that the 3-stage architecture, which is inspired by gradient-based
debayering, is superior to classical debayering in our tests.

2.1 Demosaicing

As alreadydescribed in Section 1.1, it is essential in statistical learning to incorporate a priori knowledge
into the actual learning process. For this purpose, we will now examine the actual task of demosaicing
camera RAW images. Wewill use the knowledge gained from this for the choice of the actual CNN archi-
tecture and other hyperparameters.

2.1.1 General formulation

The sensors of ARRI’s digital cinema cameras consist of an orthogonal array of pixels, each of thememit-
ting electronswhen electromagnetic radiation, such as light, hits them. Within the dynamic rangeof the
pixels theamountof photocurrent that is returned fromthe sensor is proportional to theamountof pho-
tons hitting the sensor. It also depends of the wavelength of the photons and the spectral sensitivity of
the pixels. In this way, a black and white image can be constructed from the sensor data by mapping
pixels with low photocurrent to dark, and pixels with high photocurrent to bright grey tones.

In order to obtain colour images, a colour filter array (CFA) is placed in front of the pixel array. The CFA
splits the pixels in subgroups with different spectral sensitivities. CFAs consist of a repetitive mosaic
pattern of different primary colours.

Definition 2.1 (Mosaic pattern) Let 𝛼, 𝛽 ∈ ℕ. Amosaic pattern of size 𝛼 ⋅ 𝛽 with ℕ ∋ 𝜇 ≤ 𝛼 ⋅ 𝛽 colour
primaries is a matrix 𝑀 ∈ {1, 2, … , 𝜇}𝛼×𝛽.

25

2.1. DEMOSAICING CHAPTER 2. DEMOSAICINGWITH CNNS

Figure 2.1: A Bayer pattern that is placed on an image sensor.

Example 2.2 (ALEV 4 Bayer pattern) The ARRI ALEV 4 Sensor has the mosaic pattern

𝑀 = (1 2
2 3) ,

where 1 corresponds to red, 2 to green and 3 to blue.

For a pixel with a specific primary colour the information of the corresponding other colours of the CFA
is missing. This information can be obtained by interpolating the corresponding other channels. This
interpolationmap is not unique. For this reasonwe regard it as an inverse of the unique projectionmap
that maps a coloured image into the CFA-domain.

Definition 2.3 (Mosaicing map) Let 𝑀 ∈ {1, 2, … , 𝜇}𝛼×𝛽 be a mosaic pattern. Let 𝑚, 𝑛 ∈ ℕ, 𝑚 ≥
𝛼, 𝑛 ≥ 𝛽. Regard the map

𝑚𝑀 ∶ ℝ𝑚×𝑛×𝜇 ⟶ ℝ𝑚×𝑛, 𝐼 ⟼ 𝐽

that projects an image of size (𝑚, 𝑛) with 𝜇 colour primaries onto the mosaic-sensor domain, where
𝐽𝑖,𝑗 = 𝐼𝑖,𝑗,𝑀𝑠,𝑡

for all 𝑖 ∈ {1, … , 𝑚}, 𝑗 ∈ {1, … , 𝑛} and 𝑠 ∈ {1, 2, … , 𝛼}, 𝑡 ∈ {1, 2, … , 𝛽} are such that

𝑠 ≡ 𝑖 mod 𝛼, 𝑡 ≡ 𝑗 mod 𝛽.

We call 𝑚𝑀 themosaicing map for 𝑀.

Definition 2.4 (Demosaicing map) Let 𝑚𝑀 ∶ ℝ𝑚×𝑛×𝜇 ⟶ ℝ𝑚×𝑛 be a mosaicing map. We call 𝑑𝑀 ∶
ℝ𝑚×𝑛 ⟶ ℝ𝑚×𝑛×𝜇 a demosaicing map if 𝑚𝑀 ∘ 𝑑𝑀 = idℝ𝑚×𝑛.

2.1.2 The Bayer pattern

Different mosaic patterns have been tried in the past. However, since it was patented in 1975 ([5]), the
most established one is the so-called Bayer pattern.

26

CHAPTER 2. DEMOSAICINGWITH CNNS 2.1. DEMOSAICING

Figure 2.2: Representation of the retinal photoreceptor mosaic to illustrate the relative proportions of
L, M, and S cones. The graphic is taken from [12].

Definition 2.5 (Bayer pattern, debayering) A mosaic pattern of the form

𝐵 ∈ {(1 2
2 3) , (3 2

2 1) , (2 1
3 2) , (2 3

1 2)} ,

is called Bayer pattern and the corresponding demosaicing map 𝑑𝐵 is called debayering map.

Since the goal of this work is to find a good demosaicing map for the ALEV 4 Bayer Pattern we will refer
only to debayeringmaps from now. Nevertheless, the techniques and statements in this thesis can also
be applied to other mosaic patterns.

Oneof the reasons for thesuccessof theBayerpattern is that it isbasedon thecolourvisionof thehuman
visual system. Young (1802 in [28]) and Helmholtz (1852 in [14]) proposed the theory of trichromacy,
stating that the human colour perception can be described by three colour stimuli. Empirically, it could
be shown that most colours can be represented by a combination of short, medium, and long-wave
stimuli. Althoughmany effects (such as after-images or spatial effects in colour perception) could not be
explained, the theory is still valid as a good approximation to reality and colour spaces such as CIE1931,
which are based on this approach, are still used today.

Mullen (1985 in [21]) could show that the human visual system is more sensitive to differences in lu-
minance than to differences in chrominance. The reason for this lies in the retinal distribution of cone
types (L, M and S cones for long-wavelength, middle-wavelength and short-wavelength) and the spec-
tral sensitivities of the human visual system. There are approximately twice asmany L cones asM cones
and approximately six times as many M cones as S cones (see [12]). Figure 2.2 illustrates this relation-
ship of the density of cones. To understand why the Bayer pattern consists of twice asmany green dyes
as green or red ones we also need to look at the spectral sensitivities of the cones. Figure 2.3 shows
a comparison of the spectral sensitivities of humans and the ALEV 3 sensor built into the ARRI ALEXA
camera. The curves ofmost other digital cameras based on a Bayer pattern are similar. As we can see in
Figure 2.3a there is a large overlap between the sensitivities of the L, andM cones and their sensitivities
are pretty much in themiddle of the wavelengths visible to humans. For this reason luminance percep-
tion of the human retina involves primarily the M and L cones, which are particularly sensitive to green
light, when seeing in daylight. In comparison,when looking at Figure 2.3b, it is noticeable that the chan-
nels are more separated. Since the red channel has its peak in the higher wavelengths, the luminance

27

2.2. CHALLENGES CHAPTER 2. DEMOSAICINGWITH CNNS

400 500 600 700

0

0.5

1

Wavelength in 10−9 m

No
rm

al
iz
ed

Re
sp
on

si
vi
ty

(a) Human spectral responsivities of the L, M, and S
cones. It corresponds to the excitation of photopig-
ment. The data was obtained from [26].

400 500 600 700

0

0.5

1

Wavelength in 10−9 m

No
rm

al
iz
ed

Re
sp
on

si
vi
ty

(b) Spectral responses for the red, green, and blue pix-
els of the ARRI ALEV 3 sensor. It corresponds to the
amount of photocurrent as the result of exposure to
light power (amperes per watt).

Figure 2.3: Exemplary comparison of the spectral responsivities of humans and cameras. The curves
are normalised such that the largest value of all three curves is 1.

information is usually attributed to the green channel in digital cameras.

2.2 Challenges

For a given mosaic pattern it is mathematically trivial to find a demosaicing map in the sense of Def-
inition 2.4. However, to be used in digital cameras, various requirements have to be fulfilled. For a
RGB-image 𝐼 ∈ ℝ𝑚×𝑛×3 and the corresponding Bayer image 𝐽 ≔ 𝑚𝐵(𝐼) the debayering problem can
be seen as finding a debayering map 𝑑𝐵 such that the perceptive difference between 𝐼 and 𝑑𝐵(𝐽) is
minimised. For this purpose, as many spatial frequencies as possible that are contained in 𝐼 must be
reconstructed in 𝐽. On the other hand, the creation of artefacts (unwanted image details that are not
contained in 𝐼) must be minimised.

2.2.1 Nyquist–Shannon sampling theorem

Images coming from nature are generally not band-limited. This means that they can contain infinite
high spatial frequencies. However, a digital image sensor only consists of a finite number of pixels and
can therefore only provide a limited spatial resolution. A notion for this correlation between pixel pitch
and the ability to capture spatial frequencies is given by the Nyquist–Shannon sampling theorem. We
will prove theNyquist-Shannon sampling theorem for the one-dimensional case, althoughwewill use it
later in the discussion of sampling two-dimensional images. It can then be considered dimension-wise.

We fix the notation, and recall some basic properties of the Fourier transformation and the Fourier se-
ries.

• For an integrable function 𝑓 ∈ 𝐿1(ℝ) the fourier transform ̂𝑓 is defined as

̂𝑓(𝑘) = ∫
ℝ

𝑓(𝑥)𝑒−2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑥),

28

CHAPTER 2. DEMOSAICINGWITH CNNS 2.2. CHALLENGES

and the inverse fourier transform is defined as

̌𝑓(𝑘) = ∫
ℝ

𝑓(𝑥)𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑥).

for all 𝑘 ∈ ℝ.

• For 𝑓 ∈ 𝐿1(ℝ) it holds that ̂𝑓 ∈ 𝐿∞(ℝ) (see [18], Chapter 5).

• Regarded as a linear operator ℱ ∶ 𝑓 ⟼ ̂𝑓, Plancherel’s theorem states that there is an unique
extension of ℱ ∶ 𝐿1(ℝ) ∩ 𝐿2(ℝ) ⟶ 𝐿∞(ℝ) to an unitary operator on 𝐿2(ℝ). In particular,
‖𝑓‖𝐿2 = ‖ℱ𝑓‖𝐿2 (see [2], Chapter X, Theorem 3.23).

• If 𝑓 ∈ 𝐿2(ℝ) is periodic with period 𝑇 > 0 (i.e. 𝑓(𝑥 + 𝑇) = 𝑓(𝑥) for almost every 𝑥 ∈ ℝ), then the
Riesz–Fischer theorem states that the Fourier series

𝑓𝑁 ≔
𝑁

∑
𝑛=−𝑁

𝑐𝑛𝑒− 𝜋𝑖𝑛•
𝑇 , where 𝑐𝑛 ≔

1
2𝑇

∫
𝑇

−𝑇
𝑓(𝑥)𝑒

𝜋𝑖𝑛𝑥
𝑇 𝑑𝜆(𝑥), (2.1)

converges to 𝑓 in 𝐿2(ℝ), i.e. ‖𝑓𝑁 − 𝑓‖𝐿2(ℝ)
𝑁→∞
−−−−→ 0 (see [6], Theorem 13.12).

• If 𝑓 ∈ 𝐶1([−𝑇 , 𝑇]) is integrable, then the Fourier series 𝑓𝑁 converges uniformly to 𝑓 on [−𝑇 , 𝑇].
This is aweaker versionofwhat is knownas theDirichlet-Jordan test (see [29], Chapter II, Theorem
8.1).

Lemma 2.6 (Sampling formula) Let 𝑓 ∈ 𝐿1(ℝ) be such that ̂𝑓 ∈ 𝐶1
𝑐 (ℝ) is compactly supported and

supp(̂𝑓) ⊆ [−𝑏, 𝑏] for a 𝑏 > 0. Then for all 𝑥 ∈ ℝ it holds that

𝑓(𝑥) = ∑
𝑛∈ℤ

𝑓 (
𝑛
2𝑏

) sinc(𝑛 − 2𝑏𝑥). (2.2)

Proof. Since in equation (2.2)wewant to evaluate 𝑓 at specific pointswe start by ensuring that 𝑓 actually
is evaluable. We do this by showing that 𝑓 is continuous:

lim
𝜖→0

|𝑓(𝑥) − 𝑓(𝑥 + 𝜖)| = lim
𝜖→0

∣∫
ℝ

̂𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑘) − ∫
ℝ

̂𝑓(𝑘)𝑒2𝜋𝑖𝑘(𝑥+𝜖) 𝑑𝜆(𝑘)∣

≤ lim
𝜖→0

∫
ℝ

∣ ̂𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥 (1 − 𝑒2𝜋𝑖𝑘𝜖)∣ 𝑑𝜆(𝑘).

We define 𝑔𝜖 ∶ 𝑘 ⟼ ̂𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥 (1 − 𝑒2𝜋𝑖𝑘𝜖) to check the conditions for the dominated convergence
theorem:

1. It holds for all 𝑘 ∈ ℝ that 𝑔𝜖(𝑘)
𝜖→0
−−→ 0.

2. Let ̄𝑔 ≔ | ̂𝑓|, then |𝑔𝜖(𝑘)| ≤ ̄𝑔(𝑘)and ̄𝑔 ∈ 𝐿1(ℝ)because ̂𝑓 is compactly supportedandcontinuous.

With the dominated convergence theoremwe get

lim
𝜖→0

|𝑓(𝑥) − 𝑓(𝑥 + 𝜖)| ≤ ∫
ℝ
lim
𝜖→0

|𝑔𝜖(𝑘)| 𝑑𝜆(𝑘) = 0.

29

2.2. CHALLENGES CHAPTER 2. DEMOSAICINGWITH CNNS

Hence, 𝑓 ∈ 𝐶(ℝ). We now turn to the proof of the main statement. For 𝑘 ∈ ℝ, 𝑁 ∈ ℕ, define

̂𝑓𝑁(𝑘) ≔
𝑁

∑
𝑛=−𝑁

𝑐𝑛𝑒− 2𝜋𝑖𝑘𝑛
2𝑏 , (2.3)

where

𝑐𝑛 ≔
1
2𝑏

∫
𝑏

−𝑏

̂𝑓(𝑘)𝑒
2𝜋𝑖𝑘𝑛

2𝑏 𝑑𝜆(𝑘) =
1
2𝑏

𝑓 (
𝑛
2𝑏

) . (2.4)

Then, as ̂𝑓 ∈ 𝐶1([−𝑏, 𝑏]), we have that ̂𝑓𝑁
𝑁→∞
−−−−→ ̂𝑓 pointwise on [−𝑏, 𝑏] by the Dirichlet-Jordan test.

Since supp(̂𝑓) ⊆ [−𝑏, 𝑏], this implies

̂𝑓
𝑁→∞

←−−−− ̂𝑓𝑁 ⋅ 𝟙[−𝑏,𝑏]
(2.3)=

𝑁
∑

𝑛=−𝑁
𝑐𝑛𝑒− 2𝜋𝑖𝑛•

2𝑏 ⋅ 𝟙[−𝑏,𝑏]
(2.4)=

𝑁
∑

𝑛=−𝑁

1
2𝑏

𝑓 (
𝑛
2𝑏

) 𝑒− 2𝜋𝑖𝑛•
2𝑏 ⋅ 𝟙[−𝑏,𝑏]. (2.5)

Taking the inverse Fourier transform of ̂𝑓 we get for all 𝑥 ∈ ℝ,

𝑓(𝑥) = ∫
ℝ

̂𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑘)(2.5)= ∫
𝑏

−𝑏
lim

𝑁→∞
̂𝑓𝑁(𝑘)𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑘).

As ̂𝑓𝑁 and ̂𝑓 are continuous on [−𝑏, 𝑏], the limit and the integral can be interchanged since

∣∫
𝑏

−𝑏

̂𝑓𝑁(𝑘)𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑘) − ∫
𝑏

−𝑏

̂𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑘)∣ = ∣∫
𝑏

−𝑏
(̂𝑓𝑁(𝑘) − ̂𝑓(𝑘))𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑘)∣

(∣𝑒2𝜋𝑖𝑘𝑥∣ = 1) ≤ ∫
𝑏

−𝑏
∣ ̂𝑓𝑁(𝑘) − ̂𝑓(𝑘)∣ 𝑑𝜆(𝑘)

≤ 2𝑏 ⋅ ‖ ̂𝑓𝑁 − ̂𝑓‖𝐿∞([−𝑏,𝑏])
𝑁→∞
−−−−→ 0.

Finally, this implies

𝑓(𝑥) = lim
𝑁→∞

∫
𝑏

−𝑏

̂𝑓𝑁(𝑘)𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑘)

= lim
𝑁→∞

∫
𝑏

−𝑏

𝑁
∑

𝑛=−𝑁

1
2𝑏

𝑓 (
𝑛
2𝑏

) 𝑒− 2𝜋𝑖𝑛𝑘
2𝑏 𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑘)

= lim
𝑁→∞

𝑁
∑

𝑛=−𝑁
∫

𝑏

−𝑏

1
2𝑏

𝑓 (
𝑛
2𝑏

) 𝑒− 2𝜋𝑖𝑛𝑘
2𝑏 𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑘)

= ∑
𝑛∈ℤ

1
2𝑏

𝑓 (
𝑛
2𝑏

) ∫
𝑏

−𝑏
𝑒2𝜋𝑖𝑘(− 𝑛

2𝑏
+𝑥) 𝑑𝜆(𝑘)

= ∑
𝑛∈ℤ

1
2𝑏

𝑓 (
𝑛
2𝑏

)
[𝑒2𝜋𝑖𝑘(− 𝑛

2𝑏
+𝑥)]

𝑏

−𝑏

2𝜋𝑖 (− 𝑛
2𝑏

+ 𝑥)

= ∑
𝑛∈ℤ

𝑓 (
𝑛
2𝑏

)
𝑒𝜋𝑖𝑛−2𝜋𝑖𝑏𝑥 − 𝑒−𝜋𝑖𝑛+2𝜋𝑖𝑏𝑥

2𝑖(𝜋𝑛 − 2𝜋𝑏𝑥)

= ∑
𝑛∈ℤ

𝑓 (
𝑛
2𝑏

)
sin(𝜋(𝑛 − 2𝑏𝑥))

𝜋(𝑛 − 2𝑏𝑥)
= ∑

𝑛∈ℤ
𝑓 (

𝑛
2𝑏

) sinc(𝑛 − 2𝑏𝑥). �

30

CHAPTER 2. DEMOSAICINGWITH CNNS 2.2. CHALLENGES

Corollary 2.7 (Nyquist–Shannon sampling theorem) Let 𝑓 be as in Theorem 2.6. Then, for (𝑥𝑛)𝑛∈ℤ,
where 𝑥𝑛 = 𝑛

2𝑏
for𝑛 ∈ ℤ the function 𝑓 is completely determined by (𝑥𝑛, 𝑓(𝑥𝑛))𝑛∈ℤ thanks to equation

(2.2). The frequency 𝑏 is called Nyquist frequency.

Note that the converse of the Nyquist–Shannon sampling theorem does not hold in general, i.e. there
are functions that can be completely reconstructed from samples whose abscissa frequency is lower
than 2𝑏.

The question arises if the sampling formula also holds true for functions not fulfilling the condition of
bandlimitedness in the sense that the formula converges to the function to be approximated for large
sampling frequencies. In fact, this turns out to be true as we showwith the following theorem.

Theorem 2.8 (Arbitrary approximation with the sampling formula) Let 𝑓 ∈ 𝐿2(ℝ) be such that ̂𝑓 ∈
𝐶1(ℝ). Let

̃𝑓𝑏 ∶ ℝ ⟶ ℝ, 𝑥 ⟼ ∑
𝑛∈ℤ

𝑓 (
𝑛
2𝑏

) sinc(𝑛 − 2𝑏𝑥),

for a 𝑏 > 0. Then, ‖𝑓 − ̃𝑓𝑏‖𝐿2 = ‖𝟙[−𝑏,𝑏]∁ ̂𝑓‖𝐿2
𝑏→∞
−−−→ 0.

Proof. Define ̂𝑓𝑏 ≔ ̂𝑓 ⋅ 𝟙[−𝑏,𝑏]. Then, as in the proof of Lemma 2.6, we can expand ̂𝑓𝑏 as Fourier series

̂𝑓𝑏(𝑘) = 𝟙[−𝑏,𝑏](𝑘) ⋅ ∑
𝑛∈ℤ

𝑐𝑛𝑒− 2𝜋𝑖𝑘𝑛
2𝑏 , 𝑐𝑛 =

1
2𝑏

∫
𝑏

−𝑏

̂𝑓𝑏(𝑘)𝑒
2𝜋𝑖𝑘𝑛

2𝑏 𝑑𝜆(𝑘),

where the equality for the limit holds in𝐿2[−𝑏, 𝑏]by theRiesz-Fischer theorem. And, also from theproof
of Lemma 2.6, we now that (̂𝑓𝑏)∨ = ̃𝑓𝑏. Now, with Plancherel’s theoremwe get

‖𝑓 − ̃𝑓𝑏‖𝐿2 = ‖ ̂𝑓 − ̂𝑓𝑏‖𝐿2 = ‖ ̂𝑓 − 𝟙[−𝑏,𝑏] ̂𝑓‖𝐿2 = ‖𝟙[−𝑏,𝑏]∁ ̂𝑓‖𝐿2.

Since 𝟙[−𝑏,𝑏]∁ ̂𝑓
𝑏→∞
−−−→ 0 pointwise and ̂𝑓 is an integrable majorant as ‖ ̂𝑓‖𝐿2 = ‖𝑓‖𝐿2 < ∞, we get by the

dominated convergence theorem that ‖𝟙[−𝑏,𝑏]∁ ̂𝑓‖𝐿2(ℝ)
𝑏→∞
−−−→ 0. �

Example 2.9 We regard the rectangle function 𝑓 ≔ 𝟙[−1,1]. Since 𝑓 is not differentiable at the points
{−1, 1} it is intuitively clear that this leads to infinite frequency components. So it seems that the pre-
requisites for Lemma 2.6 are not fulfilled, as the support of ̂𝑓 is not contained in an interval. Never-
theless, since 𝑓 ∈ 𝐿2(ℝ) and ̂𝑓 = 2 sinc(2•) ∈ 𝐶1(ℝ) (see below) we know by Theorem 2.8 that the
sampling formula is applicable and that when the sampling frequency is increased to infinity, the ap-
proximation error vanishes. Interpolating 𝑓 at the points (𝑛

2𝑏
)
𝑛∈ℤ

for a 𝑏 > 0 using the sampling formula
(2.2) yields the approximation

̃𝑓𝑏(𝑥) = ∑
𝑛∈ℤ

𝟙[−1,1] (
𝑛
2𝑏

) sinc(𝑛 − 2𝑏𝑥) =
⌊2𝑏⌋

∑
𝑛=⌈−2𝑏⌉

sinc(𝑛 − 2𝑏𝑥).

In order to examine the convergence of the approximation we compute the Fourier transform of 𝑓 re-
stricted to the interval [−𝑏, 𝑏]. For that, recall that𝟙[− 1

2
, 1

2
]

⋀

= sinc and it is a basic property of the Fourier

transform, that for 𝑔 ∈ 𝐿1(ℝ), it holds for almost every 𝑘 ∈ ℝ that

𝑔(𝑎•)
⋀

(𝑘) =
1

|𝑎|
̂𝑔 (

𝑘
𝑎

) , 𝑎 ∈ ℝ. (2.6)

31

2.2. CHALLENGES CHAPTER 2. DEMOSAICINGWITH CNNS

The Fourier transform ̂𝑓 is now obtained by

̂𝑓(𝑘) = 𝟙[−1,1]
⋀

(𝑘) = 𝟙[− 1
2

, 1
2

] (•
2
)

⋀

(𝑘)(2.6)= 2 ⋅ 𝟙[− 1
2

, 1
2

](•)
⋀

(2𝑘) = 2 sinc(2𝑘).

and we define its bandlimited version by ̂𝑓𝑏(𝑘) ≔ ̂𝑓(𝑘)𝟙[−𝑏,𝑏] = 2 sinc(2𝑘) ⋅ 𝟙[−𝑏,𝑏]. We get the approxi-
mation of 𝑓 represented by the sampling formula by back transformation, namely

̃𝑓𝑏(𝑥) ≔ ∫
ℝ

̂𝑓𝑏(𝑘)𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑘) = ∫
𝑏

−𝑏

̂𝑓(𝑘)𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑘) = 2 ∫
𝑏

−𝑏
sinc(2𝑘)𝑒2𝜋𝑖𝑘𝑥 𝑑𝜆(𝑘).

Theorem 2.8 gives as an estimation of the approximation error under the 𝐿2-norm.

‖𝑓 − ̃𝑓𝑏‖2
𝐿2 = ‖ ̂𝑓 ⋅ 𝟙[−𝑏,𝑏]∁‖2

𝐿2 = ∫
[−𝑏,𝑏]∁

| ̂𝑓(𝑘)|2 𝑑𝜆(𝑘)

= 4 ∫
[−𝑏,𝑏]∁

sinc2(2𝑘) 𝑑𝜆(𝑘) = 4 ∫
[−𝑏,𝑏]∁

sin2(2𝜋𝑘)
(2𝜋𝑘)2 𝑑𝜆(𝑘)

≤
1
𝜋2 ∫

[−𝑏,𝑏]∁

1
𝑘2 𝑑𝜆(𝑘) =

1
𝜋2 ([

−1
𝑘

]
−𝑏

−∞
+ [

−1
𝑘

]
∞

𝑏
) =

2
𝜋2𝑏

𝑏→∞
−−−→ 0.

−2 0 2

0

0.5

1

(a) b=1

−2 0 2

0

0.5

1

(b) b=4

−2 0 2

0

0.5

1

(c) b=16

−2 0 2

0

0.5

1

(d) b=100

Figure 2.4: Approximations of 𝑓 (blue) by ̃𝑓𝑏 (red) for different values of 𝑏. As can be seen sampling 𝑓,
which is not bandlimited, with low frequency yields an interpolating function alternating around the
actual function. By increasing the sampling frequency the interpolation error gets smaller.

2.2.2 Aliasing artefacts

In the previous section, we used the Nyquist-Shannon sampling theorem to obtain a sufficient condi-
tion to capture frequencies fromabandlimited imagewith a sensor that has the appropriate pixel pitch.
If this condition is not met, frequencies above the Nyquist frequency may be mistakenly perceived as
lower frequencies. These then appear as unwanted artefacts in the recorded image and cannot be de-
tected or corrected afterwards.

In theory, a debayer algorithm can only reliably reconstruct frequencies below the Nyquist frequency,
but since the pixels are divided into colour channels, it is already a challenge not to produce unneces-
sary aliasing effects for frequencies below theNyquist frequency. Although the converse of the Nyquist-
Shannon sampling theoremdoes not hold, wemust assume that there are always frequencies that can-
not bedetected. Especially since images fromnature are generally not band-limited. Toprevent aliasing
effects from frequencies above the Nyquist frequency, an optical low pass filter (OLPF) is placed in front

32

CHAPTER 2. DEMOSAICINGWITH CNNS 2.2. CHALLENGES

0 2𝜋 4𝜋 6𝜋 8𝜋 10𝜋 12𝜋 14𝜋 16𝜋 18𝜋 20𝜋

−1

−0.5

0

0.5

1

Figure 2.5: Illustration of the aliasing effect. The blue curve is a cosine signal with frequency 1
2𝜋
. The

red curve is created by sampling the cosine with frequency 9
20𝜋

. As can be seen, the red curve suggests
a lower frequency as is actually contained in the original signal.

of the sensor to remove these frequencies.

(a) No filtering has been applied. Deficient frequencies
can be observed in the high-frequency ranges.

(b) An OLPF simulation has been applied. The alias
artefacts are reduced. See [24] for more information
about OLPF simulation.

Figure 2.6: Example for aliasing artefacts. The function [− 𝜋
10

, 𝜋
10

]
2
⧵ (0, 0) ⟶ ℝ, 𝑥 ⟼ sin(1

|𝑥|
) has

been sampled at 512 equidistant points to a greyscale image.

Remark 2.10 (Error estimation for the aplication of an OLPF) The application of an OLPF leads to the
question of howmuch information is lost by cutting off high frequencies. For this purpose, the𝐿2 norm
is suitable, especially since it allows the application of Plancherel’s theorem. In addition, we would like
to know the error of the𝑛-th derivative, since this characterises the error for different types of interpola-
tionmodels. For example, in linear interpolation, the error is characterised by the second derivative. All
this can be expressed by the difference of the original with the band-limited function under the Sobolev
norm 𝐻𝑛. We assume that the OLPF is such that ̂𝑓 is restricted to the interval [−𝑏, 𝑏].

‖ℱ−1(̂𝑓) − ℱ−1(̂𝑓 ⋅ 𝟙[−𝑏,𝑏])‖𝐻𝑛 =
𝑛

∑
𝑚=1

‖𝜕𝑚(ℱ−1(̂𝑓)) − ℱ−1(̂𝑓 ⋅ 𝟙[−𝑏,𝑏])‖𝐿2

33

2.3. CLASSIC DEBAYERING STRATEGIES CHAPTER 2. DEMOSAICINGWITH CNNS

=
𝑛

∑
𝑚=1

‖𝜕𝑚ℱ−1(̂𝑓 − ̂𝑓 ⋅ 𝟙[−𝑏,𝑏])‖𝐿2

=
𝑛

∑
𝑚=1

‖𝜕𝑚ℱ−1(̂𝑓 ⋅ 𝟙[−𝑏,𝑏]∁)‖𝐿2

=
𝑛

∑
𝑚=1

‖ℱ−1((−2𝜋𝑖𝑘)𝑚 ⋅ ̂𝑓 ⋅ 𝟙[−𝑏,𝑏]∁)‖𝐿2

(Plancherel’s theorem) =
𝑛

∑
𝑚=1

‖(−2𝜋𝑖𝑘)𝑚 ⋅ ̂𝑓 ⋅ 𝟙[−𝑏,𝑏]∁‖𝐿2
𝑏→∞
−−−→ 0

2.2.3 False colour

In order to obtain themissing spectral components debayer algorithms interpolate values from the sur-
rounding pixels. Since the colours of an image are determined by which pixels of the Bayer pattern
respond to a stimulus, there is a direct relationship between position and colour. Errors in the interpo-
lation of the debayer map can lead to colour shifts. This effect is generally more severe if the edges are
achromatic.

(a) Ground truth image 𝐼 (b) Debayered image 𝑑𝐵(𝑚𝐵(𝐼))

Figure 2.7: Example for false colour artefacts. The function [5𝜋
512

, 𝜋
60

]
2

⟶ ℝ, 𝑥 ⟼ sgn(sin(1
|𝑥|

)) has
been sampled (without filtering) at 512 equidistant points in each direction to a black and white image
that can bewritten as an element ofℝ512×512. It has then been copied three times along a newaxis such
that we get a black and white image 𝐼 ∈ ℝ512×512×3. We refer to 𝐼 as the ground truth image. We then
used bilinear interpolation (see Section 2.3.1) as debayeringmap 𝑑𝐵 for computing 𝑑𝐵(𝑚𝐵(𝐼)). As can
be seen, there are faulty green andmagenta colours on some edges.

2.3 Classic debayering strategies

For the implementation of a debayering map as neural network it is necessary to incorporate a priori
knowledge into the hyperparameters. For this reason, it makes sense to follow-up with classic imple-
mentations of debayering maps. This allows us to, at least in part, convey established algorithmical
structures to the neural networks.

Many debayer algorithms have been proposed andmany of those used in industry today are subject to
operational secrecy, as well as the ARRI debayer algorithm 7 (ADA7). For this reason, no explicit descrip-
tion of ADA7 is given in this thesis, but Section 2.3.2 shows the principle approach used in ADA7, so as
in the most commonly used debayer algorithms.

34

CHAPTER 2. DEMOSAICINGWITH CNNS 2.3. CLASSIC DEBAYERING STRATEGIES

2.3.1 Bilinear interpolation

For a Bayer pattern𝐵 the goal of a debayeringmap 𝑑𝐵is to reconstruct a given image 𝐼 ∈ ℝ𝑚×𝑛×3 from
its bayered version 𝑚𝐵(𝐼) such that the visual difference between 𝐼 and 𝑑𝐵(𝑚𝐵(𝐼)) is minimised. One
of the simplest approaches to do this is bilinear interpolation. The algorithm relies on interpolating the
channels independently by linearly averaging the available pixels with the same colour of the channel
to be computed. Figure 2.8 shows a bayer pattern with the corresponding indexing of the pixels, which
can be helpful for reading algorithms 2.11 and 2.12.

Algorithm 2.11 (Bilinear debayering without border treament) Assume we are given an image 𝐼 ∈
ℝ𝑚×𝑛×3, 𝑚, 𝑛 ∈ 2ℕ and the corresponding mosaic image 𝐽 ≔ 𝑚𝐵(𝐼).
1: Initialise ̃𝐼 ∈ ℝ𝑚×𝑛×3

2: for 𝑖 = 4, 6, … , 𝑚 − 2 do
3: for 𝑗 = 4, 6, … , 𝑛 − 2 do
4: ̃𝐼𝑖,𝑗,2 ← 𝐽𝑖,𝑗−1+𝐽𝑖,𝑗+1+𝐽𝑖−1,𝑗+𝐽𝑖+1,𝑗

4

5: ̃𝐼𝑖−1,𝑗−1,2 ← 𝐽𝑖−1,𝑗−2+𝐽𝑖−1,𝑗+𝐽𝑖−2,𝑗−1+𝐽𝑖,𝑗−1

4

6: ̃𝐼𝑖,𝑗,1 ← 𝐽𝑖−1,𝑗−1+𝐽𝑖−1,𝑗+1+𝐽𝑖+1,𝑗−1+𝐽𝑖+1,𝑗+1

4

7: ̃𝐼𝑖,𝑗−1,1 ← 𝐽𝑖−1,𝑗−1+𝐽𝑖+1,𝑗−1

2

8: ̃𝐼𝑖−1,𝑗,1 ← 𝐽𝑖−1,𝑗−1+𝐽𝑖−1,𝑗+1

2

9: ̃𝐼𝑖−1,𝑗−1,2 ← 𝐽𝑖−2,𝑗−2+𝐽𝑖−2,𝑗+𝐽𝑖,𝑗−2+𝐽𝑖,𝑗

4

10: ̃𝐼𝑖,𝑗−1,3 ← 𝐽𝑖,𝑗−2+𝐽𝑖,𝑗

2

11: ̃𝐼𝑖−1,𝑗,1 ← 𝐽𝑖−2,𝑗+𝐽𝑖,𝑗

2
12: end for
13: end for
14: return ̃𝐼

2.3.2 Gradient based interpolation

Many of the current debayer algorithms are based on gradient-based interpolation. In a first step, the
green channel is reconstructed, whereby care is taken to interpolate along the edges as far as possible.
The green information is then used to calculate the red and blue channels.

𝐽𝑖−3,𝑗−3 𝐽𝑖−3,𝑗−2 𝐽𝑖−3,𝑗−1 𝐽𝑖−3,𝑗 𝐽𝑖−3,𝑗+1 𝐽𝑖−3,𝑗+2
𝐽𝑖−2,𝑗−3 𝐽𝑖−2,𝑗−2 𝐽𝑖−2,𝑗−1 𝐽𝑖−2,𝑗 𝐽𝑖−2,𝑗+1 𝐽𝑖−2,𝑗+2
𝐽𝑖−1,𝑗−3 𝐽𝑖−1,𝑗−2 𝐽𝑖−1,𝑗−1 𝐽𝑖−1,𝑗 𝐽𝑖−1,𝑗+1 𝐽𝑖−1,𝑗+2
𝐽𝑖,𝑗−3 𝐽𝑖,𝑗−2 𝐽𝑖,𝑗−1 𝐽𝑖,𝑗 𝐽𝑖,𝑗+1 𝐽𝑖,𝑗+2

𝐽𝑖+1,𝑗−3 𝐽𝑖+1,𝑗−2 𝐽𝑖+1,𝑗−1 𝐽𝑖+1,𝑗 𝐽𝑖+1,𝑗+1 𝐽𝑖+1,𝑗+2
𝐽𝑖+2,𝑗−3 𝐽𝑖+2,𝑗−2 𝐽𝑖+2,𝑗−1 𝐽𝑖+2,𝑗 𝐽𝑖+2,𝑗+1 𝐽𝑖+2,𝑗+2

Figure 2.8: Visualisation of the submatrix of 𝐽 that is used to compute (̃𝐼𝑠,𝑡,𝑢)𝑠∈{𝑖−1,𝑖},𝑡∈{𝑗−1,𝑗},𝑢∈[3] for
𝑖 ∈ {4, 6, … , 𝑚 − 2}, 𝑗 ∈ {4, 6, … , 𝑛 − 2} in the setting of algorithms 2.11 and 2.12.

Algorithm2.12 (Gradient based debayeringwithout border treatment) Assumeweare given an image
𝐼 ∈ ℝ𝑚×𝑛×3, 𝑚, 𝑛 ∈ 2ℕ and the corresponding mosaic image 𝐽 ≔ 𝑚𝐵(𝐼). Let 𝜖 ≥ 0 be an edge
detection parameter.
1: Initialise ̃𝐼 ∈ ℝ𝑚×𝑛×3

2: for 𝑖 = 4, 6, … , 𝑚 − 2 do
3: for 𝑗 = 4, 6, … , 𝑛 − 2 do

35

2.3. CLASSIC DEBAYERING STRATEGIES CHAPTER 2. DEMOSAICINGWITH CNNS

4: 𝛼 ← ∣ 𝐽𝑖,𝑗−2+𝐽𝑖,𝑗+2

2
− 𝐽𝑖,𝑗∣

5: 𝛽 ← ∣ 𝐽𝑖−2,𝑗+𝐽𝑖+2,𝑗

2
− 𝐽𝑖,𝑗∣

6: if 𝛼 < 𝛽 + 𝜖 then
7: ̃𝐼𝑖,𝑗,2 ← 𝐽𝑖,𝑗−1+𝐽𝑖,𝑗+1

2
8: else if 𝛽 < 𝛼 + 𝜖 then
9: ̃𝐼𝑖,𝑗,2 ← 𝐽𝑖−1,𝑗+𝐽𝑖+1,𝑗

2
10: else
11: ̃𝐼𝑖,𝑗,2 ← 𝐽𝑖−1,𝑗+𝐽𝑖+1,𝑗+𝐽𝑖,𝑗−1+𝐽𝑖,𝑗+1

4
12: end if
13: 𝛼 ← ∣ 𝐽𝑖−1,𝑗−3+𝐽𝑖−1,𝑗+1

2
− 𝐽𝑖−1,𝑗−1∣

14: 𝛽 ← ∣ 𝐽𝑖−3,𝑗−1+𝐽𝑖+1,𝑗−1

2
− 𝐽𝑖−1,𝑗−1∣

15: if 𝛼 < 𝛽 + 𝜖 then
16: ̃𝐼𝑖−1,𝑗−1,2 ← 𝐽𝑖−1,𝑗−2+𝐽𝑖−1,𝑗

2
17: else if 𝛽 < 𝛼 + 𝜖 then
18: ̃𝐼𝑖−1,𝑗−1,2 ← 𝐽𝑖−2,𝑗−1+𝐽𝑖,𝑗−1

2
19: else
20: ̃𝐼𝑖−1,𝑗−1,2 ← 𝐽𝑖−2,𝑗−1+𝐽𝑖,𝑗−1+𝐽𝑖−1,𝑗−2+𝐽𝑖−1,𝑗

4
21: end if
22: ̃𝐼𝑖−1,𝑗,1 ← (𝐽𝑖−1,𝑗−1− ̃𝐼𝑖−1,𝑗−1,2)+(𝐽𝑖−1,𝑗+1− ̃𝐼𝑖−1,𝑗+1,2)

2
+ 𝐽𝑖−1,𝑗

23: ̃𝐼𝑖,𝑗−1,1 ← (𝐽𝑖−1,𝑗−1− ̃𝐼𝑖−1,𝑗−1,2)+(𝐽𝑖+1,𝑗−1− ̃𝐼𝑖+1,𝑗−1,2)
2

+ 𝐽𝑖,𝑗−1

24: ̃𝐼𝑖,𝑗,1 ← (𝐽𝑖−1,𝑗−1− ̃𝐼𝑖−1,𝑗−1,2)+(𝐽𝑖+1,𝑗−1− ̃𝐼𝑖+1,𝑗−1,2)+(𝐽𝑖−1,𝑗+1− ̃𝐼𝑖−1,𝑗+1,2)+(𝐽𝑖+1,𝑗+1− ̃𝐼𝑖+1,𝑗+1,2)
4

+ 𝐽𝑖,𝑗

25: ̃𝐼𝑖,𝑗−1,3 ← (𝐽𝑖,𝑗−2− ̃𝐼𝑖,𝑗−2,2)+(𝐽𝑖,𝑗− ̃𝐼𝑖,𝑗,2)
2

+ 𝐽𝑖,𝑗−1

26: ̃𝐼𝑖−1,𝑗,1 ← (𝐽𝑖−2,𝑗− ̃𝐼𝑖−2,𝑗,2)+(𝐽𝑖,𝑗− ̃𝐼𝑖,𝑗,2)
2

+ 𝐽𝑖−1,𝑗

27: ̃𝐼𝑖−1,𝑗−1,1 ← (𝐽𝑖−2,𝑗−2− ̃𝐼𝑖−2,𝑗−2,2)+(𝐽𝑖,𝑗−2− ̃𝐼𝑖,𝑗−2,2)+(𝐽𝑖−2,𝑗− ̃𝐼𝑖−2,𝑗,2)+(𝐽𝑖,𝑗− ̃𝐼𝑖,𝑗,2)
4

+ 𝐽𝑖−1,𝑗−1
28: end for
29: end for
30: return ̃𝐼

In the lines 4 - 20 the missing green values at the red and blue bayer positions are computed. Because
of the representation of the luminance channel of the green pixels on the bayer pattern and their higher
sampling rate, these contain themost information about the course of edges. For this reason, this chan-
nel is reconstructed first and is used later to calculate the missing blue and red channels.

In the lines 4 - 11 the green value ̃𝐼𝑖,𝑗,2 at the blue Bayer position 𝐽𝑖,𝑗 is computed. For that, ̃𝐼𝑖,𝑗,2 is
obtained by averaging the surrounding green pixels either horizontally (line 7), vertically (line 9) or over
all four surrounding pixels (line 11). The decision how to interpolate depends on whether an edge is
detected and in which direction it runs. This is determined by the parameters 𝛼 and 𝛽 which are com-
puted in lines 4 and 5. These characterise horizontally and vertically how much the signal changes in
the vicinity of the pixel to be interpolated. Then these changes are compared and depending on this
the interpolation method is chosen in such a way that interpolation does not proceed across an edge.
The edge detection parameter 𝜖 determines the tolerance for the comparison of𝛼 and 𝛽. In the lines 13
- 20 the same procedure is repeated to compute the the missing green value ̃𝐼𝑖−1,𝑗−1,2 at the red Bayer
position 𝐽𝑖−1,𝑗−1.

Once the luminance is determined, the chrominance values are obtained from the differences between

36

CHAPTER 2. DEMOSAICINGWITH CNNS 2.4. CNN ARCHITECTURES

the colour and luminance signals. Depending on the position of the adjacent pixels, this is done either
horizontally, vertically or by averaging all four adjacent pixels of the same colour. This is done in lines
22-24 for the red pixels and in lines 25-27 for the blue pixels.

Note that the calculation of the pixels at the edge must be carried out separately, as no gradients or
averages can be calculated there in the way just described.

2.4 CNN architectures

Thechoiceof theneural networkarchitecture is crucial for trainability, imagequality andevaluationper-
formance. The architecture allows to influence the hypothesis space in such a way that a priori knowl-
edge can be incorporated. For this thesis two different types of architectures were examined. The first
architecture is based on a simple U-Net structure and is more general. The second was inspired by gra-
dient based debayering algorithms and relies on reconstructing the green channel before using it to
reconstruct the red and blue channels. The latter architecture turned out to be far superior in terms of
image quality and training speed.

2.4.1 U-Net

A promising architecture to be applied to the debayering problem is the U-Net. It was first proposed in
[23] for biomedical image segmentation, but has since been used for many other applications in image
processing. The architecture consists of a contracting path to capture context and a symmetric expand-
ing path that enables translation of local information.

Originally, CNNs were used for classification tasks. Here, a label is assigned to an image. This is usually
done by scaling the image down from layer to layer, for example by a strided convolution layer, a pool-
ing layer or by reshaping. In this way the rear layers of the CNNs can have a large perceptive area even
though the may have comparatively small filter sizes. In the case of image-to-image translation tasks,
however, there may also be image information that requires precise localisation at the same time. For
this purpose, a CNN with downscaling layers is supplemented symmetrically with the corresponding
upscaling layers so that the size of the output image corresponds to the input. Each of these layer pairs
is also provided with skip connections so that local information can bypass the downscaling and up-
scaling.

For the experiments in this thesis, the U-Net has an input layer with filter size 6 and stride 2, which
scales down the input image by factor 2. The input layer has one input channel (as the sensor image in
the form of the Bayer pattern is one dimensional) and 256 output channels. This allows the network to
extract different features, such as frequency components of the image. The input layer is followed by
a depthwise convolutional layer (see Remark 1.14) with filter size 3, stride 1 and 256 input and output
channels. This layer has the function of increasing the complexity of the mapping represented by the
CNN. Also, it increases the perceptive area of the network as by the stride of the input layer the joint
filter size of these first two layers is 10 by 10 pixels. Note that the 2D depthwise convolution can also
be replaced by a 2D convolution with three dimensional filters. However, the experiments in the scope
of this thesis showed that the more computationally efficient 2D depthwise convolutions achieve the
same image quality. The depthwise convolutional layer is followed by ten so-called dense convolution
layers, i.e. convolutional layers with filters that have a kernel of size 1 by 1. These are a very resource-
efficient way to handle additional non-linearity and detail. Note, that although they operate pixel-wise
theymay have a spatial effect as they operate along the channel dimensionwhich is spatially correlated
sinceweare calculatingona lower resolution space. They canalsobe regardedas apixel-wiseoperating

37

2.4. CNN ARCHITECTURES CHAPTER 2. DEMOSAICINGWITH CNNS

multilayer perceptron. A transposed convolutional layer is used as the output of the network (see [10]
for the definition and more information about transposed convolutional layers). Although this is not
a mathematical inverse of the convolutional layer, the transformations of the input layer in terms of
shapes can be undone. This is, the lower resolution image which is consumed by the deep layers is
scaled up again. The output of the input 2D convolutional layer is added as a residual connection to
the output of the multilayer perceptron layer in order to avoid the vanishing gradient problem and to
conserve low-level features (see Remark 1.34).

Compared to ADA7, theU-Net architecture could not achieve the same imagequality. Especially in high-
frequency areas, significantly more aliasing effects can be observed. Figure 2.10 shows a section of an
image of a Siemens star that was debayered with the U-Net. In the high-frequency areas, the aliasing
effects are visible in the form of wave patterns.

Although testing models on images of Siemens stars does by far not reflect the variety of problematic
areas, it is an necessary condition for a debayer map to be able to reconstruct a Siemens star with few
aliasing effects. For this reason the approach of using a U-Net was not pursued further.

38

CHAPTER
2.

DEM
O
SAICING

W
ITH

CNNS
2.4.

CNN
ARCHITECTURES

128 feature maps
(half resolution)

128 feature maps
(half resolution)

128 feature maps
(half resolution)

residual connection

2D convolution
(stride 2, 6x6 �lters)

2D transposed convolution
(stride 2, 6x6 �lters)

2D depthwise convolution
(stride 1, 3x3 �lters)

pixel-wise
multilayer perceptron

input bayer image
(full resolution)

RGB output image
(full resolution)

Figure 2.9: Illustration of the U-Net used for the debayering task. The feature maps between the input and output layer are of half resolution referred to the
amount of pixels along the image boundaries, i.e. each channel has the quarter of pixels compared to the input.

39

2.4. CNN ARCHITECTURES CHAPTER 2. DEMOSAICINGWITH CNNS

(a) ADA7 (b) U-Net

Figure 2.10: Evaluation of ADA7 and the U-Net on the Siemens star test chart.

2.4.2 3-stage CNN

Aswe know from the no-free-lunch theorems, it is necessary to integrate asmuch a priori knowledge as
possible into the models used. The choice of CCNs alone, as well as the hyperparameters, such as the
filter size, are already a use of prior knowledge. Nevertheless, if we take a look at the quite successful
gradient-based debayer algorithms, there is still prior information that we have not yet used. For exam-
ple, the fact that the luminance information is mainly in the green pixels, which also have the highest
density in the CFA. In Algorithm 2.12 this fact is used by reconstructing the green channel first, and then
using it to recover the red, and green channels. [9] proposes an architecture for general image restora-
tion tasks based on the same procedure. This so-called 3-stage architecture splits the input image in
form of the Bayer pattern into a red, a blue, and two green subimages. These are treated as channels
and computed with a network consisting of a special concatenation of multiple CNNs. This network re-
turns 12 channels, 4 of which correspond to one colour channel each. This 12 channels with half the
amount of pixels as compared to the input image can then be reshaped to three full resolution image
channels. Except for the reshaping at the beginning and at the end, the networks can be fully described
using the operators that we defined in Section 1.2.2.

The reshaping at the input and the output is referred to as pixel unshuffle and pixel shuffle respectively
and has been proposed by [25]. It is defined generally as a bijective map transforming an element 𝑥 ∈
ℝ𝑛×𝑙×𝑚⋅𝑟2 to an element 𝔖(𝑥) = 𝑦 ∈ ℝ𝑟⋅𝑛×𝑟⋅𝑙×𝑚, 𝑛, 𝑙, 𝑚, 𝑟 ∈ ℕ, where

𝑦𝑖,𝑗,𝑐 ≔ 𝑥⌊ 𝑖
𝑟

⌋,⌊ 𝑗
𝑟

⌋,𝑚⋅𝑟⋅mod(𝑗,𝑟)+𝑚⋅mod(𝑖,𝑟)+𝑐 ∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑙], 𝑐 ∈ [𝑚]. (2.7)

In our concrete case, suppose the network input is a Bayer pattern image 𝑥input ∈ ℝ2𝑛×2𝑙, 𝑛, 𝑙 ∈ ℕ. We
write 𝔖 for the pixel shuffle operator. Then, the unshuffled input is an element

𝔖−1(𝑥input) ≕ 𝑥unshuffled =
4

∑
𝑘=1

𝑥unshuffled
𝑘 ⊗ 𝑒𝑘 ∈ ℝ𝑛×𝑙 ⊗ ℝ4,

where {𝑒𝑘}4
𝑘=1 is a orthonormal basis of ℝ4 and

(𝑥unshuffled
1)𝑖,𝑗 = 𝑥input

2𝑖,2𝑗, (𝑥unshuffled
2)𝑖,𝑗 = 𝑥input

2𝑖+1,2𝑗,

(𝑥unshuffled
3)𝑖,𝑗 = 𝑥input

2𝑖,2𝑗+1, (𝑥unshuffled
4)𝑖,𝑗 = 𝑥input

2𝑖+1,2𝑗+1,

for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑙]. Now, (𝑥unshuffled
1)𝑖,𝑗 contains the red, (𝑥unshuffled

2)𝑖,𝑗 and (𝑥unshuffled
3)𝑖,𝑗 contain the

40

CHAPTER 2. DEMOSAICINGWITH CNNS 2.4. CNN ARCHITECTURES

green, and (𝑥unshuffled
4)𝑖,𝑗 contains the blue pixels of the mosaic image.

The counterpart of the pixel unshuffling at the input of the network is the pixel shuffling at the output.
It takes the output 𝑥shuffled ∈ ℝ𝑛×𝑙 ⊗ ℝ12 of the 3rd CNN stage (see Algorithm 2.13) and reshapes it to an
RGB image 𝑥output ≔ 𝔖(𝑥shuffled) ∈ ℝ2𝑛×2𝑙 ⊗ ℝ3, where

(𝑥output
1)2𝑖,2𝑗 = (𝑥shuffled

1)𝑖,𝑗 (𝑥output
2)2𝑖,2𝑗 = (𝑥shuffled

1)𝑖,𝑗 (𝑥output
3)2𝑖,2𝑗 = (𝑥shuffled

1)𝑖,𝑗

(𝑥output
1)2𝑖+1,2𝑗 = (𝑥shuffled

2)𝑖,𝑗 (𝑥output
2)2𝑖+1,2𝑗 = (𝑥shuffled

2)𝑖,𝑗 (𝑥output
3)2𝑖+1,2𝑗 = (𝑥shuffled

2)𝑖,𝑗

(𝑥output
1)2𝑖,2𝑗+1 = (𝑥shuffled

3)𝑖,𝑗 (𝑥output
2)2𝑖,2𝑗+1 = (𝑥shuffled

3)𝑖,𝑗 (𝑥output
3)2𝑖,2𝑗+1 = (𝑥shuffled

3)𝑖,𝑗

(𝑥output
1)2𝑖+1,2𝑗+1 = (𝑥shuffled

4)𝑖,𝑗 (𝑥output
2)2𝑖+1,2𝑗+1 = (𝑥shuffled

4)𝑖,𝑗 (𝑥output
3)2𝑖+1,2𝑗+1 = (𝑥shuffled

4)𝑖,𝑗,

for all 𝑖 ∈ [𝑛], 𝑗 ∈ [𝑙]. Note that in comparison to the definition of pixel shuffle in equation (2.7) the chan-
nels have be permuted in order to simplify the implementation. Nowwe are ready to fully describe the
3-stage architecture. We do this by explicitly describe the forwards pass of the model as an algorithm.

Algorithm 2.13 (3-stage CNN forward pass) The 3-stage CNN architecture is defined by three stages.
For each of them, we define the CNN functions

𝑓 stage 1 ∈ CNN10((4, 63, 63, 63, 63, 63, 63, 63, 63, 12), 3; 3; 𝜓relu; 1)

𝑓 stage 2
𝑅 ∈ CNN10((8, 63, 63, 63, 63, 63, 63, 63, 63, 4), 3; 3; 𝜓relu; 1)

𝑓 stage 2
𝐵 ∈ CNN10((8, 63, 63, 63, 63, 63, 63, 63, 63, 4), 3; 3; 𝜓relu; 1)

𝑓 stage 3 ∈ CNN10((12, 63, 63, 63, 63, 63, 63, 63, 63, 12), 3; 3; 𝜓relu; 1),

where CNN is defined as in Section 1.2.3 and 𝜓relu is defined as in Section 2.5.2. For an input element
𝑥input ∈ ℝ2𝑛×2𝑙, 𝑛, 𝑙 ∈ ℕ the forward pass is defined as follows
1: ℝ𝑛×𝑙 ⊗ ℝ4 ∋ 𝑥unshuffled ← 𝔖−1(𝑥input)
2: 𝑥stage 1 residual ← ∑4

𝑘=1 𝑥unshuffled
1 ⊗ 𝑒stage 1𝑘 + ∑6

𝑘=5 𝑥unshuffled
2 ⊗ 𝑒stage 1𝑘 + ∑8

𝑘=7 𝑥unshuffled
3 ⊗ 𝑒stage 1𝑘 +

∑12
𝑘=9 𝑥unshuffled

4 ⊗ 𝑒stage 1𝑘 for a orthonormal basis {𝑒stage 1𝑘 }12
𝑘=1 of ℝ12.

3: 𝑥stage 1 ← 𝑓 stage 1(𝑥unshuffled) + 𝑥stage 1 residual

4: 𝑥stage 1 R ← ∑4
𝑘=1 𝑥stage 1

𝑘 ⊗ 𝑒stage 1𝑘

5: 𝑥stage 1 RG ← ∑8
𝑘=1 𝑥stage 1

𝑘 ⊗ 𝑒stage 1𝑘

6: 𝑥stage 1 B ← ∑12
𝑘=9 𝑥stage 1

𝑘 ⊗ 𝑒stage 1𝑘

7: 𝑥stage 1 GB ← ∑12
𝑘=5 𝑥stage 1

𝑘 ⊗ 𝑒stage 1𝑘

8: 𝑥stage 1 G ← ∑8
𝑘=5 𝑥stage 1

𝑘 ⊗ 𝑒stage 1𝑘

9: 𝑥stage 2 R ← 𝑓 stage 2
𝑅 (𝑥stage 1 RG) + 𝑥stage 1 R

10: 𝑥stage 2 B ← 𝑓 stage 2
𝐵 (𝑥stage 1 RB) + 𝑥stage 1 B

11: 𝑥stage 2 ← ∑4
𝑘=1 𝑥stage 2 R

𝑘 ⊗ 𝑒stage 2𝑘 + ∑8
𝑘=5 𝑥stage 1 G

𝑘 ⊗ 𝑒stage 2𝑘 + ∑12
𝑘=9 𝑥stage 2 B

𝑘 ⊗ 𝑒stage 2𝑘
12: 𝑥stage 3 ← 𝑓 stage 3(𝑥stage 2) + 𝑥stage 2

13: 𝑥output ← 𝔖(𝑥stage 3)

If, whenadding residual connections, the summands arenot in the samebasis, the corresponding trans-
formation must be applied first. This has been omitted from the notation for reasons of simplicity.

In line 1 of Algorithm2.13 the input is unshuffled to the four subimages of theBayer pattern as described
above. Stage 1 increases the amount of channels from 4 to 12. Since we want to use a residual connec-
tion, the bypassed residual element has to be scaled accordingly. For that, the residual element of stage
one is created in line 2 by concatenating copies of the channels of 𝑥unshuffled along the new channel axis.

41

2.4. CNN ARCHITECTURES CHAPTER 2. DEMOSAICINGWITH CNNS

Note, that we have tomake four copies of the red, and blue channels, while we only need two copies of
each green channel in order to get the 12-channeled residual. In line 2 the CNN-function of stage one
is applied and the residual element is added. In the lines 4 to 8 various combinations of channels are
extracted from the output of stage one for the next stage. The element 𝑥stage 1 G is the enhanced green
channel and will be consumed by stage two for reconstructing the red and the blue channel. For that,
both, the red and the green channel 𝑥stage 1 RG are fed into the stage two function for the red channel
𝑓 stage 2

𝑅 in line 9. Since we want to receive the red channel, only 𝑥stage 1 R is added as a residual connec-
tion. The blue channel is computed with 𝑓 stage 2

𝐵 in the sameway. After that, the red and blue outputs of
stage two and the green output of stage one are concatenated to the output 𝑥stage 2 of stage two in line
11. As a final step of enhancement, thewhole feature 𝑥stage 2 is propagated through the CNN-function of
stage three and the corresponding residual is added in line 12. Finally, pixel shuffle is applied in line 12
in order to obtain the output full resolution RGB image.

The number of channels in the deep layer and the size of the filters were varied and examined for dif-
ferences in image quality. Larger values than those used here did not contribute to a visible increase in
quality. However, it is quite possible that similarly good results can be achieved with smaller networks
of similar structure. Note that although a filter size of 3x3 may seem small, each filter actually covers
a larger area on the full resolution image due to the pixel shuffle. In fact, a 3x3 filter corresponds to an
area of 6x6 pixels.

The 3-stage architecture is able to reconstructmore spatial frequencies of a Siemens star thanADA7 (see
Figure 2.11).

(a) ADA7 (b) 3-stage CNN

Figure 2.11: Evaluation of ADA7 and the 3-stage CNN on the Siemens star test chart. As can be seen, the
3-stage architecture shows a clearer image and less aliasing effects in the high frequency areas.

The 3-stage CNN also appears to be superior to ADA7 in terms of image quality on other test data. A
particularly important requirement for a debayering algorithm is good performance on green screen
data. Although in most cases the 3-stage CNN can reconstruct more detail and achieve better contrast
(see Figure 2.12), in some rare cases there are also more aliasing effects than in ADA7 (see Figure 2.13).
On the most images showing nature, the 3-stage architecture seems to be superior in terms of image
quality (see Figure 2.14)

42

CHAPTER 2. DEMOSAICINGWITH CNNS 2.4. CNN ARCHITECTURES

(a) ADA7 (b) 3-stage CNN

Figure 2.12: Evaluation of ADA7 and the 3-stage CNN on an image showing blonde hair in front of a
green screen. As can be seen, the 3-stage architecture is able to reconstruct more details and shows
more contrast as compared to ADA7.

(a) ADA7 (b) 3-stage CNN

Figure 2.13: Evaluation of ADA7 and the 3-stage CNN on an image showing a sieve in front of a green
screen. As can be seen, the 3-stage architecture shows some faulty colours in the high frequency areas
and some staircase effects on the edges.

(a) ADA7 (b) 3-stage CNN

Figure 2.14: Evaluation of ADA7 and the 3-stage CNN on an image showing thicket in front of a lake. As
can be seen, the 3-stage architecture is able to reconstruct more detail than ADA7 but also showsmore
coloured artefacts.

43

2.4.
CNN

ARCHITECTURES
CHAPTER

2.
DEM

O
SAICING

W
ITH

CNNS

stage 1
(green channel reconstruction)

2D convolution + residual
(10 layers, 3x3 �lters)

pixel unshu�e stage 2 (red and blue re�nement)
2D convolutions + residuals

(10 layers, 3x3 �lters)

stage 3
(joint improvement)

2D convolutions + residuals
(10 layers, 3x3 �lters)

pixel shu�e

input Bayer image
(full resolution)

RGB output image
(full resolution)

Bayer subimages
(half resolution)

4 red, green, and
blue channels

(half resolution)

4 red, green, and
blue channels

(half resolution)

4 red, and blue channels
(half resolution)

Figure 2.15: Illustration of the 3-stage CNN used for the debayering task. The featuremaps between the pixel unshuffle, and pixel shuffle operators are of half
resolution referred to the amount of pixels along the image boundaries, i.e. each channel has the quarter of pixels compared to the input.

44

CHAPTER 2. DEMOSAICINGWITH CNNS 2.5. TRAINING

2.5 Training

2.5.1 Data

Oneof themost central challenges is obtaining trainingdata. Thismust cover all features of theproblem
to be learned. In the case of demosaicing, for example, this means that the entire set of shapes in the
senseof thecourseof edges is represented inasmany frequencies, signal valuesandcoloursaspossible.
On the other hand, images that come from nature are not evenly distributed in space of all shapes and
colours and one can question whether the training data should reflect this. If the distribution of the
data is weighted with respect to a spurious distribution, the risk is high that the neural network to be
trained exhibits a bias, since the neural network reduces the expected value of the loss function if it
preferentially reflects this distribution.

The question arises whether images can be used that were actually taken with a camera. Provided that
these reflect a large variability of natural scenes, they would fulfil the requirements for representative-
ness of the natural distribution. The difficulty here is to obtain the ground truth data, i.e. RGB images
(𝐼𝑖)𝑖∈[𝑠], 𝐼 ∈ ℝ𝑚×𝑛×3, 𝑚, 𝑛 ∈ 2ℕ, 𝑠 ∈ ℕ since the RAW data is presumably only available in the form of
images as Bayer patterns, i.e. of the form (𝐽𝑖)𝑖∈[𝑠], 𝐽 ∈ ℝ𝑚×𝑛. Using an existing debayer algorithm to
obtain 𝐼 from 𝐽 would bias to the weak spots of the debayer algorithm, and hence, the neural network
would never surpass the algorithm in terms of image quality. In order to create ground truth full RGB
reference data, [3] took the approach of placing a filter wheel in front of a special ARRI Alexa research
camera in which the CFA has been removed. The filter wheel is placed in front of the lens and can be
equippedwith red, green, andblue filters similar as also contained in aCFA. In thisway, the non-existent
spectral resolution of the camera can be compensated for by temporally staggered images. The main
drawback is that it is not possible to record real sequences with arbitrary image content. In fact, the
scene recorded while the wheel is rotatingmust bemotionless so that the images associated with each
colour filter do not show relative spatial variations that could cause unwanted colour artefacts.

Figure 2.16: ARRI Alexa provided with a colour wheel. The picture was taken from [3].

Another possibility to obtain training data from camera images is by downscaling. Assume we are
given a bayer image 𝐽 ∈ ℝ𝑚×𝑛. With the pixel shuffle operator (see Section 2.4.2) we obtain an
image 𝔖(𝐽) ≕ ̃𝐽 ∈ ℝ

𝑚
2

× 𝑚
2

×4 from which we can define a red channel 𝑅 ≔ (̃𝐽𝑖,𝑗,1)𝑖,𝑗, a green

channel 𝐺 ≔ (̃𝐽𝑖,𝑗,2)𝑖,𝑗+(̃𝐽𝑖,𝑗,3)𝑖,𝑗

2
and a blue channel 𝐵 ≔ (̃𝐽𝑖,𝑗,4)𝑖,𝑗, i.e. we have a full RGB image

(𝑅, 𝐺, 𝐵) ∈ ℝ
𝑚
2

× 𝑚
2

×3. Since the image is halved in resolution also the Nyquist frequency is halved.
Thismay lead to aliasing effects as the OLPF’smodulation transfer function (MTF) is configured for dou-
ble the resolution. To prevent this we can apply a OLPF simulation to (𝑅, 𝐺, 𝐵). To do this, however,
oversampling is usually necessary, which means that the resolution is reduced again, for example by

45

2.5. TRAINING CHAPTER 2. DEMOSAICINGWITH CNNS

half or a quarter. This approachwas investigated in the context of this work, but did not lead to satisfac-
tory results. High frequencies seem not to have been learned, or learned incorrectly (see Figure 2.17).
It is possible that the MTF in the OLPF simulation needs to be configured specifically for the training
application. This approach could be followed in future work.

(a) ADA7 (b) CNN trained with real camera data

Figure 2.17: Evaluation of ADA7 and the 3-stage CNN (see Section 2.4.2) trained with camera data, that
has been downscaled with the pixel shuffle operator and processed with the OLPF simulation.

Themost successful approach to generating training data in this thesis was synthetic data based on the
basic shapes of Siemens stars and chirps. A Siemens star in grey scale with 𝑠 ∈ ℕ sparks, centered at
𝑥⋆ ∈ [0, 1]2 is a function

𝑆𝑥⋆,𝑠 ∶ [−1, 1]2 ⟶ ℝ

𝑥 ⟼ cos(𝑠 ⋅ arctan(
𝑥⋆

2 − 𝑥2

𝑥⋆
1 − 𝑥1

))

and a chirp at the same center with frequency scaler 𝑡 ∈ ℝ is a function

𝐶𝑥⋆,𝑡 ∶ [−1, 1]2 ⧵ {𝑥⋆} ⟶ ℝ

𝑥 ⟼ sin(
𝑡

‖𝑥 − 𝑥⋆‖
) .

In order to get sharp edges, binary images (that can then be offsetted and scaled) may be desired. This
can be attained by taking the absolute value of the function outputs. Coloured versions of siemens
stars and chirps can be generated, for example by defining a RGB-scaler triple (𝑟, 𝑔, 𝑏) ∈ ℝ3 and then
regarding the function

̃𝑆𝑥⋆,𝑠 ∶ [−1, 1]2 ⟶ ℝ3

𝑥 ⟼ (𝑟𝑆𝑥⋆,𝑠, 𝑔𝑆𝑥⋆,𝑠, 𝑏𝑆𝑥⋆,𝑠).

The same applies for chirps. For the training data, Siemens stars and chirps were varied in colour, ran-
domly scaled in size and overlaid several times. It was ensured that the Siemens stars in some images
had enough sparks to represent high-frequency images, close to the Nyquist frequency. An OLPF sim-
ulation, specifically designed to reflect the ARRI ALEV 4 sensor was applied. The training images were
sampled in a resolution of 60 by 60 pixels and encoded in the ARRI qlut domain.

46

CHAPTER 2. DEMOSAICINGWITH CNNS 2.5. TRAINING

Figure 2.18: 70 (of the 20000) examples of the synthetic trainingdata used for training. Since the training
data is encoded in qlut it was linearised to be presented as 8-bit images in this thesis.

2.5.2 Hyperparameters

In machine learning, hyperparameters are parameters used to control the learning process. In contrast
to parameters as discussed in Chapter 1, hyperparameters are not obtained by the training process but
have to be fixed in advance. The most important hyperparameters for the demosaicing application are
the batch size, the activation function, the loss function, the learning rate and the choice of an optimiser
algorithm.

• The batch size describes howmany training data samples are propagated forwardly through the
neural network at a gradient decent update. The resulting gradients are averaged before being
used for backpropagation. A higher batch size reduces the risk of the training getting stuck in a lo-
calminimumbut requires at the same timemore computermemory. Note that the size of training
images, regarded as hyperparameter is closely related to the batch size. For example, doubling
the resolution (amount of pixels) of the training images by at the same time halving the batch size
results in the same amount of pixels used for one training iteration with the only difference being
that the variation of image content is reduced. A batch size of 32 gave good results, although no
great effect was found when varying the batch size between 8 and 64.

• In Definition 1.10 we defined the layerwise function which is applied element-wise at the end of a
convolutional layer. In concrete application, this is usually referred to as the activation function.
The rectified linear unit (ReLu)-function

𝜓relu ∶ ℝ ⟶ ℝ, 𝑥 ⟼ 𝑥 ⋅ 𝟙ℝ+
(𝑥).

47

2.5. TRAINING CHAPTER 2. DEMOSAICINGWITH CNNS

has established itself as the standard activation function in the field of deep learning. This gave
good results and was used in the proposed 3-stages architecture (Section 2.4.2). However, in
some experiments with deep neural networks without residual connections the vanishing gradi-
ent problem occurred and the training did not converge. In this case using the scaled exponential
linear unit (SeLu)-function

𝜓selu
𝛼,𝜆 ∶ ℝ ⟶ ℝ, 𝑥 ⟼ 𝜆 {

𝑥, 𝑥 > 0
𝛼𝑒𝑥 − 𝛼, 𝑥 ≤ 0

, 𝛼, 𝜆 ∈ ℝ,

was effective in counteracting the problem. The values 𝛼 = 1.6733 and 𝜆 = 1.0507 have been
used, as proposed by [16].

−3 −2 −1 0 1 2 3 4
−2

0

2

4

Figure 2.19: The ReLu (blue), and the SeLu (red) functions.

• The learning rate, also called step size, refers to the scaling factor for the gradient in a gradi-
ent decent algorithm (it was denoted as ℎ in Theorem 1.16). Since the optimisation of a CNNs is
not convex the training has been started with a high learning rate (10−3) and then be reduced by
multiplicative steps of 10−1 if the loss function did not decrease after an epoch (a complete pass
through of all training data). The training was stopped if there was no improvement at a learning
rate of 10−9.

48

3 Generative adversarial networks

In the previous chapter we used a mean squared error to compare the error of the output of the neu-
ral network to be trained with the ground-truth sample point and update the parameters accordingly.
However, this metric has limited representativeness for the actual human perception of the distance
between two images. First, the loss function is calculated in the qlut domain, in which the distance be-
tween colours is not consistentwith humanperception. On the other hand, spatially occurring artefacts
can be perceived by humans as a strong deviation, although they are not accordingly reflected in the
loss function which is only computed pixel-wise.

The question arises whether the loss function can be generalised in such a way that evenmore abstract
features can be captured without having to be explicitly defined. One approach is to replace the loss
function with a neural network. This learns to pay attention to the errors of the neural network that is
actually being trained and to improve it in this way. This type of training is called adversarial training,
because the two neuronal networks can also be seen as opponents that try to outsmart each other.

This approach is used in the so called generative adversarial networks (GANs), which are evenmore gen-
eral. In fact, they don’t even require a set of training pairs consisting of features and labels but only rely
on a distribution of data which they try to imitate. This kind of training is referred to as unsupervised
learning. By reviewing [13] and providingmore detailed proofs, we are going to study GANs in their gen-
eral form and show that, under ideal mathematical preconditions, any distribution can be captured by
training a GAN. We also consider how the gradient decent algorithm from Chapter 1 can be used for the
actual implementation. Finally, we discuss how GANs can be applied to the demosaicing problem.

Attempts to apply GANs to the demosaicing problemhave not yielded satisfactory results. In this sense,
this chapter should be seen as a motivation for future investigation. Related work, such as [15], has
produced impressive results with GANs for image-to-image translation tasks. This suggests that they
can also be used for demosaicing.

3.1 Probabilistic formulation

3.1.1 The general setting

In order to be able to properly calculate with the occurring probability distributions, wewant to be able
to write the measures as integrals over densities. For this we have to assume that the distributions are
absolutely continuous with respect to the Lebesgue measure later in this section. In addition, we will
presume that the densities are continuous and compactly supported in order to ensure the finiteness
of integrals.

49

3.1. PROBABILISTIC FORMULATION CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

Let 𝑑 ∈ ℕ and (Ω, ℱ, ℙ)be aprobability space. We consider anunknown randomvariable𝑋 ∶ Ω ⟶ ℝ𝑑

and assume that we are only given a finite set 𝒳 ⊊ ℝ𝑑 that consists of samples of the image of 𝑋. Our
goal is to find a random variable 𝐺 ∶ Ω ⟶ ℝ𝑑 such that the distribution ℙ𝐺 is a good approximation
of ℙ𝑋, where 𝐺 is implemented as a neural network. This leads to the question of how to measure the
distance between ℙ𝑋 and ℙ𝐺. The original GAN paper [13] proposes to use another neural network,
which represents a function 𝐷 ∶ ℝ𝑑 ⟶ (0, 1) that tries to distinguish samples drawn from 𝒳 from
samples generated by𝐺. On the other hand,𝐺 is trained to deceive𝐷 in such a way that𝐷 is no longer
able to tell apart the fake samples from the real ones. This counterplay can be described by a single
functional through which the training objective will be fully described.

Definition 3.1 (Gan loss functional) Let (Ω, ℱ, ℙ) be a probability space and let 𝑋 ∶ Ω ⟶ ℝ𝑑 be the
unknown data random variable. We define the GAN loss functional by

𝑉 ∶ 𝐿0(Ω, ℝ𝑑) × 𝐿0(ℝ𝑑, (0, 1)) ⟶ ℝ̄
(𝐺, 𝐷) ⟼ 𝔼[log(𝐷 ∘ 𝑋)] + 𝔼[log(1 − 𝐷 ∘ 𝐺)].

𝐷 tries to distinguish between samples from 𝑋 and 𝐺 and uses (0, 1) as a rating scale. Samples from
𝑋 should be assigned to values close to 1 and samples from 𝐺 should be assigned to values close to 0.
Hence, for a fixed generator 𝐺, training 𝐷 means solving the optimisation problemmax𝐷 𝑉 (𝐺, 𝐷).

We assume fromnow that𝑋 ∶ Ω ⟶ ℝ𝑑 is such that the pushforwardmeasureℙ𝑋 is absolutely continu-
ous with respect to the Lebesguemeasure 𝜆𝑑. Then, by the theorem of Radon-Nikodým ([11], Theorem
A.4.8), there is a probability density function 𝜈 ∈ 𝐿1(ℝ𝑑), 𝜈 ≥ 0, ∫

ℝ𝑑𝜈(𝑥) 𝑑𝜆𝑑(𝑥) = 1, unique up to sets
of measure zero in 𝜆𝑑, such that for every Borel set 𝐵 ∈ ℬ(ℝ𝑑) we can write

ℙ(𝑋 ∈ 𝐵) = ∫
𝐵

𝜈(𝑥) 𝑑𝜆𝑑(𝑥).

As [27] points out, the assumption that ℙ𝑋 is absolutely continuous may be erroneous. For example,
consider the case where 𝒳 restricts to a lower dimensional sub-manifold of ℝ𝑑, making ℙ𝑋 a singular
probability distribution. Nevertheless, this does not seem to be a problem in most applications. In
order to be able to write the GAN loss-functional as an integral over ℝ𝑑 we also have to restrict the set
of possible generators. For that we introduce the following notation.

Definition 3.2 (Continuous random variable) For a probability space (Ω, ℱ, ℙ) we write

ℒ0
𝑎(Ω, ℝ𝑑) ≔ {𝑓 ∈ ℒ0(Ω, ℝ𝑑) ∣ ℙ ∘ 𝑓−1 ≪ 𝜆𝑑}

for the set of real random variables that admit an absolute continuous pushforward measure. Let
𝐿0

𝑎(Ω, ℝ𝑑) be the corresponding normed quotient space, where all functions equaling almost every-
where are identified.

Proposition 3.3 Let 𝜈 ∈ 𝐿1(ℝ𝑑) be the unknown density of ℙ𝑋. Then for all 𝐺 ∈ 𝐿0
𝑎(Ω) there is a

density function 𝜇 ∈ 𝐿1(ℝ𝑑) such that

𝑉 (𝐺, 𝐷) = ∫
ℝ𝑑

𝜈(𝑥) log(𝐷(𝑥)) + 𝜇(𝑥) log(1 − 𝐷(𝑥)) 𝑑𝜆𝑑(𝑥).

Proof. This is a direct consequence of the theorem of Radon Nikodým. Let 𝜇 be the Radon-Nikodým

50

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS 3.1. PROBABILISTIC FORMULATION

derivative ℙ𝐺

𝜆𝑑 . Then

𝑉 (𝐺, 𝐷) = ∫
Ω
log(𝐷(𝑋(𝜔)) 𝑑ℙ(𝜔) + ∫

Ω
log(1 − 𝐷(𝐺(𝜔)) 𝑑ℙ(𝜔)

= ∫
Ω
log(𝐷(𝑥)) 𝑑ℙ𝑋(𝑥) + ∫

Ω
log(1 − 𝐷(𝑥)) 𝑑ℙ𝐺(𝑥)

(
Radon Nikodým,

ℙ𝑋, ℙ𝐺 ≪ 𝜆𝑑) = ∫
ℝ𝑑

𝜈(𝑥) log(𝐷(𝑥)) + 𝜇(𝑥) log(1 − 𝐷(𝑥)) 𝑑𝜆𝑑(𝑥). �

In the following statements we presuppose that 𝜇, 𝜈 ∈ 𝐶0
𝑐 (ℝ𝑑). We take this theoretical loss of gen-

erality into account in order to ensure that the loss functional is finite. In practice, this condition is
automatically fulfilled since computationalmemory is finite and neural networks represent continuous
functions as composition of continuous functions.

3.1.2 The optimal discriminator

Using the representation of 𝑉 from proposition 3.3 we can compute the optimal discriminator 𝐷⋆ for a
given generator in terms of the unknown data distribution. This is therefore a purely theoretical result,
but it can be used to further investigate the optimisation problem of GANs in terms of the existence of a
solution.

Lemma 3.4 Let 𝐾 ⊆ ℝ𝑑 be compact and 𝑓 ∈ 𝐶0(𝐾 × ℝ). Assume that 𝑦 ⟼ 𝑓(𝑥, 𝑦) is strictly convex
for almost every 𝑥 ∈ 𝐾 and that 𝜕𝑦𝑓 exists. If 𝑢⋆ ∈ 𝐶0(𝐾) is such that (𝜕𝑦𝑓)(𝑥, 𝑢⋆(𝑥)) = 0 for almost
every 𝑥 ∈ 𝐾, then 𝑢⋆ is a minimiser of the functional

𝐼 ∶ 𝐶0(𝐾) ⟶ ℝ, 𝑢 ⟼ ∫
𝐾

𝑓(𝑥, 𝑢(𝑥)) 𝑑𝜆𝑑(𝑥)

and as such unique up to Lebesgue zero sets.

Proof. Let 𝑢 ∈ 𝐶0(𝐾). First, we verify that 𝐼(𝑢) < ∞. Since 𝐾 is compact and 𝑥 ⟶ 𝑓(𝑥, 𝑢(𝑥)) is
continuous as composition of continuous functions we get

𝐼(𝑢) = ∫
𝐾

𝑓(𝑥, 𝑢(𝑥)) 𝑑𝜆𝑑(𝑥) ≤ ‖𝑥 ⟼ 𝑓(𝑥, 𝑢(𝑥))‖𝐿∞(𝐾) ⋅ 𝜆𝑑(𝐾) < ∞.

From the convexity of 𝑦 ⟼ 𝑓(𝑥, 𝑦) we have that

𝑓(𝑥, 𝑢⋆(𝑥)) + (𝜕𝑦𝑓)(𝑥, 𝑢⋆(𝑥)) ⋅ (𝑢(𝑥) − 𝑢⋆(𝑥)) < 𝑓(𝑥, 𝑢(𝑥)).

for almost every 𝑥 ∈ 𝐾. This was proved in Lemma 1.15, equation (1.7) for the convex case. For the
strictly convex case, it can be directly seen from the proof of Lemma1.15 that the strict inequality holds.
Since we have 𝜕𝑦𝑓(𝑥, 𝑢⋆(𝑥)) = 0 for almost every 𝑥 ∈ 𝐾 integrating implies 𝐼(𝑢⋆) < 𝐼(𝑢) so 𝑢⋆ is the
unique minimiser of 𝐼. �

Proposition 3.5 (Optimal discriminator) Let 𝐺 ∈ 𝐿0
𝑎(Ω, ℝ𝑑) be fixed, 𝜇 the density of ℙ𝐺 and 𝜈 the

unknown density of ℙ𝑋. We assume 𝜇, 𝜈 ∈ 𝐶0
𝑐 (ℝ𝑑) and let𝐾 ≔ supp(𝜈) ∪ supp(𝜇). Then, the optimal

discriminator 𝐷⋆ ∈ argmax𝐷 𝑉 (𝐺, 𝐷) is unique up to Lebesgue zero sets and given by

𝐷⋆ ∶ 𝐾 ⟶ (0, 1), 𝑥 ⟼
𝜈(𝑥)

𝜈(𝑥) + 𝜇(𝑥)
. (3.1)

51

3.1. PROBABILISTIC FORMULATION CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

Proof. Define
𝑓 ∶ 𝐾 × (0, 1) ⟶ ℝ, (𝑥, 𝑦) ⟼ 𝜈(𝑥) log(𝑦) + 𝜇(𝑥) log(1 − 𝑦).

We have that 𝑦 ⟼ 𝑓(𝑥, 𝑦) ∈ 𝐶2((0, 1)) and the derivatives are

𝜕𝑦𝑓(𝑥, 𝑦) =
𝜈(𝑥)

𝑦
−

𝜇(𝑥)
1 − 𝑦

, 𝜕2
𝑦𝑓(𝑥, 𝑦) = −

𝜈(𝑥)
𝑦2 −

𝜇(𝑥)
(1 − 𝑦)2 .

For𝑥 ∈ 𝐾wehave that 𝜕2
𝑦𝑓(𝑥, 𝑦) < 0, and hence, that 𝑦 ⟼ −𝑓(𝑥, 𝑦) is strictly convex for every𝑥 ∈ 𝐾.

Define 𝐷⋆ as in equation (3.1), then 𝐷⋆ ∈ 𝐶0(𝐾) and 𝐷⋆(𝐾) ⊆ (0, 1). Now, for 𝑥 ∈ ℝ𝑑 we get

𝜕𝑦𝑓(𝑥, 𝐷⋆(𝑥)) =
𝜈(𝑥)
𝜈(𝑥)

𝜈(𝑥)+𝜇(𝑥)

−
𝜇(𝑥)

1 − 𝜈(𝑥)
𝜈(𝑥)+𝜇(𝑥)

=
𝜈2(𝑥) + 𝜈(𝑥)𝜇(𝑥)

𝜈(𝑥)
−

𝜈(𝑥)𝜇(𝑥) + 𝜇2(𝑥)
𝜇(𝑥)

=
𝜈2(𝑥)𝜇(𝑥) + 𝜈(𝑥)𝜇2(𝑥) − 𝜈2(𝑥)𝜇(𝑥) − 𝜈(𝑥)𝜇2(𝑥)

𝜈(𝑥)𝜇(𝑥)
= 0.

Lemma 3.4 implies that 𝐷⋆ is a minimiser of 𝑢 ⟼ ∫
ℝ𝑑 𝑓(𝑥, 𝑢(𝑥)) 𝑑𝜆𝑑(𝑥), and hence, a maximiser of

𝑉 (𝐺, •) and that it is unique up to Lebesgue zero sets. �

Since we have assumed for 𝑋 that 𝑃𝑋 is absolutely continuous, we can consequently restrict the hy-
pothesis space of 𝐺 with the the same assumption. This means that for finding an optimal 𝐺 it suffices
to optimise over the set of densities. For that we define the virtual training criterion.

Remark 3.6 Note that if we assume that the optimal discriminator 𝐷⋆ is known we can rewrite the
min-max criterion as

max
𝐷

𝑉 (𝐺, 𝐷) = 𝑉 (𝐺, 𝐷⋆)

(3.3)= ∫
ℝ𝑑

𝜈(𝑥) log(𝐷⋆(𝑥)) + 𝜇(𝑥) log(1 − 𝐷⋆(𝑥)) 𝑑𝜆𝑑(𝑥)

(3.5)= ∫
ℝ𝑑

𝜈(𝑥) log(
𝜈(𝑥)

𝜈(𝑥) + 𝜇(𝑥)
) + 𝜇(𝑥) log(1 −

𝜈(𝑥)
𝜈(𝑥) + 𝜇(𝑥)

) 𝑑𝜆𝑑(𝑥)

= ∫
ℝ𝑑

𝜈(𝑥) log(
𝜈(𝑥)

𝜈(𝑥) + 𝜇(𝑥)
) + 𝜇(𝑥) log(

𝜇(𝑥)
𝜈(𝑥) + 𝜇(𝑥)

) 𝑑𝜆𝑑(𝑥).

The training of the discriminator is the main difficulty in practice. One problem, for example, is that
because of the interdependence of the generator and the discriminator, the training is generally rather
unstable, since the topology of the minima of the discriminator’s optimisation is constantly changing
due to the training of the generator. The discriminator would therefore have to capture the entire com-
plexity of the generator between each update of the generator’s parameters, which is not possible in
practice because the training timewould become extremely long. However, in order to substantiate the
reasonableness of the GAN concept, it is crucial to know whether, under the condition that the optimal
discriminator is achieved, the distribution of the generator converges to the distribution of the data.
To do this, we now assume the optimal discriminator and use it to define the virtual training criterion,
which restricts the training problem to only one optimisation. Wewill then see that theminimumof the
virtual training criterion is reached exactly when the generator reflects the data distribution.

52

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS 3.1. PROBABILISTIC FORMULATION

Definition 3.7 (Virtual training criterion) Let 𝜈 ∈ 𝐶0
𝑐 (ℝ𝑑) be the unknown data distribution. Then we

define the virtual training criterion as

𝐶 ∶ 𝐶0
𝑐 (ℝ𝑑) ⟶ ℝ

𝜇 ⟼ ∫
ℝ𝑑

𝜈(𝑥) log(
𝜈(𝑥)

𝜈(𝑥) + 𝜇(𝑥)
) + 𝜇(𝑥) log(

𝜇(𝑥)
𝜈(𝑥) + 𝜇(𝑥)

) 𝑑𝜆𝑑(𝑥).

We now consider the virtual training criterion by expressing it in terms of the so-called Kullback-Leibler
divergence and the Jensen-Shannon divergence derived from it. These serve the purpose of measuring
the divergence of two probability distributions. The Kullback-Leibler divergence was first proposed in
[17].

Definition 3.8 (Kullback–Leibler divergence) Let 𝜇, 𝜈 ∈ 𝐿1(ℝ𝑑) be probability densities. The Kull-
back–Leibler divergence is defined as

KL ∶ 𝐿1(ℝ𝑑) × 𝐿1(ℝ𝑑) ⟶ ℝ

(𝜇, 𝜈) ⟼ KL (𝜇 || 𝜈) ≔ ∫
ℝ𝑑

𝜇(𝑥) log(
𝜇(𝑥)
𝜈(𝑥)

) 𝑑𝜆𝑑(𝑥).

Lemma 3.9 For probability densities 𝜇, 𝜈 ∈ 𝐿1(ℝ𝑑) it holds that KL (𝜇 || 𝜈) ≥ 0 and equality holds if
and only if 𝜇 = 𝜈.

Proof. If 𝜇 = 𝜈 almost everywhere we have

KL (𝜇 || 𝜇) = ∫
ℝ𝑑

𝜇(𝑥) log(
𝜇(𝑥)
𝜇(𝑥)

) 𝑑𝜆𝑑(𝑥) = ∫
ℝ𝑑

𝜇(𝑥) log (1) 𝑑𝜆𝑑(𝑥) = 0.

Since − log is a convex function we get with Jensen’s inequality

−KL (𝜇 || 𝜈) = ∫
ℝ𝑑

𝜇(𝑥) log(
𝜈(𝑥)
𝜇(𝑥)

) 𝑑𝜆𝑑(𝑥) ≤ log(∫
ℝ𝑑

𝜇(𝑥)
𝜈(𝑥)
𝜇(𝑥)

𝑑𝑥) = log(1) = 0 (3.2)

Let’s assume KL (𝜇 || 𝜈) = 0. This implies equality in equation (3.2). But since − log is a strictly convex
function this is by Jenson’s inequality only possible if 𝑥 ⟼ log(𝜈(𝑥)

𝜇(𝑥)
) is constant almost everywhere,

namely 𝑥 ⟼ log(𝜈(𝑥)
𝜇(𝑥)

) = 0 almost everywhere, and hence 𝜈 = 𝜇 in 𝐿1(ℝ𝑑). �

Definition 3.10 (Jensen–Shannon divergence) Let 𝜇, 𝜈 be as in Definition 3.8 and 𝜉 ≔ 1
2
(𝜇 + 𝜈). The

Jensen–Shannon divergence is defined as

JS ∶ 𝐿1(ℝ𝑑) × 𝐿1(ℝ𝑑) ⟶ ℝ̄

(𝜇, 𝜈) ⟼ JS (𝜇 || 𝜈) ≔
1
2

(KL (𝜇 || 𝜉) + KL (𝜈 || 𝜉)) .

Lemma 3.11 For probability densities 𝜇, 𝜈 ∈ 𝐿1(ℝ𝑑) it holds that JS (𝜇 || 𝜈) ≥ 0 and equality holds if
and only if 𝜇 = 𝜈.

53

3.2. ALGORITHMICAL ASPECTS CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

Proof. The first implication can be computed directly. Assume 𝜇 = 𝜈. Then we get with Lemma 3.9,

JS (𝜇 || 𝜈) =
1
2

(KL(𝜇 ∣∣
1
2

(𝜇 + 𝜇)) + KL(𝜇 ∣∣
1
2

(𝜇 + 𝜇))) =
1
2

(KL (𝜇 || 𝜇) + KL (𝜇 || 𝜇)) = 0.

On the other hand

JS (𝜇 || 𝜈) =
1
2

(KL(𝜇 ∣∣
1
2

(𝜇 + 𝜈))
⏟⏟⏟⏟⏟⏟⏟⏟⏟

(Lemma 3.9) ≥0

+ KL(𝜈 ∣∣
1
2

(𝜇 + 𝜈))
⏟⏟⏟⏟⏟⏟⏟⏟⏟

(Lemma 3.9) ≥0

) ≥ 0. (3.3)

If we presume JS (𝜇 || 𝜈) = 0 then equation (3.3) together with Lemma 3.9 imply𝜇 = 1
2
(𝜇 + 𝜈) = 𝜈. �

Proposition3.12 (Uniqueminimumof virtual training criterion) Let𝜈 ∈ 𝐶0
𝑐 (ℝ𝑑)be theunknownprob-

ability density. Then 𝐶(𝜈) = min{𝜇∈𝐶0
𝑐(ℝ𝑑)∣𝜇 probability density} 𝐶(𝜇). In particular, this minimum is unique

in 𝐶0
𝑐 (ℝ) up to Lebesgue zero sets and 𝐶(𝜈) = − log 4.

Proof. Let 𝜇 ∈ 𝐶0
𝑐 (ℝ𝑑) be a probability density. Then

𝐶(𝜇) = ∫
ℝ𝑑

𝜈(𝑥) log(
𝜈(𝑥)

𝜈(𝑥) + 𝜇(𝑥)
) + 𝜇(𝑥) log(

𝜇(𝑥)
𝜈(𝑥) + 𝜇(𝑥)

)

+ (log(2) − log(2)(𝜈(𝑥) + 𝜇(𝑥))) 𝑑𝜆𝑑(𝑥)

= − log(2) ∫
ℝ𝑑

𝜈(𝑥) + 𝜇(𝑥) 𝑑𝜆𝑑(𝑥)

+ ∫
ℝ𝑑

𝜈(𝑥) (log(2) + log(
𝜈(𝑥)

𝜈(𝑥) + 𝜇(𝑥)
)) 𝑑𝜆𝑑(𝑥)

+ ∫
ℝ𝑑

𝜇(𝑥) (log(2) + log(
𝜇(𝑥)

𝜈(𝑥) + 𝜇(𝑥)
)) 𝑑𝜆𝑑(𝑥)

(𝜇, 𝜈 normalised) = −2 log(2)

+ ∫
ℝ𝑑

𝜈(𝑥) log(
2𝜈(𝑥)

𝜈(𝑥) + 𝜇(𝑥)
) 𝑑𝜆𝑑(𝑥)

+ ∫
ℝ𝑑

𝜇(𝑥) log(
2𝜇(𝑥)

𝜈(𝑥) + 𝜇(𝑥)
) 𝑑𝜆𝑑(𝑥)

= − log(4) + KL(𝜈 ∣∣
1
2

(𝜈 + 𝜇)) + KL(𝜇 ∣∣
1
2

(𝜈 + 𝜇))

= − log(4) + 2 JS (𝜇 || 𝜈) .

From Lemma 3.11 we know that JS (𝜇 || 𝜈) ≥ 0 and equality holds if and only if 𝜇 = 𝜈 up to Lebesgue
zero sets, which concludes the proof. �

3.2 Algorithmical aspects

3.2.1 Parametrisation

In Section 3.1 we discussed GAN networks in the non-parametric setting, i.e. the neural networks rep-
resenting 𝐺 and 𝐷 were regarded as elements of infinite dimensional function spaces. From now we

54

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS 3.2. ALGORITHMICAL ASPECTS

regard the parametrised versions of 𝐺 and 𝐷

ℝ𝑚 ⟶ (ℝ𝑠 ⟶ 𝐾) ℝ𝑛 ⟶ (𝐾 ⟶ (0, 1))
𝜃 ⟼ 𝐺𝜃 𝜉 ⟼ 𝐷𝜉.

(3.4)

Since we want 𝐺 to return hitherto unseen output, i.e. data that is not contained in the training set,
𝐺 can’t be fully determined by 𝜃 but also has to contain a prior distribution that draws random input
samples for 𝐺𝜃. For that, let’s consider another random variable 𝑍 ∶ Ω ⟶ ℝ𝑠, 𝑠 ∈ ℕ and assume
𝐺 = 𝐺𝜃 ∘ 𝑍. Usually 𝑍 is chosen to be uniformly distributed. Now, the goal is to find parameters 𝜃 such
that 𝐺𝜃 turns the distribution of 𝑍 into the distribution of 𝑋, i.e. 𝐺𝜃 ∘ 𝑍 ∼ 𝑋. In practice, 𝑍 often is a
noise generator that draws random numbers from a random seed, i.e. 𝑍 ∶ ℕ ⟶ ℝ𝑠.

3.2.2 Minimisation of the virtual training criterion

We showed in proposition 3.12 that the virtual training criterion𝐶 has a uniqueminimum if the discrim-
inator is optimal. Fulfilling this assumption in an optimisation algorithm for 𝜃 would mean optimising
𝜉 til convergence between each update of 𝜃, which could take an infinite amount of iterations. For that
reason, we introduce a hyperparameter𝐾 ∈ ℕ that determines howmany training cycles for 𝜉 are per-
formed before updating 𝜃.

Algorithm 3.13 (GAN training algorithm) Let 𝜃 ∈ ℝ𝑚 and 𝜉 ∈ ℝ𝑛 be initial parameters for 𝐺𝜃 and 𝐷𝜉
with 𝑚, 𝑛 ∈ ℕ and let 𝐾 ∈ ℕ be the amount of training iterations of 𝜉 per training iteration of 𝜃. Let 𝐼
be the batch size, and 𝐽 the number of training iterations.
1: for 𝑗 = 1, … , 𝐽 do
2: for 𝑘 = 1, … , 𝐾 do
3: Draw random samples {𝑧𝑖 = 𝑍(𝜔𝑖) ∣ 𝜔𝑖 ∈ Ω}𝐼

𝑖=1 from the noise prior random variable.
4: Draw samples from the data set {𝑥𝑖 ∈ 𝒳}𝐼

𝑖=1
5: Update 𝜉 by ascending the gradient

𝐷𝜉
1
𝐼

𝐼
∑
𝑖=1

(log(𝐷𝜉(𝑥𝑖)) + log(1 − 𝐷𝜉(𝐺𝜃(𝑧𝑖)))) .

6: end for
7: Draw random samples {𝑧𝑖 = 𝑍(𝜔𝑖) ∣ 𝜔𝑖 ∈ Ω}𝐼

𝑖=1 from the noise prior random variable.
8: Update 𝜃 by descending the gradient

𝐷𝜃
1
𝐼

𝐼
∑
𝑖=1

log (1 − 𝐷(𝐺𝜃(𝑧𝑖))) .

9: end for

The gradient decent in lines 5 and 8 can be performed as described in Algorithm1.24 the only difference
being that thegradientused for theupdates is not the squared lossbutbasedon theGAN loss functional.
The backpropagation rule can be recalculated and adapted accordingly.

It shouldbenoted that this isnotaconvexoptimisationproblem, since thecompositionof theparametri-
sation functions (3.4) with the functions represented by the the actual networks 𝐺 and 𝐷 may not be
convex. However, it turns out that the virtual training criterion is convex. This means that under the
theoretical assumption that the discriminator between each update of 𝜃 is optimal and that the optimi-
sation of the generator’s parameters is ideal, the GAN actually converges to the data distribution as the

55

3.3. APPLICATION FOR IMAGE PROCESSING CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

virtual training criterion reaches its minimum.

Proposition 3.14 (Convexity of the virtual training criterion) The virtual training criterion

𝐶 ∶ 𝐶0
𝑐 (ℝ𝑑) ⟶ ℝ

𝜇 ⟼ ∫
ℝ𝑑

𝜈(𝑥) log(
𝜈(𝑥)

𝜈(𝑥) + 𝜇(𝑥)
) + 𝜇(𝑥) log(

𝜇(𝑥)
𝜈(𝑥) + 𝜇(𝑥)

) 𝑑𝜆𝑑(𝑥).

is strictly convex, where 𝜈 ∈ 𝐶0
𝑐 (ℝ𝑑) is the unknown data distribution.

Proof. First we note that𝐶0
𝑐 (ℝ𝑑) is a convex subset of the vector space𝐶0(ℝ𝑑) as convex combinations

of compactly supported functions are compactly supported. Now define

𝑓 ∶ ℝ2
≥0 ⟶ ℝ, (𝑎, 𝑥) ⟼ 𝑎 log(

𝑎
𝑎 + 𝑥

) + 𝑥 log(
𝑥

𝑎 + 𝑥
) .

Since 𝑓 ∈ 𝐶2(ℝ2
≥0) we can compute the derivatives

𝜕𝑥𝑓 ∶ ℝ≥0 ⟶ ℝ, 𝑥 ⟼ 𝑎
𝑎 + 𝑥

𝑎
−𝑎

(𝑎 + 𝑥)2 + 𝑥
𝑎 + 𝑥

𝑥
𝑎 + 𝑥 − 𝑥
(𝑎 + 𝑥)2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+ log(
𝑥

𝑎 + 𝑥
)

𝜕2
𝑥𝑓 ∶ ℝ≥0 ⟶ ℝ, 𝑥 ⟼

𝑎 + 𝑥
𝑥

𝑎 + 𝑥 − 𝑥
(𝑎 + 𝑥)2 =

𝑎
𝑥(𝑎 + 𝑥)

≥ 0.

This implies that 𝑓(𝑎, •) is convex for every 𝑎 ≥ 0 and strictly convex if and only if 𝑎 ≠ 0 ([1], Chapter
9, Corollary 2.13). Note that for (𝑎, 𝑥) ∈ ℝ2

≥0, 𝑓(𝑎, 𝑥) ≠ 0 implies 𝑎 ≠ 0. Thus, 𝑓 is strictly convex
whenever it is non-zero. Now let 𝜇1, 𝜇2 ∈ 𝐶0

𝑐 (ℝ𝑑) be probability densities and 𝑡 ∈ [0, 1]. Then, by the
definition of convexity we have

𝐶(𝑡𝜇1 + (1 − 𝑡)𝜇2) = ∫
ℝ𝑑

𝑓(𝜈(𝑥), 𝑡𝜇1(𝑥) + (1 − 𝑡)𝜇2(𝑥)) 𝑑𝜆𝑑(𝑥)

= ∫
{𝑓(𝜈(𝑥),𝑡𝜇1(𝑥)+(1−𝑡)𝜇2(𝑥))≠0}

𝑓(𝜈(𝑥), 𝑡𝜇1(𝑥) + (1 − 𝑡)𝜇2(𝑥)) 𝑑𝜆𝑑(𝑥)

(𝑓 ≠ 0 strictly convex) < ∫
{𝑓(𝜈(𝑥),𝑡𝜇1(𝑥)+(1−𝑡)𝜇2(𝑥))≠0}

𝑡𝑓(𝜈(𝑥), 𝜇1(𝑥)) + (1 − 𝑡)𝑓(𝜈(𝑥), 𝜇2(𝑥)) 𝑑𝜆𝑑(𝑥)

≤ ∫
ℝ𝑑

𝑡𝑓(𝜈(𝑥), 𝜇1(𝑥)) + (1 − 𝑡)𝑓(𝜈(𝑥), 𝜇2(𝑥)) 𝑑𝜆𝑑(𝑥)

= 𝑡 ∫
ℝ𝑑

𝑓(𝜈(𝑥), 𝜇1(𝑥)) 𝑑𝜆𝑑(𝑥) + (1 − 𝑡) ∫
ℝ𝑑

𝑓(𝜈(𝑥), 𝜇2(𝑥)) 𝑑𝜆𝑑(𝑥)

= 𝑡𝐶(𝜇1) + (1 − 𝑡)𝐶(𝜇2). �

3.3 Application for image processing

3.3.1 Supervised adversarial training

In the previous consideration of GANs, we have examined the general case where the generator Gmim-
ics the distribution of the data. For the case of image processing, however, it is desired that a certain
processing is applied to input images so that an expected output image is produced. This means that
we want to train GANs with data consisting of input-output pairs, as we described in Chapter 1.

56

CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS 3.3. APPLICATION FOR IMAGE PROCESSING

We will see that this is feasible and that it corresponds quite closely to a supervised learning process,
with the difference that no explicit loss function needs to be defined for the training, but this is provided
automatically by the discriminator. Furthermore, since we are often dealing with non-deterministic hy-
potheses in image processing, such as ill-posed problems like the debayer problem, GANs allow the
generator to output the data with some variance within an expected range.

The method proposed here is essentially based on the fact that the discriminator also sees the input
image and thus not only single images, but the graph of a function or, in the stochastic scenario, the
samples of an input-output relationship. This can also be seen as restricting the stochastic output of
the generator to certain features. For this reason, this type is often called conditional GAN (cGAN). It was
proposed in [19] and applied in [15] for image-to-image tasks.

For a probability space (Ω, ℱ, ℙ) and 𝑠, 𝑡 ∈ ℕ the random variable of the data distribution 𝑋 can then
be rewritten as

𝑋 ∶ Ω ⟶ ℝ𝑠 × ℝ𝑡, 𝜔 ⟼ (𝑋1(𝜔), 𝑋2(𝜔)).

and the GAN loss functional for conditional GANs is redefined as

𝑉 ∶ 𝐿0((Ω × ℝ𝑠), ℝ𝑡) × 𝐿0((ℝ𝑠 × ℝ𝑡), (0, 1)) ⟶ ℝ̄
(𝐺, 𝐷) ⟼ 𝔼[log(𝐷 ∘ 𝑋)] + 𝔼[log(1 − 𝐷(𝑋1, 𝐺(•, 𝑋1)))].

The findingsonGANsobtainedabovecanbeapplied to this settingbyassuming thatℙ𝑋 andℙ(𝑋1,𝐺(•,𝑋1))
are absolute continuous with respect to the Lebesgue measure. This provides us with corresponding
probability densities 𝜈, 𝜇 and as in proposition 3.3 we can rewrite the GAN loss functional as

𝑉 (𝐺, 𝐷) = ∫
ℝ𝑑

𝜈(𝑥) log(𝐷(𝑥)) + 𝜇(𝑥) log(1 − 𝐷(𝑥)) 𝑑𝜆𝑑(𝑥).

If we assume that𝜇, 𝜈 ∈ 𝐶0
𝑐 (ℝ𝑠 ×ℝ𝑡) and set𝐾 ≔ supp(𝜈)∪supp(𝜇) then, with the same computation

as in proposition 3.5, we get that the optimal discriminator is given by

𝐷⋆ ∶ 𝐾 ⟶ (0, 1), 𝑥 ⟼
𝜈(𝑥)

𝜈(𝑥) + 𝜇(𝑥)
.

The definition of the virtual training criterion and the proof that it is convex is identical as above.

In the case that a deterministic output of the generator is desired, the generator can also be considered
as a function 𝐺(𝜔, •) ∶ ℝ𝑠 ⟶ ℝ𝑡 for a fixed 𝜔 ∈ Ω.

3.3.2 Demosaicing with GANs

In this thesis, a GAN network was trained with the data described in Section 2.5.1. The GAN loss func-
tional, discriminator and generator were used in the supervised setting as described in Section 3.3.1.
Since there is no objective error criterion, the training success cannot bemonitored as with a loss func-
tion during training. For this reason, the output of the discriminator was not chosen as a scalar, but
as an image-like array, which was displayed during the training. In this way it was possible to deter-
mine whether the discriminator could identify critical areas. For the generator and the discriminator,
the U-Net architecture as described in 2.4.1 was chosen.

Although the discriminator seemed to be able to identify faulty areas correctly to some extent, the train-
ingwas extremely unstable. Therewas often a oscillation back and forth between the generator and the

57

3.3. APPLICATION FOR IMAGE PROCESSING CHAPTER 3. GENERATIVE ADVERSARIAL NETWORKS

discriminator, so that the error pattern of the discriminator seemed to be inverted after a few iterations.
[4] suggests using theWassersteinmetric to improve the stability of the training but this did not improve
the result either.

Since in other publications such as [15] GANs have been successfully used for image-to-image transla-
tion tasks, it is likely that good results can be achieved by a suitable choice of hyperparameters, such as
a different architecture for the discriminator. However, these experiments could not be carried out due
to the limited time scope of this thesis and are therefore open for future work.

58

Epilogue

To pursue the initial research question of whether neural networks are applicable to the processing of
cameraRAWimages,we investigatedCNNs in thecontextof statistical learningand found that theyare in
principle well suited for problems such as demosaicing. In order to incorporate a priori knowledge into
the hyperparameters and CNNarchitectures, we analysed the requirements for debayer algorithms and
came, byconsidering theNyquist-Shannonsampling theorem, to the realisation that themainchallenge
is to reconstruct high-frequency regions and avoid unwanted artefacts at the same time. Also, focusing
on theBayer pattern, which has an increased resolution in the green channel, gave the decisive hint that
a CNN structure that reconstructs the green channel first and uses it then to compute the red and blue
channels (as proposed in [9]) might be more effective. The results confirmed that CNNs can achieve at
least equivalent results compared to classical algorithms. Finally, it was investigated whether the loss
function can be dispensed using GANs, by replacing it with another neural network. We showed math-
ematically that this concept is sound. However, an implementation of GANs as demosaicing algorithms
was not successful, as the training process was very unstable.

When implementing the CNN for debayering, it was observed that the distribution and diversity of the
data has very central influence on the quality of the reconstructed image. We have discussed in Section
2.5.1 that only synthetic training data can be used. We created this data from a combination of Siemens
stars and chirps. It is up to further investigation if the trained model performs better on real camera
data if the training data is distributed in such a way that it more closely resembles signals from natural
images. This research approach could be promising for future studies.

Another aspect that should be explored in more depth is how results can be assessed quantitatively.
For this purpose, error metrics that reflect the human perception could be used. Only if it is possible to
benchmark machine learning models it is possible to have genuine scientific debates.

Finally, it must not be forgotten that for applying image processing algorithms to motion picture cam-
eras it must be assured that the algorithms are temporally stable. Otherwise, disturbing temporal arte-
facts may occur as the model might treat similar images quite differently. In future work, this could
be achieved by methods to increase the regularity of the function represented by the neural network,
or by training and evaluating the model in temporal space. This would mean that multiple temporally
consecutive images have to be fed into the neural network at once.

59

60

Bibliography

[1] H. Amann and J. Escher. Analysis I. Grundstudium Mathematik. Birkhäuser Basel, 2006. isbn:
9783764377557.

[2] H. Amann and J. Escher. Analysis III. Grundstudium Mathematik. Birkhäuser Basel, 2008. isbn:
9783764388836.

[3] Stefano Andriani et al. “Beyond the Kodak image set: A new reference set of color image se-
quences.” In: 2013 IEEE International Conference on Image Processing, ICIP 2013 - Proceedings
(Sept. 2013), pp. 2289–2293. doi: 10.1109/ICIP.2013.6738472.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. 2017. doi: 10 . 48550 /
ARXIV.1701.07875. url: https://arxiv.org/abs/1701.07875.

[5] Bryce E. Bayer. Color imaging array. U.S. Patent No. 3,971,065. 1975.

[6] Richard Beals. Analysis: An Introduction. Cambridge University Press, 2004. doi: 10 . 1017 /
CBO9780511755163.

[7] H. (Haim) Brézis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. eng. Uni-
versitext. New York ; Springer, 2011. isbn: 9780387709147.

[8] Anthony L. Caterini andDong Eui Chang.DeepNeural Networks in aMathematical Framework. 1st.
Springer Publishing Company, Incorporated, 2018. isbn: 3319753037.

[9] Kai Cui et al. “Color Image Restoration Exploiting Inter-Channel Correlation With a 3-Stage CNN.”
In: IEEE Journal of Selected Topics in Signal Processing 15.2 (2021), pp. 174–189. doi: 10.1109/
JSTSP.2020.3043148.

[10] Vincent Dumoulin and Francesco Visin. A Guide to Convolution Arithmetic for Deep Learning. 2016.
doi: 10.48550/ARXIV.1603.07285. url: https://arxiv.org/abs/1603.07285.

[11] Rick Durrett. Probability: Theory and Examples. 5th ed. Cambridge Series in Statistical and Proba-
bilistic Mathematics. Cambridge University Press, 2019. doi: 10.1017/9781108591034.

[12] Mark D Fairchild. Color Appearance Models. John Wiley & Sons, 2013.

[13] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv: 1406.2661 [stat.ML].

[14] H von Helmholtz. “LXXXI. On the theory of compound colours.” In: The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science 4.28 (1852), pp. 519–534.

[15] Phillip Isola et al. Image-to-Image Translation with Conditional Adversarial Networks. 2016. doi:
10.48550/ARXIV.1611.07004. url: https://arxiv.org/abs/1611.07004.

[16] Günter Klambauer et al. “Self-Normalizing Neural Networks.” In: Proceedings of the 31st Interna-
tional ConferenceonNeural InformationProcessingSystems. NIPS’17. LongBeach, California,USA:
Curran Associates Inc., 2017, pp. 972–981. isbn: 9781510860964.

61

https://doi.org/10.1109/ICIP.2013.6738472
https://doi.org/10.48550/ARXIV.1701.07875
https://doi.org/10.48550/ARXIV.1701.07875
https://arxiv.org/abs/1701.07875
https://doi.org/10.1017/CBO9780511755163
https://doi.org/10.1017/CBO9780511755163
https://doi.org/10.1109/JSTSP.2020.3043148
https://doi.org/10.1109/JSTSP.2020.3043148
https://doi.org/10.48550/ARXIV.1603.07285
https://arxiv.org/abs/1603.07285
https://doi.org/10.1017/9781108591034
https://arxiv.org/abs/1406.2661
https://doi.org/10.48550/ARXIV.1611.07004
https://arxiv.org/abs/1611.07004

[17] S. Kullback and R. A. Leibler. “On Information and Sufficiency.” In: The Annals of Mathematical
Statistics 22.1 (1951), pp. 79–86. doi: 10.1214/aoms/1177729694.

[18] E.H. Lieb et al. Analysis. Crm Proceedings & Lecture Notes. American Mathematical Society, 2001.
isbn: 9780821827833.

[19] Mehdi Mirza and Simon Osindero. Conditional Generative Adversarial Nets. 2014. doi: 10.48550/
ARXIV.1411.1784. url: https://arxiv.org/abs/1411.1784.

[20] MehryarMohri, Afshin Rostamizadeh, andAmeet Talwalkar. Foundations ofMachine Learning. The
MIT Press, 2012. isbn: 026201825X.

[21] Kathy T Mullen. “The contrast sensitivity of human colour vision to red-green and blue-yellow
chromatic gratings.” In: The Journal of physiology 359.1 (1985), pp. 381–400.

[22] Yurii E. Nesterov. Introductory Lectures on Convex Optimization - A Basic Course. Vol. 87. Applied
Optimization. Springer, 2004. isbn: 978-1-4613-4691-3. doi: 10.1007/978-1-4419-8853-9. url:
https://doi.org/10.1007/978-1-4419-8853-9.

[23] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedi-
cal Image Segmentation. 2015. doi: 10.48550/ARXIV.1505.04597. url: https://arxiv.org/
abs/1505.04597.

[24] Michael Schöberl et al. “Dimensioning of optical birefringent anti-alias filters for digital cameras.”
In: 2010 IEEE International Conference on Image Processing. 2010, pp. 4305–4308. doi: 10.1109/
ICIP.2010.5651784.

[25] Wenzhe Shi et al. Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel
Convolutional Neural Network. 2016. doi: 10.48550/ARXIV.1609.05158. url: https://arxiv.
org/abs/1609.05158.

[26] Andrew Stockman and Lindsay T Sharpe. “The spectral sensitivities of the middle-and long-
wavelength-sensitive cones derived from measurements in observers of known genotype.” In:
Vision research 40.13 (2000), pp. 1711–1737.

[27] Yang Wang. A Mathematical Introduction to Generative Adversarial Nets (GAN). 2020. arXiv: 2009.
00169 [cs.LG].

[28] Thomas Young. “On the nature of light and colours.” In: A Course of Lectures onNatural Philosophy
and the Mechanical Arts (J. Johnson, 1807) 1 (1802), pp. 464–465.

[29] A. ZygmundandRobert Fefferman.Trigonometric Series. 3rded. CambridgeMathematical Library.
Cambridge University Press, 2003. doi: 10.1017/CBO9781316036587.

62

https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.48550/ARXIV.1411.1784
https://doi.org/10.48550/ARXIV.1411.1784
https://arxiv.org/abs/1411.1784
https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.1007/978-1-4419-8853-9
https://doi.org/10.48550/ARXIV.1505.04597
https://arxiv.org/abs/1505.04597
https://arxiv.org/abs/1505.04597
https://doi.org/10.1109/ICIP.2010.5651784
https://doi.org/10.1109/ICIP.2010.5651784
https://doi.org/10.48550/ARXIV.1609.05158
https://arxiv.org/abs/1609.05158
https://arxiv.org/abs/1609.05158
https://arxiv.org/abs/2009.00169
https://arxiv.org/abs/2009.00169
https://doi.org/10.1017/CBO9781316036587

Declaration

I declare that this thesis is my own unaided work. All sources
used for its development are acknowledged as references.

Munich, June 27, 2022

. .
Thomas Eingartner

	List of Symbols
	Introduction
	Regression with CNNs
	Supervised learning setting
	The regression problem
	Generalisation bounds

	Convolutional neural networks
	Tensor products
	The convolutional layer
	Multiple layers

	Optimisation of CNNs
	Gradient decent algorithm for convex functions
	Adjoint operators
	Backpropagation for generic neural networks
	Backpropagation for CNNs

	Demosaicing with CNNs
	Demosaicing
	General formulation
	The Bayer pattern

	Challenges
	Nyquist–Shannon sampling theorem
	Aliasing artefacts
	False colour

	Classic debayering strategies
	Bilinear interpolation
	Gradient based interpolation

	CNN architectures
	U-Net
	3-stage CNN

	Training
	Data
	Hyperparameters

	Generative adversarial networks
	Probabilistic formulation
	The general setting
	The optimal discriminator

	Algorithmical aspects
	Parametrisation
	Minimisation of the virtual training criterion

	Application for image processing
	Supervised adversarial training
	Demosaicing with GANs

	Epilogue
	Bibliography

