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Abstract
Two-body Dirac operators, formally given by

H2BD = (−iα · ∇x + βm)⊗ id + id⊗ (−iα · ∇y + βm) + Vext + Vint,

find broad application in relativistic quantum chemistry and describe two via Vint in-
teracting electrons in the external field Vext of a nucleus. Contrary to Brown-Ravenhall
operators, H2BD is defined without spectral projections, and thus, not bounded from be-
low. Despite the frequent use of H2BD in relativistic quantum chemistry, only very few of
its mathematical properties are known in the mathematical physics literature. This was
brought to the attention of the mathematical physics community by Jan Dereziński in
2012. The present work addresses the questions of domain, self-adjointness, and spectrum
of H2BD in mathematically precise form.
For our main result, we assume two electrons with interaction of Coulomb type in the

vicinity of an extended nucleus. We construct a self-adjoint extension of H2BD which is
uniquely distinguished by the criterion of finite potential energy. Since unbounded inter-
action potentials cannot be relatively bounded by the free two-body Dirac operator, we
make use of a particular Frobenius-Schur factorization of H2BD and infer self-adjointness
as well as uniqueness from the Schur complement. The coupling constant of the interac-
tion γ is restricted to values |γ| < 2/π.
Moreover, we show by means of explicit examples that elements of the domain D(H2BD)

may exhibit infinite single particle kinetic energy. This unphysical phenomenon already
occurs in the free case and is therefore no artifact of unbounded potentials. On the one
hand, it vanishes when antisymmetric states are considered. On the other hand, initial
states with finite single particle kinetic energy cannot evolve into states with infinite
energy under the full time evolution.
As regards the spectrum of H2BD, we identify the essential spectrum as R and show

absence of eigenvalues |E| > 2m, where m is the electron mass.
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Zusammenfassung
Zwei-Teilchen Dirac-Operatoren H2BD, formal gegeben durch

H2BD = (−iα · ∇x + βm)⊗ id + id⊗ (−iα · ∇y + βm) + Vext + Vint,

kommen häufig in der relativistischen Quantenchemie zur Anwendung und beschreiben
zwei mittels Vint wechselwirkende Elektronen im externen Feld Vext eines Nukleus. Im
Gegensatz zu Brown-Ravenhall-Operatoren wird H2BD ohne Spektralprojektionen defi-
niert und ist daher nicht von unten beschränkt. In der mathematischen Literatur sind—
trotz der weiten Verbreitung in der relativistischen Quantenchemie—nur sehr wenige
Eigenschaften von H2BD bekannt. Diese Tatsache war von Jan Dereziński im Jahre 2012
an die Mathematische Physik Community herangetragen worden. Die vorliegende Arbeit
geht der Frage nach Definitionsbereich, Selbstadjungiertheit und Spektrum von H2BD in
mathematisch präziser Form nach.
Für unser Hauptresultat nehmen wir Elektronen mit Coulomb-Wechselwirkung in der

Nähe eines ausgedehnten Nukleus an. Es besteht in der Konstruktion einer selbstad-
jungierten Erweiterung von H2BD, die durch das Kriterium endlicher potentieller Ener-
gie eindeutig ausgezeichnet ist. Da ein unbeschränktes Wechselwirkungspotential nicht
durch den freien Zweiteilchen-Dirac-Operator relativ beschränkt werden kann, greifen wir
auf eine bestimmte Frobenius-Schur-Faktorisierung von H2BD zurück und folgern sowohl
Selbstadjungiertheit als auch Eindeutigkeit der Erweiterung aus dem Schurkomplement.
Die Kopplungskonstante der Wechselwirkung γ ist auf Werte |γ| < 2/π beschränkt.
Wir zeigen weiterhin anhand von explizit konstruierten Beispielen, dass Elemente des

DefinitionsbereichesD(H2BD) nicht notwendigerweise endliche kinetische Einteilchenener-
gie aufweisen. Dieser unphysikalische Umstand tritt bereits im freien Fall auf und ist
daher kein Artefakt unbeschränkter Potentiale. Er kann zum einen durch Einschränkung
auf antisymmetrische Zustände umgangen werden. Zum anderen können zwei wechsel-
wirkende Elektronen mit endlicher kinetischer Einteilchenenergie nicht in Zustände mit
unendlicher kinetischer Einteilchenenergie streuen.
Was die Untersuchung des Spektrums von H2BD betrifft, so identifizieren wir das

wesentliche Spektrum als R und zeigen, dass keine Eigenwerte im Bereich |E| > 2m
auftreten, wobei m die Elektronenmasse ist.
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1. Introduction

1.1. Many-body Dirac operators

This thesis studies properties such as self-adjointness of two-body Dirac operators (2BD
operators) and also investigates their domain and spectrum. 2BD operators are formally
given by

H2BD = H0 + Vext + Vint

= (−iα · ∇x + βm)⊗ id + id⊗ (−iα · ∇y + βm) + Vext + Vint, (1.1.1)

where H0 denotes the free 2BD Dirac operator, Vint an interaction potential, and Vext

the external field. Before we summarize our results in the next section and define H2BD

rigorously in Section 2.1, we want to describe the context of their application and their
status in the literature.
In contemporary relativistic quantum chemistry, 2BD operators1 find broad application

in the description of two electrons of mass m in an external field Vext interacting via an
interaction potential Vint. This models, e.g., the Helium atom. The main objective in the
literature is the investigation of energy levels or spectral lines, i.e., the spectrum of H2BD,
via numerical simulations; see [Liu12] for an overview, and concerning spectral properties,
e.g., [JBL97], [Liu12], [PBK06], [PBK07], [WNT07], and [WNT10]. There is, however,
an ongoing debate concerning the nature of these spectral lines. Some authors believe,
they correspond to true eigenvalues of H2BD (see, e.g., [Liu12]), while others regard them
as resonances (see, e.g., [PBK07], [PBK06], and [BPK08]). That this debate lacks a
firm mathematical foundation was brought to the attention of the mathematical physics
community by J. Dereziński in 2012. In [Der12], he reports on his correspondence with the
chemist B. Jeziorski on this topic. In particular, Jeziorski notes that, although important
properties such as self-adjointness or existence of eigenvalues of H2BD are not proven, the
“Hamiltonian [H2BD] is used by chemists in hundreds of papers every year . . . with a tacit
assumption that it has square integrable eigenfunctions.” Dereziński concludes that the
lack of a rigorous mathematical study of H2BD poses well-defined mathematical problems,
which are of great interest for relativistic quantum chemistry. This thesis is one of the
first works addressing these problems.
In contrast to many-body Schrödinger operators, the mathematical physics literature

on many-body Dirac operators is rather sparse. This is on the one hand due to the
widespread conviction among physicists that, in the relativistic realm, quantum field

1In the relativistic quantum chemistry literature, the notation HDC is more common. It stands for
Dirac-Coulomb Hamiltonian. Since in this thesis the Coulomb potential is not the only potential
considered, we introduce the notation H2BD which stands for two-body Dirac Hamiltonian.
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theory, i.e., a description of many particles in terms of Fock spaces and creation and
annihilation operators, is more adequate. “On the other hand, the treatment of relativistic
multi-particle quantum systems is notoriously difficult . . . [even for] the naive Hamiltonian
. . . [H0] . . . of two non-interacting free Dirac particles . . . ” (see [Sie06]).
One hardly encounters many-body Dirac operators of the form (1.1.1) in the literature.

If they are mentioned at all, one often finds only the statement about the essential
spectrum σess(H2BD) = R, albeit without proof (see, e.g., [Mor08], [BES05]). Some
rigorous works in the surroundings of many-body Dirac operators are, e.g., [HLS07] and
[Sie06]. That in general not much is known in the literature on many-body Dirac operators
regarding self-adjointness or spectrum, is the content of [Der12]. This problem also finds
a mention in [Lev14]. The preprint [OKY14] is to our best knowledge the only article in
the mathematical literature that attempts to treat Dirac operators of the form (1.1.1).
The authors claim to have proven essential self-adjointness of H2BD, where both external
as well as interaction potential are of Coulomb type, absence of eigenvalues, as well as
they claim to have identified the essential spectrum as R. Unfortunately, their proof of
essential self-adjointness comprises a gap. This gap also invalidates the proof of absence of
eigenvalues. We discuss this gap and its implications in Section 5.4. The proof concerning
the essential spectrum contains a different gap. While we could not fix the gap in the
proof of essential self-adjointness, we were able to do so for the essential spectrum. We
discuss our approach to the essential spectrum in Section 6 and how we fix the gap in
the proof in [OKY14] in Remark 6.2.
The main objection of physicists to many-body Dirac operators is their unboundedness

from below. Therefore, one often considers the so-called Brown-Ravenhall operators, i.e.,
many-body Dirac operators projected to the (carefully chosen) positive energy subspace.
These operators are bounded from below and physically sufficiently reasonable in order to
model atoms (see, e.g., [Tix97], [EPS96], [MV06], as well as [BE11], [SL10], and references
therein). In these settings, mainly spectral questions are under investigation (see [MS10]
and references therein).
We want to clearly distinguish the mathematical investigation of H2BD from consid-

ering H2BD as valid model for the Helium atom. The justification of a mathematical
investigation is simply its frequent use in relativistic quantum chemistry and the corre-
sponding mathematical questions concerning the spectrum. The traditional reservations
of physicists (see, e.g., [BR51], [Suc80]) concerning the validity of H2BD as model for the
Helium atom, however, are to our opinion at least partly justified but will not be our
focus here. We reproduce in Section 7.3 the classical heuristic argument, the so-called
Brown-Ravenhall disease, that H2BD might not have a stable eigenstates. We will see that
this argument serves as substantial basis for future research on the spectrum of H2BD.
The unboundedness from below of Dirac operators, i.e., the occurrence of negative

energy states, can also be seen as virtue, namely when one wants to model the Dirac sea
with the help of many-body Dirac operators. The Dirac sea is intimately connected to the
so-called radiation catastrophe of Dirac electrons. In this scenario, an electron described
by the Dirac equation is accelerated by some means. It thus emits radiation, i.e., loses
energy. As the spectrum is not bounded from below, there is no mechanism preventing
the electron from emitting more and more radiation, and thereby sinking deeper and

2



deeper in the spectrum. In order to address this seemingly unphysical scenario, Dirac
proposed the Dirac sea, i.e., that all negative energy states are occupied by electrons. The
exclusion principle for fermions prevents any positive energy electron from transitions to
negative energy states. On the one hand, this model of the vacuum proved very successful,
as it correctly predicted the positron. It was also used in the proof of pair creation
(see [PD08b] and [PD08a]). On the other hand, it poses interesting problems not only
for a mathematically rigorous foundation of relativistic quantum mechanics. Besides
the classic literature on, e.g., the external field problem in quantum electrodynamics
(see [SS65], [Rui77a], [Rui77b], and [LM96]), some of these problems are also content of
current research, such as [JMPP17], which investigates the invisibility of the Dirac sea
due to its uniformity, [DDMS10] and [DM16], which study the time evolution of the Dirac
sea, or [Fin06], which even generalizes the notion of the Dirac sea. As the Dirac sea is
a relativistic many-fermion system with negative energies, it is natural to think of it as
wedge product ψ = φ1 ∧ φ2 ∧ . . . ∧ φN , where each factor belongs to the negative energy
spectrum. The antisymmetry of the wedge product reflects the fermionic character. One
can then study the Dirac sea, either with finitely many particles or in the limit N →∞
as in [DDMS10]. Stability of the Dirac sea with finitely many particles is analogous to
H2BD, i.e., two electrons without radiation. One can think of scattering situations in
which the particles move freely after a sufficiently long time. Since no radiation can
escape to infinity, the free moving particles cannot lose energy, and thus, the system
would indeed be stable in some sense. In any case, the relevance of (unprojected) many-
body Dirac operators for it is clear: They are the natural candidates for generating the
time evolution and their properties are most likely also reflected in the Dirac sea.

1.2. The results at a glance

The aim of this thesis is two-fold. First, the study of self-adjointness, i.e., existence of
a unitary time evolution, and the spectrum of H2BD. This investigation is suggested by
the frequent use of H2BD in the context of relativistic quantum chemistry, and is the first
necessary step when addressing questions of physical relevance. Secondly, this thesis is
concerned with regularity properties of the domain of H2BD and the possibility of states
with infinite single particle kinetic energy. This is suggested by explicit models of the
Dirac sea. We have in mind the perspective of extending our results to N particles.
We outline very briefly our results. Our first main result proves the existence of a dis-

tinguished self-adjoint extension of H2BD, denoted by H̃2BD, under the assumption that
the interaction potential Vint is of Coulomb type and the external field Vext is bounded
and symmetric. In the relativistic quantum chemistry literature mentioned above, this
model describes two interacting point-like electrons in the vicinity of an extended nucleus.
As regards the construction of H̃2BD, we face two difficulties. First, the free two-body
operator H0 exhibits a non-trivial nullspace in the coordinate of the interaction. This
nullspace is hidden in the standard representation of the Dirac matrices. Thus, an un-
bounded interaction potential cannot be relatively bounded by the free operator and a lot
of standard perturbation techniques based on such a bound are not applicable. Instead,
we use a Frobenius-Schur factorization based on this nullspace and its orthogonal comple-
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ment and infer self-adjointness of the full two-body Dirac operator from self-adjointness
of the Schur complement. The quadratic form techniques involved in this require the use
of the theory of Calderón-Zygmund singular integrals. Second, H2BD is not bounded from
below, and thus, the existing machinery for finding and classifying self-adjoint extensions
of semi-bounded operators does not apply immediately. Again, the Schur complement
is of great help as it turns out that it is semi-bounded. Consequently, the self-adjoint
extension of H2BD we construct in this thesis is based on the Friedrichs extension of the
Schur complement. This last step restricts the coupling constant γ to values |γ| < 2/π.
Although inferring self-adjointness from the Schur complement in the context of one-
particle Dirac operators has already been achieved in [EL08], this method has—to our
best knowledge—never been applied to unbounded perturbations of linear operators with
non-trivial nullspace.

In order to distinguish self-adjoint extensions in a physically sensible way, one usually
provides a criterion. It is desirable that this criterion satisfies two conditions. First, it
should have a clear physical meaning. Second, it should single out the extension uniquely.
For H̃2BD, we adopt the criterion of finite potential energy and can show that it satisfies
both of these conditions. This criterion is well-known from the one-particle Dirac operator
in an external field.

The next group of important results concerns the domain of H2BD and its operator
closure H2BD in the presence of bounded external and interaction potentials. It derives
its physical relevance ultimately from implications for explicit models of the Dirac sea.
Although H0 is a differential operator of first order, we find that D(H2BD) is not char-
acterized by some kind of H1-regularity. This is intimately connected to the presence
of the non-trivial nullspace of H0 in the coordinate of the interaction. If certain two-
body states have parts in this nullspace, the regularity in the direction of the interaction,
i.e., corresponding to this nullspace, can be relaxed. We show that existence of such
nullspaces as well as the accompanying loss of H1-regularity is generic for a broad class
of sums of first order differential operators, including the natural candidates for relativis-
tic many-body Hamiltonians. H1- or H1/2-regularity is typically associated with finite
kinetic energy. That H1- or H1/2-regularity is no longer necessary, implies therefore that
we can construct two-body states in D(H2BD) that have infinite single particle kinetic
energy (infinite SPKE). Both particles exhibit infinite SPKE such that these energies
cancel and the total kinetic energy remains finite. If however D(H2BD) is restricted to
the antisymmetric subspace, this problem is circumvented as we can show that antisym-
metric states always display finite SPKE. Our last result in this context treats scattering
situations for smooth potentials. We show that, if the initial state exhibits finite SPKE,
so does the scattered state for all fixed times t ∈ R. In the literature on one-body Dirac
operators with external field, the occurrence of infinite kinetic energies is also known
(see, e.g., [ELS17]). There, the infinite kinetic energy is canceled by an infinite potential
energy.

We conclude the thesis with two results that we consider as first steps towards a
spectral analysis of H2BD. First, we prove σess(H2BD) = R. Although this result has
been anticipated in the literature, a complete proof seems to have been missing (cf. our
discussion on [OKY14] above and Remark 6.2). Secondly, we show absence of large

4



eigenvalues, i.e., we prove under a regularity assumption on possible eigenfunctions that
no eigenvalues exist which are larger than twice the electron mass.

1.3. Structure of the thesis

The thesis is structured as follows. After this introduction, we give a detailed outline of
the main results in Chapter 2. It is our attempt to help the reader understand within
a few pages the main goals of the thesis and how we achieve these. Its first Section 2.1
provides the necessary notation and then states all main results. The second Section 2.2
is meant as a guided walk through the ideas and strategies which lie behind the main
results. We also illustrate where some of the difficulties lie and how they are overcome
in our proofs.
One of the very important and often employed objects, briefly introduced and motivated

in Section 2.2, are the projections P±. Chapter 3 is dedicated to a thorough study of P±.
Roughly speaking, P+ projects onto that subspace, in which the two particles have the
same sign of (relative) kinetic energy, and P− onto that subspace, in which they have the
opposite sign (see Section 3.2). They are not to be confused with the spectral projections
of H0. In Section 3.1, we define them properly and prove characteristic properties. An
explicit integral kernel of P± is needed in the construction of the self-adjoint extension
of H2BD. We rigorously compute it in Section 3.3 with the help of Calderón-Zygmund
singular integrals. The last Section 3.4 provides a convenient characterization of what
P± project onto.
After the rigorous introduction of P±, we turn to the operator closure of H0 and

interesting physical properties of it that arise in that context. The closure is computed in
Section 4.1 explicitly. In order to put the closure in a broader context, we give examples of
more general sums of first order differential operators and their closure in Section 4.2. We
illustrate that the interesting physical property of infinite single particle kinetic energy
(infinite SPKE) is generic for such sums. States with infinite SPKE are discussed further
in Section 4.3 by means of a series of explicit examples. That antisymmetrization of such
states does not allow for infinite SPKE, is the content of Section 4.4. The invariance
of finite SPKE states under the full time evolution is studied in Section 4.5, under the
assumption of smooth potentials.
Chapter 4 treats the investigation of self-adjointness of H2BD with unbounded inter-

action in Chapter 5. We first consider H2BD with smooth potentials and its essential
self-adjointness in Section 5.1, before we construct a self-adjoint extension under the
assumption of Coulomb interaction in Section 5.2. We use ideas from the theory of
matrix operators with unbounded entries, to which a brief introduction is given in Ap-
pendix A. In the subsequent Section 5.3, we provide the criterion for the just constructed
self-adjoint extension. This criterion singles it out uniquely and in a physically sensible
way. We conclude this chapter with a comment on an already existing proof of essential
self-adjointness of H2BD which—unfortunately—comprises a gap (Section 5.4).
The last regular Chapter 6 contains our results concerning the spectrum of H2BD. We

prove in Section 6 that the essential spectrum of H2BD comprises the entire real line as
well as absence of eigenvalues for energies larger than twice the particles’ mass.
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Chapter 7 views this thesis as foundation for some topics of future research and indi-
cates possible directions. These include a conjecture regarding infinite SPKE states and
implications for stability, the incorporation of external Coulomb potentials when studying
self-adjointness, as well as further investigations of the spectrum using physical insights
and dilation methods.
For the reader’s convenience, we included a List of Symbols. We tried to keep the

notation consistent throughout the thesis, and it may thus be used as reference while
reading.
As already practiced in the introduction, the first person plural will be used throughout

this work since it is common in the mathematical physics literature.
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2. Main results

In the following, we present a detailed outline of this thesis. The main goal of this chapter
is to state the main results and to convey the strategy of their proof. Moreover, we list
where the actual proofs can be found, give the motivation behind important steps in
the proofs, and introduce often used notation. After a small paragraph on H2BD and
its domain, we state the three main theorems in Section 2.1: We begin with the result
Theorem 1 on the domain, then turn to our main result Theorem 2 of this thesis on the
distinguished self-extension of H2BD, and treat the result Theorem 3 on the spectrum
in the end. In the same order, we provide the strategy of proof of these theorems in
Section 2.2.

2.1. Statement of main results

The central object of study of this thesis is H2BD, the two-body Dirac operator (2BD
operator) with interaction potential Vint in the presence of an external potential Vext. The
relevant Hilbert space is the twofold tensor product of the Hilbert space of C4-valued,
square integrable functions on R3, i.e.,

H2 := L2(R3, d3x)⊗ C4 ⊗ L2(R3, d3y)⊗ C4. (2.1.1)

On H2, the symbolic expression of H2BD takes the form

H2BD := H0 + Vext + Vint, (2.1.2)

where the free two-body Dirac operator H0 is given by

H0 := (−iα · ∇x + βm1)⊗ id + id⊗ (−iα · ∇y + βm2) (2.1.3)

in units in which both the speed of light c and Planck’s constant ~ equal one. Moreover,
m1,m2 ≥ 0 denote the masses of the two particles and ∇x, ∂/∂xi, etc., denote the
gradient with respect to x = (x1, x2, x3)> ∈ R3 and partial derivative with respect to xi,
i = 1, 2, 3, respectively. In places where the masses do not play a significant role we set
m1 = m2 = m or m1 = m2 = 0 without loss of generality. We denote by idX the identity
on the space X—however, whenever unambiguous, we usually drop the subscript X. As
it is helpful to distinguish the identity on L2 from the identity matrix on Cn, we denote
the latter by 1n. Furthermore, the Hermitian matrices α = (α1, α2, α3) and β are the

7



so-called Dirac matrices in standard representation

α =

(
0 σ
σ 0

)
, β =

(
12 0
0 −12

)
, (2.1.4)

where σ = (σ1, σ2, σ3) are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.1.5)

The Dirac matrices obey the following anticommutation relations

αkαl + αlαk = 2δkl14 , k, l = 1, 2, 3,

αiβ + βαi = 0 , i = 1, 2, 3, (2.1.6)
β2 = 14,

where the Kronecker delta satisfies δkl = 1 if k = l, and zero else.
The canonical domain of H0 as well as of H2BD is

D0 := H1(R3, d3x)⊗ C4 ⊗H1(R3, d3y)⊗ C4, (2.1.7)

where Hk denotes the k-th Sobolev space over L2.

We now come to the main results. The proof ideas including detailed references to
the actual proofs follow in the subsequent section. Our first main theorem concerns the
domain of the closure of H0. Some states from D(H0) may behave in a peculiar way, and
so also some aspects of D(H0) with physical consequences are studied.

Theorem 1 (Domain). The following holds:

a) H0 is essentially self-adjoint on D0, and the domain of the closure is

D(H0) =
{
f ∈ H2

∣∣ H0f ∈ H2

}
. (2.1.8)

b) There exist states f ∈ D(H0) such that Ekin,1[f ] := 〈f, (−iα · ∇x + βm1)⊗ idf〉 is
ill-defined, and likewise for Ekin,2[f ].

c) Let Ha := (L2(R3, d3x)⊗ C4) ∧ (L2(R3, d3y)⊗ C4). For all f ∈ D(H0) ∩ Ha, i.e., f
antisymmetric, we have

|Ekin,1[f ]| = |Ekin,2[f ]| <∞. (2.1.9)

d) Let Vext, Vint be given as multiplication operators with smooth real functions, whose
first and second order partial derivatives are bounded. Then, we have for all t ∈ R

e−itH2BDD0 ⊆ D0, (2.1.10)
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where e−itH2BD denotes the time evolution generated by H2BD.

From the point of view of dynamics, the second main theorem presented next is inter-
esting as it guarantees existence of the full time evolution also for a class of unbounded
pair interaction potentials, including the Coulomb type, by providing a distinguished
self-adjoint extension of H2BD. In particular, our extension is distinguished uniquely by
the criterion of finite potential energy.

Theorem 2 (Distinguished self-adjoint extension). Let Vext be bounded and symmetric.
Let, for almost all x,y ∈ R3, Vint be defined as the operator of multiplication by γ|x−y|−κ,
where 0 < κ ≤ 1 controls the strength of the singularity and γ ∈ R is the coupling constant.
Moreover, let |γ|M2

κ/2 < 1, where Mκ > 0 is given by

Mκ := 2−κ
Γ
(

3
4
− κ

2

)
Γ
(

3
4

+ κ
2

) . (2.1.11)

a) There exists a self-adjoint extension of H2BD, denoted by H̃2BD, with domain D(H̃2BD),
given in Eq. (5.2.74).

b) H̃2BD is the unique self-adjoint extension that fulfills for all f ∈ D(H̃2BD) the condition

|Epot[f ]| := |〈f, (Vext + Vint) f〉| <∞ (2.1.12)

and that can be split into a relative and a center-of-mass part, as it is made precise in
Theorem 5.13, in particular, Eq. (5.3.1).

The third and last main theorem establishes that the essential spectrum of H2BD com-
prises the entire real line. Moreover, we prove absence of eigenvalues |E| > 2m, under a
condition on the eigenstates.

Theorem 3 (Essential spectrum/absence of large eigenvalues). Let H̃ denote any self-
adjoint extension of H2BD where Vext +Vint is the operator of multiplication with a|x|−1 +
a|y|−1 + b|x− y|−1 for a, b ∈ R and almost all x,y ∈ R3. Let m1 = m2 = m.

a) Then, σess(H̃) = R.

b) Assume further that all eigenstates of H̃ lie in D(H0) ∩ D(Vext + Vint). Then, H̃ has
no eigenvalues in (−∞,−2m) ∪ (2m,+∞).

2.2. The ideas behind the proofs
Mathematical setting. We start with the mathematical setting that is common to
all three main results, such as coordinate and Fourier transforms, Hilbert spaces, and
the like. It is convenient to introduce a change of the coordinates x,y ∈ R3 of the two
particles to relative and center-of-mass coordinates by means of

r := x− y , R :=
1

2
(x+ y). (2.2.1)
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Here, r ∈ R3 is the relative coordinate (abbreviated by rel) and R ∈ R3 the center-of-
mass coordinate (com). Furthermore, we define with X := (x,y)> and Y := (r,R)>

the transformation matrix U: R3 × R3 → R3 × R3 as

UX :=

(
1 −1
1
2

1
2

)(
x
y

)
=

(
r
R

)
= Y . (2.2.2)

Since det U = 1, it induces a unitary transformation on the two-particle Hilbert space

U : H2 → L2(R3, d3R)⊗ C16 ⊗ L2(R3, d3r) (2.2.3)

given by (Uf)(Y ) := f(X) = f(U−1Y ). We define the Hilbert spaces

Hrel := C16 ⊗ L2(R3, d3r) , Hcom := L2(R3, d3R)⊗ C16. (2.2.4)

Remark 2.1. a) We want to point out that UH2 6= Hcom⊗Hrel. Only the L2-component
of the center-of-mass motion is separated off of the relative motion. In the tensor factor
C16, Hrel and Hcom overlap.

b) In general, separating center-of-mass and relative motion is non-trivial in relativistic
quantum mechanics (see, e.g., [Pry48]). This fact finds a manifestation in the non-
commutativity of center-of-mass and relative Hamiltonian later on. Nevertheless, the
coordinate transformation U can be applied toH2BD. This simplifies the mathematical
treatment of H2BD. �

The Lp-norm is as usually denoted by ‖ · ‖p. In the case p = 2, the subscript is often
dropped. The scalar product in all the Hilbert spaces we encounter is denoted by 〈·, ·〉.
In some cases, possible confusion is avoided by suitable subscripts. As an example, the
scalar product on Hrel of f, g ∈ Hrel is defined as

〈f, g〉 :=

∫
R3

f †(r) g(r) d3r =

∫
R3

16∑
k=1

fk(r) gk(r) d3r (2.2.5)

and in analogy to that in the other Hilbert spaces. Here, fk is the k-th component of the
C16-spinor f . z denotes complex conjugation of z ∈ C. Instead of f(r)†f(r), we often
write |f(r)|2. When finite, ‖ · ‖ also denotes the norm of a linear operator. The context
will always distinguish it from the L2-norm. The operator closure of an arbitrary, but
closable linear operator A is denoted by A. No confusion with complex conjugation will
arise. The adjoint of a linear operator A in Hilbert space is denoted by A∗. Since it is
sometimes helpful to specify the variable associated to a particular L2-space explicitly,
we do that by writing, e.g., L2(R3, d3x) instead of L2(R3).
We define, as it is usually done for square-integrable, C-valued functions, the following

Fourier transform on L2(R3) for almost all p ∈ R3 by

f̂(p) := (Ff)(p) := L2-lim
M→∞

∫
|r|≤M

e−2πir·pf(r) d3r (2.2.6)
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where the notation indicates that the limit is taken in the L2-sense. In some cases, the
notation FR and Fr clarifies, whether the Fourier transform is taken with respect to
the center-of-mass coordinate or the relative coordinate. This definition carries over to
L2(R3)⊗Cn by applying the transformation component-wise. We introduce the notation
for the relative momentum operator p̂ = −i∇r and the total momentum operator P̂ =
−i∇R. We remark with respect to this notation that it denotes both, the differential
operators −i∇R and −i∇r, respectively, when acting on f , as well as multiplication with
P ∈ R3 and p ∈ R3, respectively, when acting on f̂ in Fourier space. With p2 we mean
|p|2 for any p ∈ R3. With p̂2, however, we denote the operator product p̂2. Moreover,
operators that are composed of P̂ or p̂ are defined with help of the Fourier transform.
E.g., the operator (p̂2 + 1)κ/2 that will occur in Section 5.2 is defined in Fourier space as
multiplication by (p2 + 1)κ/2 with p ∈ R3.
With the help of U , we can transform H0 to relative and center-of-mass coordinates.

Upon setting m1 = m2 = 0 for the moment, we obtain

T := U
(

(−iα · ∇x)⊗ idL2( d3x)⊗C4 + idL2( d3y)⊗C4 ⊗ (−iα · ∇y)
)
U−1

= P̂ ·M+ ⊗ idL2( d3r) + idL2( d3R) ⊗M− · p̂ (2.2.7)

where the 16× 16-matrices M± =
(
M±1 ,M

±
2 ,M

±
3

)
are given by

M+ :=
1

2
(α⊗ 14 + 14 ⊗α) (2.2.8)

and

M− := α⊗ 14 − 14 ⊗α. (2.2.9)

They are the coefficient matrices of center-of-mass momentum P̂ and relative momentum
p̂, respectively. Unfortunately, they neither commute nor do they obey anticommutation
relations similar to (2.1.6). Two things are to be noted in line (2.2.7). First, in the upper
line, the identities have a spinor part, whereas in the lower line, they do not have a spinor
part. This reflects the observation UH2 6= Hcom ⊗Hrel from Remark 2.1. Secondly, our
notation concerning hats is the following. Without hat, M− · p means a C16×16-matrix,
whereas with hat, M− · p̂ denotes an (unbounded) operator in Hilbert space.
The free relative Hamiltonian M− · p̂ is defined in the underlying Hilbert space Hrel

with domain

D(M− · p̂) =
{
f ∈ Hrel

∣∣ M− · p̂f ∈ Hrel
}
. (2.2.10)

In the same manner, the free center-of-mass Hamiltonian P̂ ·M+ is defined in the under-
lying Hilbert space Hcom with domain

D(P̂ ·M+) =
{
f ∈ Hcom

∣∣∣ P̂ ·M+f ∈ Hcom
}
. (2.2.11)

P̂ ·M+ and M− · p̂ inherit the non-commutativity of the matrices M± =
(
M±1 ,M

±
2 ,M

±
3

)
.
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Towards Theorem 1. Now, we come to the ideas that lie behind the proof of The-
orem 1. The explicit form of the domain in part a) comes as no surprise. After all,
H0 is unitarily equivalent to an operator of multiplication with a Hermitian matrix for
which D(H0) is the natural domain (see Theorem 4.1). In order to understand how single
particle kinetic energy (SPKE) might diverge, we note one feature of the matrices M− ·p
and P ·M+, that has important consequences: They have a non-trivial nullspace. In
Proposition 3.1, we will prove that Ker(M− · p) = C8 which most importantly implies
that

Ker(M− · p̂) ' C8 ⊗ L2(R3). (2.2.12)

The analogous statement for P̂ ·M+ holds accordingly. Of course, elements fromD(M−·p̂)
that are mapped to zero by M− · p̂ do not need any H1-regularity although M− · p̂ is a
first order differential operator. This mechanism lies behind the proof of Theorem 1b):
In order to construct states f ∈ D(H0) for which Ekin,1[f ] = 〈f, (−iα · ∇x + βm1)⊗ idf〉
diverges, one exploits the nullspaces of M− · p̂ or P̂ ·M+ and constructs Uf in such a
way that it has a part in, say, Ker(M− · p̂) in which only L2-regularity is required. With
such an f , Ekin,1[f ] can be made divergent. In order to show this divergence, and thus,
prove existence of infinite SPKE states, it suffices to give examples (see Examples 4.9 to
4.14).
Of course, these states with infinite energies are unphysical, and one may be tempted

to dismiss a model predicting them. In order to shed some light on this situation, we
included Section 4.2. There, we consider even more general sums of first order differential
operators with two summands thanH0. Such operators are typical candidates for a many-
body theory in the relativistic realm. Interestingly, we find that, if one requires these
operators to describe two particles, nullspaces such as Ker(M− · p̂), and therefore also
infinite SPKE states, are to be expected from such a model. This is simply due to their
unboundedness from below.
We further discuss the physical relevance of infinite SPKE states in Theorem 1c). It is

well-known that antisymmetrization of many-body states transforms pure tensor product
states into a superposition of pure tensor product states, i.e., a wedge product state.
Considering the energy of a single particle in an antisymmetric state, thus loses some of
its intuitive appeal. This is reflected in the following fact which holds for all ψ ∈ D(H0)

2 · Ekin,1[ψ] = 2 · Ekin,2[ψ] = Ekin,tot[ψ] (2.2.13)

where Ekin,tot[ψ] denotes the total kinetic energy of the state ψ (see Lemma 4.13). Since
|Ekin,tot[ψ]| <∞ for all ψ ∈ D(H0) by definition, we can conclude that no infinite SPKE
states exist which are antisymmetric.
Another issue pertaining to the physical relevance of infinite SPKE states is their

behavior in scattering situations. In Theorem 1d), we answer the question if a finite
SPKE state can scatter into an infinite SPKE state in the negative. If one starts out
nice, one stays nice. Our way to show this is to prove invariance of the domain D0 under
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the full time evolution for all times t ∈ R (see Theorem 4.15).

Towards Theorem 2. In order to prepare everything we need for the distinguished
self-adjoint extension of H2BD from Theorem 2, we have to take the potentials Vext and
Vint into account, according to the conditions in Theorem 2. As Vext is assumed to be
symmetric and bounded, it plays no role for self-adjointness, and we can drop it. It can
be restored later on by means of a small perturbation. The same holds for the mass term.
For sake of concreteness, we assume that Vint is of Coulomb type. Transformed with U , it
is the operator of multiplication with γ|r|−1 for almost all r ∈ R3. The coupling constant
γ ∈ R will be restricted later on to values |γ| < 2/π.
In relative and center-of-mass coordinates, H2BD with zero masses has the form

UH2BDU
−1 = P̂ ·M+ ⊗ idL2( d3r) + idL2( d3R) ⊗

(
M− · p̂+

γ

| · |
)
. (2.2.14)

We already dropped the mass term and Vext as indicated above. Ultimately, we want to
construct a self-adjoint extension of H2BD. As the interaction potential only acts in Hrel,
it seems natural to prove self-adjointness of M− · p̂ + γ| · |−1 first, and then infer self-
adjointness of P̂ ·M+ +M− · p̂+ γ| · |−1 from that. We note, however, the identities and
the tensor product structure of Hcom = L2(R3, d3R)⊗C16 and Hrel = C16 ⊗ L2(R3, d3r)
again. Both share the tensor factor C16, and thus, also M− · p̂ and P̂ ·M+ overlap in
their spinor parts. Hence, it is not possible to write H2BD in the form

A⊗ idY + idX ⊗B (2.2.15)

where A is a self-adjoint operator in the underlying Hilbert space X and B is a self-
adjoint operator in the underlying Hilbert space Y . In this simpler case, self-adjointness
of A and B immediately implies essential self-adjointness of A ⊗ idY + idX ⊗ B by a
standard result (see, e.g., [RS80, Corollary to Thm. VIII.33, pp. 300]). Unfortunately,
this standard result does not apply to H2BD. Instead, we will make use of the method of
direct fiber integrals in order to infer existence of a self-adjoint extension of H2BD from
existence of a self-adjoint extension of M− · p̂+ γ| · |−1 (see Theorem 5.12).
Before we can construct a self-adjoint extension of M− · p̂ + γ| · |−1, we come back

to our earlier observation that Ker(M− · p̂) is isomorphic to C8 ⊗ L2(R3), and investi-
gate its consequences regarding self-adjointness. An often used method is Kato-Rellich
perturbation theory (see, e.g., [RS75, Theorem X.12]). It relies on the assumption that
the potential is relatively bounded by the free Hamiltonian with relative bound smaller
than one. Self-adjointness of the free Hamiltonian then implies self-adjointness of the full
Hamiltonian. Now, as the nullspace of M− · p̂ is non-trivial, Kato-Rellich perturbation
theory is not applicable to M− · p̂ + γ| · |−1. This is seen as follows. We can choose
an f ∈ D(M− · p̂) such that f ∈ Ker(M− · p̂) but at the same time f /∈ D(| · |−1).
This is possible as elements from the nullspace require only square-integrability and the
interaction potential is unbounded. This implies D(M− · p̂) * D(| · |−1), and thus, γ| · |−1

cannot be relatively bounded by M− · p̂ at all (see Lemma 5.2).
In order to bypass Kato-Rellich perturbation theory, we focus on Ker(M− · p̂) and

its orthogonal complement by splitting Hrel correspondingly. To that end, we define the
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orthogonal projections P± in such a way that

P+Hrel = Ker(M− · p̂)⊥ = Hrel
+

P−Hrel = Ker(M− · p̂) = Hrel
− ,

(2.2.16)

where Hrel
± are themselves Hilbert spaces.

We want to point out that P+ and P− are not the spectral projections of H0, i.e.,
not the operators that project onto the positive and negative part of the spectrum of
H0. By a heuristic argument given in Section 3.2, we can think of P+ as projection on
that subspace of Hrel which contains the states describing particles with the same sign of
kinetic energy, and of P− as projection on that subspace which contains states describing
particles with the opposite sign of kinetic energy.
The projections P± are thoroughly discussed in Chapter 3, where we define them in

Definition 3.2, show that they indeed are the orthogonal projections from (2.2.16) in
Proposition 3.3, and compute an explicit integral kernel in Theorem 3.8, which uses the
Calderón-Zygmund theory of singular integrals.
As orthogonal projections, P+ and P− split Hrel into two orthogonal subspaces, i.e.,
Hrel = P+Hrel ⊕ P−Hrel = Hrel

+ ⊕ Hrel
− . This entails that we can recast the full relative

Hamiltonian

Hrel := M− · p̂+
γ

| · |
(2.2.17)

in matrix form as

Hrel = P+H
relP+ + P+H

relP− + P−H
relP+ + P−H

relP−

=:

(
M− · p̂+ P+γ| · |−1P+ P+γ| · |−1P−

P−γ| · |−1P+ P−γ| · |−1P−

)
(2.2.18)

where we already applied P+M
− · p̂P+ = M− · p̂, proven in Proposition 3.3. The domain

of Hrel is

D(Hrel) = D+ ⊕
(
D(| · |−1) ∩Hrel

−
)

(2.2.19)

where

D+ :=
(
C16 ⊗H1(R3, d3r)

)
∩Hrel

+ . (2.2.20)

We note that D(Hrel) is dense in Hrel (see Proposition 5.3).
That the projections P± split Hrel into the subspaces Hrel

± is very useful. One knows
now, e.g., where to expect H1-regularity (in Hrel

+ ; see Lemma 4.3). Moreover, by facil-
itating the matrix representation from line (2.2.18), they also point towards a strategy
of proof, taken from the theory of matrix operators with unbounded entries (see Ap-
pendix A): The use of the Frobenius-Schur factorization and its so-called Schur comple-
ment. Before we go into more details, we define the bounded and symmetric operator
B := 2β⊗β and modify with its help Hrel. The reason for that will be made clear in the
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following paragraphs. The modification of Hrel takes the form

Hrel + P+BP+ =

(
M− · p̂+ P+BP+ + P+γ| · |−1P+ P+γ| · |−1P−

P−γ| · |−1P+ P−γ| · |−1P−

)
. (2.2.21)

We introduce the abbreviations

A = A0 + P+γ| · |−1P+ = M− · p̂+ P+BP+ + P+γ| · |−1P+ (2.2.22)

for the operator in the upper left corner of Hrel and compute (see Lemma 5.4)

A2
0 = (M− · p̂+ P+BP+)2 = 4(−∆ + 1)P+. (2.2.23)

This means that A0 and A share many properties with one-body Dirac operators, even
though their coefficient matrices M− do not obey the anticommutation relations from
line (2.1.6). Therefore, if we restrict the coupling constant γ to values |γ| < 1, we obtain
self-adjointness of A as well as existence and boundedness of A−1 (see Lemma 5.6). These
properties are the reason for adding P+BP+ to Hrel. The Frobenius-Schur factorization
is now well-defined and given by (see Lemma 5.7)

Hrel + P+BP+ =

=

(
id 0

P−γ| · |−1P+A
−1 id

)(
A 0
0 S

)(
id A−1P+γ| · |−1P−
0 id

)
(2.2.24)

where the Schur complement S : D(S)→ Hrel
− of A is defined by

S := P−γ| · |−1P− − P−γ| · |−1P+A
−1P+γ| · |−1P− (2.2.25)

with domain

D(S) = D(| · |−1) ∩Hrel
− . (2.2.26)

The advantage of the Frobenius-Schur factorization is that it decomposes Hrel+P+BP+

into a product of three matrix operators of which the first and the third factor are bounded
and boundedly invertible (see Lemma A.2 in the Appendix A), while the second factor is
diagonal. Now, the upper left operator of the diagonal matrix operator is self-adjoint as
it behaves roughly like an ordinary one-body Dirac operator (see Lemma 5.6). Therefore,
in order to obtain a self-adjoint extension of Hrel +P+BP+, if suffices to construct a self-
adjoint extension of the Schur complement S, the lower right operator of the diagonal
matrix operator. Boundedness and bounded invertibility of the first and third factor
imply self-adjointness of Hrel + P+BP+ (see Theoremn 5.11).

In order to construct a self-adjoint extension of S, we use that P−| · |−1P− is bounded
from below and thus possesses a Friedrichs extension VF . We show further that the
remaining summand P−| · |−1P+γA

−1P+| · |−1P− is small in form sense with respect to VF .
The KLMN-theorem, which is the form analogue to Kato-Rellich perturbation theory,
then yields a self-adjoint extension of S (see Lemma 5.10). The key estimate involved in
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the proof is∣∣∣ 〈f, P−| · |−1P+γA
−1P+| · |−1P−f

〉
Hrel
−

∣∣∣
=
∣∣〈| · |−1/2P−f,

(
| · |−1/2P+γA

−1P+| · |−1/2
)
| · |−1/2P−f

〉
Hrel

∣∣
≤
∥∥| · |−1/2P−f

∥∥∥∥| · |−1/2P+γA
−1P+| · |−1/2

∥∥∥∥| · |−1/2P−f
∥∥

=
∥∥| · |−1/2P+γA

−1P+| · |−1/2
∥∥ 〈f, P−| · |−1P−f

〉
Hrel
−

=
∥∥| · |−1/2P+γA

−1P+| · |−1/2
∥∥ 〈f, VFf〉Hrel

−
(2.2.27)

for all f ∈ D(S) = D(| · |−1) ∩ Hrel
− . In order to apply the KLMN-theorem successfully,

we need to establish the bound∥∥| · |−1/2P+γA
−1P+| · |−1/2

∥∥ < 1. (2.2.28)

This is possible if we restrict the coupling constant γ to values |γ| < 2/π (see Lemma 5.9).

We need to have a closer look at the inequality from line (2.2.27). The KLMN-theorem
actually requires that it holds for all f ∈ D(VF ). Our computation for all f ∈ D(S) =
D(| · |−1) ∩ Hrel

− is not sufficient. However, we know from abstract results regarding
Friedrichs extensions that D(VF ) = D(| · |−1/2) ∩ D((P−| · |−1P−)∗). Moreover, we can
prove (see Theorem 5.8) that for all f ∈ D(| · |−1/2) ∩ Hrel

− , there exists a sequence
(fn)n∈N ⊆ D(| · |−1) such that

‖P−(f − fn)‖+
∥∥| · |−1/2P−(f − fn)

∥∥ n→∞−−−→ 0, (2.2.29)

i.e., D(| · |−1) ∩ Hrel
− is a form core and the estimate from line (2.2.27) extends to all

f ∈ D(VF ). We found that the proof of this fact is by far not trivial as the projections
split Hrel corresponding to M− · p̂, and the splitting is independent of the potential | · |−1.
It is here in Theorem 5.8, where we need the explicit integral kernels of the projections
P±, computed in Theorem 3.8.

In conclusion, we constructed a self-adjoint extension of the Schur complement S, which
we used as basis for a self-adjoint extension of Hrel. For this we needed the Frobenius-
Schur factorization. By an argument using direct fiber integrals, we finally obtained
the desired self-adjoint extension of H2BD in Theorem 2a). We used in several places
that bounded and symmetric operators can be added and subtracted without affecting
self-adjointness.

A self-adjoint extension of a Hamiltonian considered only by itself is often meaningless
since there might be infinitely many extensions. Therefore, one usually requires that self-
adjoint extensions are uniquely distinguished by a physical criterion, i.e., there should
exist only one extension that satisfies a certain criterion which is physically sensible. For
H2BD we adopt the criterion of finite potential energy in Theorem 2b). This criterion is
well-accepted for one-body Dirac operators in an external field (see [Wü75]). For H2BD

it holds in the following sense. Let H̃ be any self-adjoint extension of UH2BDU
−1 which
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we assume to have the form

H̃ = P̂ ·M+ ⊗ id + id⊗ H̃rel + Vext + β ⊗ 14 + 14 ⊗ β, (2.2.30)

where H̃rel is an arbitrary self-adjoint extension of Hrel = H0 + γ| · |−1. Then, |〈f, (Vext +
Vint)f〉| < ∞ for all f ∈ D(H̃) if, and only if, H̃ coincides with our extension of H2BD

constructed above (see Theorem 5.13). The proof we found basically assumes the opposite
and and shows that it implies a contradiction.

Remark 2.2. We want to remark on the strength of the singularity of Vint. In order to
control this strength, we introduced the parameter 0 < κ ≤ 1 in Theorem 2. The smaller
κ is chosen, the larger values of |γ| are allowed. In the case of Coulomb interaction, i.e.,
κ = 1, we have |γ| < 2/π for the coupling constant.

Towards Theorem 3. Our main result concerning the spectrum of H2BD is Theorem 3.
Its part a) identifies the essential spectrum. That the essential spectrum of H2BD is
R, has been assumed, however, a complete proof seems to have been missing in the
literature. The proof of σess(H2BD) = R we give here uses Weyl’s criterion and applies to
all self-adjoint extensions of H2BD for which Vext as well as Vint are of Coulomb type (see
Theorem 6.1).
This result implies that no discrete spectrum exists, i.e., if eigenvalues exist at all, they

are embedded into the continuous part of the spectrum. As this is a rare phenomenon,
it has been conjectured that H2BD does not possess any eigenvalues at all (see [Der12]).
Theorem 3b) corroborates this conjecture in which we show absence of eigenvalues if
|E| > 2m. Due to our method of proof, we assume that possible eigenstates lie in
D(H0) ∩ D(Vext + Vint) (see Theorem 6.3).
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3. The projections P+ and P− onto the
spaces Hrel

+ and Hrel
−

3.1. Definition of the projections P+ and P−

This section defines in a rigorous way the projections P+ and P−, and therefore, also
the spaces Hrel

+ and Hrel
− , respectively. As we mentioned briefly in Section 2.2, they are

constructed in such a way that P− projects onto Ker(M− · p̂) and P+ onto the orthogonal
complement of Ker(M− · p̂). They are crucial for the study of the relative Hamiltonian
Hrel = M− · p̂+ Vint as they allow for the convenient matrix representation of Hrel from
line (2.2.18).

Already at the beginning, we want to point out again that P+ and P− are not the spec-
tral projections of H0, i.e., not the operators that project onto the positive and negative
part of the spectrum of H0. We will elaborate on the physical meaning of Hrel

± in the next
section.

Before we state the first proposition of this section, we recall that M− · p̂ with hat
denotes a linear operator on Hrel whereas M− · p without the hat is a 16× 16-matrix for
all p ∈ R3, i.e., a linear operator on C16.

Proposition 3.1. The following holds:

a) For all p ∈ R3 \ {0}, we have dim Ker(M− · p) = 8.

b) Ker(M− · p̂) is isomorphic to C8 ⊗ L2(R3, d3r).

c) Ker(P̂ ·M+) is isomorphic to L2(R3, d3R)⊗ C8.

Proof. a) follows since for all p ∈ R3 \ {0} one finds that the Hermitian matrix M− · p
has the eigenvalue 0 with multiplicity 8.

b) Before we characterize all f ∈ Hrel for which M− · p̂f = 0 holds, we note the following.
As M− ·p is a Hermitian matrix, there exists a unitary matrix u(p) which diagonalizes
M− · p. We find for almost all p ∈ R3

u(p)M− · pu(p)† =

 −14|p|
14|p|

08

 . (3.1.1)
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We further note that unitarity of u(p̂) implies that solving the equation M− · p̂f = 0
in L2(R3) is equivalent to solving u(p̂)M− · p̂u(p̂)∗u(p̂)f = 0 in L2(R3). In view of
Eq. (3.1.1), we use that Ker(|p̂|) = {0} in L2(R3). Therefore, those eight components
of u(p̂)f , on which |p̂| acts when solving u(p̂)M− · p̂u(p̂)∗u(p̂)f = 0, are zero. The
remaining eight components can be chosen linearly independent as the matrix M− ·p
is Hermitian. Thus, u(p̂) establishes an isomorphism between Ker(M− · p̂) and C8 ⊗
L2(R3, d3r), which proves the statement.

c) Analogously to b).

In order to give the definition of P±, it is convenient to first define the Hermitian
16× 16-matrix τ(p) for almost all p ∈ R3 by

τ(p) := −α · p⊗α · p
p2

. (3.1.2)

We compute for almost all p ∈ R3

τ(p)2 =

(
α · p⊗α · p

p2

)2

=
(α · p)2 ⊗ (α · p)2

p4
= 116 (3.1.3)

since (α · p)2 = 14p
2 by the anticommutation relations (2.1.6) for the Dirac matrices.

This implies that multiplication with τ(p) defines a bounded operator on all of Hrel which
we use in the following definition.

Definition 3.2. We define the operator τ : Hrel → Hrel by its action on all f ∈ Hrel and
for almost all r ∈ R3 by

(τf)(r) := L2-lim
M→∞

∫
|p|≤M

e2πir·p τ(p)f̂(p) d3p. (3.1.4)

We define the operators P± : Hrel → Hrel
± by

P± :=
1

2
(id± τ) (3.1.5)

where the spaces Hrel
± are defined by

Hrel
± := P±Hrel. (3.1.6)

We also define for almost all p ∈ R3 the 16× 16-matrix

P±(p) :=
1

2
(116 ± τ(p)) . (3.1.7)

For the moment, the definition of P± as Fourier multiplier suffices. We will, however,
derive integral kernels for τ and hence also for P± in Section 3.3.

Proposition 3.3. The following holds:
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a) P− is the orthogonal projection onto Ker(M− · p̂), i.e., Hrel
− = Ker(M− · p̂).

b) P+ is the orthogonal projection onto Ker(M− · p̂)⊥, i.e., Hrel
+ = Ker(M− · p̂)⊥.

c) P+ M− · p̂P+f = M− · p̂f and P−M− · p̂f = 0 for all f ∈ D(M− · p̂).

Furthermore, Hrel = Hrel
+ ⊕Hrel

− , and Hrel
± are themselves Hilbert spaces.

Proof. a) First, we prove that P− is an orthogonal projection, i.e., P 2
− = P−, P− is

bounded, and P ∗− = P−. Since (α · p)2 = 14p
2 by the anticommutation relations

(2.1.6) for the Dirac matrices and τ(p) = 116 by Eq. (3.1.3) hold, we obtain

P−(p)2 =
1

4
(116 − τ(p))2 =

1

4

(
116 − 2 · τ(p) + τ(p)2

)
= P−(p) (3.1.8)

for almost all p ∈ R3. Thus, P 2
− = P− follows. P− is bounded with ‖P−‖ = 1 since

P−(p) is a Hermitian matrix with the only eigenvalues being 0 and 1. This also implies
self-adjointness P ∗− = P−.

In order to show that P− projects onto Ker(M− · p̂), we prove Hrel
− = Ker(M− · p̂).

We start with the inclusion Hrel
− ⊆ Ker(M− · p̂) and compute for almost all p ∈ R3

M− · pP−(p) = (α · p⊗ 14 − 14 ⊗α · p)
1

2

(
116 +

α · p⊗α · p
p2

)
=

1

2

(
α · p⊗ 14 − 14 ⊗α · p +

(α · p)2 ⊗α · p
p2

− α · p⊗ (α · p)2

p2

)
= 0 (3.1.9)

where we used (α · p)2 = 14p
2 once again. Therefore, we obtain P−f ∈ Ker(M− · p̂)

for all f ∈ Hrel, i.e., Hrel
− ⊆ Ker(M− · p̂).

For the reverse inclusion Ker(M− · p̂) ⊆ Hrel
− , we show that for all f ∈ Ker(M− · p̂) we

have P−f = f . Let f ∈ Ker(M− · p̂). From the proof of Proposition 3.1b), we know
that the upper eight components of u(p̂)f are zero, where u(p) diagonalizes M− · p
as introduced in line (3.1.1). We conjugate P−(p) with u(p) and obtain

u(p)P−(p)u(p)† =

(
08

18

)
(3.1.10)

for almost all p ∈ R3. This implies that u(p̂)P−u(p̂)∗ acts as the zero operator on
the upper eight components of u(p̂)f and as identity on the lower eight components
of u(p̂)f , i.e.,

u(p̂)P−u(p̂)∗u(p̂)f = u(p̂)f. (3.1.11)

That u(p̂) is injective, allows us to conclude P−f = f .

b) P+ is an orthogonal projection by the same argument as for P−. In order to show
that P+ projects on Ker(M− · p̂)⊥, we compute for almost all p ∈ R3 P−(p)P+(p) =
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P+(p)P−(p) = 0, and therefore, for all f, g ∈ Hrel

〈P+f, P−g〉 = 〈f, P+P−g〉 = 0. (3.1.12)

c) follows since the relations

P+(p)M− · pP+(p) = M− · p (3.1.13)
P−(p)M− · p = 0 (3.1.14)

hold for almost all p ∈ R3. This is shown by a direct computation.

Since the projections P± are closed, Hrel
± are closed subspaces of Hrel. With the inherited

inner product from Hrel, it follows that they are themselves Hilbert spaces. With [RS80,
Theorem II.3], it follows that Hrel = Hrel

+ ⊕Hrel
− .

3.2. Physical interpretation of Hrel
+ and Hrel

−

This section motivates the introduction of the spaces Hrel
+ and Hrel

− from a physical point
of view. The following arguments were presumably first made by Kemmer in [Kem37].
We will see that elements from Hrel

+ can be associated with two particles both of which
have the same sign of energy, whereas elements from Hrel

− correspond to two particles
which have a different sign of energy. From this alone, one might already anticipate that
states from Hrel

− might cause difficulties in the presence of an interaction term as Dirac
famously pointed out that “the negative-energy electron will repel an ordinary positive-
energy electron although it is itself attracted by the positive-energy electron” (see [Dir30,
p. 362]).
Since it simplifies the argument, we consider two particles of equal mass m, i.e., we set

m1 = m2 = m. In Fourier space, H0 is the operator of multiplication with the Hermitian
16× 16-matrix H0(px,py) defined by

H0(px,py) := (α · px + βm1)⊗ 14 + 14 ⊗ (α · py + βm2) , (3.2.1)

where px,py ∈ R3 are the Fourier variables conjugate to x,y ∈ R3. We compute the
eigenvalues of the matrix H0(px,py), i.e., the energy of the two free particles, and find
for all px,py ∈ R3

λ1(px,py) = . . . = λ4(px,py) =
√
p2
x +m2 +

√
p2
y +m2, (3.2.2a)

λ5(px,py) = . . . = λ8(px,py) =
√
p2
x +m2 −

√
p2
y +m2, (3.2.2b)

λ9(px,py) = . . . = λ12(px,py) = −
√
p2
x +m2 +

√
p2
y +m2, (3.2.2c)

λ13(px,py) = . . . = λ16(px,py) = −
√
p2
x +m2 −

√
p2
y +m2 . (3.2.2d)

We see that the eigenvalues are just what one might have guessed: The sum of two single
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particle energies, albeit with all possible combinations of the energy sign.
As it is usually done for many-particle systems, we set the center-of-mass momentum

P = px + py to zero. This yields px = −py, which in turn implies for the eigenvalues
λk(px,py), k = 1, 2, . . . , 16,

λ1(px,py) = . . . = λ4(px,py) = 2
√
p2
x +m2, (3.2.3a)

λ5(px,py) = . . . = λ12(px,py) = 0, (3.2.3b)

λ13(px,py) = . . . = λ16(px,py) = −2
√
p2
x +m2 . (3.2.3c)

States that can be associated to the eigenvalue 0 lie in Hrel
− . The relation px = −py has

further implications on the relative momentum p. We find

p =
1

2
(px − py) = px. (3.2.4)

We transform H0(px,py) to relative and center-of-mass coordinates, set P = 0, and
compute the eigenvalues of the resulting Hermitian matrix M− ·p+ βm⊗ 14 + 14⊗ βm.
We find

µ1(p) = . . . = µ4(p) = 2
√
p2 +m2, (3.2.5a)

µ5(p) = . . . = µ12(p) = 0, (3.2.5b)

µ13(p) = . . . = µ16(p) = −2
√
p2 +m2 . (3.2.5c)

After taking (3.2.4) into account, we can now compare (3.2.3) and (3.2.5). This allows
for the following conclusion in the case of P = 0:

1. If the kinetic energies of the two particles have the same sign, the corresponding
state lies in Hrel

+ .

2. If the kinetic energies of the two particles have the opposite sign, the corresponding
state lies in Hrel

− .

3.3. Integral kernels of P+ and P−

The projections P± were naturally defined as Fourier multiplier on Hrel in Definition 3.2.
When one can work in Fourier space easily, this definition is sufficient. We saw, however,
in the matrix representation of Hrel in line (2.2.18) that also the parts of the potential
Vint in Hrel

± , i.e., P±VintP± and P±VintP∓, respectively, occur and we will see later on
(see Theorem 5.8) that they have to be controlled. In order to do so, it turns out to be
convenient to derive integral kernels of P± also in position space. This derivation is the
content of this section.

Remark 3.4. Before we proceed, however, we want to remark on an alternative option,
namely considering P±VintP± and P±VintP∓, respectively, in Fourier space. For simplicity,
we write Vint = V . V is then transformed to a convolution operator, of which many
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convolution kernels—the Coulomb case included—are well-known. This and the nice
form of the projections P± in Fourier space might suggest this approach. However, a
difficulty related to complex phases and oscillatory integrals becomes apparent when
considering expressions of the form

‖V f‖2 (∗)
=
∥∥∥v̂ ∗ f̂∥∥∥2

=

∫
R3

∣∣∣∣∫
R3

v̂(p− k)f̂(k) d3k

∣∣∣∣2 d3p, (3.3.1)

where f lies in D(V ) and v̂ is defined by (∗).

In order to highlight the possible oscillatory nature, we give a concrete example. For
the remainder of this remark, we assume that V ∈ L2(R3) be given by multiplication
with V (r) = e−|r||r|−1 for almost all r ∈ R3, define g ∈ L2(R3) by g(r) = e−|r||r|−3/2+ε

for almost all r ∈ R3 and an arbitrary 0 < ε < 1/2, and look at ga := g(· − a) for
a fixed a ∈ R3 \ {0}. We see that on the one hand V ga ∈ L2(R3), i.e., ga ∈ D(V ),
as the singularities of ga and V do not coincide. On the other hand, however, we have
V g /∈ L2(R3), i.e., g /∈ D(V ). Now, standard theorems on convolutions and their Fourier
transforms tell us that V ga ∈ L2(R3) implies that also the convolution v̂ ∗ ĝa lies in
L2(R3). Also from standard theorems, we know that ĝa(p) = e−2πia·pĝ(p) for almost all
p ∈ R3. Moreover, one finds that ĝ(p) is real-valued such that ĝ(p) > 0 for almost all
p ∈ R3 as well as ĝ(p) ∝ |p|−3/2−ε for large |p|. We plug our choices of V and ga into
‖V ga‖2 and obtain

‖v̂ ∗ ĝa‖2 =

∫
R3

∣∣∣∣∫
R3

4π

4π2|p− k|2 + 1
e−2πia·kf̂(k) d3k

∣∣∣∣2 d3p. (3.3.2)

If now the absolute value was pulled into the d3k-integral, the phase e−2πia·k would
vanish, and the remaining integrand would correspond to V g whose L2-norm, however,
diverges as V g /∈ L2(R3) by construction:

‖v̂ ∗ ĝa‖2 =

∫
R3

∣∣∣∣∫
R3

4π

4π2|p− k|2 + 1
e−2πia·kf̂(k) d3k

∣∣∣∣2 d3p

≤
∫
R3

(∫
R3

∣∣∣∣ 4π

4π2|p− k|2 + 1
f̂(k)

∣∣∣∣ d3k

)2

d3p

(∗)
=

∫
R3

∣∣∣∣∫
R3

4π

4π2|p− k|2 + 1
f̂(k) d3k

∣∣∣∣2 d3p

=
∥∥∥v̂ ∗ f̂∥∥∥2

, (3.3.3)

which diverges due to ĝ(p) ∝ |p|−3/2−ε for large |p|. In (∗), we used that ĝ(p) is real-
valued and ĝ(p) > 0 for almost all p ∈ R3.

Line (3.3.3) gives a diverging upper bound and is as such, of course, useless. The
observation we are concerned with here, however, is the following: If one tries to get rid
of complex phases by applying the triangle inequality, integrals may diverge at infinity.
Therefore, one has to keep track of all complex phases. This makes the involved estimates
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quite unpractical in Fourier space. In position space, however, the strong singularity at
the origin can be smoothed out by an estimate on the commutator [V, P±]. We will see
this in the proof of Theorem 5.8. �

Since P± = 1/2(id ± τ), it suffices to compute the integral kernel of the operator τ .
In Definition 3.2, it was defined in Fourier space for almost all p ∈ R3 as operator of
multiplication with

τ(p) = −α · p⊗α · p
p2

, (3.3.4)

i.e., for all f ∈ Hrel and for almost all r ∈ R3, we had

(τf)(r) = L2-lim
M→∞

∫
|p|≤M

e2πir·p τ(p)f̂(p) d3p. (3.3.5)

Now, all entries of the matrix τ(p) are fractions. By expanding the Kronecker product
in (3.3.4), one finds that the denominator of all of these fractions is p2, whereas each
numerator is given by combinations of the components of the form pipj for i, j = 1, 2, 3.
Explicitly, each entry of the matrix τ(p) is one of the following expressions:

p2
3

p2
,

(p1 ± ip2)p3

p2
,

(p1 ± ip2)2

p2
,

(p1 − ip2)(p1 + ip2)

p2
. (3.3.6)

In order to control τ , it therefore suffices to control the (bounded) Fourier multiplier
pipj/p

2 for all i, j = 1, 2, 3. Hence, we define the operator Tij, i, j = 1, 2, 3, for all
f ∈ L2(R3, d3r) and for almost all r ∈ R3 by

(Tijf)(r) := L2-lim
M→∞

∫
|p|≤M

e2πir·p pi pj
p2

f̂(p) d3p. (3.3.7)

It is this operator Tij, whose associated position space integral kernels we will compute.

Remark 3.5. This remark intends to address the fact that Tij looks familiar from the
more general viewpoint of Fourier analysis.

a) We consider the so-called Riesz transforms Rj, j = 1, 2, 3 (see, e.g., [Ste70]). They
can be viewed as multiplier in Fourier space as well and are for all f ∈ L2(R3) and
almost all p ∈ R3 given by

(FRjf) (p) = i
pj
|p|
f̂(p). (3.3.8)

From the definition of Tij in line (3.3.7), we see that

RiRj = −Tij, (3.3.9)

and so, up to a factor, Tij is equal to the so-called double Riesz transform.
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b) As Riesz transforms and similar Fourier multipliers are subject of intensive research,
there do exist general theorems concerning multipliers and their associated integral
kernel. Of particular interest for us is the following result ([SW71, Theorem 4.5,
p. 164]). Suppose P (x) is a harmonic polynomial on R3 that is homogeneous of degree
k ≥ 1, i.e., P (λx) = λkP (x) for all real k ≥ 1 and all x ∈ R3. Then, ckP (p)/|p|k is the
Fourier multiplier of the associated integral kernel P (x)/|x|3+k, where the constant
ck ∈ C depends on k only. This applies readily to Tij if i 6= j. In the case i = j,
however, the polynomial P (p) is of the form p2

i , and thus, not harmonic. Therefore,
the integral kernel may have a different form.

Although Tij is connected to the well-known Riesz transform, and the kernel for i 6= j
is known, no conclusions can be drawn from general results concerning the case i = j.
Therefore, we compute the kernel explicitly. �

As preparation, we cite two known results on the computation of such kernels. The
first one is suggested by the factor 1/p2 and is the content of the following theorem. We
cite it from [LL01] in the case of R3.

Theorem 3.6. Let α ∈ R+, and define cα := π−α/2Γ(α/2).

a) Let f be a function in C∞c (R3) and let 0 < α < 3. Then,

cα

∫
R3

e2πir·p 1

pα
f̂(p) d3p = c3−α

∫
R3

1

|r − y|3−α
f(y) d3y. (3.3.10)

b) If 0 < α < 3/2 and if f ∈ Lp(R3, d3r) with p = 6/(3 + 2α), then f̂ exists in the sense
of the Hausdorff-Young inequality (see [LL01, Theorem 5.7]). Moreover, defining the
function g for almost all r ∈ R3 by

g(r) = c3−α

∫
R3

1

|r − y|3−α
f(y) d3y, (3.3.11)

we have g ∈ L2(R3, d3r). Furthermore, for almost all p ∈ R3, we obtain

cα|p|−αf̂(p) = ĝ(p). (3.3.12)

Proof. a) See [LL01, Theorem 5.9].

b) See [LL01, Corollary 5.10].

It will turn out that the integral kernels Kij(y) exhibit a singularity at the origin. Since
this singularity is of size |y|−3, it is not integrable. In order to address this problem, we
will also need a result from the theory of Calderón-Zygmund singular integrals. For later
reference, we state it in the following theorem in the case of R3.

Theorem 3.7. If K(y) is a homogeneous function of degree −3, i.e., K(λy) = λ−3K(y)
for almost all y ∈ R3 and for all λ > 0, and if K(y) has in addition the following
properties
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a) it has zero average on S2, i.e.,
∫
S2

K(y) dσ(y) = 0, where S2 denotes the surface of

the unit ball and dσ the corresponding surface measure, and

b)
∫
S2

|K(y) +K(−y)| log+ |K(y) +K(−y)| dσ(y) < ∞, where log+ denotes the posi-

tive part of the logarithm,

then, if f ∈ Lp(R3, d3r), 1 < p <∞, the limit

lim
ε→0

∫
|y|>ε

K(y)f(r − y) d3y (3.3.13)

exists in Lp-sense and pointwise for almost all r ∈ R3. Furthermore, there exists a
constant A > 0, depending on p and K only, such that∥∥∥∥sup

ε>0

∣∣∣∣∫
|y|>ε

K(y)f(· − y) d3y

∣∣∣∣∥∥∥∥ ≤ A ‖f‖ . (3.3.14)

Proof. See [CZ56, Theorem 1].

We point out the significance of assumption a) from Theorem 3.7 in Remark 3.9 below.
We can now give the desired integral kernel of Tij.

Theorem 3.8. For all f ∈ L2(R3, d3r), all i, j = 1, 2, 3, and almost all r ∈ R3, the
action of Tij, defined in (3.3.7), is given by

(Tijf) (r) =
δij
3
f(r)− 1

4π
lim
ε→0

∫
|y|>ε

Kij(y)f(r − y) d3y, (3.3.15)

where δij is the Kronecker delta. The integral kernels Kij(y) of Tij are then for all
i, j = 1, 2, 3 and all |y| > 0 given by

Kij(y) :=
∂2

∂yi∂yj

1

|y|
=


3yiyj
|y|5

, i 6= j

3y2
i

|y|5
− 1

|y|3
, i = j.

(3.3.16)

Proof. First, we let f ∈ C∞c (R3) which denotes the set of smooth functions on R3 with
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compact support. Using (3.3.7), we calculate for all r ∈ R3

−4π (Tijf)(r) = −4π

∫
R3

e2πir·p pi pj
p2

f̂(p) d3p

=
1

π

∫
R3

(
∂2

∂ri∂rj
e2πir·p

)
1

p2
f̂(p) d3p

(i)
=

1

π

∂2

∂ri∂rj

∫
R3

e2πir·p 1

p2
f̂(p) d3p

(ii)
=

∂2

∂ri∂rj

∫
R3

1

|y|
f(r − y) d3y

(iii)
=

∫
R3

1

|y|
∂2f(r − y)

∂ri∂rj
d3y

=

∫
R3

1

|y|
(−1)2∂

2f(r − y)

∂yi∂yj
d3y (3.3.17)

where we used dominated convergence to commute the derivatives with the integral in
(i), Theorem 3.6a) for the Fourier integral in (ii), and the calculus of distributional
convolutions and derivatives in (iii) (see [LL01, Lemma 6.8]). It applies since | · |−1 ∈
L1

loc(R3) and since f ∈ C∞c (R3). In order to continue with integration by parts, we change
the domain of integration to the set B = {ε < |y| < R}, where ε > 0 is fixed and R > 0 is
chosen sufficiently large such that suppf(r−·) ⊂ BR(0). As f ∈ C∞c (R3), this is possible
for all fixed r ∈ R3. We obtain∫

B

1

|y|
∂2f(r − y)

∂yi∂yj
d3y

= −
∫
B

(
∂

∂yi

1

|y|

)(
∂f(r − y)

∂yj

)
d3y +

∫
|y|=ε

1

|y|
∂f(r − y)

∂yj
νidσ(y)

=

∫
B

(
∂2

∂yj∂yi

1

|y|

)
f(r − y) d3y −

∫
|y|=ε

(
∂

∂yi

1

|y|

)
f(r − y) νjdσ(y) (3.3.18a)

+

∫
|y|=ε

1

|y|
∂f(r − y)

∂yj
νidσ(y), (3.3.18b)

where νk denotes the k-th component of ν, the unit outward normal to B. Due to our
choice of R, the boundary terms at |y| = R vanish.
In order to have equality of lines (3.3.17) and (3.3.18), we need to take the pointwise

limits ε→ 0 and R→∞ in line (3.3.18). Existence of the latter follows from the compact
support of f . For the former, we note that the derivative of f ∈ C∞c (R3) is uniformly
bounded by a constant C > 0 independent of ε. We thus get for line (3.3.18b)∣∣∣∣∫

|y|=ε

1

|y|
∂f(r − y)

∂yj
νidσ(y)

∣∣∣∣ ≤ ∫
S2

1

ε

∣∣∣∣∂f(r − y)

∂yj

∣∣∣∣ ε2dΩ

≤ Cε

∫
S2

dΩ
ε→0−−→ 0. (3.3.19)
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In the last summand of line (3.3.18a), we use the parametrization Φ of the boundary at
|y| = ε with spherical coordinates and note that Φ(∇|y|−1) = ν/ε2. Thus,

lim
ε→0

∫
|y|=ε

(
∂

∂yi

1

|y|

)
f(r − y) νjdσ(y)

= lim
ε→0

∫
S2

νi

ε2
f(r − y(ε, θ, φ)) νj ε2dΩ

=

∫
S2

νiνj lim
ε→0

f(r − y(ε, θ, φ)) dΩ

= f(r)

∫
S2

νiνj dΩ (3.3.20)

follows from dominated convergence and continuity of f . Now, we need to distinguish
the cases i 6= j and i = j. We obtain by direct computation

f(r)

∫
S2

νiνj dΩ =

 0 , i 6= j,

4π

3
f(r) , i = j.

(3.3.21)

It remains to investigate the limit ε → 0 for the first summand of (3.3.18a). This can
be achieved with the help of Theorem 3.7 which, however, requires an analysis of the
singular integral kernel ∂2/∂yi∂yj|y|−1. By explicit computation, we obtain for |y| > 0

Kij(y) =
∂2

∂yi∂yj

1

|y|
=


3yiyj
|y|5

, i 6= j

3y2
i

|y|5
− 1

|y|3
, i = j.

(3.3.22)

We check the conditions of Theorem 3.7 and observe first that Kij(y) is homogeneous of
degree −3, i.e., Kij(λy) = λ−3Kij(y) for almost all y ∈ R3 and for all λ > 0. Moreover,
Kij(y) exhibits the following crucial property for all i, j = 1, 2, 3:∫

S2

Kij(y) dσ(y) = 0. (3.3.23)

Furthermore, since Kij(−y) = Kij(y), it suffices to estimate for all i, j = 1, 2, 3∫
S2

|Kij(y)| log+ |Kij(y)| dσ(y) ≤
∫
S2

|Kij(y)|2 dσ(y) <∞ (3.3.24)

where log+ denotes the positive part of the logarithm. That the last integral is indeed
finite can be seen by explicit calculation.
Hence, all conditions of Theorem 3.7 are met and we can conclude that the limit

lim
ε→0

∫
|y|>ε

Kij(y)f(r − y) d3y (3.3.25)
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exists pointwise for almost all r ∈ R3 as well as in L2(R3, d3r). We have thus established
for all r ∈ R3 and f ∈ C∞c (R3)

(Tijf) (r) =
δij
3
f(r)− 1

4π
lim
ε→0

∫
|y|>ε

Kij(y)f(r − y) d3y. (3.3.26)

In order to extend the formula for the action of Tij to all of L2(R3, d3r), we note
that Theorem 3.7 also guarantees the existence of a constant A > 0 such that for all
f ∈ L2(R3, d3r)∥∥∥∥sup

ε>0

∣∣∣∣∫
|y|>ε

Kij(y)f(· − y) d3y

∣∣∣∣∥∥∥∥ ≤ A ‖f‖ . (3.3.27)

Choose now any f ∈ L2(R3, d3r) and fix a sequence (fn)n∈N ⊂ C∞c (R3) such that
‖f − fn‖

n→∞−−−→ 0. Then,

‖ Tij (f − fn)‖

≤ δij
3
‖f − fn‖+

1

4π

∥∥∥∥sup
ε>0

∣∣∣∣∫
|y|>ε

Kij(y) (f(· − y)− fn(· − y)) d3y

∣∣∣∣∥∥∥∥
≤
(
δij
3

+
A

4π

)
‖f − fn‖

n→∞−−−→ 0. (3.3.28)

This proves the statement of the theorem.

Remark 3.9. We continue with Remark 3.5 and look at Tij in the context of Fourier
analysis once more.

a) The Kronecker delta in line (3.3.15) is not surprising when one considers integral
kernels associated to even more general multipliers m ∈ C∞(R3 \{0}). In order to see
this, we cite Theorem 4.13 from [Duo01]. Let m ∈ C∞(R3 \ {0}) be a homogeneous
function of degree 0, and let Tm be the operator defined by (FTmf)(p) = m(p)f̂(p)
for all f ∈ S(R3) and almost all p ∈ R3. Then, there exist a ∈ C and Ω ∈ C∞(S2)
with zero average (i.e. its surface integral over S2 is zero) such that for any f ∈ S(R3)
and almost all x ∈ R3,

(Tmf)(x) = af(x) + lim
ε→0

∫
|y|>ε

Ω(y/|y|)
|y|3

f(x− y) d3y. (3.3.29)

This theorem applies to Tij and explains the occurrence of the Kronecker delta.

b) Taking an argument form [SW71], we want to point at one mechanism that shows
why the zero surface integral of the singular integral kernel K(y) is such an important
assumption when checking existence of the pointwise limit

lim
ε→0

∫
|y|>ε

K(y)f(x− y) d3y (3.3.30)
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where f ∈ S(R3). To that end, we look at integral kernels of the form

K(y) =
Ω(y/|y|)
|y|3

(3.3.31)

where Ω ∈ C∞(S2), and for which the assumption of zero surface average, i.e.,∫
S2

K(y) dσ(y) = 0 (3.3.32)

holds. We can without loss of generality restrict the range of integration to ε < |y| < 1
and obtain∫

ε<|y|<1

K(y)f(x− y) d3y =

∫
ε<|y|<1

K(y) (f(x− y)− f(x)) d3y. (3.3.33)

But, one also has

|f(x− y)− f(x)| ≤ |y| sup
|z|≤1

|(∇f) (z)| , (3.3.34)

and thus, we finally obtain∣∣∣∣∫
ε<|y|<1

K(y) f(x− y) d3y

∣∣∣∣ =

∣∣∣∣∫
ε<|y|<1

K(y) (f(x− y)− f(x)) d3y

∣∣∣∣
≤ sup
|z|≤1

|(∇f) (z)|
∫
|y|≤1

Ω(y/|y|)
|y|2

d3y <∞ (3.3.35)

uniformly in ε. Hence, the limit (3.3.30) exists. �

3.4. A useful characterization of Hrel
+ and Hrel

−

We turn now to a useful characterization of elements in Hrel
+ and Hrel

− . This will help
us in Section 4.3 on infinite energy states. To that end, we define the bounded operator
K : Hrel → Hrel by multiplication with the 16× 16-matrix K (empty slots are filled with
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zeros)

K =



1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1

1 0
0 1



. (3.4.1)

As K is orthogonal with det K = 1, we know that K is unitary. We conjugate P±(p) with
K and obtain for almost all p ∈ R3

KP±(p) K† =
1

2


14 ±κ(p)
±κ(p) 14

08

08
14 ±κ(p)
±κ(p) 14

 =: P̃±(p) (3.4.2)

where the 4× 4-matrix κ(p) is for almost all p ∈ R3 given by

κ(p) = −σ · p⊗ σ · p
p2

(3.4.3)

where σ = (σ1, σ2, σ3) are the usual Pauli matrices from line (2.1.5). Following the
definition of τ in Definition 3.2, we define κ for all f ∈ C4 ⊗ L2(R3, d3r) and almost all
r ∈ R3 by

(κf)(r) := L2-lim
M→∞

∫
|p|≤M

e2πir·p κ(p)f̂(p) d3p. (3.4.4)

We now view Hrel as C4 ⊗ L2(R3, d3r;C4). P̃± acts on any f = (f1, f2, f3, f4)> ∈
C4 ⊗ L2(R3, d3r;C4), where fk ∈ L2(R3, d3r;C4) for k = 1, 2, 3, 4, as

P̃±f =
1

2


f1 ± κf2

f2 ± κf1

f3 ± κf4

f4 ± κf3

 . (3.4.5)
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This allows for the following characterization of f ∈ Hrel
± , namely

Theorem 3.10. We have f ∈ Hrel
± if, and only if, there exist fk ∈ L2(R3, d3r;C4),

k = 1, 2, such that

Kf =


f1

±κf1

f2

±κf2

 . (3.4.6)

Proof. We first assume f ∈ KHrel
± and f = (f1, f2, f3, f4)>. This implies P̃±f = f . With

the help of (3.4.5), we compute

f =
1

2


f1 ± κf2

f2 ± κf1

f3 ± κf4

f4 ± κf3

 =
1

2


f1 ± κf2

±κ(f1 ± κf2)
f3 ± κf4

±κ(f3 ± κf4)

 , (3.4.7)

where we used κ2 = id which follows from κ(p)2 = 14. Setting f̃1 ≡ f1 ± κf2 and
f̃2 ≡ f3 ± κf4, we have

f =


f̃1

±κf̃1

f̃2

±κf̃2

 . (3.4.8)

For the reverse implication, we assume f to have the form

f =


f1

±κf1

f2

±κf2

 . (3.4.9)

A straightforward calculation then shows P̃±f = f which proves the theorem.

We use the remainder of this section to give an example of a p-independent eigenvector
of κ(p) and thus ultimately of P±. We define η by

η =
1√
2


0
−1
1
0

 (3.4.10)

and find for almost all p ∈ R3

κ(p) η = η. (3.4.11)
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With its help, we further define

ω̃+,1 =
1

2


η
η
η
η

 ω̃+,2 =
1

2


−η
−η
η
η

 (3.4.12)

ω̃−,1 =
1

2


η
−η
η
−η

 ω̃−,2 =
1

2


η
−η
−η
η

 (3.4.13)

and find for almost all p ∈ R3

P̃±(p) ω̃±,k = ω̃±,k for k = 1, 2. (3.4.14)

Thus, upon setting ω±,k = K†ω̃±,k for k = 1, 2, we obtain

P± ω±,k · φ = ω±,k · φ for k = 1, 2 (3.4.15)

for any φ ∈ L2(R3).
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4. The operator closure of H2BD with
bounded potentials

4.1. The domain of the closure
From one perspective, H0 is a differential operator of first order. One could thus expect
that the domain of its closure D(H0) is tied to some kind of H1-regularity. In this section,
however, we will see that this is not true. In the following Theorem 4.1, we consider
the closure of H0—as well as the closure of related operators for later reference—before
we turn to the closure of H2BD with bounded potentials in Theorem 4.2. Of course,
bounded potentials do not alter the domain, and hence, D(H0) = D(H2BD). Therefore,
all arguments that work for H0 also apply to H2BD. We also remark on unbounded
potentials.

Theorem 4.1 (Claim a) of Theorem 1). The following holds:

a) T = P̂ ·M+ ⊗ id + id ⊗M− · p̂ with domain D(T ) = {f ∈ UH2| Tf ∈ UH2} is
self-adjoint.

b) M− · p̂ with domain D(M− · p̂) = {f ∈ Hrel|M− · p̂f ∈ Hrel} is self-adjoint.

c) M− · p̂ is essentially self-adjoint on C16 ⊗H2(R3).

d) P̂ ·M+ with domain D(P̂ ·M+) = {f ∈ Hcom| P̂ ·M+f ∈ Hcom} is self-adjoint.

e) H0 is essentially self-adjoint on D0 and

D(H0) =
{
f ∈ H2

∣∣ H0f ∈ H2

}
(4.1.1)

Proof. Since self-adjointness of T , M− · p̂, and P̂ ·M+ is proven along the same lines,
we only show it for T . Parts b) and d) and then follow. Of course, the proof follows
the standard proof of self-adjointness for operators of multiplication with real-valued
functions.

a) Since the Fourier transform is unitary, it suffices to prove self-adjointness in Fourier
space. We therefore define the C16 × C16-matrix T(P ,p) for all P ,p ∈ R3 by

T(P ,p) := P ·M+ + M− · p. (4.1.2)

Since T(P ,p) is Hermitian for all P ,p ∈ R3, T is symmetric on D(T ). Hence, it
suffices to show D(T ∗) ⊆ D(T ).
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Let f ∈ D(T ∗). Then, we obtain for all g ∈ D(T )

〈T ∗f, g〉 = 〈f, Tg〉 =

∫
R3×R3

f(P ,p)†T(P ,p)g(P ,p) d3p d3P

=

∫
R3×R3

[T(P ,p)f(P ,p)]† g(P ,p) d3p d3P (4.1.3)

Since (C∞c (R3 × R3))⊗16 is contained in D(T ), this holds in particular for all g ∈
(C∞c (R3 × R3))⊗16. This yields for almost all P ,p ∈ R3

T(P ,p)f(P ,p) = (T ∗f) (P ,p), (4.1.4)

and thus, since f ∈ D(T ∗), we get Tf ∈ UH2. Therefore, we can conclude f ∈
D(T ).

c) For any f ∈ Hrel, we define the sequence (fn)n∈N as fn := n
p̂2+n

f . Then, fn ∈
C16 ⊗H2(R3) for every fixed n ∈ N since∫

R3

∣∣∣∣(1 + p2)
n

p2 + n
f̂(p)

∣∣∣∣2 d3p ≤ (1 + n) ‖f‖2 <∞. (4.1.5)

Furthermore, ‖fn − f‖
n→∞−−−→ 0 by dominated convergence. For f ∈ D(M− · p̂), we

obtain similarly

∥∥M− · p̂ (f − fn)
∥∥2

=

∫
R3

∣∣∣∣(1− n

p2 + n

)
M− · pf̂(p)

∣∣∣∣2 d3p
n→∞−−−→ 0 (4.1.6)

by dominated convergence. Hence, C16 ⊗H2(R3, d3r) is a core for M− · p̂.

e) That H0 is essentially self-adjoint on D0, is well-known (see, e.g., [RS80, Corollary
of Thm. VIII.33, pp. 300]). For the domain, we note that in the case m1 = 0 = m2

we have H0f = U−1TUf for all f ∈ D0. Unitarity of the coordinate transform U
and closedness of T now imply (4.1.1). As the mass term βm1 ⊗ 14 + 14 ⊗ βm2 is
bounded and symmetric, this result carries over to the massive casem1,m2 > 0.

Theorem 4.2. Let V be a bounded and symmetric operator in H2. Then, H2BD = H0+V
is essentially self-adjoint on D0 and

D(H2BD) = D(H0) =
{
f ∈ H2

∣∣ H0f ∈ H2

}
. (4.1.7)

Proof. The statement follows from boundedness of V and (4.1.1) by a standard Kato-
Rellich perturbation argument.

Of course, these two theorems come as no surprise. After all, H0, T , M− ·p̂, and P̂ ·M+

are each unitarily equivalent to multiplication with a Hermitian matrix, and the given
domains are the natural domains of multiplication operators. However, H1-regularity is
not the distinguishing characteristic of these domains but escapes in some sense. Let us

36



first sketch what happens before we bring the statement „H1-regularity escapes in some
sense“ into a mathematically rigorous form in Lemma 4.3.

To that end, we introduce an abbreviation for H0

H0 = (−iα · ∇x + βm)⊗ id + id⊗ (−iα · ∇y + βm) = D1 ⊗ id + id⊗D2 (4.1.8)

and notice that it was defined as operator sum on D0 = H1(R3, d3x)⊗4⊗H1(R3, d3y)⊗4,
i.e., each summand of H0 is well-defined and can be considered separately. In D(H0)
however, there are elements for which this is no longer true. Thus, the operator H0

might not be split into an operator sum; the notation D1 ⊗ id + id⊗D2 emphasizes this.
More precisely, there are elements f ∈ D(H0) for which, e.g., ‖(D1 ⊗ id)f‖ diverges.
Now, in order to have f ∈ D(H0), i.e.,

∥∥H0f
∥∥ <∞, also ‖(id⊗D2)f‖ has to diverge in

such a way that the diverging contributions of
∥∥H0f

∥∥ cancel.

The key ingredient in order to understand these cancellations is the coordinate trans-
form U to relative and center-of-mass coordinates. In the massless case, it transforms H0

to T = P̂ ·M+ ⊗ id + id⊗M− · p̂, and does that in such a way that these elements that
require cancellations correspond to those elements that lie in the nullspaces of P̂ ·M+

or M− · p̂, respectively. Now, each summand of T can again be evaluated against any
element of UD(H0) as possibly infinite terms are mapped to zero.

This intuition is captured in the following Lemma 4.3. Part a) of it states that H1-
regulartiy is required only in Hrel

+ , i.e., the orthogonal complement of the nullspace of
M− · p̂. Part b) shows that in Hrel

+ the domain of self-adjointness of M− · p̂ is tied to H1-
regularity. We only state the lemma for M− · p̂ in Hrel and note that the corresponding
statements for P̂ ·M+ in Hcom also hold.

Lemma 4.3.

a) We have f ∈ D(M− · p̂) if, and only if,

‖−i∇rP+f‖ =
1

2

∥∥M− · p̂ f
∥∥ <∞. (4.1.9)

b) The restriction of M− · p̂ to Hrel
+ , denoted by M− · p̂ � D+, with domain P+D(M− · p̂)

is self-adjoint, and it holds that

P+D(M− · p̂) = D+ =
(
C16 ⊗H1(R3, d3r)

)
∩Hrel

+ . (4.1.10)

Proof. a) We first assume f ∈ D(M− · p̂) and show that relation (4.1.9) follows. A
computation shows that for almost all p ∈ R3 we have (M− · p)2/4 = p2P+(p), and
hence, (M− · p̂)2/4 = p̂2P+ holds on the intersection of their domains. Thus, for all
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g ∈ C16 ⊗H2(R3, d3r) we have

‖−i∇rP+g‖2 = 〈−i∇rP+g,−i∇rP+g〉
(∗)
=
〈
P+g, p̂

2P+g
〉

=
1

4

〈
P+g,

(
M− · p̂

)2
g
〉

(∗∗)
=

1

4

〈
g,
(
M− · p̂

)2
g
〉

=
1

4

∥∥M− · p̂ g
∥∥2
, (4.1.11)

where we used in (∗) that the boundary terms vanish since P+g ∈ C16 ⊗H2(R3, d3r)
and in (∗∗) that P+M

− · p̂ g = M− · p̂ g.

Hence, claim a) already holds on C16 ⊗ H2(R3, d3r), which however is a core for
M− · p̂ by Theorem 4.1c). This means that for all f ∈ D(M− · p̂) there exists a
sequence (fn)n∈N ⊂ C16 ⊗ H2(R3, d3r) that converges to f in the graph norm of
M− · p̂. By Eq. (4.1.11), (fn)n∈N is then also a Cauchy sequence in the graph norm of
−i∇rP+. Now, the product of operators −i∇rP+ : D(−i∇rP+) → Hrel with domain
D(−i∇rP+) = {f ∈ Hrel|P+f ∈ C16 ⊗H1(R3, d3r)} is closed, as P+ is bounded and
both P+ and −i∇r are closed. Thus, (fn)n∈N converges then also to f with respect to
the graph norm of −i∇rP+. In conclusion, for all f ∈ D(M− · p̂) we have

1

4

∥∥M− · p̂f
∥∥ =

1

4
lim
n→∞

∥∥M− · p̂fn
∥∥

= lim
n→∞

‖−i∇rP+fn‖ = ‖−i∇rP+f‖ . (4.1.12)

The reverse implication follows from the definition of D(M− · p̂).

b) As the projections P± are tailor-made for M− · p̂, we obtain in the same manner as
for Hrel in line (2.2.18) the matrix representation

M− · p̂ =

(
M− · p̂ � D+ 0

0 0

)
. (4.1.13)

Now, by [Tre08, Prop. 2.6.3, p. 144], M− · p̂ is self-adjoint if, and only if, M− · p̂ � D+

and 0 (that is, the operators in the upper left and lower right corner) are self-adjoint.
Hence, self-adjointness ofM− ·p̂, guaranteed by Theorem 4.1b), proves self-adjointness
of M− · p̂ � D+.

It remains to prove Eq. (4.1.10). Suppose f ∈ P+D(M− · p̂). Then, f = P+g for some
g ∈ D(M− · p̂). Since g ∈ D(M− · p̂) and M− · p̂ and P+ commute,

‖M− · p̂f‖ = ‖M− · p̂P+g‖ ≤ ‖M− · p̂g‖ <∞ (4.1.14)
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and so f ∈ D(M− · p̂) ∩Hrel
+ . By part a),

‖ − i∇rf‖ = ‖ − i∇rP+f‖ = ‖1

2
M− · p̂f‖ <∞ (4.1.15)

and so f ∈ C16 ⊗ H1(R3, d3r). Therefore, we have f ∈ (C16 ⊗H1(R3, d3r)) ∩ Hrel
+ .

Suppose conversely that f ∈ (C16 ⊗H1(R3, d3r)) ∩ Hrel
+ . Then, f = P+f and f ∈

C16 ⊗H1(R3, d3r) ⊆ D(M− · p̂), which implies f ∈ P+D(M− · p̂).

Lemma 4.3 allows for a concise characterization of D(M− · p̂) and D(P̂ ·M+) in the
following corollary. Again, we only state it for M− · p̂ but note that the corresponding
statement for P̂ ·M+ also holds.

Corollary. D(M− · p̂) = D+ ⊕Hrel
− .

Proof. From Lemma 4.3, we know that in Hrel
+ one needs H1-regularity, whereas in Hrel

−
L2-regularity suffices. As the splitting f = P+f+P−f for any f ∈ D(M−·p̂) is orthogonal,
the statement follows.

Remark 4.4. We can now address the question if the cases of singular Vext or singular
Vint affect the domain. Singular potentials are unbounded operators and as such only
densely defined. E.g., in order to give meaning to (M− · p̂ + Vint)f , where f ∈ Hrel

− ,
one also needs f ∈ D(Vint). We give a heuristic argument that this restriction of the
L2-regularity of f ∈ Hrel

− does not affect the domain D(H0) too much. Functions with
L2- but no H1/2-regularity are, e.g., for almost all r ∈ R3 given by f(r) = e−|r|/|r|α,
where 1 < α < 3/2 (see, e.g., [Ste70]). By considering its translations f(· −a) by a fixed
a ∈ R3, one can always move away from the singularities of Vint such that f(· −a) lies in
the domain of Vint. Hence, we can conclude that, although considering singular potentials
excludes some elements, translations of these elements are still in D(H0). How D(H0) is
reduced explicitly, depends on the concrete form of Vint. �

Before we finish this section, we see Lemma 4.3 at work in the following example.

Example 4.5. We saw in Proposition 3.1 that the matrix M− · p has a non-trivial
nullspace for all p ∈ R3. Therefore, we can relax the regularity conditions in, let us say,
p1-direction on an f ∈ D(M− · p̂) if the C16-part of this f lies in Ker(M−1 ). Lemma 4.3a)
now states that nevertheless we have ‖ − i∇rP+f‖ <∞, i.e. P+f ∈ C16 ⊗H1(R3, d3r).
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Choose, for concreteness, f such that

f(p) =



1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1



f1(p1)f2(p2)f3(p3) (4.1.16)

where (1, 0, · · · , 0, 1)> ∈ Ker(M−1 ). Now, we expect that f1 can be freely chosen from all of
L2(R, dp1), whereas f2 and f3 need to have H1-regularity in order to have f ∈ D(M− · p̂).
In order to probe this expectation, we compute M− · pf(p) for almost all p ∈ R3 and
find

M− · pf(p) =
(
M−

2 p2 +M−
3 p3

)
f(p) = f1(p1)



0
0
−p3

−2ip2

0
0
0
−p3

p3

0
0
0

2ip2

p3

0
0



f2(p2)f3(p3). (4.1.17)

One can directly read off that f2 and f3 are multiplied by p2 and p3, respectively, but
no multiplication with p1 occurs. Thus, we need as expected f2 ∈ H1(R, dp2) and f3 ∈
H1(R, dp3), whereas f1 can indeed be freely chosen from all of L2(R, dp1) as it remains
unchanged under the action of M− · p̂.
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The situation changes when we consider P+(p)f(p), which reads for almost all p ∈ R3

P+(p)f(p) =
1

2p2



2p2
2 + p3

3 + 2ip1p2

(p1 − ip2)p3

0
0

(p1 − ip2)p3

−p2
3

0
0
0
0
−p2

3

−(p1 + ip2)p3

0
0

−(p1 + ip2)p3

2p2
2 + p2

3 − 2ip1p2



f1(p1)f2(p2)f3(p3). (4.1.18)

We compute M− · pP+(p)f(p) and find with Proposition 3.3

M− · pP+(p)f(p) = M− · pf(p). (4.1.19)

Therefore, we still need f2 ∈ H1(R, dp2) and f3 ∈ H1(R, dp3) as above in (4.1.17). In
contrast to that, however, p1 occurs as multiplication with p1/p

2. Therefore, we also have
p̂1P+f ∈ Hrel

+ regardless of how f1 behaves. Hence, we can conclude that projecting f to
Hrel

+ has generated more regularity in p1-direction, and so P+f ∈ C16 ⊗H1(R3, d3p).

For sake of completeness, we also compute P−(p)f(p) for almost all p ∈ R3 and obtain

P−(p)f(p) =
1

2p2



2p2
1 + p3

3 − 2ip1p2

−(p1 − ip2)p3

0
0

−(p1 − ip2)p3

p2
3

0
0
0
0
p2

3

(p1 + ip2)p3

0
0

(p1 + ip2)p3

2p2
1 + p3

3 + 2ip1p2



f1(p1)f2(p2)f3(p3). (4.1.20)
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We see that p1 occurs as multiplication with p2
1/p

2 and no extra regularity in p1-direction
is gained. �

4.2. Remark on first order differential operators and
their hidden nullspace structure

This section is a little detour, in which we investigate sums of two first order differential
operators which are different from and even more general than H0. It turns out that their
domain of closedness again contains elements that require cancellations of the summands.
Thus, the nullspace structure we encountered when studying H0 is generic for operators
that describe two particles and that are first order differential operators. The concluding
remark of this section treats the semi-bounded case.
We take as underlying Hilbert space the Hilbert space tensor product

H = L2(R3, d3x)⊗ L2(R3, d3y). (4.2.1)

and define the coordinate transform W by

W : L2(R3, d3x)⊗ L2(R3, d3y)→ L2(R3, d3R)⊗ L2(R3, d3r) (4.2.2)

of the coordinates x,y ∈ R3 to coordinates R, r ∈ R3 by

r := ax+ by , R := cx+ dy (4.2.3)

where a, b, c, d ∈ R. We setX = (x,y)> and Y = (r,R)> and obtain the transformation
matrix W: R3 × R3 → R3 × R3 as

WX =

(
a b
c d

)(
x
y

)
=

(
r
R

)
= Y . (4.2.4)

We demand det W 6= 0, such that W be invertible and given by (Wf)(Y ) = f(X) =
f(W−1Y ).
We look at the operator sum

S1 := −i∇x − i∇y = −i∇x ⊗ id− id⊗ i∇y. (4.2.5)

with domain

D(S1) = H1(R3 × R3, d3x d3y). (4.2.6)

Clearly, each summand of S1 is well-defined for all elements of D(S1), and thus, S1 is a
well-defined operator sum on D(S1). We set the entries of the matrix W to a = −b = 1
and c = d = 1/2 (such that W coincides with the coordinate transform U to relative
and center-of-mass coordinates). Then, W is unitary, and S1 is closed if, and only if,
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WS1W
−1 is closed. We find

WS1W
−1 = −i∇R ⊗ id− id⊗ (1− 1)i∇r = −i∇R (4.2.7)

as well as

WD(S1) = WH1(R3 × R3, d3x d3y) = H1(R3 × R3, d3R d3r). (4.2.8)

The latter follows from orthogonality of W.

The need for cancellations when computing the closure comes about as follows. By
standard arguments, we have that −i∇R is closed on the domain

D′ =
{
f ∈ H

∣∣ ∇Rf(·, r) ∈ H for almost all r ∈ R3
}

(4.2.9)

as −i∇R is self-adjoint on D′. However, D(S1) = H1(R3 × R3, d3x d3y) is the largest
set on which S1 can be defined as operator sum. Therefore, it suffices to provide an
f ∈ D′ \WD(S1) in order to prove that S1 is not closed on D(S1) and that cancellations
occur. We define f ∈ D′ by

f(R, r) =
e−|R|

2
e−|r|

2

|r|
(4.2.10)

for almost all R, r ∈ R3. We first note that ‖∇Rf‖ is finite, and hence, we indeed have
f ∈ D′. Moreover, we note that W∇xW

−1 = ∇R/2 +∇r, and estimate

∥∥∇xW
−1f
∥∥ =

∥∥∥∥(1

2
∇R +∇r

)
f

∥∥∥∥ ≥ ∣∣∣∣12 ‖∇Rf‖ − ‖∇rf‖
∣∣∣∣ . (4.2.11)

As noted above, ‖∇Rf‖ is finite. However, ‖∇rf‖ diverges since

∂

∂rk

e−|r|
2

|r|
=
−rk
|r|

e−|r|
2

(
1

|r|2
+ 1

)
(4.2.12)

and ∫
R3

∫
R3

∣∣∣∣∣e−|R|
2

e−|r|
2

|r|2

∣∣∣∣∣
2

d3R d3r =

∫
R3

e−2|R|2 d3R

∫
R3

e−2|r|2

|r|4
d3r, (4.2.13)

where the singularity |r|−4 is too strong for the d3r-integral. Therefore, ‖∇xW
−1f‖

diverges, and we find f /∈ WD(S1).

In conclusion, we encounter a loss of H1-regularity in r-direction when the operator
closure S1 is computed. Thus, we have found another example of an operator whose
closure depends on cancellation as in the previous section.

There is, however, a difference compared to H0. For S1 we chose real coefficients,
whereas the coefficients of H0 are Hermitian 16× 16-matrices. In both cases, the coordi-
nate transforms W and U , respectively, shed light on a nullspace structure that led to a
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certain loss of regularity in the respective domains of closedness. We see in line (4.2.7)
that in the case of S1, the coefficient of −i∇r is 1−1 = 0, i.e., the number of independent
variables is reduced from six to three, and only the center-of-mass coordinate R ∈ R3

remains. Such a reduction is not observed for H0. In that sense, the hidden nullspace
structure of S1 is more severe.
In order to study the nullspace structure in an even more general setting, we consider

another first order differential operator sum, namely

S2 = −i(A1 ⊗ 1n)∇x − i(1n ⊗ A2)∇y (4.2.14)

where the coefficients A1, A2 are arbitrary, non-zero Hermitian Cn×n-matrices. As do-
main, we take

D(S2) = H1(R3 × R3, d3x d3y)⊗ Cn2

. (4.2.15)

A nullspace structure emerges if the entries a, b, c, d ∈ R of W are chosen carefully. In
order to prove this, we compute

WS2W
−1 = −i(cA1 ⊗ 1n + 1n ⊗ dA2)∇R − i(aA1 ⊗ 1n + 1n ⊗ bA2)∇r. (4.2.16)

Now, the matrices A1 and A2 are Hermitian and can thus be diagonalized. We denote the
corresponding transformation matrices by u1 and u2, respectively. We use this in order
to obtain

u1 ⊗ u2 (aA1 ⊗ 1n + 1n ⊗ bA2) u−1
1 ⊗ u−1

2 =

 aλ1 + bµ1

. . .
aλn2 + bµn2

 ,

(4.2.17)

where λk and µk, k = 1, 2, . . . , n2, denote the eigenvalues of A1 ⊗ 1n and 1n ⊗ A2,
respectively. Without loss of generality, we can assume µ1 6= 0 6= λ1. Hence, the choice
a/b = −µ1/λ1 produces 0 as the first eigenvalue of aA1 ⊗ 1n + 1n ⊗ bA2. This implies
that the coefficient matrix of −i∇r has a non-trivial nullspace and all the arguments
concerning loss of H1-regularity etc. also apply to S2.
This leads to the following conclusion. The nullspace structure of H0 revealed by the

coordinate transform U presents a rather unpleasant obstacle when, e.g., probing self-
adjointness. However, as this section tries to argue, such a structure is to be expected
if the Hamiltonian in question consists of a sum of first order differential operators with
matrix coefficients, chosen as above. If the coefficients are real-valued, the number of
independent variables might be reduced. This reduction implies that some degrees of
freedom in the original Hamiltonian have no effect on the dynamics.

Remark 4.6. Before we proceed, we want to remark on the same situation as before,
albeit for bounded below self-adjoint operators. Let A ≥ 0 be a non-negative self-adjoint
operator in the underlying Hilbert space X , and B ≥ 0 a non-negative self-adjoint opera-
tor in the Hilbert space Y . Then, the domain of the closure of A⊗ idY+idX ⊗B does not
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contain elements with the above mentioned cancellations. We sketch the proof. Bound-
edness below and self-adjointness of A and of B imply that A is unitarily equivalent to
multiplication with the non-negative function a ≥ 0 and that B is unitarily equivalent to
multiplication with the non-negative function b ≥ 0. Hence, A⊗ idY+idX ⊗B is unitarily
equivalent to multiplication with the function a + b. As a and b are non-negative, we
obtain for suitable φ

‖(a+ b)φ‖2
X⊗Y = ‖a φ‖2

X⊗Y + ‖b φ‖2
X⊗Y + 2 · ‖a b φ‖2

X⊗Y . (4.2.18)

This shows that all φ which render the left-hand side of (4.2.18) finite also render the
right-hand side finite, and thus, lie in the domain of A ⊗ idY and idX ⊗ B at the same
time. Therefore, no extra cancellation elements are added to the domain when taking
the closure. �

4.3. States with infinite single particle kinetic energy

In one-body problems, finite kinetic energy is usually associated with some kind of Hk-
regularity: In the non-relativistic case with H1-regularity, whereas in the relativistic case
with H1/2-regularity. In this section, we transfer this to the two-body case and explore
what the loss of H1- as well as H1/2-regularity in the domain of H0 means in view of
states having finite or infinite single particle kinetic energy (finite or infinite SPKE). We
do that by explicitly constructing various examples. We first consider examples of states
with no Hk-regularity in x- or y-direction (Example 4.9), but finite single particle kinetic
energy (Example 4.10). Next, we construct a state for which both single particle kinetic
energies diverge (Example 4.11) and observe how these diverging contributions exactly
cancel (Example 4.12). While this section simply gives examples of states with infinite
single particle kinetic energy, further aspects of their physical relevance are discussed in
the subsequent sections 4.4 and 4.5 as well as in the outlook in Section 7.2.
In order to make the association of Hk-regularity with kinetic energy precise, we first

define single particle kinetic energy as well as total kinetic energy. To that end, we recall
the notation of H0 from line (4.1.8)

H0 = (−iα · ∇x + βm)⊗ id + id⊗ (−iα · ∇y + βm) = D1 ⊗ id + id⊗D2. (4.3.1)

Having in mind the non-relativistic two-particle system, the following definition of single
particle kinetic energy might seem natural at first sight. However, as the subsequent
Example 4.10 shows, this definition might not be satisfactory.

Definition 4.7. We define

a) the kinetic energy of the k-th particle in the state ψ ∈ D(H0) by

Ekin,1[ψ] = 〈ψ,D1 ⊗ idψ〉 , Ekin,2[ψ] = 〈ψ, id⊗D2ψ〉 , (4.3.2)
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b) the total kinetic energy of the state ψ ∈ D(H0) by

Ekin,tot[ψ] =
〈
ψ,H0ψ

〉
. (4.3.3)

Remark 4.8. Ekin,k[ψ] for k = 1, 2 may be infinite for some ψ ∈ D(H0). After all, this
is the main point of this section. Hence, Ekin,k[ψ] may not be well-defined. In that case,
we simply write |Ekin,1[ψ]| =∞ and mean for an appropriate momentum cut-off Λ ∈ R+

i) ‖ψ − ψΛ‖
Λ→∞−−−→ 0,

ii) Ekin,k[ψΛ] <∞ for all fixed Λ > 0,

iii) sup
Λ>0
|Ekin,1[ψΛ]| =∞. �

Example 4.9. We construct a state ψ1 ∈ D(H0) that exemplifies the possible loss of
regularity when taking the closure and thus the emergence of infinite kinetic energy states.
To that end, we define S1 ∈ C4 ⊗ C4 by

S1 =


0
1
0
1

⊗


1
0
1
0

−


1
0
1
0

⊗


0
1
0
1

 (4.3.4)

and with its help ψ1 for almost all x,y ∈ R3 by

ψ1(x,y) := S1 f(x+ y) g(x− y). (4.3.5)

A straightforward computation shows that S1f ∈ Hcom
− = Ker(P̂ ·M+) as well as S1g ∈

Hrel
+ = Ker(M− · p̂)⊥. This implies two things. First, it tells us that for g ∈ H1(R3) we

have ψ ∈ D(H0). Secondly, no H1-, not even H1/2-regularity of f is needed in x + y-
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direction, and thus, in x-direction. We compute

〈ψ1, |∇x|ψ1〉 = |S1|2
∫
R3

∫
R3

|px| |f(px + py) g(px − py)|2 d3px d3py

= |S1|2
∫
R3

∫
R3

|P /2 + p|
∣∣∣f̂(P ) ĝ(p)

∣∣∣2 d3p d3P

≥ |S1|2
∫
R3

∫
R3

1√
2

3∑
k=1

|Pk/2 + pk|
∣∣∣f̂(P ) ĝ(p)

∣∣∣2 d3p d3P

≥ |S1|2
∫
R3

∫
R3

1√
2

3∑
k=1

∣∣∣ |Pk/2| − |pk| ∣∣∣ ∣∣∣f̂(P ) ĝ(p)
∣∣∣2 d3p d3P

= |S1|2
1√
2

3∑
k=1

∫
R3

∣∣∣f̂(P )
∣∣∣2 ∫

R3

∣∣∣ |Pk/2| − |pk| ∣∣∣ |ĝ(p)|2 d3p d3P

≥ |S1|2
1

2
√

2

3∑
k=1

∫
R3

|Pk|
∣∣∣f̂(P )

∣∣∣2 d3P

∫
R3

|ĝ(p)|2 d3p (4.3.6a)

− |S1|2
1√
2

3∑
k=1

∫
R3

∣∣∣f̂(P )
∣∣∣2 d3P

∫
R3

|pk| |ĝ(p)|2 d3p. (4.3.6b)

Now, by our choice g ∈ H1(R3) from above, we see that the summand (4.3.6b) is finite.
The minus sign in front of it can be compensated for by the summand (4.3.6a) and a
suitable choice of f . Recall that no regularity conditions on f are needed as S1f ∈
Hcom
− = Ker(P̂ ·M+). Thus, f can be chosen such that (4.3.6a)-(4.3.6b) is positive and

even diverges. Hence, ψ1 need not have H1/2-regularity in the single particle variable x.
For the variable y, one proceeds analogously. �

Example 4.10. We apply Definition 4.7a) to Example 4.9 and find

Ekin,1[ψ1] = 〈ψ1, D1 ⊗ idψ1〉 = Ekin,2[ψ1] = 〈ψ1, id⊗D2ψ1〉 = 0, (4.3.7)

solely due to the spinor structure of S1, although nothing has been assumed concerning
the distribution of the momenta. This result, however, is not generic for states with parts
in Ker(P̂ ·M+) or Ker(M− · p̂) as the following example shows. �

Example 4.11 (Claim b) of Theorem 1). We present a state ψ2 ∈ D(H0) for which
Ekin,1[ψ2] as well as Ekin,2[ψ2] diverge. ψ2 is for almost all x,y ∈ R3 defined by

ψ2(x,y) :=
[
K−1


f

−κf
f

−κf

](x− y) · h(x+ y), (4.3.8)

where K and κ are defined in (3.4.1) and (3.4.3), respectively. For h it suffices to specify
h ∈ H1(R3) with ‖h‖ = 1. f ∈ L2(R3, d3r;C4) is defined in Fourier space and for almost
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all p ∈ R3 given by

f̂(p) =

 ν+(p) · ϕ̂(p)(
0
0

)  (4.3.9)

where ϕ ∈ L2(R3, d3r) \ H1/2(R3, d3r) and ν+(p) ∈ C2 for almost all p ∈ R3 with
ν+(p)†ν+(p) = 1 is defined by its property

σ · p ν+(p) = |p| ν+(p) (4.3.10)

where σ = (σ1, σ2, σ3) are the usual Pauli matrices from line (2.1.5).

With Theorem 3.10, we conclude that ψ2 ∈ H1(R3, d3R) ⊗ Hrel
− and therefore, ψ2 ∈

D(H0).

It suffices to compute

〈ψ2,−i (α⊗ 14) · ∇x ψ2〉 = 〈Uψ2,−i (α⊗ 14) · (∇r + 1/2∇R) Uψ2〉

=
〈
KUψ2,−iK (α⊗ 14) · ∇r K†KUψ2

〉
+ 〈Uψ2,−i/2 (α⊗ 14) · ∇R Uψ2〉 .

(4.3.11)

We compute KUψ2 and find for almost all r,R ∈ R3

(KUψ2) (r,R) =


f(r)

−(κf)(r)
f(r)

−(κf)(r)

 · h(R). (4.3.12)

The last summand of (4.3.11) is finite, i.e., 〈Uψ2,−i/2 (α⊗ 14) · ∇R Uψ2〉 < ∞ since
h ∈ H1(R3). We drop it in the following. Recall the matrix K from (3.4.1). Using that

K(α · p⊗ 14)K† =

 08
04 σ · p⊗ 12

σ · p⊗ 12 04

04 σ · p⊗ 12

σ · p⊗ 12 04
08


(4.3.13)

and

−(σ · p⊗ 12)κ(p) = 12 ⊗ σ · p = −κ(p) (σ · p⊗ 12) (4.3.14)
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hold for almost all p ∈ R3, we obtain〈
KUψ2, −iK (α⊗ 14) · ∇r K†KUψ2

〉
=

∫
R3

|h(R)|2 d3R ×

∫
R3

d3p


f̂(p)

−κ(p)f̂(p)

f̂(p)

−κ(p)f̂(p)


†

K(α · p⊗ 14)K†


f̂(p)

−κ(p)f̂(p)

f̂(p)

−κ(p)f̂(p)


= 4 ·

∫
R3

f̂(p)† (12 ⊗ σ · p) f̂(p) d3p

= 4 ·
∫
R3

 ν+(p) · ϕ̂(p)(
0
0

) †( σ · p 0
0 σ · p

) ν+(p) · ϕ̂(p)(
0
0

)  d3p

= 4 ·
∫
R3

[ν+(p) · ϕ̂(p)]† |p| [ν+(p) · ϕ̂(p)] d3p

= 4 ·
∫
R3

|p||ϕ̂(p)|2 d3p =∞, (4.3.15)

which diverges by the definition of ϕ. In order to show that Ekin,2[ψ2] is infinite, one
proceeds analogously. �

Example 4.12. We continue with Example 4.11 and show how the diverging contribu-
tions Ekin,1[ψ2] and Ekin,2[ψ2] to the total kinetic energy cancel each other. To that end,
it suffices to note the minus sign in front of ∇r

U (−i (14 ⊗α) · ∇x)U−1 = −i (14 ⊗α) · (−∇r + 1/2∇R) . (4.3.16)

This minus sign leads to〈
KUψ2, iK (14 ⊗α) · ∇r K†KUψ2

〉
= −4 ·

∫
R3

|p||ϕ̂(p)|2 d3p (4.3.17)

which cancels the corresponding term of Ekin,1[ψ2] in line (4.3.15). Since we have ψ2 ∈
D(H0), it follows that Ekin,tot[ψ2] =

〈
ψ2, H0ψ2

〉
is finite. �

4.4. The role of antisymmetry

In Section 4.3, we did not discuss the physical relevance of infinite single particle kinetic
energy states, which we will address now. We do so by asking whether such states can
occur if H0 is supposed to describe two identical fermions. We will answer this question
in the negative. For the fermionic case, we can restrict our considerations to states from
that subspace of H2 which contains only antisymmetric wavefunctions and for which we
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write

Ha :=
(
L2(R3, d3x)⊗ C4

)
∧
(
L2(R3, d3y)⊗ C4

)
. (4.4.1)

We can immediately conclude that this has implications on the single particle kinetic
energy from Definition 4.7. Let ψ ∈ Ha be of the form ψ = φ1 ∧ φ2 where φ1, φ2 ∈
H1(R3)⊗ C4. Then,

Ekin,1[ψ] = 〈φ1 ∧ φ2, D1 ⊗ idφ1 ∧ φ2〉
= 〈φ1 ⊗ φ2 − φ2 ⊗ φ1, D1φ1 ⊗ φ2 −D1φ2 ⊗ φ1〉
= 〈φ1, D1φ1〉 〈φ2, φ2〉 − 〈φ1, D1φ2〉 〈φ2, φ1〉
− 〈φ2, D1φ1〉 〈φ1, φ2〉+ 〈φ2, D1φ2〉 〈φ1, φ1〉

= 〈φ2, φ2〉 〈φ1, D1φ1〉 − 〈φ2, φ1〉 〈φ1, D1φ2〉
− 〈φ1, φ2〉 〈φ2, D1φ1〉+ 〈φ1, φ1〉 〈φ2, D1φ2〉

(∗)
= 〈φ2 ⊗ φ1 − φ1 ⊗ φ2, φ2 ⊗D2φ1 − φ1 ⊗D2φ2〉
= 〈φ2 ∧ φ1, id⊗D2 φ2 ∧ φ1〉
= (−1)2 〈φ1 ∧ φ2, id⊗D2 φ1 ∧ φ2〉 = Ekin,2[ψ], (4.4.2)

where we interchanged the integration variables x and y in (∗). Thus, we arrive at the
following relation for ψ = φ1 ∧ φ2 with φ1, φ2 ∈ H1(R3)⊗ C4

2 · Ekin,1[ψ] = 2 · Ekin,2[ψ] = Ekin,tot[ψ] (4.4.3)

which is finite. This allows us to conclude immediately that antisymmetry rules out states
with infinite single particle kinetic energy of the form ψ = φ1 ∧ φ2. In particular, the
cancellation mechanism observed in Example 4.12 is not effective in the antisymmetric
subset of the domain since Ekin,1[ψ] and Ekin,2[ψ] have the same sign. That (4.4.3) extends
to all ψ ∈ D(H0) ∩Ha, is the content of the following lemma.

Lemma 4.13 (Claim c) of Theorem 1). For all ψ ∈ D(H0) ∩Ha, we have

Ekin,tot[ψ] = 2 · Ekin,1[ψ] = 2 · Ekin,2[ψ], (4.4.4)

which means in particular that Ekin,k[ψ] <∞ for all ψ ∈ D(H0) ∩Ha and k = 1, 2.

Proof. Let ψ ∈ D(H0) ∩ Ha. We note that H0 with domain D0 ∩ Ha is essentially self-
adjoint as H0 leaves Ha invariant. The domain of the closure is given by D(H0) ∩ Ha.
Thus, we can choose a sequence (ψn)n∈N ⊂ D0 ∩ Ha such that ‖ψ − ψn‖

n→∞−−−→ 0 and
‖H0(ψ − ψn)‖ n→∞−−−→ 0. Note that elements from D0 ∩ Ha are of the form ψ = φ1 ∧ φ2
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where φ1, φ2 ∈ H1(R3). Using the continuity of the scalar product twice, this implies

2 · Ekin,1[ψ] = 2 · lim
m→∞

〈ψm, D1 ⊗ idψ〉

= 2 · lim
m→∞

〈D1 ⊗ idψm, ψ〉

= 2 · lim
m→∞

lim
n→∞

〈D1 ⊗ idψm, ψn〉

= 2 · lim
m→∞

lim
n→∞

〈ψm, D1 ⊗ idψn〉
(∗)
= lim

m→∞
lim
n→∞

〈ψm, (D1 ⊗ id + id⊗D2)ψn〉

=
〈
ψ,H0ψ

〉
= Ekin,tot[ψ] <∞. (4.4.5)

In (∗), we used the polarization identity in order to apply (4.4.3). In order to treat
Ekin,2[ψ], one proceeds analogously, which finishes the proof.

One could think that (4.4.3) suggests that demanding antisymmetry from allowed wave-
functions leads to higher regularity. After all, states like ψ2 from Example 4.11 are ruled
out. This, however, is in general not true as the next example shows.

Example 4.14. We continue Example 4.10. Recall the state ψ1(x,y) = S1f(x+y)g(x−
y). If one takes g to be an even function, then ψ1 is antisymmetric by the choice of S1,
yet f requires no other regularity than being square-integrable. �

4.5. Time evolution generated by H2BD

This section continues to address the question of physical relevance of states with infinite
single particle kinetic energy (infinite SPKE). In Section 4.4, we restricted ourselves to
antisymmetric states and found that then infinite SPKE cannot occur. In this section,
however, we assume that the initial states are arbitrary states but with finite SPKE. We
show that then for all finite times t ∈ R the single particle kinetic energy stays finite,
where the time evolution we consider can be the free time evolution or the full time
evolution, even including interaction, if the potentials obey a regularity condition. This
is the content of the following theorem for which we recall D0 = H1(R3, d3x) ⊗ C4 ⊗
H1(R3, d3y)⊗ C4.

Theorem 4.15 (Claim d) of Theorem 1). Let V be the operator of multiplication with
the smooth real-valued function V ∈ C∞(R3 × R3). We assume that there exists a real
constant 0 < M <∞ such that

a) sup
x,y∈R3

∣∣∣∣( ∂

∂xi
V

)
(x,y)

∣∣∣∣ ≤M ,

b) sup
x,y∈R3

∣∣∣∣( ∂

∂yi
V

)
(x,y)

∣∣∣∣ ≤M ,

c) sup
x,y∈R3

∣∣∣∣( ∂2

∂xi∂yj
V

)
(x,y)

∣∣∣∣ ≤M .
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Then,

a) the free time evolution generated by H0 leaves D0 invariant, i.e., for all t ∈ R, we
have

e−itH0D0 ⊆ D0, (4.5.1)

b) the full time evolution generated by H2BD = H0 + V leaves D0 invariant, i.e., for all
t ∈ R, we have

e−itH2BDD0 ⊆ D0. (4.5.2)

Proof.

a) Recalling the notation of H0 from line (4.1.8)

H0 = (−iα · ∇x + βm)⊗ id + id⊗ (−iα · ∇y + βm) = D1 ⊗ id + id⊗D2,
(4.5.3)

we note that H0 is the sum of two commuting operators. Thus,

e−itD1⊗ide−itid⊗D2 = e−it(D1⊗id+id⊗D2) = e−itid⊗D2e−itD1⊗id (4.5.4)

holds. This allows us to compute for all i, j = 1, 2, 3, all t ∈ R, and all f ∈ D0

‖∂xi ⊗ ∂yje−itH0f‖ = ‖∂xi ⊗ ∂yje−it(D1⊗id+id⊗D2)f‖
= ‖e−itD1⊗ide−itid⊗D2∂xi ⊗ ∂yjf‖
= ‖∂xi ⊗ ∂yjf‖ <∞, (4.5.5)

which finishes the proof.

b) We need to show for all f ∈ D0, all i, j = 1, 2, 3, and all t ∈ R that∥∥∥∂xi ⊗ ∂yje−itH2BDf
∥∥∥ <∞. (4.5.6)

We fix an f ∈ D0, set

Tn := e−itH0/ne−itV/n, (4.5.7)

and define with its help the sequence (fn)n∈N by

fn := T nn f. (4.5.8)

Note that Tn is unitary due to the self-adjointness of H0 and of V . We will see in
Theorem 5.1, that H0 + V is essentially self-adjoint on C∞0 (R3 × R3) ⊗ C16. Hence,
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we know from the Trotter product formula (see [RS80, Theorem VIII.31]) that

lim
n→∞

fn = lim
n→∞

T nn f = e−itH2BDf (4.5.9)

for all t ∈ R. Furthermore, we define the sequence (gn)n∈N by

gn := ∂xi ⊗ ∂yjfn = ∂xi ⊗ ∂yjT nn f. (4.5.10)

It suffices to show that (gn)n∈N converges weakly in H2 to ∂xi ⊗ ∂yje−itH2BDf as this
implies (4.5.6) using the lower semicontinuity of the L2-norm (see (4.5.18) below).

To that end, we show that ‖∂xi ⊗ ∂yjT nn f‖ is bounded uniformly in n. Therefore, we
compute

‖∂xi ⊗∂yjT nn f
∥∥ =

∥∥∥∂xi∂yje−itH0/ne−itV/nT n−1
n f

∥∥∥
=
∥∥∥e−itH0/n∂xi∂yje

−itV/nT n−1
n f

∥∥∥
=
∥∥∂xi∂yje−itV/nT n−1

n f
∥∥

≤
∥∥(∂xi∂yje−itV/n)T n−1

n f
∥∥+

∥∥e−itV/n(∂xi∂yjT
n−1
n f)

∥∥
+
∥∥(∂yje−itV/n) (∂xiT

n−1
n f)

∥∥+
∥∥(∂xie−itV/n) (∂yjT

n−1
n f)

∥∥
=

∥∥∥∥( t2n2
e−itV/n(∂xiV )(∂yjV ) +

t

n
e−itV/n(∂xi∂yjV )

)
T n−1
n f

∥∥∥∥
+

∥∥∥∥( tne−itV/n∂yjV

)
(∂xiT

n−1
n f)

∥∥∥∥+

∥∥∥∥( tne−itV/n∂xiV

)
(∂yjT

n−1
n f)

∥∥∥∥
+
∥∥∂xi∂yjT n−1

n f
∥∥

≤
(
t2

n2
M2 +

t

n
M

)∥∥T n−1
n f

∥∥+
t

n
M
(∥∥∂xiT n−1

n f
∥∥+

∥∥∂yjT n−1
n f

∥∥)
+
∥∥∂xi∂yjT n−1

n f
∥∥

=

(
t2

n2
M2 +

t

n
M

)
‖f‖+

t

n
M
(∥∥∂xiT n−1

n f
∥∥+

∥∥∂yjT n−1
n f

∥∥)
+
∥∥∂xi∂yjT n−1

n f
∥∥ , (4.5.11)

where we simplified the notation ∂xi ⊗ ∂yj to ∂xi∂yj , used that e−itV/n ∈ C∞(R3×R3),
and that ‖T n−1

n f‖ = ‖f‖ as Tn is unitary.
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We consider ‖∂xiT n−1
n f‖ separately and find∥∥∂xiT n−1

n f
∥∥ =

∥∥∥∂xie−itH0/ne−itV/nT n−2
n f

∥∥∥
=
∥∥∥e−itH0/n∂xie

−itV/nT n−2
n f

∥∥∥
=
∥∥∂xie−itV/nT n−2

n f
∥∥

=

∥∥∥∥( tne−itV/n∂xiV

)
T n−2
n f + e−itV/n∂xiT

n−2
n f

∥∥∥∥
≤ t

n
M ‖f‖+

∥∥∂xiT n−2
n f

∥∥ . (4.5.12)

Upon noticing the recursive nature of inequality (4.5.12), we obtain∥∥∂xiT n−1
n f

∥∥ ≤ t

n
M‖f‖+

t

n
M‖f‖+

∥∥∂xiT n−3
n f

∥∥
≤ (n− 1)t

n
M‖f‖+ ‖∂xif‖

≤ tM‖f‖+ ‖∂xif‖ . (4.5.13)

As the same reasoning that led to inequality (4.5.13) also applies to ‖∂yjT n−1
n f‖,

line (4.5.11) can be estimated as

∥∥∂xi∂yj T nn f‖ ≤ ( t2n2
M2 +

t

n
M

)
‖f‖+

t

n
M
(
2tM‖f‖+ ‖∂xif‖+

∥∥∂yjf∥∥)
+
∥∥∂xi∂yjT n−1

n f
∥∥

=

(
t2(1 + 2n)

n2
M2 +

t

n
M

)
‖f‖+

t

n
M
(
‖∂xif‖+

∥∥∂yjf∥∥)
+
∥∥∂xi∂yjT n−1

n f
∥∥

(∗)
≤
(
t2(1 + 2n)

n
M2 + tM

)
‖f‖+ tM

(
‖∂xif‖+

∥∥∂yjf∥∥)+
∥∥∂xi∂yjf∥∥

≤
(
3t2M2 + tM

)
‖f‖+ tM

(
‖∂xif‖+

∥∥∂yjf∥∥)+
∥∥∂xi∂yjf∥∥ , (4.5.14)

where we used recursion arguments in (∗) again. Line (4.5.14) is the desired uniform
bound in n.

This bound implies that the sequence (gn)n∈N has a subsequence (gnk)k∈N which con-
verges weakly to a g ∈ H2 (see [LL01, Theorem 2.18]), i.e., for all h ∈ H2 it holds
that

|〈h, gnk − g〉|
k→∞−−−→ 0. (4.5.15)
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As this holds in particular for all ϕ ∈ C∞c (R3)⊗C4 ⊗ C∞c (R3)⊗C4, we can compute∣∣∣〈ϕ, gnk − ∂xi∂yje−itH2BDf
〉∣∣∣ =

∣∣∣〈ϕ, ∂xi∂yj(fnk − e−itH2BDf)
〉∣∣∣

=
∣∣∣〈∂xi∂yjϕ, (fnk − e−itH2BDf)

〉∣∣∣
≤
∥∥∂xi∂yjϕ∥∥∥∥∥fnk − e−itH2BDf

∥∥∥ k→∞−−−→ 0. (4.5.16)

This implies

g = ∂xi∂yje
−itH2BDf. (4.5.17)

Now, the lower semicontinuity of the L2-norm (see [LL01, Theorem 2.11]) yields∥∥∥∂xi∂yje−itH2BDf
∥∥∥ = ‖g‖ ≤ lim inf

k→∞
‖gnk‖ <∞, (4.5.18)

where lim inf
k→∞

‖gnk‖ <∞ holds by the uniform bound (4.5.14).

Remark 4.16. Several remarks are in order.

a) We believe that the assumption V ∈ C∞ can be substantially relaxed. Smoothness of
the potentials is assumed merely for technical reasons.

b) The same technique employed here can also be used to show invariance of Hk(R3)⊗
C4 ⊗Hk(R3)⊗ C4 for k > 1.

c) As e−itH2BD is boundedly invertible and Theorem 4.15b) also holds for the inverse,
we see that also D(H2BD) \ D0 is left invariant by e−itH2BD . Thus, the time evolution
partitions D(H2BD) into two subsets that are disjoint in the sense that they cannot
be mixed by the time evolution for finite times t ∈ R.

d) This implies that finite SPKE states can reach infinite SPKE states only in the limit
t→∞.

e) The converse of Theorem 4.15 is also true, i.e., a dense linear set D̃ contained in the
domain of a self-adjoint operator A is a core for A if for all t ∈ R, e−itAD̃ ⊆ D̃ (see
[RS80, Theorem VIII.11]). �
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5. Self-adjointness of H2BD with
unbounded interaction

5.1. Essential self-adjointness of H2BD with smooth
potentials

Our first result concerning self-adjointness of H2BD with unbounded interaction is pre-
sented in this section. We require a smooth potential and can then employ an elliptic
regularity argument. In the case of one-body Dirac operators the analogous statement is
well-known and can be found in [Tha92, Theorem 4.3]. The proof of this result extends
to the N particle case. Therefore, we follow the proof of [Tha92, Theorem 4.3] closely, in
some instances even verbatim.

Theorem 5.1. Let the potential V be the operator of multiplication with a Hermitian
matrix with entries Vij ∈ C∞(R3 × R3), i, j = 1, 2, . . . , 16. Then, H2BD = H0 + V is
essentially self-adjoint on C∞c (R3 × R3)⊗ C16.

Proof. Since V is multiplication with a Hermitian matrix, H2BD is symmetric on C∞0 (R3×
R3)⊗C16. By the basic criterion for essential self-adjointness (see [RS75]), it thus suffices
to show that (H2BD ± i)ψ = 0 for some ψ ∈ H2 implies ψ = 0. The operator H2BD ± i is
an elliptic differential operator of first order with variable C∞- coefficients. By the local
regularity property of elliptic operators, we conclude that any L2-solution of (H2BD +
i)ψ = 0 is infinitely differentiable. Let ψ be such a solution. Choose now a function
f ∈ C∞c (R3 × R3) with f(x,y) = 1 for |x|2 + |y|2 ≤ 1 and set fn(x,y) = f(x

n
, y
n
) for all

n ∈ N. Then, we find

(H2BD + i) fnψ = −i(α⊗ 1) · ψ∇xfn − i(1⊗α) · ψ∇yfn, (5.1.1)

where we used (H2BD + i)ψ = 0. With (∇fn)(x,y) = 1
n
(∇f)(x

n
, y
n
), we obtain

‖fnψ‖2 + ‖H2BDfnψ‖2 = ‖(H2BD + i) fnψ‖2

= ‖(α⊗ 1) · ψ∇xfn + (1⊗α) · ψ∇yfn‖2

≤ 2

n2
sup

x,y∈R3

|(∇xf)(x,y)|2
∥∥∥∥∥

3∑
k=1

(αk ⊗ 1)ψ

∥∥∥∥∥
2

+
2

n2
sup

x,y∈R3

|(∇yf)(x,y)|2
∥∥∥∥∥

3∑
k=1

(1⊗αk)ψ

∥∥∥∥∥
2

n→∞−−−→ 0, (5.1.2)
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which implies together with ‖fnψ‖
n→∞−−−→ ‖ψ‖ that ψ = 0. The analogous argument for

(H2BD − i)ψ = 0 finishes the proof of the theorem.

5.2. Self-adjoint extension of H2BD with Coulomb
interaction

This section is devoted to the proofs leading to our main result Theorem 2, and contains
the construction of the self-adjoint extension of H2BD. In the subsequent section, we will
complement this extension by a criterion that distinguishes it uniquely.
For the remainder of this chapter, we fix the interaction potential Vint and define with

γ ∈ R

Vint := γV, (5.2.1)

where we assume that V is in the underlying Hilbert spaceHrel the operator of component-
wise multiplication with |r|−κ for almost all r ∈ R3 and all 0 < κ ≤ 1 with domain

D(V ) =
{
f ∈ Hrel

∣∣ | · |−κf ∈ Hrel
}
. (5.2.2)

It is well-known that V is positive and self-adjoint on D(V ).
Before we proceed with the construction of the self-adjoint extension of H2BD, we

want to understand why many standard techniques from the perturbation theory of self-
adjoint operators are not helpful in finding such a self-adjoint extension: An unbounded
interaction potential is not relatively bounded by H0.1

Lemma 5.2. Let γ 6= 0 and let 0 < κ ≤ 1 be fixed. Then, V is not relatively bounded by
H0.

Proof. It suffices to provide an f ∈ D(H0) such that f /∈ D(V ). To that end, we fix
0 < κ ≤ 1 and chose a δ ∈ R+ such that 0 < δ < κ. Next, we define f for almost all
x,y ∈ R3 by

f(x,y) = ω−,1 ·
e−|x−y|

2

|x− y|3/2−δ
· φ(x+ y) (5.2.3)

for some φ ∈ S(R3). We recall the definition of ω−,1 and its crucial property

P−(p)ω−,1 = ω−,1 (5.2.4)

from lines (3.4.13)-(3.4.15). This implies ω−,1 ∈ Ker(M− · p). Therefore, we obtain with
help of the coordinate transform U∥∥H0f

∥∥ =
∥∥∥P̂ ·M+Uf + M− · p̂Uf

∥∥∥ =
∥∥∥P̂ ·M+Uf

∥∥∥ <∞, (5.2.5)

1This was first noticed by Julien Sabin and Jérémy Sok, private communication.
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and can thus conclude that f ∈ D(H0). But f 6∈ D(| · |−κ) as

∥∥γ| · |−κf∥∥2
=

∫
R3

γ2

|r|3−2δ+2κ
e−2|r|2 d3r (5.2.6)

does not converge except for γ = 0. This proves the lemma.

Before we can give domain and action of the self-adjoint extension of H2BD, we would
like to recall from Section 2.2 the various steps (or layers of self-adjointness) involved in
this construction, and hence, the corresponding proofs.
As first step, we note that H0 does not separate into center-of-mass and relative Hamil-

tonian as one is used to since UH2 6= Hcom⊗Hrel. Nevertheless, by employing direct fiber
integrals, we can infer self-adjointness of H2BD from self-adjointness of Hrel. Therefore,
we look only for a self-adjoint extension of Hrel. This extension plus P̂ ·M+ is then also
a self-adjoint extension of H2BD. Since Hrel is a matrix operator, we have as second step
the Frobenius-Schur factorization at our disposal. Therefore, we can use that important
properties such as closedness and self-adjointness are encoded in the Schur complement.
After a slight but important modification of Hrel, we see that the Schur complement pos-
sesses a self-adjoint extension, denoted by SF . This, in turn, paves the way to Hrel

F , the
self-adjoint extension of Hrel, and finally, to HF which denotes the self-adjoint extension
of H2BD in relative and center-of-mass coordinates.
We start with the just mentioned slight but important modification of Hrel. We define

the symmetric and bounded matrix

B := 2β ⊗ β, (5.2.7)

recall Eq. (2.1.4) for the definition of β. We now consider Hrel + P+BP+. Recalling the
matrix representation of Hrel from line (2.2.18), we find

Hrel + P+BP+ =

(
M− · p̂+ P+BP+ + P+γV P+ P+γV P−

P−γV P+ P−γV P−

)
(5.2.8)

which is well-defined on

D(Hrel) = D+ ⊕ (D(V ) ∩Hrel
− ), (5.2.9)

where D+ = (C16⊗H1(R3, d3r))∩Hrel
+ , introduced in (2.2.19). For sake of completeness,

we prove that D(Hrel) is dense in Hrel.

Proposition 5.3. D(Hrel) is dense in Hrel.

Proof. The statement of the proposition follows if D+ is dense in Hrel
+ and D(V )∩Hrel

− is
dense in Hrel

− since the splitting of Hrel is orthogonal. The former statement follows from
density of H1 in L2, the latter holds then by Hardy’s inequality.

In the following lemma, we examine the properties of the combination of the matrices
P+(p)BP+(p) and M− · p.
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Lemma 5.4. The following holds for almost all p ∈ R3:

a) BP+(p) = P+(p)B,

b) (M− · p+BP+(p))
2

= 4 (p2 + 1)P+(p), and

c) |M− · p+BP+(p)| = 2 (p2 + 1)
1/2
P+(p).

Proof. a) We get by direct computation BP+(p) = P+(p)B for almost all p ∈ R3 since
(α · p)β = −β(α · p) by Eq. (2.1.6).

b) Using P+(p)M− · p = M− · pP+(p) = M− · p, we compute for almost all p ∈ R3

(M− ·p+BP+(p))2 = 4(p2+1)P+(p) where again we made use of the anticommutation
relations in Eq. (2.1.6).

c) By part a), we have P+(p)BP+(p) = BP+(p), and thus, M− ·p+BP+(p) is Hermitian.
We compute for almost all p ∈ R3

∣∣M− · p+BP+(p)
∣∣ =

((
M− · p+BP+(p)

)† (
M− · p+BP+(p)

))1/2

=
(
4
(
p2 + 1

)
P+(p)

)1/2 (5.2.10)

where we used part b) in the last step. Now, P+(p) is a Hermitian matrix, and
therefore, there exists a unitary matrix u(p)—the same matrix u(p) as in lines (3.1.1)
and (3.1.10)—such that we have for almost all p ∈ R3

u(p)P+(p)u(p)† =

(
18

08

)
. (5.2.11)

Then,

(
4
(
p2 + 1

)
P+(p)

)1/2
= u(p)† 2

(
p2 + 1

)1/2
(

18

08

)
u(p)

= 2
(
p2 + 1

)1/2
P+(p) (5.2.12)

for almost all p ∈ R3 which concludes the proof.

In the following, we will make frequent use of the operator M− · p̂ + BP+ in the
underlying Hilbert space Hrel

+ . Thus, we introduce the abbreviation

A0 ≡M− · p̂+BP+. (5.2.13)

First, we want to relate the different interaction potentials, distinguished by the exponent
0 < κ ≤ 1, to A0. Recall D+ = (C16 ⊗H1(R3, d3r)) ∩Hrel

+ from line (2.2.20).

Lemma 5.5. Let 0 < κ ≤ 1 and let Mκ > 0 be given by

Mκ = 2−κ
Γ
(

3
4
− κ

2

)
Γ
(

3
4

+ κ
2

) . (5.2.14)
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a) For all f ∈ D+,∥∥| · |−κf∥∥ ≤ Mκ

2
‖A0f‖ . (5.2.15)

b) For all f ∈ (C16 ⊗H1/2(R3, d3r)) ∩Hrel
+ ,

〈
f, | · |−κf

〉
≤
M2

κ/2

2
〈f, |A0| f〉 . (5.2.16)

Proof. a) By [Her77, Theorem 2.5], for all h ∈ C16 ⊗ S(R3) we have the bound∥∥| · |−κ(p̂2 + 1)−κ/2h
∥∥ ≤Mκ‖h‖. (5.2.17)

This inequality extends to all h ∈ Hrel
+ . Now, for all f ∈ D+, there exists a g ∈ Hrel

+

such that f = (p̂2 + 1)−κ/2g. Thus, for all f ∈ D+ we can compute∥∥| · |−κf∥∥ =
∥∥| · |−κ(p̂2 + 1)−κ/2g

∥∥ ≤Mκ‖g‖ = Mκ

∥∥(p̂2 + 1)κ/2f
∥∥ . (5.2.18)

With part c) of Lemma 5.4, for all f ∈ D+ we obtain∥∥| · |−κf∥∥ ≤ Mκ

2

∥∥2(p̂2 + 1)κ/2f
∥∥

≤ Mκ

2

∥∥2(p̂2 + 1)1/2P+f
∥∥

=
Mκ

2

∥∥∣∣M− · p̂+BP+

∣∣ f∥∥
=
Mκ

2
‖A0f‖ , (5.2.19)

which proves the claim.

b) Due to (5.2.18), we find for all f ∈ D+〈
f, | · |−κf

〉
=
∥∥| · |−κ/2f∥∥2

≤M2
κ/2

∥∥(p̂2 + 1)κ/4P+f
∥∥2

= M2
κ/2

〈
f, (p̂2 + 1)1/2P+f

〉
=
M2

κ/2

2

〈
f, 2(p̂2 + 1)1/2P+f

〉
=
M2

κ/2

2
〈f, |A0| f〉 . (5.2.20)

Since C16 ⊗H1(R3, d3r) is a core of 〈·, (p̂2 + 1)1/2·〉 (see [LL01, Theorem 7.14]), this
computation extends to all f ∈ (C16 ⊗H1/2(R3, d3r)) ∩Hrel

+ .

Part a) of Lemma 5.4 says that B leaves Hrel
+ invariant. Consequently, we can define
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the operator

A := A0 + P+γV P+ (5.2.21)

in the underlying Hilbert space Hrel
+ with domain

D(A) = D+ =
(
C16 ⊗H1(R3, d3r)

)
∩Hrel

+ . (5.2.22)

The next lemma provides important properties of A in order to obtain a self-adjoint
extension of Hrel + P+BP+ later on in Theorem 5.11.

Lemma 5.6. Let 0 < κ ≤ 1 and let Mκ be given as in Lemma 5.5. Moreover, let
|γ|Mκ < 2. Then,

a) A is self-adjoint on D+, and

b) 0 ∈ ρ(A).

Proof. a) SinceBP+ is symmetric and bounded, A0 is self-adjoint onD+ by Lemma 4.3b).
We have for all f ∈ D+

‖P+γV P+f‖ ≤ ‖γV f‖ =

∥∥∥∥ γ

| · |κ
f

∥∥∥∥ ≤ |γ|Mκ

2
‖A0f‖ (5.2.23)

where we used Lemma 5.5a) in the last estimate. For |γ|Mκ < 2, the Kato-Rellich
theorem (see, e.g., [RS75, Theorem X.12]) now implies self-adjointness of A on D+.

b) First, we prove that A0 has a bounded inverse A−1
0 : Hrel

+ → D+. For all f ∈ Hrel
+ , we

find (p̂2 + 1)−1f ∈ C16 ⊗H2(R3, d3r) and A0(p̂2 + 1)−1f ∈ D+ with

∥∥A0(p̂2 + 1)−1
∥∥ = sup

p∈R3

∣∣∣∣M− · p+BP+(p)

p2 + 1

∣∣∣∣ = 2 (5.2.24)

By Lemma 5.4b), on (C16 ⊗ H2(R3, d3r)) ∩ Hrel
+ we have A2

0 = 4(p̂2 + 1)P+. Hence,
for all f ∈ Hrel

+

A0

(
1

4
A0(p̂2 + 1)−1f

)
= f (5.2.25)

which together with Eq. (5.2.24) implies that A−1
0 = 1/4A0(p̂2 + 1)−1.

Moreover, for |γ|Mκ < 2, a theorem by Kato [Kat95, Theorem IV.1.16, p. 196] in
combination with Eq. (5.2.23) gives the existence of a bounded inverse of A. The
same theorem by Kato also implies that AD(A) = Hrel

+ (see [Sch72, Lemma 1]), which
in return implies 0 ∈ ρ(A).

Next, we aim at the Frobenius-Schur factorization of Hrel + P+BP+. Recalling the
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matrix representation of Hrel + P+BP+ from line (5.2.8), we find

Hrel + P+BP+ =

(
A P+γV P−

P−γV P+ P−γV P−

)
(5.2.26)

with domains

A : D+ → Hrel
+ , P+γV P− : D(V ) ∩Hrel

− → Hrel
+

P−γV P+ : D(V ) ∩Hrel
+ → Hrel

− , P−γV P− : D(V ) ∩Hrel
− → Hrel

−
(5.2.27)

and define the Schur complement S : D(S)→ Hrel
− of A by

S := P−γV P− − P−γV P+A
−1P+γV P− (5.2.28)

with domain

D(S) = D(V ) ∩Hrel
− . (5.2.29)

That S is well-defined, and thus the Frobenius-Schur factorization of Hrel+P+BP+ exists,
is the content of the next lemma.

Lemma 5.7. Let 0 < κ ≤ 1 and let |γ|Mκ < 2. Then, the matrix representation of
Hrel + P+BP+ is symmetric and its Frobenius-Schur factorization is given by

Hrel + P+BP+ =

=

(
id 0

P−γV P+A
−1 id

)(
A 0
0 S

)(
id A−1P+γV P−
0 id

)
. (5.2.30)

Proof. We use the theory of unbounded matrix operators in Hilbert space from Ap-
pendix A. There we introduced the conditions M1-M6, which we need to check now:

M1 The entries A,P+γV P−, P−γV P+, and P−γV P− have dense domains by Proposi-
tion 5.3. As they are symmetric, A and P−γV P− are closable. P+γV P− is closable
as (P−γV P+)∗ is a closed extension of it which can be seen as follows. Suppose that
f ∈ D(V ) ∩Hrel

− and g ∈ D(V ) ∩Hrel
+ . Then, we find

〈f, P−V P+g〉 = 〈f, V g〉 = 〈V f, g〉 = 〈P+V P−f, g〉 , (5.2.31)

and thus, f ∈ D((P−γV P+)∗) holds. An analogous argument applies to P−γV P+

and (P+γV P−)∗.

M2 D(P+γV P−) = D(P−γV P−) by definition in (5.2.27).

M3 The resolvent set of A is not empty as 0 ∈ ρ(A) by Lemma 5.6.

M4 D(A∗) = D+ ⊂ D((P+γV P−)∗) by definition in (5.2.27) and Hardy’s inequality.

M5 D(A) ⊂ D(P−γV P+) by line (5.2.27) and Hardy’s inequality.
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M6 D(Hrel + P+BP+) = D+ ⊕ (D(V ) ∩Hrel
− ) which is dense in Hrel by Proposition 5.3.

Symmetry follows from the criterion in Lemma A.1 for which we use self-adjointess
of A from Lemma 5.6. Existence of the Frobenius-Schur factorization then follows from
Theorem A.3.

As outlined in Section 2.2 and briefly at the beginning of this section, the crucial
ingredient in finding a self-adjoint extension of H2BD is to find a self-adjoint extension of
the Schur complement S. However, before we can present this extension in Lemma 5.10
below, we need to provide the technical results of Theorem 5.8 and Lemma 5.9.

Theorem 5.8. Let 0 < κ ≤ 1. For every f ∈ D(V 1/2) ∩ Hrel
− , there exists a sequence

(fn)n∈N ⊂ D(V ) such that

‖f − P−fn‖+
∥∥V 1/2P−(f − fn)

∥∥ n→∞−−−→ 0. (5.2.32)

Proof. Let f ∈ D(V 1/2) ∩Hrel
− . First, we define the Gaussian χn for all n ∈ N by

χn(r) := e−2nπ|r|2 , (5.2.33)

and with its help the Gaussian cut-off 1− χn for f by fn := (1− χn)f . By construction,
(fn)n∈N ⊂ D(V ) for all n ∈ N since we have (1−χn(r))|r|−κ → 0 as |r| → 0 for all n ∈ N.

1

n = 0

n larger

Figure 5.1.: The Gaussian cut-off function 1 − χn for n = 0 and for n larger is
depicted on the left. On the right, an arbitrary function f (solid line)
with singularity in the origin and some of its cut-off versions (1 − χn)f
(dashed lines) are shown. Notice that the cut-off versions all pass the
origin.

Dominated convergence implies

‖f − fn‖2 = ‖f − (1− χn)f‖2 =

∫
R3

|χn(r)|2 |f(r)|2 d3r
n→∞−−−→ 0 (5.2.34)

since |χn(r)|2 ≤ 1 and |χn(r)|2 n→∞−−−→ 0 for almost all r ∈ R3, and therefore,

‖f − P−fn‖ = ‖P−f − P−fn‖ ≤ ‖P−‖‖f − fn‖
n→∞−−−→ 0. (5.2.35)
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In order to show
∥∥V 1/2P−(f − fn)

∥∥ n→∞−−−→ 0, we estimate∥∥V 1/2P−(f − fn)
∥∥ ≤ ∥∥P−V 1/2χnf

∥∥+
∥∥[V 1/2, P−

]
χnf

∥∥
≤ ‖P−‖

∥∥V 1/2χnf
∥∥+

∥∥[V 1/2, τ
]
χnf

∥∥ , (5.2.36)

where we used P− = 1/2 (id−τ). Hence, using f ∈ D(V 1/2), we get for the first summand
of (5.2.36) by dominated convergence as above∥∥V 1/2χnf

∥∥ n→∞−−−→ 0. (5.2.37)

In order to treat the second summand of (5.2.36), we note the following. In the paragraph
leading to the definition of Tij in line (3.3.7), we saw that in order to control τ , it suffices
to control Tij. Thus, denoting the spinor components of f by fk, k = 1, 2, . . . , 16, it
remains to show∥∥[V 1/2, Tij

]
χnf

k
∥∥ n→∞−−−→ 0 (5.2.38)

for all i, j = 1, 2, 3 and k = 1, 2, . . . , 16.

In the following, we will collect all numerical factors, which are independent of ε, r,
and y, by the same symbol C. The exact value of C might therefore change from one
line to the next.

Using that V 1/2 is multiplication with | · |−κ/2 and thus commutes with that summand
of Tij which contains the Kronecker delta δij, we estimate for almost all r ∈ R and for
all i, j, k∣∣∣([| · |−κ/2, Tij]χnfk)(r)

∣∣∣
= C

∣∣∣∣limε→0

∫
|y|>ε

Kij(y)

(
1

|r|κ/2
− 1

|r − y|κ/2

)
χn(r − y)fk(r − y) d3y

∣∣∣∣
≤ C lim

ε→0

∫
|y|>ε

1

|y|3

∣∣∣∣ 1

|r|κ/2
− 1

|r − y|κ/2

∣∣∣∣χn(r − y)
∣∣fk(r − y)

∣∣ d3y

= C lim
ε→0

∫
|y|>ε

1

|y|3

∣∣∣∣ |r − y|κ/2 − |r|κ/2|r − y|κ/2|r|κ/2

∣∣∣∣χn(r − y)
∣∣fk(r − y)

∣∣ d3y

(∗)
≤ C lim

ε→0

∫
|y|>ε

1

|y|3
|y|κ/2

|r − y|κ/2|r|κ/2
χn(r − y)

∣∣fk(r − y)
∣∣ d3y

= C
1

|r|κ/2
lim
ε→0

∫
|y|>ε

1

|y|3−κ/2
χn(r − y)

∣∣fk(r − y)
∣∣

|r − y|κ/2
d3y

= C
1

|r|κ/2

∫
R3

1

|y|3−κ/2
χn(r − y)

∣∣fk(r − y)
∣∣

|r − y|κ/2
d3y (5.2.39)

where we used Theorem 3.6b) together with dominated convergence in the last step and
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Lemma B.1 (Appendix B) in (∗). We define hn for almost all r ∈ R3 by

hn(r) :=

∫
R3

1

|y|3−κ/2
χn(r − y)

∣∣fk(r − y)
∣∣

|r − y|κ/2
d3y. (5.2.40)

Now, we exploit the Gaussian nature of the cut-off, i.e., the fact that χn from line (5.2.33)
lies in Lp(R3) for all p ≥ 1. This implies | · |−κ/2χn|fk| ∈ Lp(R3) for all p ∈ [1, 2] and
n ∈ N as | · |−κ/2|fk| ∈ L2(R3). With Theorem 3.6b), we can then conclude hn ∈ L2(R3)
for all n ∈ N. Thus, hn has a Fourier transform, which, also by Theorem 3.6b), is for
almost all p ∈ R3 given by

ĥn(p) =
C

|p|κ/2
F

(
χn
∣∣fk∣∣

| · |κ/2

)
(p). (5.2.41)

A further consequence, known as Hardy-Littlewood-Sobolev theorem of fractional inte-
gration (see [Ste70, Chapter V, Theorem 1]), is the inequality

‖hn‖2 ≤ C

∥∥∥∥∥χn
∣∣fk∣∣

| · |κ/2

∥∥∥∥∥
6

3+κ

. (5.2.42)

Note the different Lp-norms. Since χn ≤ χ1 and χ1 is a Gaussian and thus lies in Lp(R3)
for all p ≥ 1, we can conclude with dominated convergence∥∥∥∥∥χn

∣∣fk∣∣
| · |κ/2

∥∥∥∥∥
6

3+κ

n→∞−−−→ 0. (5.2.43)

Putting everything together then yields

∥∥[| · |−κ/2, Tij]χnfk∥∥ (i)

≤ C
∥∥| · |−κ/2hn∥∥

(ii)

≤ C
∥∥∥(|p̂|2 + 1

)κ/4
hn

∥∥∥
≤ C

(∥∥∥|p̂|κ/2 hn∥∥∥+ ‖hn‖
)

(iii)

≤ C

∥∥∥∥∥χn
∣∣fk∣∣

| · |κ/2

∥∥∥∥∥
2

+ C

∥∥∥∥∥χn
∣∣fk∣∣

| · |κ/2

∥∥∥∥∥
6

3+κ

n→∞−−−→ 0, (5.2.44)

where we used (5.2.39), (5.2.40) in (i), (5.2.18) from the proof of Lemma 5.5 in (ii),
(5.2.41), (5.2.42) in (iii), and dominated convergence and line (5.2.43) for the convergence
n→∞. This proves the statement.
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Lemma 5.9. Let 0 < κ ≤ 1 and let |γ|M2
κ/2 < 1. Then, the operator

(|γ|V )1/2P+A
−1P+(|γ|V )1/2 : D(V 1/2)→ Hrel (5.2.45)

is bounded on the dense set D(V 1/2) with

C := ‖(|γ|V )1/2P+A
−1P+(|γ|V )1/2‖ < 1. (5.2.46)

Proof. As preparation, we prove that the operator (|γ|V )1/2P+|A0|−1/2 : Hrel
+ → Hrel is

bounded with norm∥∥(|γ|V )1/2P+|A0|−1/2
∥∥ ≤√|γ|/2Mκ/2. (5.2.47)

This is equivalent to∥∥(|γ|V )1/2|A0|−1/2
∥∥ ≤√|γ|/2Mκ/2, (5.2.48)

as |A0|−1/2 maps into Hrel
+ . By Lemma 5.5b), for all f ∈ (C16 ⊗H1/2(R3, d3r)) ∩Hrel

+ we
get

〈f, |γ|V f〉 = |γ|
〈
f, | · |−κf

〉
≤
|γ|M2

κ/2

2
〈f, |A0| f〉 (5.2.49)

or equivalently

∥∥(|γ|V )1/2f
∥∥ ≤√ |γ|

2
Mκ/2

∥∥∥|A0|1/2 f
∥∥∥ . (5.2.50)

As |A0|−1/2 maps Hrel
+ into (C16 ⊗H1/2(R3, d3r)) ∩Hrel

+ , this implies for all g ∈ Hrel
+∥∥∥(|γ|V )1/2 |A0|−1/2 g

∥∥∥ ≤√ |γ|
2
Mκ/2 ‖g‖ . (5.2.51)

This also implies∥∥∥|A0|−1/2 P+(|γ|V )1/2
∥∥∥ =

∥∥∥(|A0|−1/2 P+(|γ|V )1/2
)∗∥∥∥

=
∥∥∥((|γ|V )1/2

)∗
P ∗+

(
|A0|−1/2

)∗∥∥∥
=
∥∥∥(|γ|V )1/2P+ |A0|−1/2

∥∥∥ ≤√ |γ|
2
Mκ/2. (5.2.52)

We use the polar decomposition A0 = UA0|A0|. Note that Ker(A0) = {0}, and hence,
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UA0 is unitary. We obtain∥∥(|γ|V )1/2P+A
−1
0 P+(|γ|V )1/2

∥∥ =
∥∥(|γ|V )1/2P+ (UA0|A0|)−1 P+(|γ|V )1/2

∥∥
=
∥∥(|γ|V )1/2P+|A0|−1U−1

A0
P+(|γ|V )1/2

∥∥
=
∥∥(|γ|V )1/2P+|A0|−1/2U−1

A0
|A0|−1/2P+(|γ|V )1/2

∥∥
≤
∥∥(|γ|V )1/2P+|A0|−1/2

∥∥2 ∥∥U−1
A0

∥∥
≤
|γ|M2

κ/2

2
(5.2.53)

where we used unitarity of U−1
A0

and the fact that U−1
A0

and |A0|−1/2 commute as both are
functions of the self-adjoint operator A0.
With the help of the resolvent identity we find∥∥(|γ|V )1/2P+A

−1P+(|γ|V )1/2
∥∥

≤
∥∥(|γ|V )1/2P+

(
A−1 − A−1

0

)
P+(|γ|V )1/2

∥∥+
∥∥(|γ|V )1/2P+A

−1
0 P+(|γ|V )1/2

∥∥
≤
∥∥(|γ|V )1/2P+A

−1(A0 − A)A−1
0 P+(|γ|V )1/2

∥∥+
|γ|M2

κ/2

2

=
∥∥(|γ|V )1/2P+A

−1P+|γ|V P+A
−1
0 P+(|γ|V )1/2

∥∥+
|γ|M2

κ/2

2

=
∥∥((|γ|V )1/2P+A

−1P+(|γ|V )1/2
) (

(|γ|V )1/2P+A
−1
0 P+(|γ|V )1/2

)∥∥+
|γ|M2

κ/2

2

≤
|γ|M2

κ/2

2

∥∥(|γ|V )1/2P+A
−1P+(|γ|V )1/2

∥∥+
|γ|M2

κ/2

2
(5.2.54)

which implies

C =
∥∥(|γ|V )1/2P+A

−1P+(|γ|V )1/2
∥∥ ≤ |γ|M2

κ/2

2− |γ|M2
κ/2

. (5.2.55)

If |γ|M2
κ/2 < 1, then C < 1. This concludes the proof.

Lemma 5.10. Let 0 < κ ≤ 1 and let |γ|M2
κ/2 < 1. Then, the form sum

SF := γ(V 1/2P−)∗V 1/2P− − P−γV P+A
−1P+γV P− (5.2.56)

with domain

D(SF ) = D(V 1/2) ∩ D(S∗) (5.2.57)

defines a self-adjoint extension of S.

Proof. In what follows, it is very useful to distinguish the different scalar products of the
underlying Hilbert spaces Hrel and Hrel

− , respectively. We define two forms that map from
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Hrel
− ×Hrel

− into C. First, we define the form of P−V P− by

v[f, g] := 〈f, P−V P−g〉Hrel
−
, D(v) = D(V ) ∩Hrel

− . (5.2.58)

Second, we define the form t by

t[f, g] :=
〈
V 1/2P−f, V

1/2P−g
〉
Hrel , D(t) = D(V 1/2) ∩Hrel

− . (5.2.59)

Furthermore, we define the restriction of V 1/2 to Hrel
− . In order to clearly distinguish it

from V 1/2, we write V 1/2P−, i.e.,

V 1/2P− : D(V 1/2) ∩Hrel
− → Hrel. (5.2.60)

As it is a map from Hrel
− to Hrel, its adjoint (V 1/2P−)∗ maps from Hrel back to Hrel

− . We
list a number of properties.

(i) v, t are symmetric since V and V 1/2 are self-adjoint in the underlying Hilbert space
Hrel.

(ii) v, t are positive since V and V 1/2 are positive.

(iii) V 1/2P− is closed since V 1/2 and P− are closed and P− is bounded. Thus, t is closed.

We claim that v = t. For all f, g ∈ D(V ) ∩Hrel
− , we compute

v[f, g] = 〈f, P−V P−g〉Hrel
−

= 〈P−f, V P−g〉Hrel

=
〈
P−f, V

1/2V 1/2P−g
〉
Hrel

=
〈
V 1/2P−f, V

1/2P−g
〉
Hrel = t[f, g] (5.2.61)

where we used self-adjointness of P− and V 1/2. Hence, v coincides with t on D(V )∩Hrel
− .

Since D(V ) ∩Hrel
− is a form core for t by Theorem 5.8, we can conclude that v = t.

Now, by [RS80, Theorem VIII.15], t is the form of a unique self-adjoint operator,
denoted by VF with domain D(VF ). In particular, VF is self-adjoint in the underlying
Hilbert space Hrel

− . Since V is positive and self-adjoint on D(V ), P−V P− is positive and
symmetric on D(V )∩Hrel

− . Therefore, also v is the form of a unique self-adjoint operator
by [RS75, Theorem X.23]. By v = t from above, we know that the operator associated
with v is VF . VF is the Friedrichs extension of P−V P− and it is the unique self-adjoint
extension whose domain is contained in D(v). Moreover, by [Sch12, Theorem 10.17], we
have

D(VF ) = D(v) ∩ D((P−V P−)∗)

= D(t) ∩ D((P−V P−)∗)

= D(V 1/2) ∩ D((P−V P−)∗). (5.2.62)
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We compute VF . For all f ∈ D(t) and g ∈ D(VF ) we obtain〈
V 1/2P−f, V

1/2P−g
〉
Hrel = t[f, g] = 〈f, VFg〉Hrel

−
. (5.2.63)

Therefore, V 1/2P−g lies in D((V 1/2P−)∗), and density of D(t) implies
(V 1/2P−)∗V 1/2P−g = VFg holds for all g ∈ D(VF ). We obtain VF ⊆ (V 1/2P−)∗V 1/2P−.
Self-adjointness of VF and symmetry of (V 1/2P−)∗V 1/2P− imply VF = (V 1/2P−)∗V 1/2P−.

In order to connect the above to S, we estimate for all f ∈ D(V ) ∩Hrel
−∣∣∣〈f, P−V P+γA

−1P+V P−f
〉
Hrel
−

∣∣∣
=
∣∣〈V 1/2P−f,

(
V 1/2P+γA

−1P+V
1/2
)
V 1/2P−f

〉
Hrel

∣∣
≤
∥∥V 1/2P−f

∥∥∥∥V 1/2P+γA
−1P+V

1/2
∥∥∥∥V 1/2P−f

∥∥
= C 〈f, P−V P−f〉Hrel

−

= C 〈f, VFf〉Hrel
−

(5.2.64)

where C < 1 holds by Lemma 5.9. Again by Theorem 5.8, we know that D(V ) ∩ Hrel
− is

a form core for t, and thus, the inequality (5.2.64) also holds for all f ∈ D(VF ).

The KLMN-theorem (see, e.g., [RS75, Theorem X.17]) guarantees that the form sum
VF − P−V P+γA

−1P+V P− is a self-adjoint operator with domain D(VF ). Moreover, as
γ is real, we know that the form sum SF := γVF − P−γV P+A

−1P+γV P− with domain
D(SF ) = D(VF ) is a self-adjoint extension of S.

It remains to show that D(SF ) = D(V 1/2) ∩ D(S∗). To that end, we introduce the
abbreviation K ≡ V −V P+γA

−1P+V such that S = P−γKP−. Next, we define the form
k by

k[f, g] := 〈f, P−KP−g〉Hrel
−
, D(k) = D(V ) ∩Hrel

− . (5.2.65)

From the inequality in line (5.2.64) and positivity of P−V P−, we conclude that k[f, f ] ≥
0 for all f ∈ D(k). Thus, by [Sch12, Proposition 10.4], K ≥ 0 also holds. Self-adjointness
of V on D(V ) and the fact that P+A

−1P+ maps into D(V ) imply symmetry of P−KP− on
D(V )∩Hrel

− . Therefore, we know that P−KP− has a self-adjoint extension, its Friedrichs
extension, denoted by KF with domain D(KF ) = D(k) ∩ D((P−KP−)∗). Since P−KP−
and S differ only by the real multiple γ, we get D(KF ) = D(k) ∩ D(S∗).

Now, both VF − P−V P+γA
−1P+V P− and KF extend P−KP−. As they are uniquely

distinguished by their respective form domains, we can conclude that they are equal if
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D(v) = D(k). In order to prove precisely that, we compute for all f ∈ D(V ) ∩Hrel
−

v[f, f ] ≤ 〈f, P−V P−f〉

+
1

1− C
(
C 〈f, P−V P−f〉 −

〈
f, P−V P+γA

−1P+V P−f
〉)

=
1

1− C
(
〈f, P−V P−f〉 −

〈
f, P−V P+γA

−1P+V P−f
〉)

=
1

1− C
k[f, f ] ≤ 2

1− C
〈f, P−V P−f〉 =

2

1− C
v[f, f ] (5.2.66)

where we used (5.2.64) in the first and second to last step. This shows that D(v) = D(k)
and thus KF = VF + P−V P+γA

−1P+V P−. We can now conclude

D(SF ) = D(KF ) = D(v) ∩ D(S∗) = D(V 1/2) ∩ D(S∗), (5.2.67)

which finishes the proof.

Theorem 5.11. Let 0 < κ ≤ 1 and |γ|M2
κ/2 < 1. Then,

Hrel
F :=

(
id 0

P−γV P+A
−1 id

)(
A 0
0 SF

)(
id A−1P+γV P−
0 id

)
− P+BP+

(5.2.68)

with domain

D(Hrel
F ) =

{(
f
g

)
∈ Hrel

+ ⊕Hrel
−

∣∣∣∣ f + A−1P+γV P−g ∈ D+,
g ∈ D(SF )

}
(5.2.69)

defines a self-adjoint extension of Hrel.

Proof. Since P+BP+ is bounded and symmetric, it suffices to show self-adjointness of
Hrel
F + P+BP+, for which we introduce the short-hand notation

RSF T ≡
(

id 0
P−γV P+A

−1 id

)(
A 0
0 SF

)(
id A−1P+γV P−
0 id

)
. (5.2.70)

where the three operators R, SF , and T correspond to the three matrix operators on the
right, respectively. We have already shown in the proof of Lemma 5.7 that the assump-
tions M1-M6 from Appendix A are met. Hence, by Lemma A.2 from Appendix A, R and
T are bounded and boundedly invertible as well as R∗ = T and T ∗ = R hold. Moreover,
self-adjointness of A (Lemma 5.6) and of SF (Lemma 5.10) implies self-adjointness of SF .
It is well-known that operator products with these properties are self-adjoint (see, e.g.,
[Sch12, Lemma 10.18]), and so, self-adjointness of Hrel

F follows. That Hrel
F extends Hrel

follows from D(Hrel) ⊆ D(Hrel
F ) and S ⊆ SF (Lemma 5.10).

Theorem 5.12 (Claim a) of Theorem 2). Let 0 < κ ≤ 1 and |γ|M2
κ/2 < 1. Moreover, let
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Vext be bounded and symmetric. We define

HF := P̂ ·M+ ⊗ idL2( d3r) + idL2( d3P ) ⊗Hrel
F (5.2.71)

with domain

D(HF ) =

{
f ∈ L2(R3, d3P ;Hrel)

∣∣∣∣ f(P ) ∈ D(Hrel
F ) for almost all P ∈ R3

and

∫
R3

∥∥(P ·M+ +Hrel
F

)
f(P )

∥∥2
d3P <∞

}
. (5.2.72)

Then, upon defining the unitary operatorW := FRU , where U is the coordinate transform
(2.2.3) and FR is the Fourier transform with respect to the center-of-mass coordinate, it
holds that

H̃2BD :=W−1HFW + Vext + βm1 ⊗ 14 + 14 ⊗ βm2 (5.2.73)

with domain

D(H̃2BD) =W−1D(HF ) (5.2.74)

defines a self-adjoint extension of H2BD.

Proof. First, we note that βm1 ⊗ 14 + 14 ⊗ βm2 as well as Vext are symmetric and
bounded. Therefore, they can be added by means of a bounded perturbation. Moreover,
the coordinate transformation U as well as the Fourier transform of the center-of-mass
coordinate are unitary. Hence, self-adjointness of HF implies self-adjointness of H̃2BD.

In order to prove self-adjointness of HF = P̂ ·M+ ⊗ id + id ⊗ Hrel
F , we employ the

method of direct fiber integrals. We define HF (P ) := P ·M+ +Hrel
F for a fixed P ∈ R3

and so {HF (P )}P∈R3 is a family of self-adjoint operators with common domain D(Hrel
F )

in the underlying Hilbert space Hrel by Theorem 5.11. The map P 7→ HF (P ) from
R3 into the self-adjoint operators on Hrel is measurable as for all f, g ∈ Hrel the map
P 7→ 〈f, (HF (P ) + i)−1g〉 is continuous in P :∣∣∣〈f, (HF (P ) + i)−1 g

〉
−
〈
f, (HF (P ′) + i)

−1
g
〉∣∣∣

(∗)
=
∣∣∣〈f, (HF (P ) + i)−1 (HF (P ′)−HF (P )) (HF (P ′) + i)

−1
g
〉∣∣∣

=
∣∣∣〈f, (HF (P ) + i)−1 (P ′ − P ) ·M+ (HF (P ′) + i)

−1
g
〉∣∣∣

≤ ‖f‖
∥∥∥(HF (P ′) + i)

−1
∥∥∥2

3∑
k=1

∥∥M+
k

∥∥ |P ′k − Pk| ‖g‖ P→P ′−−−−→ 0 (5.2.75)

since ‖(HF (P ) + i)−1‖ ≤ 1. In (∗), we used the second resolvent identity.
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Hence, due to [RS78, Theorem XIII.85], the direct fiber integral

H ′ =

∫ ⊕
R3

HF (P ) d3P (5.2.76)

with domain

D(H ′) =

{
f ∈ L2(R3, d3P ;Hrel)

∣∣∣∣ f(P ) ∈ D(Hrel
F ) for almost all P ∈ R3

and

∫
R3

‖HF (P )f(P )‖2
Hrel d3P <∞

}
(5.2.77)

defines a self-adjoint operator in the Hilbert space L2(R3, d3P ;Hrel) which acts for almost
all P ∈ R3 as (H ′f)(P ) = HF (P )f(P ). This is precisely the action of HF . Since
D0 = H1(R3, d3P )⊗C16⊗H1(R3, d3r) is contained in D(HF ) and Hrel

F extends Hrel, we
obtain HF � D0 =WH2BDW−1. This proves the theorem.

5.3. Criterion of finite potential energy
From a physical point of view, it is very desirable that a self-adjoint extension of a many-
body Dirac operator is distinguished by a physical criterion. In this section, we introduce
our criterion, as anticipated at the beginning of Section 5.2. This criterion should satisfy
two requirements. First, it must have a clear physical meaning. This ensures that the
extension is not only an abstract operator but has a chance to correspond to the physics
the operator is supposed to describe. Secondly, it has to guarantee uniqueness in such a
way that there exists only one extension that satisfies this criterion and hence provides a
unique unitary time evolution.
We say that a state ψ ∈ D(HF ) has finite potential energy if |Epot[ψ]| = |〈f, (Vext +

Vint)f〉| < ∞. As physical criterion for a distinguished self-adjoint extension, we choose
the one of finite potential energy. Although the physical status of H2BD may remain
unclear, finite potential energy is physically meaningful. As the following theorem shows,
it also meets the second requirement since it singles out HF uniquely. Recall that D+ =
(C16 ⊗H1(R3, d3r)) ∩Hrel

+ ⊂ D(V ) by Hardy’s inequality.

Theorem 5.13 (Claim b) of Theorem 2). Let 0 < κ ≤ 1, |γ|M2
κ/2 < 1, and let Vext be

bounded and symmetric. Moreover, let H̃ with domain D(H̃) be any self-adjoint extension
of UHDCU

−1 of the form

H̃ = P̂ ·M+ ⊗ id + id⊗ H̃rel + Vext + β ⊗ 14 + 14 ⊗ β, (5.3.1)

where H̃rel is an arbitrary self-adjoint extension of Hrel = H0 + V with domain D(H̃rel).
Then, |〈f, (Vext + Vint)f〉| <∞ for all f ∈ D(H̃) if, and only if, H̃ = HF .

Proof. As Vext is bounded, it suffices to consider Vint. We first prove |〈f, Vintf〉| < ∞ if
f ∈ D(HF ). It suffices to show |〈f, Vintf〉| ≤ 〈f, V f〉 <∞ if f ∈ D(Hrel

F ), since Vint acts
as identity on Hcom.
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Let f = (f+, f−)> ∈ D(Hrel
F ). Then, f− ∈ D(SF ) = D(V 1/2) ∩ D(S∗) by the definition

of D(Hrel
F ) in line (5.2.69) and Lemma 5.10. Hence, 〈f−, V f−〉 <∞ follows. As the cross

terms 〈f∓, V f±〉 can be recovered using the polarization identity, it remains to show
〈f+, V f+〉 <∞ in order to prove 〈f, V f〉 <∞. We note that

〈f+, V f+〉1/2 =
∥∥V 1/2f+

∥∥ ≤ ∥∥∥V 1/2(f+ + A−1P+γV P−f−)
∥∥∥

+
∥∥∥V 1/2A−1P+γV P−f−

∥∥∥ . (5.3.2)

Since f+ + A−1P+γV P−f− ∈ D+ ⊂ D(V 1/2), we see that 〈f+, V f+〉 < ∞ holds if
‖V 1/2A−1P+γV P−f−‖ <∞.

In order to show that, we use 〈f−, V f−〉 < ∞ shown above. It allows us to apply
Theorem 5.8. Hence, we know that there exists a sequence (fn)n∈N ⊂ D(V ) ∩ Hrel

− with
‖f− − fn‖

n→∞−−−→ 0 such that
∥∥V 1/2(fm − fn)

∥∥ m,n→∞−−−−→ 0. With its help, we get∥∥ V 1/2A−1P+γV P−(fm − fn)
∥∥∥ =

∥∥V 1/2A−1P+γV P−(fm − fn)
∥∥

=
∥∥V 1/2P+γA

−1P+V
1/2V 1/2(fm − fn)

∥∥
≤
∥∥V 1/2P+γA

−1P+V
1/2
∥∥∥∥V 1/2(fm − fn)

∥∥ m,n→∞−−−−→ 0 (5.3.3)

where we used that V 1/2P+γA
−1P+V

1/2 is bounded by Lemma 5.9. By Lemma A.2 (Ap-
pendix A), A−1P+V P− is bounded, and thus, ‖A−1P+γV P−(fm − fn)‖ m,n→∞−−−−→ 0. To-
gether with line (5.3.3), this now ensures that the sequence (A−1P+V P−fn)n∈N is a Cauchy
sequence in the graph norm of V 1/2. As V 1/2 is closed, this implies A−1P+γV P−f− ∈
D(V 1/2), i.e., ‖V 1/2A−1P+γV P−f−‖ <∞.

For the reverse implication, we assume 〈f, V f〉 <∞ for all f ∈ D(H̃). Then, it suffices
to show D(H̃rel) = D(Hrel

F ) in order to infer H̃ = HF , i.e., P̂ ·M+ +H̃rel = P̂ ·M+ +Hrel
F .

We first show D(H̃rel) ⊆ D(Hrel
F ), i.e., let f ∈ D(H̃rel). In order to understand better

what f might look like, we first note that D(H̃rel) ⊆ D((Hrel + P+BP+)∗) as P+BP+ is
bounded. We compute D((Hrel+P+BP+)∗) with help of its Frobenius-Schur factorization.
Recall the operators R and T from the proof of Theorem 5.11, line (5.2.70):

R =

(
id 0

P−γV P+A
−1 id

)
, T =

(
id A−1P+γV P−
0 id

)
. (5.3.4)

We note that one can rewrite this as T = id + A−1P+γV P−. We then have T −1 =
id− A−1P+γV P−. In addition, we define

S :=

(
A 0
0 S

)
, D(S) = D+ ⊕D(S). (5.3.5)

This yields (Hrel + P+BP+)∗ = (RS T )∗ = RS∗ T as T = R∗ and R = T ∗ are bounded
and boundedly invertible by Lemma A.2 (Appendix A). Theorem A.3 (Appendix A)
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provides the domain:

D((RS T )∗) =

{(
f
g

)
∈ Hrel

+ ⊕Hrel
−

∣∣∣∣ f + A−1P+γV P−g ∈ D+,
g ∈ D(S∗)

}
. (5.3.6)

Therefore, it makes sense to again split D(H̃rel) by the projections P±. We thus write
f = (f+, f−)>.

Now, as T is bounded and boundedly invertible, it is a one-to-one map between
D((Hrel + P+BP+)∗) and D+ ⊕D(S∗). Therefore, there exists a unique ϕ = (ϕ1, ϕ2)> ∈
D+ ⊕D(S∗) such that f = T −1ϕ, i.e.,

T −1ϕ =

(
id −A−1P+γV P−
0 id

)(
ϕ1

ϕ2

)
=

(
ϕ1 − A−1P+γV P−ϕ2

ϕ2

)
=

(
f+

f−

)
. (5.3.7)

Since ϕ1 ∈ D+ and ϕ2 ∈ D(S∗), this form of f shows that f lies in

D(Hrel
F ) =

{(
f
g

)
∈ Hrel

+ ⊕Hrel
−

∣∣∣∣ f + A−1P+γV P−g ∈ D+,
g ∈ D(SF )

}
, (5.3.8)

if f− = ϕ2 ∈ D(SF ). Using D(SF ) = D(V 1/2) ∩ D(S∗) by Lemma 5.10 and f− ∈ D(S∗),
we conclude that it suffices to show that f− ∈ D(V 1/2) ∩Hrel

− .

We want to remark at this point that it is not immediately clear that 〈f, V f〉 < ∞
implies 〈f−, V f−〉 <∞ as, in principle, there could occur cancellations between the parts
in Hrel

+ and Hrel
− . This, however, is not the case.

In the following, it will turn out to be useful to define the Gaussian χn for all n ∈ N
by χn(r) := e−2nπ|r|2 and with it the Gaussian cut-off 1 − χn for f by fn := (1 − χn)f .
Now, by the same reasoning as in the proof of Theorem 5.8, we know that fn ∈ D(V )
for all n ∈ N, and moreover, we obtain ‖f − fn‖

n→∞−−−→ 0, ‖f± − P±fn‖
n→∞−−−→ 0, and

‖V 1/2(f − fn)‖ n→∞−−−→ 0 by dominated convergence. This implies

〈(fm − fn), V (fm − fn)〉 m,n→∞−−−−→ 0. (5.3.9)

We express f in fn = (1− χn)f with f = T −1ϕ. In order to shorten the expressions, we
introduce the abbreviations χm,n ≡ χn − χm and fm,n ≡ fm − fn:

fm,n = χm,n T −1ϕ

= χm,n

(
ϕ1 − A−1P+γV P−f− + f−

)
= χm,n

(
ϕ1 + (id− A−1P+γV P−)f−

)
= χm,n

(
ϕ1 + T −1f−

)
. (5.3.10)

As we have fm,n ∈ D(V ) for all m,n ∈ N, we are allowed to expand the expression
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〈fm,n, V fm,n〉 as follows:

〈fm,n, V fm,n〉 =
〈
χm,n

(
ϕ1 + T −1f−

)
, V χm,n

(
ϕ1 + T −1f−

)〉
= 〈χm,nϕ1, V χm,nϕ1〉+

〈
χm,nϕ1, V χm,nT −1f−

〉
+
〈
χm,nT −1f−, V χm,nϕ1

〉
+
〈
χm,nT −1f−, V χm,nT −1f−

〉
. (5.3.11)

All summands containing a ϕ1 ∈ D+ ⊂ D(V ) are grouped together:

Gm,n(ϕ1) := 〈χm,nϕ1, V χm,nϕ1〉+
〈
χm,nϕ1, V χm,nT −1f−

〉
+
〈
χm,nT −1f−, V χm,nϕ1

〉
. (5.3.12)

We first compute∣∣〈χm,nϕ1, V χm,nT −1f−
〉∣∣ =

∣∣〈V χm,nϕ1, χm,nT −1f−
〉∣∣

≤ ‖V χm,nϕ1‖
∥∥χm,nT −1f−

∥∥ m,n→∞−−−−→ 0, (5.3.13)

where both factors tend to zero as m,n→∞ by dominated convergence. Note that here
it is necessary that ϕ1 ∈ D+ ⊂ D(V ). In an analogous way, the convergence to zero of the
remaining summands of Gm,n(ϕ1) is proven. Hence, we get |Gm,n(ϕ1)| m,n→∞−−−−→ 0. This,
together with 〈fm,n, V fm,n〉

m,n→∞−−−−→ 0, implies∥∥V 1/2χm,nT −1f−
∥∥2

=
∣∣〈χm,nT −1f−, V χm,nT −1f−

〉∣∣
≤ 〈fm,n, V fm,n〉+ |Gm,n(ϕ1)| m,n→∞−−−−→ 0. (5.3.14)

As we also have∥∥(1− χm)T −1f− − (1− χn)T −1f−
∥∥ =

∥∥χm,nT −1f−
∥∥ m,n→∞−−−−→ 0 (5.3.15)

by dominated convergence, we can conclude that ((1−χn)T −1f−)n∈N is a Cauchy sequence
in the graph norm of V 1/2. Thus, T −1f− ∈ D(V 1/2) since V 1/2 is closed.

Since line (5.3.3) implies A−1P+γV P− D(V 1/2) ⊆ D(V 1/2), we also get

(id± A−1P+γV P−) D(V 1/2) ⊆ D(V 1/2), (5.3.16)

i.e., T as well as T −1 map D(V 1/2) into D(V 1/2).

Now, we assume for the moment that f− 6∈ D(V 1/2) and aim at a contradiction. We
already showed that T −1f− ∈ D(V 1/2), and from line (5.3.16) we know that T maps
D(V 1/2) into D(V 1/2). Thus,

T −1f− ∈ D(V 1/2) ⇒ T T −1f− ∈ D(V 1/2) ⇒ f− ∈ D(V 1/2). (5.3.17)

This is a contradiction to our assumption f− 6∈ D(V 1/2) and thus, f− ∈ D(V 1/2). There-
fore, f− ∈ D(V 1/2) ∩ D(S∗) = D(SF ) which implies f ∈ D(Hrel

F ).
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For the reverse inclusion D(Hrel
F ) ⊆ D(H̃rel), it suffices to note that

D(Hrel
F ) = D((Hrel

F )∗) ⊆ D((H̃rel)∗) = D(H̃rel) ⊆ D(Hrel
F ). (5.3.18)

Therefore, D(H̃rel) = D(Hrel
F ), which concludes the proof.

5.4. Comment on the article by Okaji et al. [OKY14]

We briefly comment on the article [OKY14] by Okaji et al. which was written in response
to [Der12]. As already mentioned, the proof of their claim, i.e., essential self-adjointness of
H2BD (even including external Coulomb potentials) as operator in the underlying Hilbert
space

Ha =
(
L2(R3)⊗ C4

)
∧
(
L2(R3)⊗ C4

)
(5.4.1)

comprises a gap. In the following, we want to lay out the missing step.
The authors employ an auxiliary operator which is denoted by H+ and given by2

H+ = 14 ⊗α · (−i∇x − i∇y) +m(β ⊗ 14 + 14 ⊗ β) + V (5.4.2)

where external potentials as well as the interaction potential are combined in V . Its
domain is taken to be

Da =
(
C∞c (R3;C4)⊗ C∞c (R3;C4)

)
∩Ha. (5.4.3)

Now, H2BD and H+ coincide as quadratic form on Ha but not as operator, i.e., for all
ϕ, ψ ∈ Da one has

〈ϕ,H2BDψ〉 =
〈
ϕ,H+ψ

〉
(5.4.4)

but in general

H2BDψ 6= H+ψ. (5.4.5)

The former is proven in [OKY14] in Theorem 5.4, the latter is seen as follows. Define ψ
by

ψ(x,y) =


0

f(x)
0

f(x)

⊗


f(y)
0

f(y)
0

−


f(x)
0

f(x)
0

⊗


0
f(y)

0
f(y)

 (5.4.6)

where the function f : R3 → C is chosen to be smooth and compactly supported. We
see that ψ is antisymmetric, and therefore, ψ ∈ Da. That line (5.4.5) holds, is now a
straightforward calculation.

2We give H+ in the same C16-basis as H2BD in Eq. (2.1.2). In [OKY14], a different basis is used.
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Hence, from the essential self-adjointness of H+ on Da that was proven in [OKY14],
it does not follow that H2BD is essentially self-adjoint on Da. On the contrary, as this
thesis shows, H0 exhibits a non-trivial nullspace structure in the relative coordinate, i.e.,
the coordinate of the interaction, whereas one always has Ker(H+) = {0}.
We want to use this opportunity to add another remark on Eq. (5.4.4) and draw

attention to an interesting implication. We denote by

Pa : H2 → Ha (5.4.7)

the orthogonal projection onHa. An interesting fact is that Pa can also have a regularizing
effect which we will outline briefly in the following without making the argument rigorous.
For the sake of our argument, it suffices to consider the free and massless case, i.e.,

all potentials and masses are set to zero. We will nevertheless keep the notation H2BD

and H+ in order to maintain the distinction between the auxiliary operator H+ and the
actual operator H2BD. Then, H2BD is the operator T from Section 2.2

H2BD = T = P̂ ·M+ ⊗ id + id⊗M− · p̂ (5.4.8)

and H+ is in center-of-mass and relative coordinates of the form

H+ = 14 ⊗α · P̂ . (5.4.9)

We see now that in order to have ‖H+f‖ < ∞ for some f , this f must have at least
H1(R3, d3R)-regularity. For H2BD however, this is not the case because of the nullspace
structure of P̂ ·M+. E.g., using the ψ from line (5.4.6), it is possible to construct a less
regular f with ‖H2BDf‖ <∞ since ψ ∈ Ker(P̂ ·M+).
What the form equality Eq. (5.4.4) 〈ϕ,H2BDψ〉 = 〈ϕ,H+ψ〉 actually implies, is the

operator equality PaH+Pa = H2BD. However, H2BD allows for less regular functions than
H+. Thus, we can conclude that the projection Pa has a regularizing effect on H+Paf .
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6. First results towards a spectral
analysis of H2BD

This section provides the first steps towards a spectral analysis ofH2BD. While it has been
folklore knowledge for quite some time that the essential spectrum of H2BD comprises the
entire real line (see, e.g., the introduction of [Mor08]), a full proof has been missing. The
one presented in [OKY14] is unfortunately incomplete. In Theorem 6.1, we prove that
σess(H2BD) = R and remark on the proof given in [OKY14] subsequently. Furthermore,
it has been conjectured that H2BD does not possess any eigenvalues (see, e.g., [Der12]) as
they would be embedded into the continuous part of the spectrum, which is, however, a
rare phenomenon. We prove in Theorem 6.3 that no eigenvalues |E| > 2m exist, where
m is the particle’s mass, under the assumption that possible eigenstates fulfill a very mild
regularity condition.

Theorem 6.1 (Claim a) of Theorem 3). Let H̃ denote any self-adjoint extension of
H2BD = H0 +V where V is the operator of multiplication with a|x|−1 +a|y|−1 +b|x−y|−1

for a, b ∈ R and almost all x,y ∈ R3. Then,

σess(H̃) = R. (6.0.1)

Proof. Our proof is inspired by the proof of [Tha92, Theorem 4.20]. We construct a Weyl
sequence for H̃ and every E ∈ R, i.e., a sequence (fn)n∈N ⊂ D(H̃) such that for E ∈ R,
it holds that 〈fk, fl〉 = δkl for all k, l ∈ N and ‖(H̃−E)fn‖

n→∞−−−→ 0. Weyl’s criterion (see,
e.g., [HS96, Theorem 7.2]) then implies E ∈ σess(H̃). Before we can define this sequence,
some preparations are needed. We recall the definition of the 16× 16-matrix H0(px,py)
from line (3.2.1)

H0(px,py) = (α · px + βm1)⊗ 14 + 14 ⊗ (α · py + βm2) , (6.0.2)

and define with its help SE(px,py) ∈ C16 for almost all px,py ∈ R3 and all E ∈ R by

[H0(px,py)− E]SE(px,py) = 0. (6.0.3)

This is possible as H0(px,py) is a Hermitian matrix with eigenvalues λk(px,py) for
k = 1, 2, . . . , 16 (see (3.2.2)) such that one can find px,py ∈ R3 and k = 1, 2, . . . , 16 for
each E ∈ R such that λk(px,py) = E.
Furthermore, we introduce for elements X ∈ R6 the notation X = (x,y)>, where

x,y ∈ R3. We fix the components such that the upper three components correspond to
those of the first particle and the lower three components to those of the second particle.

79



The cone K is defined by

K :=
{
X ∈ R6

∣∣ 0 ≤ ]
(
(1, 1, 1,−1,−1,−1)>,X

)
≤ π/8

}
(6.0.4)

In K, we define (Bn)n∈N ⊂ K as the sequence of six-dimensional balls that are disjoint,
have an ever increasing radius Rn, and whose centers are denoted by Xn ∈ R6, i.e., we
have for all n ∈ N

Bn :=
{
X ∈ R6 | |X −Xn| ≤ Rn

}
such that


Bn ⊂ K,

Rn
n→∞−−−→∞,

Bk ∩Bl = ∅ , k 6= l.

(6.0.5)

Xn

x

y

K

Bn

π/8

Figure 6.1.: Sketch of the cone K and the balls Bn.

We then define the smooth localization function jn ∈ C∞c (R6) with supp jn ⊆ Bn by

jn(X) :=

{
1 , |X −Xn| ≤ Rn − 1 ,

0 , |X −Xn| ≥ Rn ,
0 ≤ jn(X) ≤ 1 for all X ∈ R6, (6.0.6)

such that there exists a finite constant C > 0 independent of n ∈ N such that for all
k = 1, 2, . . . , 6

sup
X∈R6

∣∣∣∣( ∂

∂Xk

jn

)
(X)

∣∣∣∣ ≤ C <∞ for all n ∈ N. (6.0.7)

For the derivative of jn, we obtain for all k = 1, 2, . . . , 6(
∂

∂Xk

jn

)
(X) = 0 if |X −Xn| ≤ Rn − 1 or |X −Xn| ≥ Rn. (6.0.8)
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We are now in the position to define the sequence (fn)n∈N by

fn(x,y) = cn SE(px,py) eipx·x eipy ·y jn(x,y), (6.0.9)

where cn is the normalization constant such that ‖fn‖ = 1 for all n ∈ N. Smoothness of
jn guarantees (fn)n∈N ⊂ D0. We proceed to prove that (fn)n∈N is indeed a Weyl sequence
for H̃ and every E ∈ R. First, we note that the disjoint support of jk and jl for all k 6= l
together with the normalization constant cn implies orthonormality 〈fk, fl〉 = δkl. Next,
we compute for all E ∈ R∥∥∥(H̃ − E)fn

∥∥∥ = ‖(H0 + Vext + Vint − E) fn‖

≤ ‖(H0(px,py)− E) fn‖ (6.0.10a)
+ cn ‖(α⊗ 1) · ∇xjn SE(px,py)‖ (6.0.10b)
+ cn ‖(1⊗α) · ∇yjn SE(px,py)‖ (6.0.10c)
+ ‖(Vext + Vint) fn‖ . (6.0.10d)

where we used fn ∈ D0 in the first line. By the definition of SE(px,py) in line (6.0.3),
we have (H0(px,py)− E) fn = 0 for all n ∈ N and thus also

‖(H0(px,py)− E) fn‖ = 0 (6.0.11)

for all n ∈ N.

In order to estimate lines (6.0.10b) and (6.0.10c), we recall the definition of jn, in
particular its derivative and its n-independent bound from lines (6.0.7) and (6.0.8). We
further define B̃n := Bn \BRn−1(Xn) and obtain∫

R6

∣∣∣∣( ∂

∂Xk

jn

)
(X)

∣∣∣∣2 d6X =

∫
B̃n

∣∣∣∣( ∂

∂Xk

jn

)
(X)

∣∣∣∣2 d6X

≤ C

∫
B̃n

R5 dR dΩ

=
Cπ3

6

(
R6
n − (Rn − 1)6

)
∼ R5

n. (6.0.12)

However, we find for the normalization constant c2
n ∼ R−6

n since

π3

6
(Rn − 1)6 =

∫
BRn−1(Xn)

d6X ≤
∫
R6

|jn(X)|2 d6X

≤
∫
BRn (Xn)

d6X =
π3

6
R6
n. (6.0.13)

Combining this with Rn
n→∞−−−→∞ implies for (6.0.10b)

cn ‖(α⊗ 1) · ∇xjn SE(px,py)‖ n→∞−−−→ 0 (6.0.14)
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and likewise for (6.0.10c).
In order to treat line (6.0.10d), we first note that |x−y| is small if x lies in a neighbor-

hood of y. Within the cone K, however, x lies in the neighborhood of −y. This together
with Bn ⊂ K for all n ∈ N implies

inf
(x,y)∈Bn

|x| n→∞−−−→∞ , inf
(x,y)∈Bn

|y| n→∞−−−→∞

inf
(x,y)∈Bn

|x− y| n→∞−−−→∞.
(6.0.15)

We can thus estimate

c2
n

∫
R3×R3

∣∣(|x|−1 + |y|−1 + |x− y|−1
)∣∣2 |jn(x,y)|2 d3x d3y

≤ c2
n

∫
Bn

∣∣(|x|−1 + |y|−1 + |x− y|−1
)∣∣2 |jn(x,y)|2 d3x d3y

≤ sup
(x,y)∈Bn

∣∣(|x|−1 + |y|−1 + |x− y|−1
)∣∣2 n→∞−−−→ 0. (6.0.16)

This allows us to conclude that

‖(Vext + Vint) fn‖
n→∞−−−→ 0. (6.0.17)

Putting (6.0.11), (6.0.14), and (6.0.17) together, shows that (fn)n∈N is a Weyl sequence
for H̃ and every E ∈ R, and thus, finishes the proof.

Remark 6.2. We remark on the proof of σess(H2BD) = R given in [OKY14]. There,
the authors also employ a Weyl sequence, denoted by (wn)n∈N, which contains a smooth
localization function, denoted by χn. However, when checking ‖(H2BD − E)wn‖

n→∞−−−→ 0,
they do not control the convergence to zero of the terms corresponding to lines (6.0.10b)
and (6.0.10c) in our proof, i.e., the derivatives of χn. In fact, their definition of χn is not
sufficient to conclude said convergence. Our localization function jn and the arguments
leading to line (6.0.14) also fix the proof given in [OKY14]. �

The next theorem shows absence of eigenvalues |E| > 2m if possible eigenstates obey
a mild regularity condition.

Theorem 6.3 (Claim b) of Theorem 3). Let H̃ denote any self-adjoint extension of
H2BD = H0 + V where V is the operator of multiplication with the real function V such
that V (ax, ay) = V (x,y)/a for all a > 0 and almost all x,y ∈ R3. Assume further that
all eigenstates of H̃ lie in D(H0) ∩D(V ). Then, H̃ has no eigenvalues in (−∞,−2m) ∪
(2m,+∞).

Proof. We adapt the proof of [Wei80, Theorem 10.38] closely, in some instances even
verbatim. Let |E| > 2m and assume that f ∈ D(H̃) satisfies (H̃ − E)f = 0. By
assumption, we can write (H0 + V − E)f = 0. We transform H0 + V to relative and
center-of-mass coordinates and find

U(H0 + V )U−1 = P̂ ·M+ + M− · p̂+ βm⊗ 1 + 1⊗ βm+ V (R, r) (6.0.18)
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where we used the suggestive notation V (R, r) for UV U−1. Note that U is induced by a
linear transformation R3 × R3 → R3 × R3. Therefore, we have for all a > 0 and almost
all R, r ∈ R3

V (aR, ar) = V (R, r)/a. (6.0.19)

Upon defining fa(R, r) := f(aR, ar), we compute for all a > 0 and almost all R, r ∈ R3

(
U(H0 + V ) U−1fa

)
(R, r) = a

(
P̂ ·M+f + M− · p̂f

)
(aR, ar)

+ (βm⊗ 1 + 1⊗ βm+ V (R, r)) f(aR, ar)

= a
(
P̂ ·M+f + M− · p̂f + V (aR, ar)f

)
(aR, ar)

+ (βm⊗ 1 + 1⊗ βm) f(aR, ar)

= a
(
U(H0 + V )U−1f

)
(aR, ar) + (1− a) (βm⊗ 1 + 1⊗ βm) f(aR, ar)

= aEfa(R, r) + (1− a) (βm⊗ 1 + 1⊗ βm) fa(R, r). (6.0.20)

This implies

0 =
〈
U(H0 + V )U−1f, fa

〉
−
〈
f, U(H0 + V )U−1fa

〉
= E 〈f, fa〉 − aE 〈f, fa〉 − (1− a) 〈f, (βm⊗ 1 + 1⊗ βm) fa〉
= (1− a) 〈f, (E − βm⊗ 1− 1⊗ βm) fa〉 . (6.0.21)

For a 6= 1, we can divide by (1− a). Taking the limit a→ 1 gives

0 = 〈f, (E − βm⊗ 1− 1⊗ βm) f〉 . (6.0.22)

For |E| > 2m, the matrix E − βm⊗ 1− 1⊗ βm is strictly positive or strictly negative.
Thus, |E| ≤ 2m leads to a contradiction with (6.0.22). This finishes the proof.

Remark 6.4. The assumption that all eigenstates f of H̃ lie in D(H0) ∩ D(V ) ensures
that we can evaluate f against each summand of H2BD separately. This is needed for our
method of proof. If a different method is employed, this assumption may be dropped. �

83





7. Discussion and Outlook

7.1. External Coulomb potentials and essential
self-adjointness

Since Stone’s theorem links self-adjointness to the existence of a unitary time evolution,
a proof of self-adjointness is a first step towards a rigorous investigation of the phys-
ical properties of the system at hand. In this respect, our main goal of this thesis is
achieved. We provided a self-adjoint extension of H2BD with Coulomb interaction, which
is distinguished uniquely and, as we argue, in a physically sensible way by means of the
criterion of finite potential energy. Hence, H2BD generates a unitary time evolution for
two interacting point-like electrons in the vicinity of an extended nucleus. However, we
could not yet treat external potentials of Coulomb type. In our future research, we aim
at including external Coulomb potentials as well. A positive result would be satisfying
not only from a physical but also from a mathematical point of view.

In our strategy of proof, we relied on boundedness of external potentials in several
places, in particular, when we constructed a self-adjoint extension of H2BD from a self-
adjoint extension of Hrel in Theorem 5.12. We see, however, the possibility of extending
the method of direct fiber integrals we employed also to the more complex case when
external Coulomb potentials are included.

Proving self-adjointness in the presence of unbounded external potentials might also
be helpful for the extension to more than two particles with interaction potentials. It
is well-known that the coordinates can always be chosen such that all but one tensor
component feel the potential of that particular tensor component as external potential,
in addition to the remaining interaction potentials.

Another direction of future research is towards essential self-adjointness of H2BD. We
did not exclude this possibility. Theorem 5.8, in which we proved that D(V ) ∩ Hrel

− is a
core for V 1/2P−, points already in the right direction as regards essential self-adjointness
of Hrel. If essential self-adjointness of Hrel—once proven—is to be extended to H2BD, one
has to bear an important detail in mind. Operators constructed by direct fiber integrals
rely on the notion of measurability of families of operators. This notion relies in turn on
the closedness of the operators in such a family. Now, essentially self-adjoint operators are
not closed, and essential self-adjointness of H2BD can thus not be inferred from essential
self-adjointness of Hrel immediately.
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7.2. Infinite SPKE and radiation catastrophe

Relativistic quantum theories are, almost by their nature, plagued by infinities and diver-
gences. In Chapter 4, we added one more infinity to the collection, which—to our best
knowledge—has not been discussed in the literature so far, namely infinite single particle
kinetic energy (infinite SPKE). We then found that, for fermions, these states cannot oc-
cur (see Section 4.4) as well as that infinite SPKE states cannot be reached by scattering
processes involving finite SPKE states for all finite times t ∈ R (see Section 4.5).
We defined the kinetic energy of the first particle in the two-body state ψ by

Ekin,1[ψ] = 〈ψ, (−iα · ∇x + βm)⊗ idψ〉 (7.2.1)

in Definition 4.7 and analogously for the second particle. Due to the spinor structure
of two-body states, it can happen that Ekin,1[ψ] = Ekin,2[ψ] = 0 although ψ may also
contain high momenta, as shown in Example 4.10. This indicates that our definition of
single particle kinetic energy by Ekin,1[ψ] might not be satisfactory. However, Dirac’s
radiation catastrophe and the stability of (unprojected) relativistic many-body system
partly rest on the notion of single particle kinetic energy. Therefore, a rigorous and
physically meaningful definition of it lays the foundation of further investigations.
These further investigations can take several different directions. One particular inter-

esting direction considers the connection of antisymmetric states and Dirac’s radiation
catastrophe, and is suggested by the absence of antisymmetric SPKE states. We modify
the radiation catastrophe slightly such that it fits the context of H2BD. Originally, it con-
sists of an electron that is accelerated by some means (in absence of the Dirac sea). This
electron thus emits radiation. As the spectrum of the Dirac operator generically extends
to −∞, the electron can emit more and more radiation by falling deeper and deeper into
the negative spectrum. Now, we no longer assume a radiation field with independent
degrees of freedom, but simply a second particle. The two particles can interact. In this
two-body universe, no energy can escape, i.e., energy is transferred from one particle to
the other only. Precisely this situation is described by H2BD. If now one particle falls
deeper and deeper in the spectrum, this has to be compensated for by the other particle
which will attain higher and higher energies. In this heuristic picture, the two particles
can reach positive, respectively, negative infinite energy only in infinite time.
In order to make now the connection to antisymmetric states, we first recast the mod-

ified radiation catastrophe in mathematical terms and conjecture that for each infinite
SPKE state ψ∞, there exists an initial state ψ0 with finite SPKE such that

ψ∞ = lim
t→∞

e−itH2BDψ0. (7.2.2)

Maybe this limit can even be turned into an equivalence, i.e., if the time evolution
e−itH2BDψ0 is such that the two particles move more and more apart in the spectrum,
i.e., they exhibit the modified radiation catastrophe, then there exists an SPKE state to
which they converge in the limit t→∞.
This conjectured equivalence of SPKE states and the modified radiation catastrophe

in the limit t→∞ poses the question if absence of antisymmetric infinite SPKE states,
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as shown in Section 4.4, automatically entails stability of antisymmetric interacting rela-
tivistic two-body systems without radiation, or even more general, N -body systems. Put
differently, is the Dirac sea, which is necessarily antisymmetric, automatically stable? Of
course, answering this question rigorously hinges on satisfying and physically adequate
notions of stability, single particle kinetic energy, and the like. We list a few questions:

Q1 Is it possible to explicitly construct an initial finite SPKE state ψ0 for which it can
be proven that limt→∞ e−itH2BDψ0 not only exists, but is an infinite SPKE state?

Q2 How can initial states be classified which are such that they drift apart in the spec-
trum under the time evolution, i.e., exhibit the modified radiation catastrophe after
some time? Are they rare in some sense?

Q3 Does the restriction to antisymmetric two-body states rule out the modified radiation
catastrophe completely, or only according to our notion of single particle kinetic
energy?

Q4 What is a good notion of stability for unprojected many-body Dirac operators? Is
the notion of asymptotic completeness adequate?

7.3. Brown-Ravenhall disease and the spectrum

Although identifying the essential spectrum of H2BD, as we did in Chapter 6, is very
important and generally regarded as one of the first steps towards any spectral analysis,
what one is really interested in, of course, are eigenvalues and/or resonances. After all,
using H2BD as model for the Helium atom and investigating its spectral properties is the
main motivation for the use of H2BD in relativistic quantum chemistry. What makes the
investigation of the point spectrum of H2BD so interesting, however, is the absence of
isolated eigenvalues. This is a reformulation of σess(H2BD) = R from Theorem 6.1. Before
we shed light on some aspects concerning a further investigation of the spectrum of H2BD,
we describe the physical background of any spectral analysis of H2BD.
The relevant phenomenon has been first described by G.E. Brown and D.G. Ravenhall

in [BR51], and thus, goes under the name of «Brown-Ravenhall disease». The symptom of
this disease is the non-existence of eigenvalues—including a lowest eigenvalue or physical
ground state of H2BD, i.e., the Helium atom—due to the possible interaction of particles
with positive energy and negative energy. To be more precise, the Brown-Ravenhall
disease is a direct consequence of the existence of the negative energy continuum, which
is typical for Dirac operators, in combination with the interaction potential present in
H2BD.
Let us describe the mechanism that leads, according to Brown and Ravenhall, to the

absence of eigenvalues. First, we consider H2BD without interaction, i.e.,

H0 + Vext = (−iα · ∇x + βm+ Vext,x)⊗ id

+ id⊗ (−iα · ∇y + βm+ Vext,y), (7.3.1)
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where Vext = Vext,x + Vext,y. It is well-known that H0 + Vext has eigenvalues E for which
we can write E = E1 +E2, where E1 is an eigenvalue of −iα ·∇x +βm+Vext,x, and E2 of
−iα · ∇y + βm+Vext,y analogously. All eigenvalues E are embedded into the continuous
part of the spectrum. This implies that for all energies E ′ arbitrarily close to E, there
exist (uncountably many) eigenvalues E ′1 < −2m and E ′2 > 2m, such that E ′1 +E ′2 = E ′.
If the interaction is switched on, one expects a shift of the eigenvalue E to E ′. Brown

and Ravenhall now argue that Fermi’s Golden Rule (see line (7.3.2) below) and the
sheer abundance of energies E ′1 < −2m and E ′2 > 2m such that E ′1 + E ′2 = E ′ imply
that all eigenvalues vanish or turn into resonances. In the physics literature, one says
that E dissolves into the continuum. The Brown-Ravenhall disease denotes exactly this
continuum dissolution.

In conclusion, the direction of further research suggested by the Brown-Ravenhall dis-
ease is to show absence of embedded eigenvalues. There exists a canonical approach to
this task, namely employing dilation methods. Applying the dilation transformation to
H0 +Vext has—under some conditions—the effect of isolating embedded eigenvalues. This
makes standard Kato perturbation theory for eigenvalues applicable to the dilated opera-
tor. Vint is then considered as standard Kato perturbation of the dilated two-body Dirac
operator without interaction, just as in the heuristic picture of the Brown-Ravenhall dis-
ease above. For the non-relativistic Helium atom, this approach is presented in great
detail in [RS78]. In that scenario, eigenstates corresponding to embedded eigenvalues
that turn into resonances when perturbed are called «Auger states». For the relativistic
scenario, first results concerning complex dilated one-body Dirac operators were obtained
in [Š88] and in [Wed73] which have been generalized considerably in [Hub09]. These ref-
erences seem to be a promising starting point for applying dilation methods to H2BD

due to the tensor product structure of H0 + Vext, and indeed, some arguments from the
non-relativistic case also apply to H2BD. We just want to mention one step from the
presentation given in [RS78] that has to be substantially modified. The complex dilated
two-body Dirac operator without interaction is not self-adjoint. Due to its unboundedness
from below, eigenvalues cannot be directly read off from the tensor product structure, as
in the non-relativistic case.
In, e.g., [Sim73], it is shown that there exists a formal connection between complex

dilation methods and Fermi’s Golden Rule. This formal connection can be made clear, if
H0 +Vext has continuum eigenstates. Let ψ0 denote an eigenstate of H0 +Vext with energy
E0, and let ψλ(E) denote continuum eigenstates of H0 +Vext with energy E, continuously
parametrized by λ ∈ R. The interaction potential Vint plays the role of the perturbation.
When the interaction is turned on, the eigenstate ψ0 turns into a resonance, if it has a
non-zero decay width Γ, i.e.,

Γ = 2π

∫
R
|〈ψλ(E0), Vint ψ0〉|2 dλ 6= 0. (7.3.2)

This is precisely the mechanism leading to the Brown-Ravenhall disease cast into math-
ematical terms. Let us mention some literature relevant for this strategy of showing
absence of embedded eigenvalues. Existence of continuum eigenstates, or generalized
eigenfunctions, for one-particle Dirac operators in an external field has been treated rig-
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orously by many authors, notably in [Nen75] and in [Yam76] as well as references therein.
Explicit calculations of such eigenfunctions as well as bound states can be found in, e.g.,
[Gre00], [PG69], and [Ros61]. Due to its tensor product structure, these results carry
over to H0 + Vext. In principle, showing absence of eigenvalues now reduces to plug-
ging everything into (7.3.2), and carrying out all needed calculations. In the literature,
these particular computations are acknowledged as formidable (see [Ros61]) as they in-
volve, e.g., 16-component spinors, whose components can all lead to cancellations in the
occurring scalar products and back and forth coordinate transformations. To our best
knowledge, it has not been achieved, not even for simpler cases.
If absence of eigenvalues of H2BD could be shown, this would be, of course, in stark con-

trast to the empirical evidence that Helium atoms are stable (provided that the lifetimes
of possible resonances are not of the order of the age of the universe). Clearly, this would
have strong negative implications for the validity of the H2BD-model of Helium. Never-
theless, the two-body Dirac Hamiltonian is used in the relativistic quantum chemistry
literature under the tacit assumption of, e.g., the existence of square-integrable eigen-
functions “in hundreds of papers every year ” (see [Der12]). This makes an investigation
of σ(H2BD) in rigorous mathematical terms very relevant to current research.
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A. Matrix operators with unbounded
entries

This appendix gives a short introduction to the theory of matrix operators with un-
bounded entries. The goal is to derive the so-called Frobenius-Schur factorization of such
operators in Theorem A.3. This factorization shows that important properties such as
closedness or self-adjointness are—under some conditions—contained in the Schur com-
plement, given in line (A.0.8). We apply this result to Hrel. A good general reference for
matrix operators is [Tre08].
We introduce notation for this section only. Let H1 and H2 be closed subspaces of the

Hilbert space H such that H = H1 ⊕H2 holds. We consider the matrix operator

A =

(
A B
C D

)
(A.0.1)

that acts naturally in the Hilbert spaceH = H1⊕H2. Its entries are unbounded operators
with

A : D(A)→ H1, B : D(B)→ H1,

C : D(C)→ H2, D : D(D)→ H2

(A.0.2)

and they are throughout this section subject to the following conditions:

M1 A,B,C, and D are closable, possibly unbounded operators with dense domains

D(A),D(C) ⊂ H1 , D(B),D(D) ⊂ H2. (A.0.3)

M2 D(B) = D(D).

M3 The resolvent set of A is not empty, i.e. ρ(A) 6= ∅.

M4 D(A∗) ⊂ D(B∗).

M5 D(A) ⊂ D(C).

M6 D(A) = D(A)⊕D(D) which is dense in H.

Lemma A.1. The matrix operator A is symmetric if and only if

A ⊆ A∗, D ⊆ D∗, C � D(A) ⊆ B∗, B ⊆ C∗. (A.0.4)

Proof. We follow [Tre08, Proposition 2.6.1].
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Lemma A.2. The following statements hold for all µ ∈ ρ(A):

a) The operator (A− µ)−1B is bounded on D(B).

b) The operator C(A− µ)−1 is bounded on all of H1.

c) The matrix operators R(µ) : H → H and T (µ) : H → H, given by

R(µ) :=

(
id 0

C(A− µ)−1 id

)
, T (µ) :=

(
id (A− µ)−1B
0 id

)
(A.0.5)

are bounded and boundedly invertible.

d) If A is symmetric with A = A∗, then R(µ)∗ = T (µ) and T (µ)∗ = R(µ) hold.

Proof. a) See [Tre08, Remark 2.2.15].

b) This follows from the closed graph theorem.

c) See [Tre08, Theorem 2.2.18].

d) With Lemma A.1 and A = A∗, we obtain

((A− µ)−1B)∗ = B∗(A∗ − µ)−1 = B∗(A− µ)−1 = C(A− µ)−1 (A.0.6)

and

(C(A− µ)−1)∗ ⊇ (A∗ − µ)−1C∗ = (A− µ)−1C∗ ⊇ (A− µ)−1B. (A.0.7)

Since the bounded linear transformation theorem gives a unique closed extension of
(A−µ)−1B, and (C(A−µ)−1)∗ is closed, it follows that (C(A−µ)−1)∗ = (A− µ)−1B.
Hence, equations (A.0.6) and (A.0.7) imply R(µ)∗ = T (µ) and T (µ)∗ = R(µ).

The Schur complement of A is defined by

S(µ) := D − µ− C(A− µ)−1B (A.0.8)

with domain D(S(µ)) = D(D) for all µ ∈ ρ(A).

Theorem A.3. A is closable if and only if, for all µ ∈ ρ(A), S(µ) is closable in H2.
The closure A is given by the Frobenius-Schur factorization

A = µ+

(
id 0

C(A− µ)−1 id

)(
A− µ 0

0 S(µ)

)(
id (A− µ)−1B
0 id

)
,

(A.0.9)

independently of µ ∈ ρ(A), that is,

D(A) =

{(
f
g

)
∈ H1 ⊕H2

∣∣∣∣ f + (A− µ)−1Bg ∈ D(A),

g ∈ D(S(µ))

}
(A.0.10)
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A
(
f
g

)
=

(
(A− µ)(f + (A− µ)−1Bg) + µf

C(f + (A− µ)−1Bg) + (S(µ) + µ)g

)
. (A.0.11)

Proof. See [Shk95, Theorem 1].
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B. Auxiliary lemma

Lemma B.1. Let 0 < κ ≤ 1. Then, for any a, b ∈ R3 it holds that∣∣∣|a− b|κ/2 − |a|κ/2∣∣∣ ≤ |b|κ/2 . (B.0.1)

Proof. First, we assume |a−b|κ/2 ≥ |a|κ/2. Then, with |a−b| ≤ |a|+|b| and monotonicity
of exponentiation, we obtain

|a− b|κ/2 ≤ (|a|+ |b|)κ/2 ≤ |a|κ/2 + |b|κ/2, (B.0.2)

where we used the equivalence of the 2/κ-norm with the 1-norm in R2:

(|a|+ |b|)
1

2/κ =
(
|a|

2/κ
2/κ + |b|

2/κ
2/κ

) 1
2/κ

=

∥∥∥∥∥
(
|a|

1
2/κ

|b|
1

2/κ

)∥∥∥∥∥
2/κ

≤

∥∥∥∥∥
(
|a|

1
2/κ

|b|
1

2/κ

)∥∥∥∥∥
1

= |a|
1

2/κ + |b|
1

2/κ . (B.0.3)

Inequality (B.0.2) then implies

|a− b|κ/2 − |a|κ/2 ≤ |b|κ/2. (B.0.4)

Next, we assume |a|κ/2 ≥ |a− b|κ/2. Then, with |a| ≤ |a− b|+ |b| and monotonicity
of exponentiation, we get

|a|κ/2 ≤ (|a− b|+ |b|)κ/2 ≤ |a− b|κ/2 + |b|κ/2 (B.0.5)

which implies

|a|κ/2 − |a− b|κ/2 ≤ |b|κ/2 (B.0.6)

where we made again use of the inequality from line (B.0.3). This concludes the proof.
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