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Abstract

The main subject of this thesis is the problem of introducing inter-
actions into relativistic quantum mechanics. This problem has many
facets, two of which will be discussed.

The first one deals with a recent relativistically invariant integral equa-
tion for multi-time wave functions by Lienert [64]. From a mathemat-
ical point of view this proposal is promising, since variants of it have
been shown to be mathematically well-defined. In this thesis, firstly,
previous results on existence and uniqueness of solutions of a variant of
this equation for scalar particles are extended to include more realistic
types of interaction.

Secondly, a proof of existence and uniqueness of solutions of another
variant that allows to treat spin 1/2 particles is provided.

The second facet concerns interactions in the context of a variable
number of particles. Following famous works of Dirac [22], Feyn-
man [35] and Schwinger [95], we treat external electrodynamic fields
in an otherwise free Quantum Field Theory of electrons. In previous
results [86, 97, 75, 13, 15|, candidates for the time evolution operator
have been constructed in this setting. This construction is unique up
to a phase, which may depend on the external field. This phase affects
the charge current density and should thus be identified. In this work,
this problem is addressed by a geometric, which was inspired by [90]
and developed jointly with my supervisors, construction assuming a
certain causality condition.

Secondly, a compact formula for the scattering operator in terms of the
corresponding one-particle scattering operator is provided and shown
to be well-defined, assuming certain conditions on the external field.
This formula is used to show that the second quantized scattering
operator is an analytic function of the external field in a certain sense.



Das Hauptthema dieser Arbeit sind die Schwierigkeiten die dabei
auftreten Wechselwirkungen in die relativistische Quantenmechanik
einzufiihren. Dieses Problem weist viele Facetten auf. Zwei dieser
Facetten werden bearbeitet.

Die erste handelt von einer kiirzlich von Lienert [64] vorgestellten rela-
tivistisch invariante Integralgleichung fiir Wellenfunktionen fiir mehrere
Zeitkoordinaten. Aus einer mathematischen Perspektive ist diese Vorge-
hensweise vielversprechend, denn fiir Varianten dieser Gleichung wurde
bereits Wohldefiniertheit bewiesen. In dieser Arbeit werden zunéchst
bestehende Resultate iiber Existenz und Eindeutigkeit von Losungen
einer Variante dieser Gleichung fiir skalare Teilchen auf realistische
Wechselwirkungen erweitert. Weiterhin wird ein erstes Resultat iiber
Existenz und Eindeutigkeit von Losungen fiir eine Variante der Gle-
ichung fiir spin-1/2 bewiesen.

Die zweite Facette handelt von Wechselwirkung im Kontext verander-
licher Teilchenzahl. Wir behandeln die Theorie externer elektromag-
netischer Felder in ansonsten freier Quantenfeldtheorie im Sinne der
beriihmten Arbeiten von Dirac [22], Feynman [35] and Schwinger [95].
Friithere Resultate [86, 97, 75, 13, 15] konstruierten Zeitentwicklung-
soperatoren bis auf eine Phase eindeutig, welche vom externen Feld
abhéngen kann. Diese Phase beeinflusst die elektrische Stromdichte
und sollte daher identifiziert werden. In dieser Arbeit wird dieses
Problem durch eine geometrische Konstruktion, welche eine gewisse
Kausalitatsbedingung vorraussetzt und inspiriert wurde durch [90] und
gemeinsam mit meinen Betreuern entwickelt wurde, behandelt.
Anschliefsend wird eine kompakte Formel fiir den Streuoperator als
Funktion des Einteilchenstreuoperators angegeben und unter gewissen
Annahmen an das Feld wird dessen
Wohldefiniertheit gezeigt. Anschlieffend wir diese Formel verwendet
um zu zeigen, dass der Streuoperator in einem gewissen Sinne eine
Analytische Funktion des Feldes ist.
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Notes on Style

I want to follow the example of the textbooks I enjoy reading which
invite the reader to follow jointly the line of arguments together with
the text. So I will mostly be using the plural to refer to the reader as
well as myself.

Furthermore, the right-hand side of equations will be referred to by the
number of the equation or estimate in parentheses. These references
will also be used inside other equations and estimates.



Contents

Contents vii
1 Introduction 1
2 Direct Interaction in Relativistic Quantum Mechanics 5

2.1 Overview. . . . . . . .. 6
2.2 Singular light cone interactions of spin-less particles . . 18
2.3 Directly Interacting Dirac Particles . . . . . .. .. .. 72
2.4 Summary and Conclusions . . . . . . . . .. ... ... 106

Quantum Field Theoretic Approach to Interactions 109

3.1 Introduction . . . . .. ... ... ... ... ... . 109
3.2  Geometric Construction of the Phase . . . . . . .. .. 125
3.3 Analyticity of the Scattering Operator . . . . ... .. 163
3.4 Summary and Conclusions . . . . . .. ... ... ... 195
Appendix 197
4.1 Regularity of the One-Particle Scattering Operator . . 197
4.2 Lemma of Poincaré in infinite dimensions . . . . . . . . 212

vii



viil

4.3 Heuristic Construction of S-Matrix expression

Bibliography

CONTENTS



Chapter 1

Introduction

Interacting relativistic quantum physics in general and Quantum Field
Theory (QFT) in particular is in a curious state. On the one hand it
has been applied to predict the outcomes of experiments at particle
accelerators such as the Large Hadron Collider with extraordinary suc-
cess, on the other hand there is still no rigorous mathematical frame-
work except for the free theory. Bearing this in mind, we might ask
ourselves what kinds of interaction can be rigorously defined in a rel-
ativistic quantum mechanical setting at all. We are going to describe
two possible approaches in detail.

1. The first kind of interaction to be discussed is introduced for
a system of N € N persistent particles. In order for the wave
function of this system to transform covariantly with respect to
Poincaré transforms we will consider it a function of N spacetime
points x, € R k = 1,..., N. This multi-time formulation goes
back to Dirac [25]. It heavily inspired works that were essen-
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CHAPTER 1. INTRODUCTION

tial for the development of Quantum Electrodynamics such as
that of Tomonaga [102] and has influenced research since then,
see e.g. [74, 103] and [68] for an overview. A natural way of
introducing interaction in this setting would be to let the wave
function solve N Dirac equations each minimally coupled to a
multiplication operator; however, recent no-go theorems [82, 17]
show that such systems are either not interacting, not Poincaré
invariant or mutually inconsistent. The approach we will follow
in chapter 2 bypasses those no-go theorem in [82, 17| by intro-
ducing only a single integral equation for the wave function of
the particles. The equation under consideration will be of the
type

(1, 29) = P72y, 15) + i 21—;2 d*zy d*a), (1.1)

x 81 (w1 — 21)85" (w2 — 25) 2,60 (2 — 25)*)0b (w1, 7)),

of Lienert [64] for the wave function ¢ of two spin 1/2 parti-
cles. Subscripts 1 and 2 refer to quantities associated with the
respective particle: e; is the electric charge, the Dirac matri-
ces v are defined in (2.3) while 1™ and 8" refer to a solu-
tion and the retarded Greens function (2.5) of the free Dirac
equation (2.8), respectively. Equations like (1.1) have, in fact,
already been considered by Feynman [36, equation (4)] in a pa-
per of fundamental importance to the development of quantum
electrodynamics (QED) in writing down the “effect of exchange
of one quantum]|...| between two electrons”. The main differ-
ence between (1.1) and what appeared in [36] is that Feynman
only uses positive Fourier modes in time of the delta in the in-
tegral. Despite the fact that an equation close to (1.1) appeared
very early in the development of QED and the similarity be-
tween (1.1) and the Bethe-Salpeter equation, not much is known
about the mathematical properties of equation (1.1). Previous



mathematical results about related equations are summarized in
subsection 2.1.2.

Two main results of this thesis extend the current solution theory
of equations of the same type as (1.1). The first of which, theo-
rem 15, extends previous results on the existence and uniqueness
of the dynamics of a version of equation (1.1) for spin-less par-
ticles to singular interaction along the light cone. The second of
which, theorem 25, is the first result on existence and uniqueness
of an equation of the type of (1.1) for spin 1/2 particles. The
non-Markovian nature of equations of this type and the fact that
the delay inherent in them is not bounded makes them techni-
cally challenging. Section 2.1 provides an overview of the state
of the art in this field.

. The second kind of interaction we shall investigate is the in-
teraction of an external electromagnetic field with an otherwise
free quantum field representing spin 1/2 particles. Even in this
setting there are classical theorems by Ruijsenaars [86, 87| and
Shale and Stinespring [97] that seem to prevent a dynamical
mathematical description of the processes in question in the pres-
ence of magnetic fields. Judged by the timescales of this field a
short time ago this obstacle has been overcome by abandoning
the restriction to work in a static Fock space [13, 15, 14]. These
results form the basis upon which we will build our analysis in
chapter 3.

Chapter 3 contains two further main results of this thesis in
three theorems. The first, theorem 51 contains a construction
which partially fixes the phase freedom of previous results. The
phase is a relevant quantity here since it influences the current
via Bogolyubov’s formula. This theorem was difficult to obtain
as many ideas of the literature had to be combined and adapted.
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For example, differential geometric concepts of [96] of fibre bun-
dles, whose fibres are phases, lie at the heart of the proof of
theorem 51. Theorem 84 provides a well-defined formula that
gives the scattering operator of external field QED in terms of
the one-particle scattering operator. This result is then used to
prove theorem 85 which states that the second quantized scatter-
ing operator can be given in terms of a power series in the exter-
nal field convergent on the finite particle subspace. This theorem
may be useful in the future as it can support the derivation of
rigorous error bounds on power series expansions often employed
by physicists. This result is non-trivial as it relies on theorem 84
whose result had to be guessed first and whose proof relies on a
version of the Shale-Stinespring theorem for our representation.

Sections 2.2 and 2.3 of chapter 2 are based on the preprint [66] and the
successfully published paper [67], respectively. Both of these publica-
tions are the result of joint work with Matthias Lienert. The references
are given again in the respective sections. The results in chapter 3 are
the result of joint work with my supervisors and has not yet resulted
in publications.



Chapter 2

Direct Interaction in
Relativistic Quantum
Mechanics

As discussed in the last chapter in the paragraph above equation (1.1),
having interaction mediated by multiplication operators in a set of
Dirac equations is not a viable option, as was proven recently [82,
17].  As mentioned, one alternative approach to this problem is to
reformulate Dirac’s equation as an integral equation of type (1.1) and
explore the possibilities of interaction in that formulation. We will
take a few steps in this direction in this chapter. It is based on the
paper [67] and the preprint [66] which are a result of the joint work of
Lienert and the author of this thesis. While these results fall short of
establishing an empirically adequate relativistic quantum mechanical
theory, they do provide self-consistent relativistic interacting quantum
mechanical toy models in three spacial and one temporal dimension.

5



6 CHAPTER 2. DIRECT INTERACTION

Nevertheless, also from a physical perspective these models may still
be interesting, because they provide a tool to circumvent the ultravio-
let problem due to self-interaction. From a mathematical perspective,
the equation is not in Hamiltonian form and involves temporal inte-
grals, hence the well-developed theory of one-parameter unitary groups
cannot be directly applied. In fact, there are only few mathematical
results about equations of this type.

We will first give a heuristic derivation of this type of equation, briefly
review some relevant mathematical results that have been established
in the past, and finally discuss the new results of the paper [67] and
the preprint [66].

2.1 Overview

2.1.1 Heuristic Derivation

In order to motivate the subject of our study, we will now closely follow
the heuristic derivation of equation (1.1) given in [64]. This section
is organized as follows: We start by reformulating Dirac’s equation
for a single particle as an integral equation. The reformulated ver-
sion is then extended to two particles in a Poincaré invariant man-
ner. Extending the equation is conveniently done in the framework of
multi-time wave functions.

Dirac’s equation for one particle subject to an external potential V
takes the form

i0(t, &) = (H™ + V(t,7))o(t, ), (2.1)

here ¢ denotes a potential C*-valued solution, ¥ € R3¢ € R and H®
is the Hamiltonian associated with a free Dirac particle. The latter
acts on wave functions as

H¢ = —in"7 - grad ¢ + m"¢, (2.2)
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where 7 = (v!,72,73) and grad ¢ denotes the gradient of ¢ with re-
spect to the non-temporal coordinates. The matrices v € C*** fulfil
the anti-commutation relation

Va,B€{0,1,2,3}: {7*,9°} := v*9% + 44> = 207, (2.3)

where 1 is the Minkowski metric. We will work with the (+,—, —, —)
metric signature and the standard Dirac representation of this alge-
bra. Squared four dimensional vectors always refer to the Minkowski
square, meaning for all a € C*, a? := a%a, = (a°)° — @ - d@. Small
arrows denote three-dimensional vectors, for a € C* we denote by
a:= (a*,a? a®)T. In the following, a slashed four vector denotes

d = a7y, (2.4)

where Einstein’s summation convention is used. We will be working
in units where h = 1 = ¢, i.e. Planck’s constant and the speed of light
are set to one.

We denote by 8™ the retarded Green’s function of the non-interacting
Dirac equation, that is, the distribution 8 satisfies

(Zat _ Hfree)gret _ 547 25)
supp 8™ < R} x R?, (2.6)

in a suitable weak sense. Here §* denotes the Dirac measure in four
dimensions concentrated on the origin. This allows to recast (2.1) in
terms of the following integral equation

06,3) = (0.2 + | dr [ @7 84— F-PVIr Dol (27)

where ¢ denotes the solution of the non-interacting equation

(Zat . Hfree)¢free _ 0’ (28)
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subject to the initial condition ¢™°°(ty) = ¢g,ty € R which for the
present purpose we think of as a sufficiently regular square integrable
function. Analogously, we may recast the two particle Dirac equation
including a C'®*1®_yalued interaction potential V' to be specified later

i0(t, T, 7o) = (HY + HY* + V(t, &1, 3)) o(t, &1, 72),  (2.9)

subject to the initial condition ¢(tg) = ¢y, to € R sufficiently regular
and square integrable, into the integral equation

B(t, 71, o) = (¢, 71, To) + fdtfd?’ D8t —t & — )
x8XU(t —t', Ty — TV (', 7, Ty)o(t', T}, ), (2.10)

where again, ¢™(¢) solves (2.9) for V' = 0 with the boundary condition
Br(ty) = ¢ and 8t is the retarded Green’s function of the free Dirac
equation of partlcle number k. That is the distribution 8} satisfies

(i0y — Hi ) 8it = 6%, (2.11)
supp 8i(t, 7)) < Ry x R?, (2.12)

in a suitably weak sense, where

Hir® = —ind%: - grad,, +mpn°, (2.13)

with
" =7"®1 (2.14)
=14 (2.15)

and 1 € C*** denotes the identity matrix and grad, is the gradient
with respect to the non-temporal coordinates of the k-th particle and
my € Ry the respective mass. Here, it is crucial to notice that the
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Green’s function of the free two particle Dirac equation factorizes into
a product of two Green’s functions of the Dirac equation for one par-
ticle.

Since equation (2.10) contains only one temporal variable but six spa-
tial ones, there is no unitary operator implementing Lorentz boots
on such wave functions and hence it is not a relativistically covariant
equation. In order to find a relativistically covariant equation, we will
directly generalize the one-particle equation (2.7) to two particles in-
stead of generalizing to two particles at the level of (2.1). Before we
do so let us first rewrite equation (2.7) it in a more suggestive way:

U(x) = () + Jd4$/8ret($ — 2V (2")(a"), (2.16)

where non-bold letters denote elements of Minkowski spacetime, and
we replaced ¢ by v in order to emphasize the change to a relativistic
notation. Furthermore, we replaced the lower bound in the temporal
integral domain by —oo in order to render the total domain of integral
Poincaré invariant, which implies a change of the initial condition.
Please note that solutions of equation (2.16) have a conserved cur-
rent leading to a conserved integral over space-like Cauchy surfaces
reducing integrals over [¢)|? for equal time hypersurfaces.

Equation (2.16) suggests the following generalization for two particles

(w1, w2) = Y (31, 22) (2.17)
| atad el 85 (o1 - )8 (2 — ) K ) ),

where we integrate over all of R® and ™ is a solution of the free
Dirac equation both in x; and x5 and their respective spinor indices:

Dy (1, m9) = (10, — Hy )" (21, 29) = 0, (2.18)
Dzwfree@?h Ty) = ’Vg(wtz - Héree)wfree(xhw?) = 0. (2.19)
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Nomenclature 1. The class of equations
b = e 4 ARy, (2.20)
where the linear operator AX obeys
DlDQ(AKw)(:I:l,mg) = K(x1,22)0(x1, 22), (2.21)

while the free parts 1™ are C'®-valued and obey the restrictions (2.18)
and (2.19) and tempered distributions K € (S(R8) @ C'6*16)’ for C*6-
valued wave functions ¥ will be referred to as spin-1/2 delay-equation.
The distribution K will be referred to as interaction kernel.
Stmilarly, the class of equations

¢ _ ¢free + AKw (222)
where ¥ and Y™ are C—valued and ™ and AX obey

(Chey + mi)p (1, 22) = 0, (2.23)
(Chey + m3)e(21, 23) = 0, (2.24)
(Oay + M) ([, + ma) (A" Y) (21, 22) = K (21, 22)t(21,72)  (2.25)

where my, € R is the mass and [1,, is the d’Alembert operator acting
on the spacetime coordinates of particle k € {1,2} will be called spin-0
delay-equation with interaction kernel K € (S(IR®))’.

In the motivation we gave AX as the convolution of K with the
retarded Green’s function. In nomenclature 1 we widened the class also
to other choices. An optimal choice in the sense of empirical adequacy
of the interaction kernel is not yet known. However, a simple way of
ensuring Poincaré invariance of spin-1/2 or spin-0 delay-equation is to
let K only depend on the squared Minkowski distance (z; — z5)? and
choose a Poincaré covariant form of AX. A choice that incorporates
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interaction along light-like distances, i.e. (x; — 22)? = 0 and has a
correct non-relativistic limit [64, section 3.6| is given by

. €162

K (a1, 22) = i =712, 0((21 — 2)%), (2.26)
for the spin-1/2 case and
A 2
K(.Tl,fﬂg) = Ea((ﬂfl — .CIZ'Q) ), (227)

with A € R for the spin-0 case, where 0 is the one-dimensional Dirac
measure. The model defined the spin-1/2 delay-equation with AX
given by the convolution with the retarded Green’s function in each
particle’s coordinates and interaction kernel given by (2.26) shows
some resemblance of Wheeler-Feynman electrodynamics for the fol-
lowing reason: there are only particles but no electrodynamic field,
the particles interact with each other along light-like distances, and
the particles do not interact with themselves.

Summarizing, we gave a heuristic line of arguments motivating the
class of spin-1/2 and spin-0 delay-equations and a special choice of
interaction kernel (2.26) and (2.27), respectively. In this thesis we will
study a spin-1/2 delay-equation with regular interaction kernel and a
spin-0 delay-equation incorporating (2.27). As mentioned in the be-
ginning of this section, there are only very few results on spin-1/2
and spin-0 delay-equations. The reason for this is that for these types
of equations the theory of one-parameter unitary groups cannot be
applied. Furthermore, the integrals on the right-hand side of these
equations involve the delayed wave function with arbitrarily large de-
lay. As for the theory of delayed differential equations, it is interesting
to study existence and uniqueness of solutions as well as dependence
on initial data. We will review the mathematical results which are for
our purposes most relevant in the next subsection before we move on
to the new results of this thesis and [66, 67].
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2.1.2 Previous Mathematical Results on Directly
Interacting Particles

In this subsection we summarize previous important mathematical ex-
istence results on spin-0 delay-equations introduced in nomenclature 1
as well as generalizations of them to curved spacetime. To the best
of my knowledge there are no mathematical existence results on spin-
1/2 delay-equations prior to the one of Lienert and myself in [67]. The
results we are going to cover are taken from [64] and [70]|. Mentioned
below are only the theorems that are about a four dimensional space-
time; however, there are also results concerning lower dimensions; the
interested reader is referred to [64, 70|. Since not much is known about
the mathematical properties of spin-1/2 and spin-0 delay-equations the
first results on spin-0 delay-equations will be subject to the following
modifications:

(A) The physical motivation for equation (2.22) was given for 1) de-
fined on all of Minkowski spacetime. All the rigorous results
concerning vanishing curvature so far are about the domain
RS x R® =: M. That is, there is a beginning in time. This
modification has technical reasons. However, it may be justified
on physical grounds as current cosmological models also have
a beginning in time. In order to give this reasoning additional
weight the existence and uniqueness result was also proved on
Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime. In
sections 2.2 and 2.3 we provide results on this spacetime for the
same reason. In the Klein-Gordon case the form of A is then
given by Duhamel’s principle [33] i.e.

0 0

Aoy = [ a® [ TN 2.28
1, Tg) = . Ty . Ty w1, To; Ty, Ty ), (2.28)
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0 N . .
where u(-,;x)",25") is a solution to the homogeneous Klein-

Gordon equation in the first and second arguments on the do-
main {(z1,22) € R® | 29 = #/° A 20 > 24°} subject to the

boundary conditions

U($1,$2,l‘10,l’/20)|z? x;O =0, (229)
Opou(wr, 2924, 2y ) go_gor = Uylan, @505 )0y, (2:30)

for j € {1,2} and j = 3 — j, where Uj; is again a solution of the
Klein-Gordon equation with boundary conditions:

(O, + m2)Uj(x1, 20527) =0, (2.31)
Uj(xla L2; I )|ac —x =0, (232)
0 (@, 205 240, 20°) oo = K (21, m0)0 (21, ). (2.33)

Plugging in the formula for solutions to the Klein-Gordon equa-
tion in terms of the propagator and initial conditions and using
that the propagator agrees with the retarded Green’s function
on the domain [10, 11, 12] of integration yields

ARy(21, 2) :f dx’lof dx ’Ofd?’ Jd“ (2.34)
0
G (21) Gy (a5) K (1 — 2, 0 — 29) (21 — 2, 22 — 7)),

the expressions for the operator given in the theorems below and
also in section 2.2. Note that for regular enough K1 one can
exchange differentiation and integration and the properties of
the propagator to directly verify

(D961 + ml)(Dm + m2)<AK¢) (wla x2) = K(xh 1'2)77/1(:131, xQ)'
(2.35)
In section 2.3 we will modify this expression to make it a solution
of the inhomogeneous Dirac equation.
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(B) The interaction kernel K is replaced by various classes of less
singular objects. These classes do not include the singular inter-
action kernel proportional to §((x; — z2)?) motivated in the last
subsection. This modification is purely technical, and we do not
justify it. In section 2.3, where we treat Dirac particles, we will
also use a rather regular interaction kernel compared to (2.26).
The new result about Klein-Gordon particles presented in sec-
tion 2.2 employs the fully singular §((z; — x2)?) kernel.

The space B to be defined below provides the solution sense for the
following existence and uniqueness results.

Definition 1. For T > 0, we define the Bochner space

B := L*([0,T]? L*(R®,C)), where L*(X,Y) and L*(X,Y) are the
spaces of essentially bounded and square integrable functions from X
to Y, respectively. That is, the Bochner space is the space of measur-
able functions from [0, T]? to the space of measurable square integrable
functions from RS to C with essentially finite L? norm, i.e. Vf € B :

esssup || f(t1,ta,-)[3 :=
(t1,t2)€[0,T]2

inf sup f d°z|f(t1,te,7))> <0,  (2.36)
R6

oc[0,T]2 (t1 7tQ)G[O,’T]Q\O'
Ao

where \ is the Lebesque measure.

Theorem 2 (theorem 3.4 (d = 3) of [72]). Let T > 0, X € C, for every
essentially bounded K : R® — C and every ™ € B the equation
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A
tlyflatQan = free tlaflatQan + — d3f/d3l—y
1 2

(4m)?
H(ty — |7, — 2|) H(to — |7 — 75))
|z — & Ty — 2|

x K(ty — |71 — ], &), 12 — [T — 75, 75)
x ¢(t1 - ’fl - f/1|7'f,17t2 - “f? - fIQ 7f/2)
has a unique solution v € B, where H is the Heaviside step function.
Theorem 3 (theorem 3.5 of [72]). Let T'> 0, A € C, for every essen-
tially bounded f : R® — C and every ™ € B the equation
— — T — — >\ — —
W(ty, 1, ta, To) = YU (b, T, ta, To) + (4n)? fdsl'/ldgxlz

H(ty — |7 — 2|) H(to — |7 — 7))
|z — & Ty — T

[l — |8 = T4, 8y, 9 — [Ty — 75|, 75)

|7 — 2|
x ¢(t1 - ’fl - ‘,f,l|7fll7t2 - |f2 - fé|75é)7
has a unique solution v € B.

The next results are about the open FLRW spacetime. There are also
results about the closed FLRW universe which we omit here. The
reader is referred to [70, theorem 4.3]. We have to introduce some
notation before we can present the next results. In order to do so we
follow |66, sec 3.3].

We consider particles on a flat (FLRW) spacetime M which admits a
global coordinate chart z +— (1, %) € Rt x R®. The metric ¢ in these
coordinates at the point z is given by

9o (v1,v2) = a(n)(v]vy — Ty - Bo)
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for all tangent vectors vy, ve € T, M, i.e. the metric at every point is
a multiple of the Minkowski metric. The global time coordinate 7 is
called conformal time, and the scale function a : R* — R is continuous
with lim, o a(n) = 0 and a(n) > 0 for all . In this spacetime the free
wave equation takes the form

(O, — R/6) x(z) =0, (2.37)

where R denotes the Ricci scalar and the Laplace Beltrami operator
acts on scalar functions xy on M as

1
[y = ———0, det glg®P5v ) . 2.38
9X Goia ( | det g|g /ax) (2.38)

The retarded and symmetric Green’s functions of equation (2.37) are
given by

R e )

Gz, ) = — SR 2.39
T S et JF - (239
Sym / 1 1 / — —/

T e — T SRy

4m a(n)a(n’)

This form may be derived exploiting the conformal equivalence of
FLRW spacetime and Minkowski spacetime, see |70, 58| for details.
The generalization of (2.22) to FLRW spacetime is straightforward: 1)
becomes a scalar function on M x M, one exchanges the Minkowski
spacetime volume element with

dV(z) = a*(n) dnd*7, (2.41)

where the one-forms on the right-hand side are the canonical ones in
these coordinates and the product of one-forms is to be understood
as a wedge product. Equation (2.41) gives the invariant 4-volume



2.1. OVERVIEW 17

form on M. As in the Minkowski case, the interaction kernel is given
by the symmetric Green’s function. With this, the generalization of
equation (2.22) with kernel (2.27) turns into:

wuw>=w%%@w+xj AV () dV(y) G, )Gy, o)
MxM

x Gy ) y). (2.42)

For regular and only weakly singular interaction kernels K (z’,y’) in-
stead of G¥™(2/,y’), the problem of existence and uniqueness of solu-
tions of this equation has been treated in [70]:

Theorem 4 (theorem 4.1 of [70]). Let T' > 0, A € C. Furthermore,
let a : [0,00) — [0,00) be a continuous function with a(0) = 0 and
a(n) > 0 forn > 0, and K : ([0,0) x R3)? — C be essentially
bounded. Then for every ™ with a(n)a(n:)p™ € B, the respective
integral equation on the 4— dimensional flat FLRW universe with scale
function a(n):

A
4m)2a(n)a (1)

« [ ddzatn — |7, - @) n ~ 132 - )

H(m — |7 — 7)) H(np — |75 — 7))

|71 — 7] |y — @]

w(n17f1777273?2) = wfree(n17f17772af2) + ( (243)

X

X K(nl - |fl - f/1|7f/17772 - |52 - fl2|afl2>

— —

< P(m — |1 — 1], T, mp — [T — 75, 75)
has a unique solution v for a(n)a(ne)y € B.

Theorem 5 (theorem 4.2 of [70]). Let f : ([0,20] x R3)? — C be a
bounded function. Then, under the same assumptions as in theorem 4
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but with

o — — 7'1_':7 75
K(m, 21,1, T2) = f("|}1 1_7% ) (2.44)

the integral equation (2.43) has a unique solution v for a(m)a(n) €
B.

2.2 Singular light cone interactions of
spin-less particles

This section is based on the preprint [66] which is the result of joint
work with Matthias Lienert. We prove existence and uniqueness of
solutions of the spin-0 delay-equation (2.22) where the solution of the
inhomogeneous Klein-Gordon equation in the operator AX is given by
the expression in the previous subsection 2.1.2 obtained by Duhamel’s
principle to accommodate solutions on M and the interaction kernel
given by (2.27). In contrast to the results of subsection 2.1.2 the equa-
tion will not be subject to the assumption (B). Additionally, we will
extend the result to an arbitrary number of particles. This extension
is not the only possible one; however, we choose the extension called
most promising in [64]. In order to justify the treatment on the half-
space M, i.e. the cut-off in time, we extend the one-particle result to
the FLRW spacetime, where the cut-off appears naturally.

2.2.1 Overview

This subsection is structured as follows. In subsection 2.2.2 it is shown
how to precisely define the integral operator AX in equation (2.22),
i.e. by giving meaning to the delta distributions. Subsection 2.2.3
contains our main results: theorem 14 shows that in the case of mass-
less particles solutions grow at most exponentially in time. Our main
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result is theorem 15, an existence and uniqueness theorem for the full
(massive) case.

Subsection 2.2.3.2 deals with generalizing this existence and unique-
ness theorem to NV scalar particles; the corresponding theorem, the-
orem 16, is a direct consequence of theorem 15. To the best of the
knowledge of Lienert and the author, this is the first rigorous result
about a multi-time integral equation for N-particles.

In Subsection 2.2.3.3 we show, as discussed above, also in this case it is
possible to extend the analysis from Mj to FLRW spacetime. That is,
we show the equivalent result of [70] for singular light cone interactions.
The respective existence and uniqueness theorem is theorem 18.
Subsection 2.2.4 contains the proofs.

2.2.2 Precise formulation of equation (2.22)

In the following, we show how to precisely define the integral operator
in spin-0 delay-equation (2.22) with simplifying assumption (A) and
interaction kernel (2.27).

It is necessary to take special care of the definition of the integral op-
erator as it contains certain combinations (convolutions and products)
of distributions (the Green’s functions). First, our strategy is to con-
sider the integral operator acting on Schwartz space S := S((M{)?)
where its action can be defined straightforwardly. Later it will be
shown that it is bounded on test functions with respect to a suitably
chosen weighted norm. This will make it possible to linearly extend
the integral operator to the completion of S with respect to that norm.
The retarded Green’s function of the Klein-Gordon equation with mass
m € Ry is given by:

1
47| 7|

m

- m Ji(mvx?)

Gre (I) _ \/ﬁ

5(2° — |7 H(2° — |7)) (2.45)
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where J; is the Bessel function of the first kind of order one. Then,
with K(z,y) = 20((z — y)?), our integral equation (2.22) on (M{)?
turns into:

Y= P+ Ay (2.46)
where A = Ao + Al + AQ + Alg and
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HGP = =l ) L)

Bl = ) ). (250

We now manipulate these expressions in a heuristic way such that
the end results can be given a precise meaning on test functions. Let

P eSs.

2.2.2.1 Rigorous definition of A.

We consider the massless term A first which is also the most singu-
lar term. Using the delta distributions to dauntlessly eliminate the
integration over z’° and y'° results in:

_ A 32/ 3/
(Ao)(w.9) =7 meOd 7 Lyod 7

() (%)
B — g — |+ [ E g+ E )
717

X @Z)(I + IE,, Y+ y/)|x/0:7|f/"y/0:7|g/‘, (251)

Note that no complications arose because of the finite size of the in-
tegration domain on the two time dimensions. There is still one more
delta distribution left. We choose to use it to eliminate |Z/| =: r. It is
convenient to introduce the vector

b= —y—(—I7. 7). (2.52)
Then, the argument of the delta distribution can be written as:
@ — |2'))? = |b+ ') (2.53)

This expression has a root in r for
1 b?
200 4 |b] cos ¥

*

(2.54)
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where 9 is the angle between b and 7. Of course, 7* inherits the
restrictions of the range of r, thus, a valid root must fulfil

0<r* <a (2.55)

The requirement 0 < r* can be satlsﬁed in two cases, either b* > 0

and ° > 0, or b*> < 0 and cos?¥ < _H Using these restrictions, the

condition r* < z° can be converted into a restriction of the domain of
integration in ¥J:

I .
—— <
250 + |b| cos
—  sgn(B)? < 22°sgn(b?)(b° + |b| cos )
% sgn(b?)°

— 20 - 0 < sgn(b?) cosV
cost > - — 8 forp2>0
2z0]b| 6]
— 52 50 ) (2.56)
{COSﬁ<m—ﬁ, for b* < 0.

In case of b? < 0, the new restriction on cos® is stricter than cos <
|b|7 we thus use it to replace the latter. We evaluate the delta distri-
bution using spherical coordinates in ¢’ and the usual rule

0(z —2%)
6(f(z)) = —, (2.57)
. fé T

where f(r) = (9= r)2 — (b+ 2/)2 = —(r — r*)2(b° + |b| cos ¥). The
result is an expression for Agy) which does not contain distributions
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any more:

(Ao)(z,y) = A J d3*'f27rd Jl dcos ¥ i
P T e bt 0 LT a0 Bl cos vyl

<1b2>01b0>01(:os19> b2 —ﬂ—i_ 1b2<olcos19< b2 )Qﬂ(l’ +ZL’ y+y)

22005 |5 22005 \bl

(2.58)

still subject to 2 = —r* = — ||, 4/ = —|§’|. The different cases for
b have been implemented through the various indicator functions.

Definition 6. We define the operator Ag : S — By, ¥ — Ag) accord-
ing to (2.58), where By, is defined in (2.65) and equality is to be read
as equality in B,,. Well-definedness and boundedness will be shown in
theorem 14 and 15.

2.2.2.2 Rigorous definition of A;.

Next, we turn to the definition of Ay, starting from the heuristic ex-
pression (2.48). We first split up the delta distribution of the interac-
tion kernel according to (2.57). Then we use 6(y° — y'° — |7 — ’|) to
eliminate 3"° (= y° — |7 — 7’|). Note that the order of these two steps
does not matter. This yields:

(o) = i [ o [ [y mat -7
\/— W -lg-y) 1
(@—2) G-y &=
[5(x’ — 4G = 1N =)+ = T - 71+ |E - )]
< (@i — 17— 7). 7). (2.59)
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Finally, we use the remaining delta distribution to eliminate z/°. We
obtain:

Amy (s HO =g —9") 1
A - d3 / d3 /

N(CETIE (', y)

— )2 " =y0—|5—7"],
o=y |G~ |
+ HE@)H(2® — 2° — |7 - 1|
J1<m1 (l’ B ZL'/)2) ’o
, . (260
(x —a')? v y) V==l (2.60)

"=y |g—g' HE'—’|

Note that the domain of integration is effectively finite due to the
Heaviside functions.

Definition 7. We define the operator Ay : § — By, — A1 accord-
ing to (2.60), equality is to be read as equality in B,,. Well-definedness
and boundedness will be shown in theorem 15.

2.2.2.3 Rigorous definition of A,.

Starting from (2.49), the analogous steps as for A; yield:

Ay i a HE@Z—|Z=2]) 1
A _ d3 d3 /

’ —

T —
[H(y’O)H(yO —y" =7 -7

X

Ji(marn/(y —y')?) ol o)

0 S ol
/0 =a0— (7= |
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+H(y’°)H(y° v’ — 77"

 DmaV(y — y)? wx,y')) 0 o ] (2.61)
>

=P el

yO=a—|7-2'Hz"

Definition 8. We define the operator Ay : S — By, — A1) accord-
ing to (2.61), equality is to be read as equality in B,,. Well-definedness
and boundedness will be shown in theorem 15.

2.2.2.4 Rigorous definition of A;,.

Here, we start with (2.50). We change variables (z',y") — (2,2 =
=2/

Z'—7") (Jacobi determinant = 1), with the goal of using the remaining
delta distribution to eliminate |Z] = |Z’ — ¢’| in mind. We find:

(Arat) (2, ) = Amlm? f o [ f oy’ [z a7 - 7)
¢—x/

X (x = H(y’ —y" —§— 7'+ 2)
o Ay (yy,)f W=~ ) (262

Now we use spherical coordinates for 2 and eliminate |2] through the
delta distribution, using

/ / = 1 / / =)
6((a" =) — |2P) = Mﬂlxo -y’ =12 (2.63)
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This yields:

)\mlmg © /0 3 o1 0 0 27 T
A —
(o)) = g | [ | g [ o [ a
x sin(9)]2’’ — y°|H(2* — 2/° — |7 — —»/|) Ji(may/(x — a')?)

(x —a')?

x H (y°—y'*— |7~ fv+Z|

T

7= 2, F=la ~y""|

(2.64)

(y—y')? (2! 4)
\/7 :

Note that the domain of integration is again effectively finite.

Definition 9. We define the operator Ais : & — By, — At
according to (2.64), equality is to be read as equality in B,,. Well-
definedness and boundedness will be shown in theorem 14 and 15.

Definition 10. Finally, A : S — B, is defined as the sum of the
individual A operators A = Ay + Ay + Ag + Ajs.

After we prove that A is well-defined, we will have collected rigor-
ous definitions of the ingredients of equation (2.22) on test functions.
However, this is not sufficient for our strategy of construction of solu-
tions. For a fixed point argument we need A to be defined at least on
the image A(S), more convenient is to lift A to a Banach space.

2.2.2.5 Lifting A from test functions to a suitable Banach
space.

In order to prove the existence and uniqueness of solutions of the
integral equation v = 9™ + Az, we will define the operator A not
only on test functions but on a suitable Banach space which includes
(at least) sufficiently many solutions ¥ of the free multi-time Klein-
Gordon equations, ([, +m3 )™ (z1, x5) = 0, k = 1,2. We shall define
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this Banach space as the completion of S with respect to a suitable
norm. A good choice which works well for the upcoming existence and
uniqueness proofs is the class of weighted L*-norms.

Definition 11. Let w : Rf — R be a monotonically increasing
function such that 1/w is bounded. Then our Banach space is given
by the completion

By=3"" (2.65)
with respect to the norm || - | : S — R,
¢ (z,y)]
Y = €sssup —————. 2.66
W = s o () (2.66)

Our next goal is to find a weight function w such that the operator A
is not only bounded but even defines a contraction on B,,. By linear
extension, it is sufficient to estimate || At [, on test functions ¢ € S.
Before we move on to the main results of this section and its proofs,
we remark on the choice of space.

Remarks: 1. We have attempted to use a Bochner space, L* in
the times and L? in the space variables. However, we did not
succeed in obtaining suitable estimates for that case. This might
not be a problem in principle, but its treatment would require
further technical innovation. More precisely, one would need to
understand integral operators such as (2.58) whose kernel is in

L' but not in L2

2. Nevertheless, our definition of B,, contains a large class of free
solutions of the Klein-Gordon equation. As the Klein-Gordon
equation preserves boundedness, all bounded initial data for 1)
lead to a free solution ¥ € B,, which can be used as an input
to our integral equation.
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2.2.2.6 Rigorous formulation of N particle problem

While there are different possibilities to generalize the two-particle
integral equation (2.22), we focus on the one advocated in [64] as the
most promising. For

(I (ME{)NHC, (21, ., ) = (21, . TN) (2.67)

we consider the integral equation

A
¢(x17 JxN> = ¢ffee<x17 ,ZUN) + E N Z o (268>
i,=1,...N;i<j
X J d4xif d*z; G*(z; — 2})G™ (x; — o))
M M7

x 6((x; — 25)) (@1, ooy Ty oy T T,

Here, ¥ is again a solution of the free Klein-Gordon equations ([, +
m3)¢(zy) in each spacetime variable.

Equation (2.68) is written down in a heuristic way. Now we come to
its rigorous version.

Definition 12. Let ¢ € S((M{)") be a test function. Moreover, let
AU be the integral operator of definition 10 of the two-particle problem

acting on the variables x; and x; instead of v = x1 and y = xo. We
define the space M) By, as the completion ofS((I\\/JIar)N) with respect to

the norm
[|w =  esssup |¢|(()x1,...,xN0) , (2.69)
T1gees .Z’NEMS— ’lU(LUl)’lU(LL’N)

where the function w s defined as before. Finally, we define A :
S((Mg)N) — M By, by its action

M4 = > A, (2.70)

i,j=1,.,N;i<j
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As will be shown below, A can be linearly extended to a bounded
operator on the Banach space (M) B,,. Then we take the equation

= e 4 MNAy, (2.71)

to be the rigorous version of (2.68) on VB,

2.2.2.7 Rigorous formulation of the problem on FLRW
spacetime

Recall the formulation of the spin-0 delay-equation (2.22) on FLRW
spacetime, equation (2.42) which upon plugging in the expressions (2.39)
and (2.40) for the Green’s functions becomes

ee = v >\ 1
Wl Fr, 1, Tp) = O <771’f17”2’“>+<47r> alm)alm)

J dnlfdg J dngfd3f§a2 )

— |7 — Z1[) (2 — my — |72 — T5])
|I1 _$1| |$2_$2|
x O((ny — nh)? — |2 — B2 (ny, T4, nh, 7). (2.72)
Now let
X (M1, Z1,m2) = a(n)a(n2)(ny, 1,m2) (2.73)

and X (ny, Z1,m2) = a(n)a(n2)™ee(ny, T1,m2). Then (2.72) is equiv-
alent to:

A m . .
(4m)3 ), dny | &2y (2.74)
Xfnzdn;Jdgf,j(??l—?zi_@l—fﬂ)6(772—715_@2_37/2‘)

0 ‘.1'1—.1'1| ‘1’2—1'2

a(my)a(ny)d((ny—ns)? — |2 — T5*)x(n}, Ty, 0y, 7).

free (

X(nlafhn?af?) X 7717$177727$2)
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We can see that this equation has almost exactly the same form as the
massless version of (2.22) on M (see (2.47)). The only difference is
the additional appearance of the factor a(n})a(n}) inside the integrals.

Definition 13. The operator Ay : S — By, is defined using coordinates
r = (771755); Yy = (7]2737)

T —/ |b2|
Aox)(z,y J d>j J J dcos
(Ao)(@9) =t B o) 480 + [B] cos 9)2| 7|

a(m + np)a(ne + my)x(x + 2",y +y)

X (1b2>01b0>01c0 a9 02|b\ T,;)I + 1b2<01cosﬁ<2 02\b| ff) , (2.75)
with 0} = —r* = —|Z'|,n, = —|y’|. (Here, b and r* are defined as

n (2.52) and (2.54), respectively).

We take the equation N
X = X" + Aox (2.76)

to be the rigorous version of equation (2.74).

2.2.3 Results

This subsection is structured as follows. Sec. 2.2.3.1 (which is about
the two-particle case) contains the theorems about existence and unique-
ness of solutions which is the main result of Sec. 2.2. Sec. 2.2.3.2 ex-
tends these results to the N-particle case and in Sec. 2.2.3.3 we show
that a curved spacetime with a Big Bang singularity can provide a
natural reason for a cut-off in time.

2.2.3.1 The two-particle case

Theorem 14 (Bounds for 4y and w(t) = e'; existence of massless
dynamics.).
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For any v > 0, let w(t) = . Then Ay can be linearly extended to a
bounded operator on B,, with norm

A
8my2’

[ Ao < (2.77)

Consequently, for all v > \/szw’ the integral equation v = ™ + Ay

has a unique solution 1 € By, for every e € B,,.
Now we come to our main result.

Theorem 15 (Existence of dynamics in the massive case.).
For any a > 0, let
2
w(t) = (1 + at?)e /2, (2.78)

Then Ag, A1, Ay and Ao can be linearly extended to bounded operators
on By, with norms

Al

[ Ao < o=, (2.79)
32T «
5Aam? 1
A < 16;@, (2.80)
5Am3 1
| Az < 167r2@’ (2.81)
Amim3 1
|A] < 8017T 25. (2.82)
Consequently, for all o > 0 with
A1 5mi+md)1 mimil
%(1* > a1 w) = (2.83)

the integral equation v = ™ + A1) has a unique solution 1 € By, for
every Y € B,,.
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The proof can be found in Sec. 2.2.4.3.

Remarks: 1. Comparison of theorem 14 and 15 in the massless
case. At the first glance, the result of theorem 14 looks stronger
in the sense that for w(t) = ¢, the estimate of || Ag| goes with
~y~2 while for w(t) = (1 + at?)e®’/?, the estimate of | Ao goes
with a~!. However, one should note that v is the constant in
front of ¢ while o occurs in combination with ¢2. Thus, if one
wants to draw a comparison between these different cases at
all, then it should be between v and 4/a. Of course, the main
difference between the two theorems is the admitted growth rate
of the solutions. In this regard, theorem 14 contains the stronger

statement.

2. A physically realistic value of X is %, the value of the fine struc-

ture constant. In that case, a need not even be particularly large
in order for condition (2.83) to be satisfied.

3. Initial value problem. By the integral equation (2.22), we obtain
that the solution 1 satisfies ¥(0,7,0,7) = °(0,7,0,7). If
e is a solution of the free multi-time Klein-Gordon equations,
then it is itself determined by initial data at 9,29 = 0. (As the
Klein-Gordon equation is of second order in time, these initial
data include data for 0,01, 01 and 0,00,0%), see |77, chap. 5].)
Thus, we find that ¢ is determined by these data at 2%, 29 = 0
as well. Note that for later times, ¥ and ¥™ do not, in general,
coincide and consequently a similar statement does not hold.

4. Finite propagation speed. The theorem implies that
=, Akyliree. As (Ay™e)(z, y) involves only values of 1™
in past(z) x past(y) where past(x) denotes the causal past of = €
Mg (see equations (2.58), (2.60), (2.61), (2.64)), so do AFepfree
for all k € N and v. Therefore, we obtain: if the initial data for
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yPiree at 2% = 0 = 90 are compactly supported in a region R <
({0} x R3)?, then for all Cauchy surfaces ¥ M, 1|syx is sup-
ported in the causally grown set

Gr(R,Y) = (U(w)eR future(z) x future(y)) N (X x X) where

future(x) stands for the causal future of z € M.

5. Square integrable solutions. As a consequence of the previous
item, compactly supported and bounded initial data for 1) lead
to a compactly supported and bounded solution . In particular,
this implies that 1 (z°, -, 4°) lies in L*(R) for all times z°,3° > 0.

2.2.3.2 The N-particle case

With these preparations, we are ready to formulate the N-particle
existence and uniqueness theorem.

Theorem 16 (Existence of dynamics for N particles.).
For any a > 0, let w(t) = (14 at®)e® /2. Then the operator MA can
be linearly extended to a bounded operator on N) B, with norm

A 1 5(mZ+m2)1 mim? 1
Mg < 2 - Loyt I ) (284
” H 8mar Z . ,<4+ 2 o 10 a2) (284)
i,j=1,...N;i<j

If « is such that this expression is strictly smaller than one, the integral
equation (2.71) has a unique solution 1 €N By, for every e eNB,,.

The proof follows straightforwardly from that of theorem 15 using
VA< ) 1A, (2.85)

i,j=1,.,N;i<j

For the norms of the operators A% one can use the previous expres-
sions as these operators act only as the identity on variables x; with

k¢ {1, 5}



34 CHAPTER 2. DIRECT INTERACTION

Remark 17. To the best of my knowledge, theorem 16 is the first result
about the existence and uniqueness of solutions of multi-time integral
equations for N particles. While for the present contraction argument
the generalization to N particles has been straightforward, this is not
the case for other works. For example, the Volterra iterations used
in [72] become increasingly complicated with increasing particle num-
ber. For Dirac particles, a similar technique is used section 2.3. How-
ever, as the Dirac Green’s functions contain distributional derivatives,
one has to control weak derivatives of the solutions, and the number
of such derivatives depends on N. That situation also does not allow
for such a straightforward generalization to N particles as has been
possible here.

2.2.3.3 Result on FLRW Spacetime

Recall the rigorous definition 13 of the integral operator in the spin-0
delay-equation on FLRW spacetime (2.76). In terms of these, we can
formulate the respective existence and uniqueness theorem:

Theorem 18 (Existence of dynamics for an open FLRW universe).
Let a: RS — R{ be a continuous function with a(0) = 0 and a(n) > 0
form > 0. Moreover, let

t
w(t) = exp (7f dr a(T)) . (2.86)
0
Then, the operator JZO satisfies the following estimate:
Ao A
LAl _

< : (2.87)
xeS((M7)?) X 8my?

Ay can be extended to a linear operator on By, which satisfies the same
bound. Moreover, for v < %, the equation xy = T + ﬁgx has a

unique solution x € By, for every 17 € B,,.
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The proof can be found in Sec. 2.2.4.4.

Remarks: 1. Manifest covariance. The theorem shows the exis-
tence and uniqueness of solutions of the manifestly covariant
integral equation (2.42). Our example of a particular FLRW
spacetime thus achieves its goal of demonstrating that a cut-off
in time can arise naturally in a cosmological context.

2. Initial value problem. As in the case of M, the solution y
satisfies (0, 7,0,%) = x™(0, 7,0, %) where x™° is determined
by the solution 1 of the free conformal wave equation (2.37)
in both spacetime variables. Since ¥ is determined by initial
data at 1, = 0 = 1, so are ¥ and .

3. Behaviour of ¢ towards the Big Bang singularity. While the
transformed wave function y remains bounded for 7y, — 0, the
1

physical wave function ¥ (ny, &, 2, y) = mx(m, T, 19, y) di-
1

verges like ATy This is to be expected, as the Klein-Gordon
equation has a preserved "energy" (given by a certain spatial
integral) and as the volume in 7, i contracts to zero towards the

Big Bang.

4. N-particle generalization. As shown in Sec. 2.2.3.2 for the
Minkowski half-space, it would also be possible to directly ex-
tend theorem 18 to IV particles. To avoid duplication, we do not
carry this out explicitly for the curved spacetime example here.

2.2.4 Proofs

For t = 0, we define the functions:

wo(t) = w(t),
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and for ne N:  w,(t) =J
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t
dt' w, 1 (t'). (2.88)

0

Note that due to the properties of w, the functions w,, are monoton-
ically increasing for all n € N; furthermore, by definition, they satisfy

w,(0) = 0.

The theorem gives explicit bounds for the operators Ag, A;, A, Ajs in
terms of the functions w,, and is therefore together with Banach’s fixed
point theorem the main tool leading to the results of subsections 2.2.3,
2.2.3.2 and 2.2.3.3. The proof is the result of the next subsections.

Theorem 19 (Bounds of the integral operators on S.). For all ¢ €
S((M{)?), the integral operators Ay, Ay, Aa, A1a satisfy the following

bounds:

o Aol _

YeS((Md)2) %
|40k _

YeS((M{)?) H@D”w
oo A _

YeS((MF)?) %

|A120

sup

T L
PeS((M)?) 1% e

2 () (259
T 12 (o iy ) (o o)

<3 (s ) (s )
\ . (s ) (sop i) )| o0
e 12 (s i) (s )

w3 (s i) (s )

w2 (sp Sl (s )| o
Amims3

(s ) (s
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5 (s S (s va?%))]é.gm

In case these expressions are finite, Ag, Ai, Ao, A1o extend to linear
operators all of on B,, with the same norms. Our next task is to
find suitable weight functions w such that this is actually the case.
We begin with the massless case where already an exponential weight
function leads to an estimate which remains finite after taking the
supremum. The massive case is treated subsequently; it is a little
more difficult since all the estimates for the operators Ag, A1, As, A1o
have to be finite at the same time. This requires a different choice of
weight function (see theorem 15).

2.2.4.1 Proof of Theorem 19

The proof is divided into the proofs of the estimates (2.89), (2.90),
(2.91) and (2.92), respectively. Here, (2.89) is the most singular and
most difficult term which deserves the most attention.

Throughout this subsection, let ¢ € S((M{)?).

2.2.4.1.1 Estimate of the massless term (2.89). We start with
equation (2.58) and take the absolute value. Using, in addition, that

(@)l < 9w w(@)w(y’) (2.93)

leads us to:
Allwnwf 3ﬁf f al
A T,Y) < &y’ d cos ¥ N
[ Aot| (2, ) 447 )00 y 4 (9 +[b] cos 9)?|y"|

0 —/
w(y —|y wa( 2b2 ]b| cosq?)
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X (1b2>01b0>01w519> p2 0 + 1b2<0100519< b2 _bo> . (2.94)

22015]  |b] 22015]  [b]

16|
(b9+|b| cos )2
fraction which occurs in the argument of the second w-function. In-

troducing u = cos ¥ allows us to rewrite (2.94) as

Next, we observe that the fraction is the derivative of the

(2.94) = )\HwHu; f d*y’ Jl du2 sgn(b*)
8(47?) B o(¥) -1
1 v 1
X Ogwy | 2° — =——— | w°’ — 7)) = 2.95
( 200 + |bru> AT 25

22005 [5] 22005 5]

A9 w J 3 f o 1 ¥ 0 |
= &y | du dw | 2" — =———5— | w(y’ — |y
4(4m)? B0 (%) -1 ' 200 + |blu ( 771

1
X 1b2>01b0>01u> ”(fﬂfi - 152<01u< b(ffﬁ TR
22075 |7] 2200 18 | |b]|y"|
J/ . ~- >

X (1b2>01b0>01u> b2 0 +1b2<01u< b2 b0>

(2.96)

.

v~

This form allows for a direct integration with respect to u. Before we
integrate, we check for both terms |1|and |2 | whether the conditions
implicit in the characteristic functions can always be satisfied. (Oth-
erwise, the respective term would not contribute any further, and we
could drop it.) Unfortunately, this results in a tedious treatment in a
case by case manner. Recall that b =2 —y — (—|y'],¥").

First, we check for term | 1| whether in the case b > 0,b° > 0 it is

true that 1 > #2“;' — |b—£| holds. (The comparison with 1 is due to the
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upper range for u.) We compute

b2 bo 0177 01.0 2
1> - — = < 2x°|b|+22°b" > b
22006 |b]
— 226" + b)) > (8° + b)) (" — b))
2 0 N
TR0 920 S 10 3]

— 2"+~ 7| > —‘g| (2.97)

Now because of |§/| < y" we see that this inequality always holds
true. Hence, the respective term in (2.96) contributes without further
restrictions.

Next, we turn to the term . Here we check whether b* < 0 implies
— 2;02 i |b—£| or whether extra conditions are needed. (The compar-
ison with —1 is due to the lower bound for w.) A similar calculation
yields

v? b0

1< —— — — == —220b| + 22°|b] < b (2.98)
22000 |b]

— 22°00° — |b]) < (B° — [B))(B° + [B])  (2.99)

£29 940 5 9 4 B, (2.100)

This inequality need not always hold, as we can increase |b| with re-
spect to b as much as we like, e.g., by picking |Z —¢/| large. Therefore,
in this case, the respective term is only sometimes non-zero. We make
this clear by including the characteristic function 1, o_,0 -
Taking these considerations into account, we now carry out the wu-
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integration in (2.96):

Ml L, w(y — |7’
|A0’¢|(1’,y) < %f d3 / %
(47) B,o (1) 1bl157]
1 v
X <1b2>0,b0>0 ’w1 (mo a §b0 + |g|>
1 b?
0
ol (2.101)
250 4+ |b| max(—1, ﬁjg‘ - %> ]
1 b?
0
— 1b2<012x0>b0+|g| [wl = §b0 + ’g| min(lu 2 b()2|g| o %)

o 1 ¥
— w, <x ST ‘g’> D (2.102)

The minima and maxima in this expression result from the indicator
functions 1 »2 w0 and 1 w2 0, Tespectively.
U T 22075 [5]
Our next step is to simplify the complicated fractions in (2.101) and
(2.102) involving min and max. For (2.101) we use that 1/ max(a,b) =
min(1/a,1/b) whenever a,b > 0 or a,b < 0 holds. Therefore, we have:
1 b? 1 b’

2b0+|6\max(_1 b2 ﬂ) 2maX<bO—\5],%)

722008 Y]

2 0 [
zlmin b —.22° | = min b +|b|,a:0 .
2 bO — |b] 2

The fraction in (2.102) can be simplified by observing that

- v? v° - b? v?
° + |b| min (1 ) = min (bo + 0], > = — (2.103)

"ou05] B 220 ) 220
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as the term contributes only for b* < 0 hence b° + |b| > 0 > b2/(22°).
Thus,

1 b?

5 0 Y . b2 b0
b0 + |b| min(1, 20T |5|>

= 2°. (2.104)

With these simplifications, we obtain for (2.101) and (2.102) (using
w1 (0) = 0)

AY]w 0 — |’
B,o(#) |b||

4(47)?

{58 (529
a2

B .
= = >0,60>
AR e,

Yy
0 0 __ |7 g

Aile [ g 71
2 ) s0m " (Bl

0 0 __ |7/ _ l_;
X Wi (max (x Y 2|y] H,O)) (2.106)

L+ Al J pa W =19
Bo(

— b2<0 1&30 0__ |7/ Bl
4(4m)? 7 15/ < +y0—[g’|>[b]

0 0_—»/_6'
X w, (”j Y 2’y| | |>. (2.107)

— Ly 12:co>b0+\l;\ [wl

1b2 >0,b0>0
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We now want to carry out as many of the remaining 3’-integrations as
possible. In order to do so, we orient the coordinates such that & —
is parallel to the (y”); axis. Then the integrands in (2.105)- (2.107)
are independent of the azimuthal angle ¢ of the respective spherical
coordinate system (p, 0, ¢) with standard conventions.

In order to perform the remaining angular and then the radial integral,
we need to find out which boundaries for § and r result from the
characteristic functions. First we analyse for which arguments the
maximum in (2.106) is greater than zero and therefore contributes to
the integral (as w;(0) = 0). We have:

2+ — 15’ — |b]
2

= (2" = 7'])* > |7 = g1 +17 "+ 2]7||7—Flcos

(2" +9%)? |F-gl 24y

llZ—yl 20yl |E-yl

> 0

= cosf<

Pry(l7'])- (2.108)

This calculation also helps to reformulate the second indicator func-
tion 1ypco 1,0, 0 5= I (2.107) (for which we have b* < 0). The
condition ° > 0 in (2.105) and (2.106) is readily seen to be equivalent
to

17| > 3° — 2°. (2.109)

In order to perform the f-integral we have to translate b = 0 into
conditions on #. We have:

b >0 = (2" —y" + 7)) > @9 + 5] + 277 — Fl cos b

N2
— cosf < (_f_,y)_,—i-_, —
29|17 -yl |79

$0—y0

= Kooy (7). (2110)

With these considerations, we have extracted relatively simple con-
ditions on the boundaries of the integrals in spherical coordinates.
However, if different restrictions of the boundaries conflict with each
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other, it may happen that for some parameter values the domain of
integration is the empty set. We check whether this is so term by
term, focusing on the #-integration first. For term (2.105), § needs to
satisfy —1 < cosf < min(1, K,_,(|y’[)), so we need to check whether
—1 < K,_,(]y’]) holds. We have:

— 1< Ky (|7'])

— 2§'|T =g < (x—y)*+ 27" |(«" — ¢")

— 0 < (x—y)*+2/§|(2° —° + |7 - 7)
y°—204 |77 . = o 0 0
e < Y| for [Tyl >y —x

p— y()_x()_?_lf_m - ’_‘/‘ for ‘f_ _»‘ < 0 _ 0 (2111)

s Y Y Y T

Together with (2.109), we obtain the condition y°—z° < || <w
< ¢ — 2" in the second case which means that there is no contribution
to the integral. For y° — 2% = |7 — ¢ we have K,_,(|]y’|) = —1 so this
case is also ruled out. So we focus on the first case,

y’ —a° + |7 — ]

5 ‘| and |Z— ] >y — 2°, (2.112)

<ly

by including the characteristic function 1jz_g-40_0 in the integral.
Next, we turn to the radial integral. By comparing its upper limit
7’| < 3° and lower limit (y° —2° +|Z —¢])/2, we find that the integral
can only be non-zero for

YO+ 2% > |7 — . (2.113)
For equality the integral vanishes, because the integral domain, while

not empty, is of measure zero. We make this clear by including the
respective characteristic function.
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2.2.4.1.1.1 Simplification of term (2.105). These consider-
ations allow us to continue computing (2.105):

0 s
(2.105) = >\||wHw 1y0+$0>\f—@7| Jy dp JQ d(p 1y0710+|57ﬂ|
4(47T)2 max(0,y°—20) 0 2 <P
min(1,Kz—y(p)) 0 __
X 1iz_g>y0—a0 f dcos@ — pwly pj =
1 VT — G2+ p2 + 2|7 — glpcos
< w, (:)30+y0—p+\/|f—§|2+p2+2p]f—g]cos9) (2.114)
5 : :

Now we carry out the p-integration and use the same trick for the
f-integral as for the ¥-integral in the Z’-integration earlier. Moreover,
we absorb some restrictions of p into the limits of the integrals. This
yields:

0

(2.105) = fﬂfﬂhﬂ1 04205 [7— 1> 0_x0~fy dp
8(47T) Y ey max(Oyo_xO w>
’ ’ 2
min(1,Kz—y(p)) 2 0 __
J dw'wg qm
-1 |7 — 9]
0 4 40 7 _ g2+ 2 =
+y —p+ — + 02+ 2 _
xémw2<x ¥ —p+ /|7 — g2+ p? + 2|7 mw>
2
0
_ MY ]w v w(y’ — p)

20 440> |F—F|>y0—20 dp e
4(4m) TRy max (0.y0—a0, 220120 [T — ]

) [w <x0+y°—p+¢|f—y*|2+p2+2p|f—z7| mm<1,KH<p>>>
2

0 0 = =)
+y' —p+|Z -9 -
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The square root can be simplified using the following identity:

IE =312 + 52 + 2017 — 71, (0)
=P+ (20— )2+ 2p(a® —y0) = [2" —¢* +p|.  (2.116)

Using this, we can effectively pull the minimum out of the square root.
We obtain:

0

(2.105)=M1x0+yo>|f_m>yo_xof e M
™ max(O,yOfxo,%M) |I - y|
[ (:v°+y° — p + min(|Z — g] + p, |2° —y0+p|)>
X | W2
2
0 0 _ 2 _ 5 —

Next, we subdivide the conditions in the first indicator function into
two cases, (a) (z —y)? = 0 and (b) (x — y)* < 0. In case (a), the
condition |Z — ] > 3° — 2° implies 2° > y°. This, in turn, yields

0_ .0 |7
max O,yo—xo,y w;\x gl

|7 — 7] is automatically satisfied (note that 2° y° > 0). In case (b),
the condition |7 — ] > ¢ — 2° is automatically satisfied. We find:

= 0. Moreover, the condition z° + " >

Y w y° w(y° —
(2.105) = L%hmy)@w%y0 J d %
) =
N (Y=g (Y —p+ [T
2 9 2 9

Ao v w(y’ — p)
+ 167 1(x—y)2<0 1x0+y0>f—g’|f d

S
yO—a0+|7—7| |7 — 9]
2

0 0 0 0
+y—p+ ¥ -y +
y [w2 (sc v —p+la’—y p!)

2
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0 0 _ = 7
_w2($ +y p;laﬁ 7l p!)]

0
_ )‘Hwle 5 o Ofy dp w(yo_p)
167 (z—y)?=20,29>y 0 |f— Zj|

[ (ﬂ+yﬁwf—m>
X | Wo 9

:w+ywwf—m:w+yﬁwf—m_#0]

— WoINnax s
( 2 2
40

)\H¢||w1 9 1 o 0l _'J' w(yo _p)
167 (z—y)?<0 Ltx0+y0>|7—7

T
y0—a0+|z—] |7 — ¥
2

_|_

X ['wgmax (xo, 0 — ,0)

0 L 0 (72 0,0 |7 _ 7

— wymax <x Ty olEoy ety E —,0) ] (2.118)
2 2

Here and in the following we abbreviate ws(max(- - - )) as we max(- - - ),

and similarly for the minimum. This ends the calculation of (2.105):

we have arrived at an expression where no more exact calculations can

be done, and further estimates are needed.

2.2.4.1.1.2 Simplification of term (2.106). Next, we pro-
ceed with (2.106) similarly. In case the reader is not interested in the
details of the calculation, the result can be found in (2.126).

The restrictions of the integration variables for (2.106) are the same
as for (2.105), namely:

cosf < K,_,(li7’)  from (2.110), (2.119)
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0o_ ,.0 = a7

A ; =9 7 fom (2.112) (2.120)

P -2 <|7—¢ <y’ +2°  from (2.112) and (2.113). (2.121)

The only difference is that from the maximum in (2.106), we obtain
the additional restriction (2.108), i.e.

cos® < P, ,(|7']). (2.122)

We need to check if there are new restrictions imposed by P, ,(|7’]) >
—1. We compute

Poy(lyl) > -1
(«°+y")?*  F—yl 2"+
9'llE =gl 20y [T —]

> —1 =

x0+y0—|—]f—gﬂ.
2 )

7| < (2.123)

however, the last inequality is already ensured by (2.121), 2° > 0 and
17| < ¢°. In order to be able to evaluate (2.106) further, we next plug
the condition cosf < P, ,(|y’|) into the expression for |b. This yields
(recall that we use spherical variables for |y’|):

bl = /17 = 512 + p* + 2p|7 — ] cos 0
<AJIT— G + p* + 20/T — 71Payy ()
= \/p2 —2p(2% + 9) + (20 + ¢y0)2 = 2° + ¢° — p. (2.124)

With this, we perform for (2.106) the analogous calculation to (2.114)-
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(2.117). This yields:

A% w Jyo w(y® —p)
2.106) = 1,0 20— 51 s dp—=2—2
( ) 167 et <lE ety maX(O,yOfxO,Lo_gco;li_m) |7 — 9

l <x°+y0—p—min(!f—ﬁl+p,|$°—y0+p|,x°+y°—p)>
X | wa
9
(x0+y°—p— |7 — 7] —plﬂ
2
0

_ At v w(y’ —p)

T z dp —5———
160 @90 0>y0f0 P |7 — ¥

[ <x°+y°—|f—17| ) <x°+y°—p—llf—§|—pl>]
x | w, 5 —p | —w, 5

A9 w w(y’ —p)
+ 167 Lz—y)2<0 1m0+y0>|iy|J 0+\z y‘ |—»_ 7]
l (x +y'—p— Iw —y +p\) (ﬂc +y —p—llw—y!—p|>]
X | W2 2
A f w(y® —p)
=——1 T— T d = o
167 (@ w?20a0>y0 0 P |7 — ¥
0,.,0 |7~
x [w2 (x Y > Z y|~p) (2.125)
. <x°+y°—!f—@7| 200+ |7 )]
—wsymin 5 , 2 —p

0

Al o Y w(y’ — p)
BT i f wewsn @ 7

X [wzmin (:130, y° — ,0)
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. (x%yt\f—y*\ 20440+ |77 )]
— womin 5 , 5 —p |

(2.126)

This ends the calculation of (2.106).

2.2.4.1.1.3 Simplification of term (2.107). We next turn
to (2.107). In case the reader is not interested in the details of
the computation, the result can be found in (2.139). First we note
that the restriction imposed by the first indicator function here is
cosf > K,_,(|y’|) and the condition of the second indicator function
is cosf < P, ,(|y’]). In order to to satisfy these conditions (and the
restrictions of the regular range of integration) it is required that

max(—1, K,_,(|7']) < cosf < min(1, P, ,(|7'])). (2.127)

This leads us to ask which restrictions on |y’| are imposed by the
conditions

Kooy(I97]) < 1, (2.128)
Poy(ly']) > =1, (2.129)
Koy (I7']) < Poy(17']). (2.130)

These restrictions shall be computed next. With |¢’| = p, we find:

Koy (7)) <1
(z—y)? "=y

BT A
20|17 =yl |7~

— (z—y)* < 2p(y° — 2"+ |T—7])

y°—a®— |7y = 0_,0
— P73 for |7 =g] > 2" =y, (2.131)
for |7 — ] < 20 —¢°.
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The second case in the last line is in conflict with p > 0, so we have to
impose the first condition on (2.107). We continue with P, ,(p) > —1.

Px,y(p) > —1
R R
2p|7 — ] 2p 7 — 4]

— @+ —1F-9" > 2p("+y° |77

0 0 Z—1| — —
x°+y°%r\f—z7\
p>

2.132
for 2% +4° < |7 — ). ( )

The second case is in conflict with p < ¢°, so we implement indicator
functions corresponding only to the first case in (2.107). The third
condition K, ,(p) < P,,(p) in fact does not impose any additional
conditions. This can be seen as follows:

Ke—y(p) < Pry(p)
(r—y)? 2=y (@4 [Ty 2"+’

< - = - = = = - =
2l =yl |7 -4 2p|Z — ] 20 |Z-17

— —22%" + 4pz° < 220%°

— p<° (2.133)

which always holds true.
Taking into account the computed restrictions, we arrive at:

AWHw JQﬂ- JyO Jl
d dp | dwl "
A(4m)2 J, b . P » WK,y (p)<w<Pyy(p)

X 1,0 .0 15z 0440 17— ’lU(yO—p)p
Tl < p < T A P2+ T — G2+ 207 — Flw

"+ y '/ [F— g 2p] g lw
X 1x0_y0<|5_g|<xo+yow1 9

(2.107) £
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_ A2y J dp
4(4m)2 Y <|F—gl<a¥+y i (07yo,zo;‘f,g|)

min(1, P,y (p)) (1 —
y J dw w(y’ — p)

0,0, |z
i (0, 200015=11)

max(—1,Kz_y(p)) ’f_ g’
o, [ B Y NP H T G+ 20l — gl
w W2 9
min (40, 20’ +E—d]
Y] (=255 g — )

== ]_1.0 0 | Z—7l <20 0
167 s (0,12=21=11) |7 — 7]

. [wQ(”C%yO—p—Wu\f—m2+2p|f—m max(—l,my(p)))

2

0 0 2 — —»2 — — .
+y0—p—r/ P2+ [T — G2 +2p] T L P,
_w2<w yY—p—/P?+|7 y!2 p| 7 —g] min( ,y(p))>]. (2.134)

At this point, the expressions look quite formidable. We can, however,
achieve significant simplifications by inserting the functional form of
K, ,(p) and P, ,(p) as in (2.124) and (2.116). This yields:

(2.107) =

Al f w(y® — p)
Lo ozt dp ———=—~
lon 2oy <lE-gl<a®+y° maX(QW) g |7 — 9]

0,0 S o 0_,0
+y0 —p— — il = pl, 2% — 40 +
y [ ) (a: Y — p—max(||Z— ] — pl,]|2° — y p|)>

0,0,z

2
0 0_ »_ 3 2 __ 0 0 __

2

Now we simplify the arguments of the ws-functions. For the first one,



52 CHAPTER 2. DIRECT INTERACTION

we have:
2%+ y"—p—max(||7 g -pl, |z"~y"+pl)
= 2%y’ p—max(|7 g —p, p— |77, 2~ y™+ p,y’~ p—2")
= min(2"+y’— |Z— 7], 2"+ y"+|Z— 7] - 2p, 2(y"—p), 22°) . (2.136)
For the second one we get
2%y’ p—min(|7—g]+p, 2%y’~p) = max(a"+y"~|F—]—2p,0). (2.137)
Using this in (2.135), we find:

min (0. 22+y0+1=7]

MYl (9 =550) (g0 — p)

(2.107) = 140y <|F—gl <44 A
167 max (0,12=20-17=1) 7 — 9]
(24— |77 2+y+ |77 0 0

X | wsy min ; —0Y —pT
2 2
—w, max(%—p, 0)] . (2.138)

As in the consideration below (2.117), we split the expression into
separate terms with (z — y)? =2 0. Using 3° = 2° + |7 — ¢], we can
simplify the expressions involving the minimum. This results in:

204404174

A f ’ w(y’ —p)
2.107) = 1, . dp ———=—~
( ) T e P 7 — ]
[ . (x°+y°+\f—§! 0) (x°+y°—\f—§\ )]
X | wo min f—p,x —womax f—p,o
Al w v w(y” - p)
+ 167 1(I—y)2<0,|f—§|<x0+y0 L dp W (2139)
[ , (x0+y0—|f—gj| 0 ) (x°+y°—lf—ﬂl )]
X | womin #,y—p —womax f—p,o .

This concludes the calculation of (2.107).
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2.2.4.1.1.4 Summary of the first estimate. We have ob-
tained the following bound for |Ag|(z, y):

167
Al oo

[ <x0+y0+\f—gy)
X | wsy B E—

2Oy |F— 7] 2y +|F— 7] _p) ]

o A1 (.9) < Lemppsaasons | do
0

—wsomax ,
( 2 2

0

Y w(y’ - p)
+ La—y)2<0 1a04yos|z4 LOIOHH dp —=——=—

X [wgmax(xo, 0 — ,0)

(fc°+y°—!i"—z7| 2+ y0+ |F—7j] )]
— wsymax 5 , —p

2

. (x°+y°—\f—m 20 + 10 + |77 )]
— ws min 5 , 5 —p

0

! w(y’—p)
+ La—y)2<0 Lootyo> g Jyozmmﬂ? WPEg
0=s0+1zg]

|7~

X [’U)g min(a:o, yo - p)
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. (x0+y0—\f—m 20410+ |7~ )]
— wy min , —p

2 2
]/,0 0 Zi|
1 S w(y’—p)
(2=y)*>040>a" yO=al|zg] |7 —1
04,0 |7
) [w2 mm(%@yl_ , xo)
(O+y |7~ )
—womax | ——————p.0
2
‘1 Jyod w(y’ —p)
z—y)2<0,| 27| <0 +yO° P~ =
(z—y)?<0,|Fg]<z"+y o 17—
(Y =T =g
X wzmin| ——————y"—p
29440 |7 -]
—wzmax(#—p,@ . (2.140)

In order to simplify the notation, we introduce the variables

0, .0, |2 _

gL 1Y ;‘x gl (2.141)
0, .0 1= _

=Y > iy (2.142)

Moreover, we collect terms with the same indicator functions. This
results in:

16

0

Y w yO_p ) 3 B
1(z—y)2<0,£>OJ dpﬁ [ min(6 4 p) ~womax(€™—p.0)
0
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+ 1y0—$02+‘fﬂ'j| <p(w2(a:0) + wg(yo—p)—wQ(f_)—w2(§+—p))]
(2.143)

0

Y 0
+ l(I_y)220,xo>yo J dp
0

'w(y —,0) wo(EF wo (£ —
T |ws(€7) + wa(§7—p)

|z
—wy(§7) —wa(€-p)]  (2.144)

0__
+ 1(w*y)2>0,y0>x0 J d M
Wz gz T

x [wy min(¢¥—p, 2°) —womax(§—p, 0)].  (2.145)

£+

This estimate is an important stepping stone in the proof. Except
for special weight functions, the resulting expressions are too compli-
cated to be computed explicitly. We therefore continue with further
estimates. The main difficulty in these estimates is that the 1/|Z — ]
singularity in the expressions needs to be compensated by the inte-
grand and that this cancellation needs to be preserved by the respec-
tive estimate. Fortunately, the mean value theorem turns out suitable
to provide such estimates.

2.2.4.1.1.5 Simplification of (2.143)- (2.145). First, we note
that since w, w; and ws are monotonously increasing and since £~ <
¢*, we have in (2.144):

wy(§™ —p) —wa(§" —p) <0O. (2.146)

As the remaining terms in (2.144) still vanish in the limit |#—¢] — 0,
we may replace this difference by zero to obtain a suitable estimate.
Similarly, a brief calculation shows that we have ¥ > 4° for (z—y)? <
0. It follows that:

w(y° — p) —wa (7 —p) < 0. (2.147)
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We shall use this in (2.143).

Further simplifications can be obtained using the mean value theo-
rem. We begin with the expression in the square brackets in (2.145).
The mean value theorem then implies that there is a x € [max({ —
p,0), min(¢T—p, 2°)] such that

womin(£T—p, 2°) — wymax (€ —p, 0)
= [min(*—p, 2°) — max (£ —p, 0) |wi (x). (2.148)

Therefore, we have:

womin(¢7—p, 2°) — womax (67— p, 0)
< min(€+_ 577 £+_p7 xO - 67 + P, l’0> wlmin(€+_p7 :EO)
< |7 — glwimin(ét—p,2%) < |7 — ylwi(2°). (2.149)

Note that the factor |# — ¢] exactly compensates the 1/|Z — ] singu-
larity. This is the main reason the mean value theorem is so useful
here.

Analogously we find for the expression in the square bracket in the
first line of (2.143):

womin(¢, y" —p) — wymax(E—p, 0)
< [min(¢,y° —p) = max(§"—p,0) Jwimin(¢", 4" —p)
= min(p, & ,y" — €,9° —p) wimin(¢, 4" —p)
< (y° =€) wimin(€,y’ —p)
< |7 — glwmin(¢,4° —p), (2.150)

where we have used that the further restriction of that term, (z—y)? <

0, implies |Z — ] > 2% — y°| = ¢° — 2°.
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With these considerations, we obtain a rougher but simpler estimate
than (2.143)- (2.145):

167
M
0

Y
< la—y2<0g—>0 f dp w(y® —p) [wlmin(ﬁ‘,yo —-p)  (2.151)
0

wy(2°) —wz(é‘)]
< |74
wy(§7) —ws(E7) Jy

|7 = 7]

[Ao|(z, y)

(2.152)

+ 1,0 40405 4
2

0

dp w(y® —p)  (2.153)

T Lo—y)220205y0
0

£+
+ L(p—y)250,40520 wl(:vo)f ‘ dp w(y® —p). (2.154)

y0—20—|7—3

Next, we continue estimating these terms separately so that only ex-
pressions without integrals remain.

2.2.4.1.1.6 Further estimate of (2.151). Using the mono-
tonicity of w; as well as min(¢~,y° — p) < &7, we find:

yO

(2.151) < 1(x_y)2<0,§_>0w1(§)J ds w(s)
0

= La—yp<og=owi(§)wi(y’). (2.155)

For the constraints given by the indicator function, we have ¢~ < a°.
Thus:

(2.151) < L(pyy2<0e-0 wi(z°)wi(y). (2.156)
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2.2.4.1.1.7 Further estimate of (2.152). We have:
B woy(2%) —wy(§7) [ 0

woy(2°) — wy(£7) ¢
= L(z—y)2<0,6->0 2( |3?—§]2( >L dsw(s)

= La—y)2<0->0

7 [wi(£7) — w1 (0) ].

(2.157)

|7~

Applying the mean value theorem to w, in the interval [, 2°] (note
that here £~ < 2°), we obtain that:

20— &

(2152) < 1(1‘—y)2<0,§_>0 m wl(:cO)wl(é‘*)' (2158)
Next, we use that Tos = 2V HI=T < 4 2% — %] < |Z—9]. Thus:
B 2|z -y
(2.152) < 1(py2<0-0 wi(z”)wi (7). (2.159)
Using also that for the given constrains £~ < y°, we finally obtain:
(2.152) < 1(poyy2<e-0 wi(z°)wi(yP). (2.160)
2.2.4.1.1.8 Further estimate of (2.153). Here, we can di-

rectly carry out the remaining integral using the definition of w; as
the integral of g:

(2.153) = 1(p_4)25020540 wy (y°). (2.161)

Next, we apply the mean value theorem to ws in the interval [, 7]
noting that £T— ¢~ = |Z — ¢|. This implies:

(2.153) < 1(py25040=40 w1 (EH) w1 (y°). (2.162)
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Next, we note that (z —y)? > 0 < [2° — y°| > |Z — ¢]. Together with
2% > 3% we obtain z° > y" + |# — #] and therefore:

0 0 >
gr-T Y ;'x U < oo (2.163)

Thus, we obtain:

(2.153) < 1(py)250.20=40 w1 (2°) w1 (y°). (2.164)

2.2.4.1.1.9 Further estimate of (2.154). Here, we carry out
the remaining integral as well.

(2.154) < 1 yyemoy0=00 w1 (2°)[wy (7)) —wi (v~ 2"~ |7~ 4)/2)]

<1
< Liay)2040520 w1 (2°) w1 (y°). (2.165)

as &7 <P

2.2.4.1.1.10 Summary of the result. Gathering the terms
(2.156), (2.160), (2.164) and (2.165) yields:

167
4 2.166

< w; (JUO)UM(?JO) (2 X 1($7y)2<0,£_ >0 T ]-(xfy)2>0,xo>y0 + ]-(xfy)2>0,y0>:v0) :

Considering that the conditions in different indicator functions are
mutually exclusive, we finally obtain:

167
A

Dividing by w(z%)w(y°), taking the supremum over z,y € M/ and fac-
torizing into one-dimensional suprema finally yields the claim (2.89).

| Agtp|(, y) < 2wy (2°)wy (y°). (2.167)



60 CHAPTER 2. DIRECT INTERACTION

2.2.4.1.2 Estimate of the mixed terms (2.90) and (2.91). We
focus on A, first, starting from its definition (2.61). We take the ab-
solute value and make use of |1 (z,y)| < w(z°)w(y°) ||¢|w. Moreover,
we use:

1
|J1(t)/t] < 3 (2.168)
This yields:

)\m w -, _, H(2'—|7—-7'|) w(a— |7 -2
i) < 22 fds [ e w7

_’/’ ’x/_y/|

x['w(a:—|x |+| "NH (2"~ |77 |+| 7'l
R
+ w2 |T—2' |- |7~y H ("= |Z—Z'|—|2"=7"|)
xH(y'— 2%+ |2-2'|+|2'=§'| - [§-7'])] - (2.169)

As the remaining singularities are independent of each other for a
suitable choice of integration variables (see below), we are left with an
integrable function on a finite domain.

The next task is to bring the expressions into a simpler form. One
possibility to do this is to use

(P =+ |7 = |+ |7~ 7] - 17— 7)

SHY —2°+ |7 -2+ |7 — ') (2.170)
for the second Heaviside function in the second summand. The first
Heaviside function in the first summand equals 1 anyway, as |7 — 7’| <
2Y. We furthermore use

Hy' =2+ |2 -2 - 2" = ¢'| - [ - 7'
<H@ —2°+ |7 -7 — |7 —¥')), (2.171)

as it simplifies the domain of integration. Overall, the domain of inte-
gration remains bounded. Introducing 2} = ¥ — Z’, 25 = ¥’ — ¢’ (with
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Jacobi determinant of modulus 1) and using spherical coordinates for
Z5, this leads to:

4(4m)3
[A2|(2, y) 35—
Am3 (1]
max(07y07350+|21|) 0|3 0|z 4 5
<J d35147rf Pl Gt 1 o e 1 |22|)|52|2
B20(0) 0 121122
I0—|51| 0_ N 0_ 5 =
SR PG L Ca R A
B2 (0) max(0,20—y°|71) 21|12

(2.172)

Using spherical coordinates also for i, this can be further simplified
to:

167
A3 [

T max(0,y°—z+7r71)
< J dry f dry riry w(z'—r)w(z"—r; +ry)  (2.173)

[As[(2,y)

LIJ —T1
J drlf dr2 riry w(z—r ) w(z’—r —ry).  (2.174)

max (0,20 —r; —y9)

Our next task is to simplify the remaining integrals. We begin with

making the change of variables p = 2° — r;:

167

A
0

T 0 max(0,y°—p)
< J dp (2" — p)w(p)J dra raw(p + 12)
0 0

0

A ) [ dmnwp-r). 217

0 max(0,p—y")

| Ax|(z, y)
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Now we consider the ro-integral in both terms and integrate by parts.
This yields:

max(0,y%-p) o o
f dry ryw(p+r2) = max(0,y"—p)wi(y")
0

—ws(max(p,y°)) +wa(p), (2.176)

0
f dry row(p—r2) = max(0, p—y°)wi(y")

max(0,0—4°)

+awy(min(p, y")). (2.177)

We now use —ws(max(p,y®))+ws(p) < 0 in the first term and then re-
insert the resulting estimate into (2.175). Considering also max(0, y°—
p) + max(0, p — y°) = |y — p|, this yields:

167
|As|(2,y) 57
’ A3 9]

0

< f dp (2° = p)w(p) [|y" — plwi(y") + ws(min(p,y°))] (2.178)

The first summand of (2.178) can be treated as follows. First we

focus on whether 2° > 3° or 2° < 9°. In the first case, we then

differentiate between the cases p < y° and p > y° and split up the
integrals accordingly. This yields:

0

fo " dp (2 — pyw(p)ly° — plw(4)

yO

— W) Ly | dp (2 = )6° = p)) (2.179)

20

) Lo | o 0= )6 puwlp) (2.150)
) Loy [ dp (00— 0P Pl (2150
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We now calculate these terms separately using integration by parts.
The first term yields:

(2.179) = wi(y°)Loosyo [(2° = y*)awa(y’) + 2w3(y°)] . (2.182)
We turn to (2.180):
(2.180) = —w1 (y°) Loosyof (y"—2") (wa(2")
+ws(y”)) +2ws(2”) —2ws (y°)].  (2.183)
The result of (2.181) is:
(2.181) = wi(y°)Laogy [(1° — 2%)wa(2”) + 2ws(2”)].  (2.184)
Gathering the terms (2.182), (2.183) and (2.184) yields:

167
A3 9]
< wi(y°) Losyo [2(2°—1)wa(y”) +dws (y°) —2ws (2]
+awy (y”) 2% [wa(2°) + 2w (y°) Lao<yows(2°)
< 2w, (y°)|2"—y° [wa (2°) + 2w (y”)ws(2°) 1p0 <0
+awy (1°)| 20—y lwa (2”) + 2w, (y°)ws (2°) 10 yo
= 3w, (y")|2"— " |wa (2°) + 2w, (y°)ws(2°)
< 3(2° + ¥y wi (1°)wo (2°) + 2w, (y)ws(2?). (2.185)

| Azl (2, y)

In order to obtain | A1, we divide by w(z®)w(y°) and take the
supremum over x,y € M. This results in:

HAZwHw

(2.186)
YeS((M{)?) HwHw
< Am3 5 (2°+ %) ws (2?) wy (y°) Losup 3(20)wi(y°)
16m \ o050  w(z®)w(y°) 204050 W(20)w(yP)
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After factorizing the two-dimensional suprema into one-dimensional
ones, this exactly yields the claim, (2.91).
For the operator A;, we find analogously:

[ A1t

PeS((MT)?2) 19w
m (3 qup BB @Oy w1<x0>w3<y°>> |

1
- 167 20,49>0 w(JIO)IU(yO) 20,49>0 w( )’U)( 0)
(2.187)

which, after factorization into one-dimensional suprema, yields the
claim (2.90).

2.2.4.1.3 Estimate of the mass-mass term (2.92). We begin
with (2.64). Taking the absolute value and using |¢(z,y)] <
10w w(2®)w(y®) as well as |Jy(t)/t] < 5 yields:

| Avo| (2, y)

< )\mlmQ w‘wf /OJ d3—»/f dylof JZM Sin(ﬁ)|$/0*y,0|

xH(x—x —\x—x H(y’— o —|y '+ 7))
x w (2 )w(y"®) : (2.188)

|2]=]20" 3|

where, we recall, z'is the variable for which the spherical coordinates
are used.

Next, we consider the ranges of integration which the Heaviside func-
tions imply. H(z° — 2’° — |# — ’|) restricts the range of integration
of ' to the ball B, ,0(Z) and the range of the z/’-integration to
(0,2%). The range implied by the second Heaviside function is more
complicated. We therefore use the estimate

H(y’ —y" |7 -3+ 2) < H(y" = ). (2.189)
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Then ' € (0,4°) and there is no further restriction for the angular
variables. We obtain:

Y w 20 30 2w T
Auvllay) < 20 [T [ [Ty [ag [ ao
8(4m) 0 B_o_0(@) Jo 0 0

x sin(¥)|2"" — y°| w (2" )w(y”). (2.190)

Performing the Z’-integration, as well as the angular integrals yields:
[An¢|(z, y)
0

)\mlmﬂWHw = 0 0 o\ (7 0, /0 0 0
< A |t Pu(a”) [y ey ().
™ 0 0
(2.191)

Our next task is to estimate the term explicitly in terms of the func-
tions w, only. To do so, we use

|l'/0 . y/0| < :EIO + y/O. (2192)
This yields:
[A2t|(,y)
A w [ v
<—m1797?|w f d%’olwo—w’olgw(fo)f dy* 2"+ Yw(y°). (2.193)
s 0 0
Let
x0 40
[(Ioij) _ J dJI/O‘IO—JI/O‘g'lU(Z‘m)JV dy/O <x10+y,o)w(y,o) (2194>
0 0
and
Y0
L(x/07y0> :J dy/O (:C/O + ’y/O)’IU(y/O>. (2.195)
0
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Integration by parts yields:

L(z", %) =2 wi (4°) + w1 (1°) —wa (y°)

<a""wi (y°) + 1w (1°). (2.196)
Next, let
270
L(z") f a2 129 — " Pro(z),
oxO
I,(2%) = f a2 220 — 2 Pw(z). (2.197)
0
Then:
I(2° y?) < I,(2°) 4w (y°) + L(2°) wy (3°). (2.198)
We consider I, first, using (2°—2'°)? < (2°)? and integrating by parts:
xO
L") < (2) J da”® (2° — %) w(z") (2.199)
0
= (2" | (@ = 2w (") 50_y +awa(a®) | = (2°)wa(a?).
~

We turn to I, using /°(z° — 2’°) < 1(2°)? and integrating by parts

twice. This results in:

1
4
0

L(z°) < % L " (z° — 2/°)V2w(2”°) = (‘”2> ws(2°). (2.200)

/

Considering (2.198), we therefore obtain:

Iz °) < (2°)?ws(2°) y wi (y°) +
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Returning to (2.193), we divide by w(x?)w(y°) and take the supre-
mum, with the result:

| A2t ]w _ Amams [y (2°)?w2(2°) y wi (y°)
sup < sup 0 0
PeS((M{)?) (i 967 20,590 w(2%)w(y")
1 (2°)?w3(2%) wi(y”)
+—- su . 2.202
200 ww(y) (2:202)

Factorizing the two-dimensional suprema into one-dimensional ones
yields the claim, (2.92).
2.2.4.2 Proof of Theorem 14

Let ¢» € S. It only remains to calculate the supremum in (2.89) for
w(t) = e. We have:

wy(t) = % (e —1) (2.203)
and hence
[ Aol _ A (Sup w1<t>)2
YeS((M)2) 191 8w \ =0 w(t)
_ % (Stiﬁ’ %(1 _ e—vt))z _ 8;2. (2.204)

This shows that Ay can be linearly extended to a bounded operator
on B,, which satisfies the same estimate, (2.77). Moreover, for v >

ﬁ, Ay is a contraction and Banach’s fixed point theorem implies the

existence of a unique solution v € B, of the equation 1) = 1™ + Ay
for every ¢ € B,,.
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2.2.4.3 Proof of Theorem 15

Let again ¢ € S. We need to calculate the suprema in (2.89) to (2.92)
for w(t) = (1 + at?)e®’/2. We first note:

w (t) = teat2/27
1
’w2<t) _ E (eat2/2 _ 1) ’

ws(t) — él\/%erﬁ( a/zt)—t]. (2.205)

We can see that with each successive integration, the functions w,
grow slower than ¢ — co. Furthermore, the leading terms in w,, are
inversely proportional to increasing powers of a. These two properties
(and of course the fact that w;, ws, w3 can be written down in terms
of elementary functions) make this particular function w(t) a suitable
choice for the proof.

As we need to estimate the behaviour of quotients like ws(t)/w(t) for
t — oo, we look for a simpler estimate of ws; in terms of exponential
functions. We note:

ws(t) j L (e )

v«
at?/2 A/ a/2t

< e—e“tz/Q«/Q/&f dre”
o 0

_ V2 2 p(\ ), (2.206)

32
where D(t) = et Sé dre™ denotes the Dawson function. Using the

property [tD(t)| < 2, we obtain:

4 e0052/2

t t) < =
ws(t) 3 a?

(2.207)
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We are now well-equipped to calculate the suprema occurring in (2.89)

to (2.92). Using

48 1 forg=0
1
sup 5 = 3 forpg=1
=0 141 1 for B =2
we obtain:
su = su = ——,
b w(t) | b lta? | 24a
tw (1) t? 1
su = su = —,
tzg w(t) t;ﬁ’ 1+ at? a
wo (1) 1 1 1
su < sup——> = —,
tif w(t) t>€ al+ at? a
su < sup — = ——,
tzg w(t) t;ﬁ’ al+ at? 2 a3/2
2w (t) 1 ¢ 1
su sup ——— = —.
t;loj ’(U(t) ,j;l()3 al+ O./t2 042

Using, in addition, the property |D(t)| < %, we find:

ws(t) V2 D(y/a/2t) 3v2 1 1
8;”03 w(t) i;lg) 32 1+at2 5 i ad/2’
t2ws(t) _ 41 t 21
St;lﬁ) w(t) ?«;o 321+ at®  3a5?

In the last line, we have made use of (2.207).
With these results, we find for Ag:

A1 1\ A1
st \2ya/)

2.89) < —_—
( ) 32T «

(2.208)

(2.209)
(2.210)
(2.211)
(2.212)

(2.213)

(2.214)

(2.215)

(2.216)
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This yields (2.79).
We continue with A;.

am? [ 11 1111 111
(2.90)<m1[ ]

3=+ 9=
167 2Va2a Y2 Jaa
_Amil9 1l Am? 5

_ o 9.917
167 402 = 167 o? (2.217)

This yields (2.80). Analogously, we obtain the estimate (2.81) for As.
Finally, for A5, we have

(2.92) <

Amimi [ 11 1 12 1 11
96 |aZa 230722/«
dmims 7 1 Amim3 1

9671 603 80 a3’

(2.218)

which yields (2.82).

Now, the estimates (2.79) to (2.82) show that the operators Ay, Ay,
A and Ajs are bounded on test functions. Thus, they can be linearly
extended to bounded operators on B,, with the same bounds.

The operator A = Ay + A1 + Ay + Aq» then also defines a bounded
linear operator on B,, with norm

[Al < [l Aofl + ALl + [[A2] + [[Asz]. (2.219)

Using the previous results (2.79)- (2.82), we obtain:

A1 B5(mi+md)1l mimil
< | Z — _
|A] < e <4 + i St a2 (2.220)

If v is chosen such that this expression is strictly smaller than unity, A
becomes a contraction and the existence and uniqueness of solutions
of the equation ¢ = 1 + At follows. This yields condition (2.83)
and ends the proof.
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2.2.4.4 Proof of Theorem 18

The proof can be reduced to the one for M. To do so, we take the
absolute value of (2.75) and use |¢|(n1, Z,m2,y) < w(n)w(n2)|Y]w.
With

GW=MW@(JMMO (2.221)
Gi(n) = J i G(n) (2.222)

we obtain the estimate

!A01/1| )
Al b
|wrf d“f jdms L ST
Buy (9) - (b%+[b] cos 9)|7"|

x G I
(Th 202 + |b| cosﬁ)

X <1b2>01b0>0100519>2:02|g sz + 1b2<01 s i< :2@ ;,:) . (2.223)

This estimate is identical to (2.94) with the only difference that the
function g is exchanged with G in the integral (but not in | -||,,). Thus,
going through the same steps as in Secs. 2.2.4.1, 2.2.4.3, we obtain:

N 2
A i(sup Gl(t)) . (2.224)

ves(([0,00) <)) ] 87 =0 w(t)

=

Now, recalling w(t) = exp ('y Sé dr a(7‘)> we have

Gi(t) = Sw(t) (2.225)
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and it follows that

Al _ A

< 2.226
81y ( )

sup

ves(([0,00)xE3)2) Y] 2’

which yields (2.87). The rest of the claim follows as before.

2.3 Directly Interacting Dirac Particles

This section is based on the scientific publication [67], which is the
result of joint work with Matthias Lienert. In it, we prove the existence
and uniqueness of solutions of the spin-1/2 delay-equation (2.20) for a
class of kernels K subject to the modifications (A) and (B). Similar to
the results of the last section an analogous result is proven on FLRW
spacetime. Furthermore, we show that the solutions are determined
by Cauchy data at the initial time; however, no Cauchy problem is
admissible at other times.

2.3.1 Introduction

In order to take a closer look at equation (2.20) and its constituents.
The solution to the inhomogeneous equation 2.21 represented by A%
in (2.20) will be constructed by D := —iy"d, —m acting on a solution
to the inhomogencous Klein-Gordon equation. The operator D will
be referred to as the adjoint Dirac operator. Since DD = [] + m?
holds, this is equivalent to the convolution with a Green’s function.
The solution to the inhomogeneous Klein-Gordon equation will be
constructed by Duhamel’s principle [33] using known the propagator of
the Klein-Gordon equation [10, 11, 12| as outlined in subsection 2.1.2
in simplifying assumption (A). Consequently, one has to define the
operator AX in (2.20) on a function space where one can take certain
weak derivatives. In contrast to most of non-relativistic physics, this
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also concerns the time derivatives here. The choice of function space
can be a tricky issue, as the fixed point scheme requires the integral
operator to preserve the regularity, so that the regularity needs to be in
harmony with the structure of the integral equation (see Sec. 2.3.2.2).
This section is structured as follows. In subsection 2.3.2, we specify
the integral equation (2.20) in detail. The difficulties with understand-
ing the distributional derivatives are discussed and a suitable function
space is identified. Subsection 2.3.3 contains the main results of this
section. In subsection 2.3.3.1, we formulate an existence and unique-
ness theorem (theorem 25) for equation (2.20) on M. It is shown
that the relevant initial data are equivalent to Cauchy data at t = 0.
In subsection 2.3.3.2, we provide a physical justification for the cut-
off at t = 0 by extending the results to a FLRW spacetime. In the
massless case, we show that an existence and uniqueness theorem can
be obtained from the one for M via conformal invariance. The re-
sult, theorem 27, covers a fully relativistic interacting dynamics in 1-+3
spacetime dimensions. The proofs are carried out in subsection 2.3.4.

2.3.2 Setting of the problem
2.3.2.1 Definition of the integral operator on test functions

In this subsection, we show how the integral operator in (2.20) can be
defined rigorously on test functions. We consider the integral equa-
tion (2.20) on the Minkowski half space MJ as we did in the last
section. In order to define the meaning of the Green’s functions as
distributions, we introduce a suitable space of test functions:

S =S((Mg)?*,C"), (2.227)

the space of 16-component Schwarz functions on (Mg )?. For an in-
teraction kernel K € C3(R®, C) and a test function ¢ € S, the equa-
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tion (2.20) takes the form

@Z)(Il,l'g) _’gbfree(l‘l,l'g) (A@/J)(Il,l‘g 2 228)
2

)
f da f dz JRS 7 LS 7
2)

Giet(xl - xl)Gget(% - x2)[K¢](‘T17 Ty 2 229

@Dfree(l'l, 1‘2) + D D

where we used Duhamel’s principle to construct the solution to the
inhomogeneous Klein-Gordon equation as outlined in subsection 2.1.2
in simplifying assumption (A).

Remark 20. Recall the expression (2.45) for G*™*. Note that this
includes terms of the form

f gt 17— F(t,2,4), (2.230)
RS

|7 — 7|

or continuous functions f, which will be interpreted as
f f f
- f(t, 2, o
= f PrREAGIEN (2.231)
0B4(0)

Expression (2.229) fulfills our requirements:

Lemma 21. For K € C?(R®,C) and a test function 1) € S we have

DyDy Aty = Dy Dy Ath = Kb, (2.232)
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where Dy, = (m,‘:&xg —myg), k =1,2. Furthermore, we have

H <A(1 (m;)D; +A(2)(mJ)D —i—AS(mJ —|—A4 (m; )Kw,

J

7j=1,2
(2.233)
<mAw:(A9mwﬁ%+A90@ﬁ2+A§0@ )+ AW )Kw
(2.234)
Dy Aty = (Ag”(ml)D1 + AP Dy + AP () + AY (m, )
(2235

where for j = 1,2, k = 1,2,3,4 the operator A;k)(m) : O3 (M x
Mg, C"%) — 3 (I\\/Jlar X Ma“,(clﬁ) s defined by letting the respective
operator A®) (m), given below, act on the j-th spacetime-variable and
spin index of PY(xy, ), Y eS. !

(ADm) ) () = L K |1|¢<:c )l (2:236)
(A®(m) ¢) (x) = f dy° f \é?)cb(x +),
—x0 B‘yo‘(o y
(2.237)
(WOme) @) = - L[ ao 2O g
47 2B.0(0) T
m 5 Jl(m <$0)2 - 372)
AW (m ) = iy’ — d®
(A0m)¢) (@) = i | T e
X ¢(0, T+ 7), (2.239)

"'We deliberately avoid using tensor products here, as the completion of an
algebraic tensor product of Banach spaces depends sensitively on which completion
is taken.
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here ¢ € S(Mg,C*) and the dependence of Agl) and Ag-g) on m is only
for motational convenience.

The proof can be found in subsection 2.3.4. The first part of this
lemma will enable us to work in a Banach space adapted to equa-
tion (2.228), while the second part is useful for working out the bounds
on A. For the second part we gave the convolution with delta distri-
butions explicitly in terms of integrals over manifolds of one dimension
lower.

We now turn to the question of a suitable Banach space for equa-
tion (2.228).

2.3.2.2 Choice of Banach space

As we did in the last section, we would like to apply a contraction
mapping argument, for that we need a proper Banach space B as the
domain of A. The results reviewed in subsection 2.1.2 as well as the
results of subsection 2.2 suggest choosing

By = L* ([o, )20 0 LQ(R‘S,(CM)@L@)) (2.240)
with norm
H¢|’BO = €sssup Hw(x(l)a ) Ig? ‘)”LQ‘ (2241>
m(l),m(2)>0

However, as (2.233) involves the Dirac operators D; and Ds, By is not
sufficient for our problem. An appropriate Banach space B must allow
us to take at least weak derivatives of 1. The choice of B is a delicate
matter. One can easily go wrong with demanding too much regularity,
as we shall see next.
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2.3.2.2.1 Possible problems with the choice of space. The
problem can best be illustrated with an example which is structurally
related to (2.20) but otherwise simpler. Consider the equation

¢

Ftz) = foe(t, 2) + J ds' K (=, Vo f (1 ), (2.242)
0

where ff*¢ f K : R? — C and f™° is given. Equation (2.242) is

inspired by the term A;D; in (2.233).

We would like to set up an iteration scheme for (2.242). As we cannot

integrate by parts to shift the t-derivative to K, we must demand

at least weak differentiability of f with respect to . This suggests

using a Sobolev space such as B = H'(R?). To prove that the integral

operator in (2.242) maps B to B, we then have to estimate the L2-norm
of

t t
6,:[ dz' K(z,2")0,f(t,2) = K(t,t)(é’tf)(t,t)—kf dz' K(z,2")02f(t, ).

" " (2.243)
This expression, however, contains 02 f. For this to make sense, we
must be allowed to take the second weak time derivative of f. This, in
turn, requires to choose a different Sobolev space, such as H?(R?), and
to estimate the L2-norm of the second time derivative of the integral
operator acting on f which involves @7 f, and so on. One is thus led to a
Sobolev space where all weak n-th time derivatives have to exist. Such
infinite-order Sobolev spaces have, in fact, been investigated in [30].
However, it does not seem realistic to get an iteration to converge on
these spaces. We therefore take a different approach.

2.3.2.2.2 A Banach space adapted to our integral equation.
Considering the form of the integral operator A (2.233) and the fact
that D = —2m — D holds, one can see that it is sufficient that the
derivatives D11, Doty and Dy Ds1) exist in a weak sense. As we want
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to prove later that A maps the Banach space to itself, we have to
estimate, among other things, a suitable norm of D;(A%). If ¢ € S is
a test function and K is smooth, we have

Dy(A¢) = (45" (ma) Dy + AP (ma) Dz + AP (ma) + AL (ma) ) K,
(2.244)

according to lemma 21. The crucial point now is that (2.244) does
not contain higher-order derivatives such as D?1). The same holds
true also for Dy(Avy) and Dy Dy(Av)). Thus, the problem of the toy
example (2.242) is avoided.

Together with the previous considerations about B, (2.240), we are
led to define the Banach space B,, as the completion of S with respect
to the following Sobolev-type norm:

2 ; 2 29
ol = esssup o WP a)  (2:209)

0 ..0
z7,x5>0 2

where w : [0, c0[— [0, o[ is a monotonically increasing function which
is such that the function 1/w is bounded. We admit such a weight
factor with hindsight. As we shall see, a suitable choice of w will make
a contraction mapping argument possible.

In (2.245) we use the notation

3
[ xl? ',”EQ Z Dk¢ xl’ ,IQ, ’)HLQ RG ClG) (2246)
with
1, k=20
Dy, k=
D=4 S (2.247)
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Remark 22. One can see the purpose of equation (2.228) in determin-
ing an interacting correction to a solution '™ of the free multi-time
Dirac equations Djp™ = 0, i = 1,2. Therefore, it is important to
check that sufficiently many solutions of these free equations lie in B,,.
This is ensured by the following Lemma (see Sec. 2.3.4 for a proof).

Lemma 23. Let ¥ be a solution of the free multi-time Dirac equa-
tions D™ = 0, i = 1,2 with initial data ¥™(0,-,0,) = 1 €
C* (RS, C'). Furthermore, let w : [0,0[—]0, [ be a monotonically
increasing function with w(t) — oo for t — co. Then ™ lies in By,.

Given the definition of A on S as in Sec. 2.3.2.1, we shall now proceed
with showing that A is bounded on this space. Furthermore, we show
that for a suitable choice of the weight factor w in B,,, we can achieve
|A| < 1 on S. This allows to extend A to a contraction on B, so
that the Neumann series ¢ = ZZO:O Akqpfree vields the unique solution

of ¥ = e 1+ Aqp.

2.3.3 Results
2.3.3.1 Results for a Minkowski half space

The core of our results is the following Lemma which allows us to
control the growth of the spatial norm of ¢ with the two time variables.

Lemma 24. Let v € S, @ = Vi 0k, k=1,2 and let K € C3*(R®, C)
with

|K] == sup max {|K(z1, )], |7, K (21, 22)], (2.248)

1 ,wQEMar

|05 K (21, 22)], |81 82K (21, 22) |} < o0. (2.249)
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Then we have:

[Ap]* (2], 23) < |K]* ]_[ (T + 8(1 +2m;)A;(my)) [V (a9, 25),

(2.250)

where Aj(m) = Y, Ag-k)(m) with A§k) as defined in (2.327). The
expression [¢|*(29, 3) is understood as a function in C*((M{)?, Ry)

to which the operators in front of it are applied.

The proof can be found in Sec. 2.3.4.1.

Lemma 24 can now be used to identify (with some trial and error) a
suitable weight factor w which allows us to extend A to a contraction
on B,,. Our main result is:

Theorem 25 (Existence and uniqueness of dynamics on a Minkowski
half space.). Let 0 < |K| < 1, p = max{my, ms} and

w(t) = V1+ bt exp(bt®/16), (2.251)

(1_‘[(—K|)4 (16 + 1*)" (1 + 2p)®. (2.252)

b =
Then for every '™ € By, the equation ¢ = ™ + Ay possesses a
unique solution 1 € By,.

The proof is given in Sec. 2.3.4.2.

Remark 26. 1. Note that theorem 25 establishes the existence and
uniqueness of a global-in-time solution. The non-Markovian na-
ture of the dynamics makes it necessary to prove such a result
directly instead of concatenating short-time solutions. The key
step in our proof which makes the global-in-time result possible
is the suitable choice of the weight factor w.



2.3. DIRECTLY INTERACTING DIRAC PARTICLES 81

2. The main condition in theorem 25 is |K|| < 1. This may be
interpreted as the interaction must not being too strong. A con-
dition of that kind is to be expected solely because of the contri-
bution | (D1 Da(A)) (a8, - a3, )z = [ K(al, ol ) z2 to
[AY] (29, 29). Taking our strategy for setting up the Banach space
for granted, we therefore think that one cannot avoid a condition
on the interaction strength. Note that conditions on the interac-
tion strength also occur at other places in quantum theory (albeit
in a different sense). For example, the Dirac Hamiltonian plus
a Coulomb potential is only self-adjoint if the prefactor of the
latter is smaller than a certain value.

3. Cauchy problem. Theorem 25 shows that ™ uniquely deter-
mines the solution . However, specifying a whole function in
B, amounts to a lot of data. In case ¥ is a solution of the
free multi-time Dirac equations D)™™ = 0 = Dyp™® much less
data are needed. T is then determined uniquely by Cauchy
data, and hence v is as well. Furthermore, if 1% is differen-
tiable, (2.20) yields

0(0,7,0,%5) = T(0,7,0,7). (2.253)

Thus, Cauchy data for ™ at 29 = 25 = 0 are also Cauchy data
for . The procedure works for arbitrary Cauchy data which
are appropriate for the free multi-time Dirac equations. Note,
however, that a Cauchy problem for 1 for times 29 = ty =
with to > 0 is not possible. The reason is that ¥ (ty, T1,ty, To) #
Piee(ty, 1, to, T2) in general (and contrary to (2.253) the point-
wise evaluation may not make sense for ).
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2.3.3.2 Results for a FLRW universe with a Big Bang
singularity

This subsection is analogous to subsection 2.2.3.3, we show that a Big
Bang singularity provides a natural and covariant justification for the
cut-off at t = 0. As this justification is our main goal, we make the
point at the example of a particular class of FLRW spacetimes and do
not strive to treat more general spacetimes here. The reason for study-
ing these FLRW spacetimes is that they are conformally equivalent to
sMj [56]. Together with the conformal invariance of the massless
Dirac operator this allows for an efficient method of calculating the
Green’s functions which occur in the curved spacetime analogue of the
integral equation (2.17). By doing this, we show that the existence and
uniqueness result on these spacetimes can be reduced to theorem 25.
We start by giving heuristic arguments for our interpretation of equa-
tion (2.17) on this spacetime and then show that this interpretation
has a unique solution in a sense specified below.

As shown in [70], equation (2.17) possesses a natural generalization to
curved spacetimes M,

(a1, 22) = (21, 20) + j av(z}) f AV () 81 (1, 285 (12, 2%)
x K (!, zh)y(xh, zh). (2.254)

Here, dV () is the spacetime volume element, 8; are (retarded) Green’s
functions of the respective free Dirac equation, i.e.

DS(z,2") = [—g(x)] Y2 6W(z, "), (2.255)

where g(x) is the metric determinant, D the covariant Dirac operator
on M, and v a section of the tensor spinor bundle over M x M.

In order to explicitly formulate (2.254), we need to know the detailed
form of 8. Note that results for general classes of spacetimes showing
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that 8§ is a bounded operator on a suitable function space are not
sufficient to obtain a strong (global in time) existence and uniqueness
result. We therefore focus on the case of a flat FLRW universe where
it is easy to determine the Green’s functions explicitly. In that case,
the metric is given by

ds* = a*(n)[dn* — di?] (2.256)

where, as before, 7 is conformal time and a(n) denotes the scale func-
tion. The coordinate ranges are given by 1 € [0,00[ and ¥ € R3. For
a FLRW universe with a Big Bang singularity, a(n) is a continuous,
monotonically increasing function of  with a(n) = 0, corresponding
to the Big Bang singularity. The spacetime volume element reads

dV(z) = a*(n) dnd’z. (2.257)

The crucial point now is that according to (2.256) the spacetime is
globally conformally equivalent to M, with conformal factor

Qx) = a(n). (2.258)

In addition, for m = 0, the Dirac equation is known to be conformally
invariant (see e.g. [98, 80]). More accurately, consider two spacetimes

M and M with metrics
Jab = 0 Gap- (2.259)

Then the massless Dirac operator D on M is related to the massless
Dirac operator D on M by (see [98, 34]):

D =Q 5?2 D3 (2.260)

This implies the following transformation behaviour of the Green’s
functions:

Gz, ') = Q32 (2) QO %2(2') Gz, ). (2.261)
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One can verify this using (2.260) and the definition of Green’s func-
tions on curved spacetimes (2.255).

Denoting the Green’s functions of the Dirac operator on Minkowski
spacetime by G(z,z') = S(z — 2’) and using coordinates 1, ¥ we thus
obtain the Green’s functions G on flat FLRW spacetimes as:

Gln, @0, &) = a > ()a ¥ (n) S(n — o, 7 — ). (2.262)

With this result, we can write out in detail the multi-time integral
equation (2.254) for massless Dirac particles on flat FLRW spacetimes
(using retarded Green’s functions):

771,351,772,332 ¢free (M, Z1,m2, %) + a 5/2(77 ) _3/2(772)

J ar | &3 f iy | &0 a0 (2.263)
x 81 (my — iy, Ty — T)SK (02 — ), To — o) () (0], Ty, ., @),

Note that we can regard ¢ as a map ¢ : (Mg )? — C' as the coordi-
nates 7, ¥ cover the flat FLRW spacetime manifold globally.

It seems reasonable to allow for a singularity of the interaction kernel,
ie.

K(Uhflﬂh,@) = a_a(nl)a_a<771> K(m,flﬂh,@)- (2-264)

Here, « > 0. The singular behaviour is motivated by that of the

Green’s functions of the conformal wave equation, see subsection 2.2.3.3.
Recall from section 2.1 that the most natural interaction kernel on

My would be K (21, 29)0cd((21 — ), (21 — x9)") which is a Green’s

function of the wave equation — a concept that can be generalized to

curved spacetimes using the conformal wave equation. Now, under

conformal transformations, Green’s functions of that equation trans-

form as (2.40)

Gz, ') = QY 2) QY (2') Gz, o), (2.265)
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which corresponds to a = 1 in (2.264).
Considering (2.264), our integral equation becomes:

o0
Y(m, L1, n2, T2) = Q/Jfree(m, T, M2, T2) + a_3/2(771)a_3/2(772)f dni

0
0
. J &7, f i, J 7,
0

x a2 (1 )a® 2 (i) 81 (i — nf, &1 — 7))
X Sget(HQ - néa 52 - ‘f/2) (Kw)(nia fll? 7757 fIQ) (2266)

Apart from the scale factors which produce a certain singularity of ¥
for ny,me — 0, this integral equation has the form of (2.17) on M.
Indeed, we can use the transformation

X (01, T1,m2, T2) = a2 (1) a®? (02) ¥ (01, T1, 2, o) (2.267)

to transform the two equations into each other. Hence, we interpret
equation (2.266) to mean

a®a(3/2)Y = a® a(3/2)y"™ + Ala®a(5/2 — a)), (2.268)
where the operator a®a() : C (R xR?)?,C'%) — C((RS xR?)?, C'°)

multiplies pointwise with @ in both coordinates:

a®a(B)f(z1,9) = a(aV)a(zl) f(z1, z2) (2.269)
and A is the operator of equation (2.228).

Theorem 27 (Existence and uniqueness of dynamics on a flat FLRW
universe). Let, 0 < a < 1 and let a : [0,0) — [0,0) be a differentiable
function with a(0) = 0 and a(n) > 0 forn > 0. Moreover, assume that
K e C3(([0,0) x R®)?, C) with

Ja'™*(m)a""*(m) K| < 1. (2.270)
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Then for every e with a?(n1)a®? ()™ € By, (2.268) has a
unique solution v with a®?(n,)a®?(ne)h € By (and with w as in the-
orem 25).

Proof. Using the transformation (2.268) on equation (2.268) yields

X =xX" + A(a®a(l — a)y). (2.271)
This equation has the form of (2.228) on M with K replaced by
a'=@(ny)a*=*(nh) K. Thus, theorem 25 yields the claim. O

Remark 28. 1. Both ™ and ¢ have a singularity proportional
to a=**(m)a=?(ma) for mi,m2 — 0.

2. For a < 1, K has to compensate the singularities caused by
a=32(m)a=*2(ny) in order for (2.270) to hold. In the most
natural case a = 1, however, K only needs to satisfy | K| < 1,
i.e. the same condition as for K in theorem 25.

3. Let X = a32(n,)a®?(ny)y™° be differentiable and let x be the
unique solution of (2.271). Then, by (2.271), we have:

Xfree(o,fl,O,fQ) = X(O,fl,o,fg), (2272)
i.e. x satisfies a Cauchy problem "at the Big Bang".

4. Remarkably, theorem 27 covers a class of manifestly covariant,
interacting integral equations in 1+3 dimensions. Then the in-
teraction kernel K has to be covariant as well. A class of exam-
ples (see also [70]) is given by a = 1 and

K (2, 72) — { f(d(xé,xQ)) if 1, %9 are time-like related
else,

(2.273)
where d(x1,x2) denotes the geodesic distance of time-like sepa-
rated the events x1 = (m,%1) and x9 = (19, 72), and f is an
arbitrary smooth function which leads to | K| < 1.
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2.3.4 Proofs

We begin this subsection with a set of technical lemmas.

Lemma 29. For any f € C3(MJ x Mg, C) the functions fi, f5 €
C3 (Mg x Mg, C) defined by

filz, z) = Jxl "’ f dP2'G™ (z — o) f(2, 2) (2.274)
0 R3
folz, 2) = Jxl dx’of d2'G™ (z — o) f(z, 7)) (2.275)
0 R3
fulfil for ke {z'|1€{0,1,2,3}} u {z'|1€{0,1,2,3}}
rad f{(@,2) = o | TG0 =) (@' 2) oo
f dx'of P2’ G (x — o) grad f(2, 2) (2.276)
Rg
grad fye,2) = o | TG0 ) (o1 oo
J da:’of P2’ G™ (x — 2) grad f(z,2), (2.277)

where eq is the unit vector in the zeroth direction and

(D:B + mZ)f{(x, Z) = f(l’, Z) (2278)
(0. +m*) fo(z,2) = f(z, 2). (2.279)

Proof. Pick f e C3(Mg x M, C), we will only check the first of each
of the three sets of equalities in the lemma, the proof of the second
case is identical. We abbreviate f] as f’, write it more explicitly and
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check the stated regularity. We have

f(z,2) = Lxl da’° JRS &' G w — o) f (2, 2) (2.280)

=: f dyh(z,y°, 2). (2.281)
0

Remark 20 and the form of Gt

G*(zx) = 6(2° — |7]) — —H (2" — |7))——7—— (2282
(@) = qrdla? = 1)~ (e~ AN (s
together result for any y° € [0, 2°[ in
0 2 1 0
h(z,y°, z) = f d“S(y )4 fl@+y,y°, 2) |-z (2.283)
2B, (0) |91
2 J
_ d*y Slmyy?) ) (z +y,9°,2) (2.284)
47T B‘y0| m\/>
1
= J sz(y)4 — f(z + 2%, y°, 2)| o= 52° (2.285)
2B1(0) 191
- Cy(y° ) ———="f(r + w,y", 2)[wo—yo wyoy. (2-286)
A Jp,(0) myo\/7 e

Now, each of the two summands is in C®. We begin with the first
summand for h € C'({(z,9°,2) e R? | 2° > 4° > 0,2° = 0},C) with
[ > 1 we define

' 1
B (z,9°, 2) = J d*S(y)——=h(z + 2%, 1", z)|yo:,|g|x0. (2.287)
dB1(0) 4rly]

Now, pick a direction of differentiation k. The factor ; |~| is absolutely
integrable, while the remaining integrand h(z + 2y, y°, 2)],0-_ 5 (2°)?
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is in C' and the integration region is compact. Therefore, the differ-
ence quotient of h(z + 2%, y°, 2)[,0-_;7(2°)? in the direction k € {x; |
l€{0,1,2,3}} u{y’} u{z | L € {0,1,2,3}} is continuous and hence
bounded on any small neighbourhood of any point (x,4°, z) which
means that by Lebesgue dominated convergence the first summand is

differentiable at least once and the resulting derivative equals

1
J d*S(y)—=0k (h(z + 2%, °, 2)|,o—_512°) . (2.288)
8B1(0) Ar|y]

However, this is just the expression we started with where h(z +
2%y, 1°, z)\yo,_w‘x is replaced by its derivative. Hence, by induction it
follows that the first summand in (2.285) is three times differentiable
in any set of directions kq, ko, k3 with derivative

J d25< ) |—»| aklakQakS ( (‘/E + xoy’ y07 Z)|y0:—|17|x0) : (2289)
0B1(0)

This function is continuous, since Lebesgue dominated convergence
can be applied once more for the same reasons to the limit (z,y°, z) —
(2,4, 2'). For the term (2.286) the argument is similar. Recall the
power series representation of J; |28, 10.2.2]:

Z El(k+1)! k:+ 1)! < >2k+1’ (2:290)

from this it follows that u — Jj(u)/u is a smooth function. Hence, the
term (2.286) is an integral of a function in C® over a compact domain,
and therefore we can pull three derivatives inside and still have a
continuous function. So overall, f’ is an integral over a function in C?
and hence is itself in C3.

Equation (2.276) follows directly from the above.
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Next, we show that f’ is a solution to the inhomogeneous Klein-Gordon
equation. For this we use that for the positive values of 2° we have

s = | af | ea-nfms )

=J”dwj Py(G™ — Gz — y) f(y, 2), (2.202)
0 R3

according to the support properties of G2V, Now, because the inner
integral can be interpreted as a convolution against the propagator of
the Klein-Gordon equation [10, 11, 12| it follows that

g(x,9°,2) = fa dPy(G™ — G*)(z —y) f(y, 2) (2.293)
R
fulfils
(e +mHg(z,9°,2) =0 ona’=>y" FeR? ze M

(2.294)
g(x,9°,2) =0 ona’ =y’ xreR® ze M ( )
0x09(x,y°, 2) = f(x,2) ona’=9" 2eR 2eM (2.296)
(2.297)

holds. Therefore, we can directly calculate [33]:

0

(. + mQ)J dy’g(z, 4", 2) (2.298)
0
= (0% - A+ mQ)J dy’g(z,y°, 2) (2.299)
0
r—L a®
= Ug0 g(l’,.ﬁL’O,Z) +J dy08$og(x7y0,z) (2300)
0

0

+ f dy’ (=2 +m?)g(z,y°, 2) (2.301)
0
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=f(x) -
—_—— 20 0
— tog(a, a2+ f O + m)g(e 50, 2) (2.302)
0

Lemma 30. For any f € C3(Mg x Md,C'®) define the function f' €
oM x M{,C'%) by

(21, 19) 1= J thJ dny d3y1J3d3y2Gre T — Y1)
R

x G5 (w2 — y2) f(y1,y2). (2.303)

Moreover, we have

29 r
Iy, 20) = J dy?f iy G5 (z1 — 1) J dng AT
0 R3 0 R3
x G5 (9 — y2) (Y1, 2) (2.304)

Il
J dyzf d3 Gret 332 Y2 f dy1f d3
R3 R3

X Giet(% — 1) f (1, 42)- (2.305)

Proof. Plugging in the form of G and using remark 20 for equa-
tion (2.303) one obtains four terms. The proof that all of them are
absolutely integrable is analogous, so we will only do one term. Con-
sider the term

/ o m3 d3 I du® P
[, 2) = —=; Y= Ys Yo
167 Jp 0 91| J_ag B1,0,(0)

J1 mg\/>
mg\/>

(@1 +y1, 02 + yo)lyo—_ig) (2.306)
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these integrals are absolutely integrable, because the domain of inte-
gration is bounded and the function y7 — ﬁ is absolutely integrable
on bounded domains in three dimensions and the remaining integrand
is continuous and so bounded on the integral domain. Therefore, one
may interchange the order of integration for f. Since the analogous
argument holds for all summands we can exchange the order of inte-
gration in (2.303). The claimed regularity for f’ holds, because f" in
the form of equation (2.305) is generated by applying lemma 29 once
to each variable z; and x,. O

Proof of lemma 21. Pick ¢ € S, K € C3(R®, C) as in the lemma. We
will only check DyD; Ay = K1) and (2.234), the other cases are anal-
ogous. First we rewrite the integral expression in (2.229) using re-
mark 20 and the form of G™' the same way we did in the proofs of the
last two lemmas. This results in the form

f dy?f dygf @, f 0y Gy — 1) G (3 — 1)
0 0 R3 R3
x [K](y1,y2) (2.307)

= <A§1) (m;) + A (ﬂ%)) K1 (a1, 25), (2.308)

j=1,2

where the operators Ay) are defined in the statement of the lemma.
Using lemma 2.3.4 we see that this expression is three times continu-
ously differentiable. Reordering the integrals in Ay we get

e
AY(xy,29) = D1 Dy f dy) f , PHG T (21 — ) (2.309)
0 R

J dys J PGy (22 — y2) [KY] (Y1, y2)
0 R3
(2.310)
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Next, we apply D; to it. We compute
DyAY(r1, ) = (O, + m?) Dy f it | RO - ) (2310
R3

J dszR3d3 Ly G (29 — y2) [KY](y1, 42),
(2.312)

now we exchange differentiation, which is justified due to the lemma
provided by lemma 29. Then, we apply this lemma once more to
obtain:

Dy A, 1) = Do(Clyy +m2) j ay? j PG (0~ ) (2313)
0 R
|k [ o -l 231)
R
_ D, j . j PR (2 — o) (K], v2). (2.315)
Rd

At this point we realize that once plugging in the form of G&¥* and
using the regularity proven in lemma 29 the last expression evaluates
0 (2.234). The resulting expression is regular enough to apply Ds,
which yields

D2D1A¢((L’1,$2) (2316)

9
~ D,D, f . j PR (2 — o) [K ] (@1, 12) (2.317)
0 R3

= (s, +m3) f 2 dygf PhHGY (x2 — yo) [KY](21,92)  (2.318)
0 R3
= K(x1,22)¢ (21, 72), (2.319)
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proving the claim. The representation (2.233) then follows by ex-
changing Dirac operators and integrals and differentiating the change
of integration domain with the time dimensions, which is justified ac-
cording to lemma 29. O

Proof of lemma 23. Consider a solution v of Dy = 0, i = 1,2
for compactly supported initial data at z{ = 0 = 29. As the Dirac
equation has finite propagation speed, 1% is spatially compactly
supported for all times. Without loss of generality we may assume
[T (ty, -, ta, )| r2@mey = 1 for all times ¢1,ts, so it follows that also
[¢] (¢, t2) = 1. In the following we will construct a sequence of test

functions (¢ )men satisfying ¥, ———s 1pfee. Let 5 : R — R be zero

(HE™

for arguments less than 0, be 1 for arguments greater than 1 and in
between given by (see also Fig. 2.1)

oo Lo (1)) e

Note that 7 is smooth and monotonically increasing. Next, we define
for every m e N

¢£zee(t1’ fla t2’ 52) ::6—(t1—m)n(t1—m)6—(t2—m)n(t2—m)¢free(t1’ fl) t2> 52)
(2.321)
This function is smooth and decreases rapidly in all variables and thus
lies in S. Now we estimate |1/ — t),,|lo. Pick m € N. First consider
™ — 1), | 2(ge) (t1, t2). This function is identically zero for all t < m
and t9 < m, so we obtain the estimate

1 free 2
sup ——————— — U,
tl,tQEO w(tl)zw(tg)Z W ’QZ) ||L2(R6)
1
= sup ———— |1 — e Mhmmitimm)gmnltzmm)(t=m)) (9 399
tl,tzgo ’w(tl)Qw(@)Q’ | )
1
< ————. (2.323)

w(0)?w(m)>
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0.2 0.4 0.6 0.8 1
Figure 2.1: The function n(t).
For the other terms we use that 1) solves the free Dirac equation in

each variable and that sup,.,d,e”"®" =: o < oo is realized for some
positive value of t. So we find for i € {0, 1}:

1
SUp ———— Dy (% — b)) 2o (£, £
t1,t280 'lU(tl)2’lU(t2)2H (w ¢ )HL (R(’)( 1 2)
1
o (2.324)

tl,tQEO w(t;)?w(t2)?

X Qe (ty, - by, -)e M mmsmimm g, etz (timm) 122 ey
(2.325)
(2.326)

< *
w(0)2w(m)?

For the inequality it has been used that the factor with a derivative
vanishes for t; < m.
An analogous estimate repeated for the D Do-term yields

1 o?

— D Dy(p—ap, )2 t1,t2) <
tls,ggo ’w(tl)2’w(t2>2H Dol v )HLZ(RG)( bt

w(m)!
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062

<S———-
w(0)2w(m)?

All in all, adding the estimates and taking the square root we find
e —ah, || < W, which together with the asymptotic behaviour
of w implies convergence. It follows that the free solution 1% can be
approximated by Cauchy sequences in S and hence is contained in B,,
which, we recall, has been defined as the completion of S with respect
to [ - -

O

2.3.4.1 Proof of Lemma 24

Throughout the following subsections, let ) € S and K € C3(R®,C).
Furthermore, define § := 1 — |K|? > 0, 4 = max{m;, m»} and let w
be as in the statement of theorem 25.

We begin with some lemmas which are useful for estimating

[Av]? (2}, 25).

Lemma 31. Let the following operators be defined on C([0,0)):

(A @) = ¢ [ do (e 07 o)

0

(A20)0) = Tty [ do = 9P 100
(A m)f) (@) = £ 1(0),
(AD(m) ) @) = T2 (0) (2.327)

Then, for j = 1,2 and k = 1,2,3,4, we define the operator Agk)(m)
acting on functions ¢ € C([0,20)2) by letting A% (m) act on the j-th
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variable of ¢(t1,t3). Then we have for all ¢ € S, all my,me = 0 and
all kel = 1,2,3,4:

2

AP ) AD (ma)os (s, )| < AP () AP () [, - )
(2.328)

Here, it is understood that the operators A§k> are applied to the func-
tions defined by the norms which follow them, e.g.

m4 6
AP () [1(t, - ta, )20 = B [0(0, - Lo, )2
Proof. We prove (2.328) for k = 1,1 = 2 and k = 3, [ = 4. The

remaining cases can be treated in the same way. We begin with £ = 1,
| =2, using | Jy(z)/z| < 3

m3 P
AL () A () 00t e =y [ s (2320)

L 1 Jilm
J J dy2f d3 1( 2 2y2)w(x1 + Y1, To + y2)|y0*f|y1
B 0(0) —1‘2 0‘

|y1 Y5

A7) d° Ty
(47T ]R3 xR3

1
dys f d3
(JBI J—IQ 2 ()‘ |y1 \/ﬁ
(J J dyzf Gy [0} (1 + y1, w2 + y2)lyo— m)
B 0(0) —xQ 0‘

0
B &, A 7rm2(x2)
(477)4 JR3XR3 B mcl ( 12

X J f dygf &P [0 (@1 + y1, 22 + y2)|y1=_|y1\
B 0(0) f:pQ 0‘

Ji(

2
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mA 20 (£9)4 o
S %(;)J &’F d3$2f d?’ylf dy2J 5
3% 2 R3 xR3 B,0(0) —9 191 (0

x QP (@] — |ihl, 1 + T, 29 + 43, Ta + 1), (2.330)

Exchanging the x and y integrals yields:

m3 ¥ (29)*
2.330) < M2 ¥1(Ta) J J dy3 f d3y2
( ) < © 3mw228 B,o(0) —a9 ? 1910

‘|¢(I1 - ‘y1’7 " 1‘2 + y2= ')HL2

0

4.0 (.04 . 0
my 7y (25) ! 2J 0 4T 013
< ——14 d dy, —

372 98 WL 1Ty s Yo 3 |ys|

X ||¢(.’E? — T, '7953 + ygv ')HL2

my a9 (25)* & 0 2 & 0 3
S 24 32 dpl (xl _pl) dp? ($2 —Pz) H@D(lep%‘)”m
0
A A ) [ (2.331)
Next, we turn to the case k = 3,1 = 4. Using that the modulus of the
largest eigenvalue of 7° is 1, we obtain:

2
®3) (4) 0 my 3 3o
[ AT (ma) Ay (m2) ¥ (a7, - 7$27')HL2 < —(47r)4( ) fR3ng T d°T

B . N (mz (23)? gj%) S
<A aw | en 10,7 + 5 0,3 + )
2B (0 B (x9)? —
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X (J da(gl)f do () |0[*(0, Z1 + 42,0, Zo + ?72))
aBI? (0) f)Bzg (0)
4 0\3
= LZL’/T(:E?)Z ﬂ-(xz) J dg.f]_ d3f1J do_(g»l)
3 e 2B,

(Am) (a1 0

<[ R PO+ 0.5+ ) (2.332)
B 3(0)

Exchanging the order of the x and y integrals yields:

m4 5 .
(2.332) = 3(4 - 37T($g)3 J do(¥) J d3y2 |1¥(0,-,0, )”%2
) 2B.,0(0) B,9(0)
m4 ($0)2 ($0)6
= %322 |4(0,-,0, )[4
= AP (m1) A (mo) [ (a?, -, 28, )| 2. (2.333)
]

Lemma 32. For j = 1,2 let A;(m) = 3, .Ag-k)(m). Then the fol-
lowing estimates hold:

[(Ag)(aY, - 25, )72 < 64[K[P(1 +2m)?(1 +2my)®  (2.334)
x Ay (my) Az (my) [ (9, 75), (2.335)
[(D1(A9)) (2], 29, )72 < 8[K[*(1 + 2my)? (2.336)
x Aa(my) [¢](29, 29), (2.337)
[(Dy(A9)) (2], -, 29, )72 < 8[K[*(1 + 2my)? (2.338)
x Ai(my) [v](29, 29), (2.339)
[(D1Dy(AY))(aY, - 25, )72 < [ K[? []* (Y, 25), (2.340)

where [¢]*(2Y, 29) is regarded as a function of x9,xY to which the op-
erators in front of it are applied.
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Proof. We start with (2.335). Recalling (2.233), and using D = —2m—
D the expression At contains terms such as Dy Do( K1) and D;(K),
i = 1,2. Recalling also the definition of Dj (equation (2.247)), we
have:

3
Dy Dy(Kp) = Y (V51 K)(Dyt)) (2.341)
k=0
with
1, k=0
o idy, k=1
V= a =g (2.342)
—51527 k = 3
Hence, noting (2.249):
3
[D1Dyy| < K] Y 1Dwl. (2.343)
Similarly, we find:
3
Di(Ky) < |K| Y [Dyd], i=1,2. (2.344)
k=0

Considering the definition of Agk)(m), j=1,2k=1,2234it follows
that

3

Ay < K1+ 2mi)(1+ 2ma) > T [A(my) M+

k=0j=1,2

AP (my) + AP (my) + ALY (m;) ][ Do . (2.345)

In slight abuse of notation, we here use the same symbols for the oper-
ators Agk) (m) acting on functions with and without spin components.
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The idea now is to make use of lemma 31. In order to be able to apply
the lemma, we ﬁrst note that by Young’s inequality for aq,...,ay € R,

we have <Zf\il ai> < NV, a? and thus:

|Ap (21, 22)|* < 64| K[*(1 + 2my)?(1 + 2my)
4 3
x >0 D AP m) AP (mo) D] (2.346)

Integrating over this expression and using lemma 31, we obtain:

[(A) (a1, 25, -)HLz < 64| K|P(1 + 2ma)?(1 + 2mg)?

x Z ZA§“<m1>A;j><m2>H<w><x?,-,x‘;,~>|\ia. (2.347)

i,j=1k=0

Recalling the definition of [¢]*(2?, 29), equation (2.246) yields (2.335).
Next, we turn to (2.337). Here, we use lemma 21 and D = —2m — D
to obtain

Dy (Ag) = (A5 (1ms) (~2ma — D2)+ AL (ma) (~2ms — Dy)
+Ag3>(m2)+Ag4>(m2))(K¢). (2.348)

Considering the form of Ag-k)(mj) this implies:

Dy (AY)| < |E[(1+2m2) Y. > AP (my) (D], (2.349)

i=1 ke{0,2}

We now square and use Young’s inequality, finding:

[D1(AY)|* < 8| K[*(1 + 2ms) Z DAY (ma) D2 (2.350)

i=1 ke{0,2}
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Integrating and using lemma 31 yields:
HDl(Aw)(:c?«,xS,-)Hiz < 8| K21 + 2ms)?

Z >0 AL (mo) (D) (a8, -, 23, ) 3. (2.351)

i=1 ke{0,2}
Adding the terms with & = 1,3 and using the definition of [1]?(z?, x9)
gives us (2.337).

The estimate (2.339) follows in an analogous way.
Finally, for (2.340) we also use lemma 21 to get

Dy Dy(Ay) = K. (2.352)
Squaring and integrating gives us:

| D1D(A) (a7, -, 25, )P < K [ (ah, -, 25, )12
< K [ (1, 22), (2.353)

which yields (2.340). O
These estimates are the core of:

Proof of Lemma 24: We use lemma 32 together with the definition of
[¥](z, 29) to obtain:

[Ap]?(29,29) < (2.335) + (2.337) + (2.339) + (2.340). (2.354)

Summarizing the operators into a product yields (2.250).
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2.3.4.2 Proof of Theorem 25

In order to prove theorem 25, we combine the previous estimates to
show that ||A| < 1, first on test functions 1) € S and by linear extension
also on the whole of B,,. We start with equation (2.250) of lemma 24
using the definition of A; for j = 1,2, as well as the following estimate,
valid for all ¢ € S, tq,ty > 0:

[V](t1,ta) = [¢](t,12) $<t1)w(t2) < |Y)ww(t)w(ts).  (2.355)

(t)w(t,)
Using this in (2.250) yields:

1
Ap|E < s K|? 2.356
A0t sop @ w@y X (2:356)
x [T (1 +8(1 +2m;)°A4;(m;)) [V (a), 25), (2.357)
j=1,2
2
< Sup (|)|¢H - H2

S @ w @) |

x [T (@+8(1+2m;)°A4;(my)) (w’ @w?)(af, 23), (2.358)

§=1,2

2 2 1
< KT [0l (sup 0 (2.359)
x (1 + 8(1 + 2my)* A(p)) 'w2(t)>2, (2.360)

where 1 = max{m,,my} and A(u) = Sp_, A® () with A® () as
in (2.327).

Next, we shall estimate the term in the big round bracket. To this end,
we first note some special properties of w?, which motivated choosing

w as in (2.251).
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Lemma 33. For allt > 0, we have

fo dr w?(7) = ﬁ w?(t). (2.361)

Proof: Differentiating the right side of the equation and using the
concrete function w? as in (2.251) shows that it is, indeed, the anti-
derivative of w?. Since this function vanishes at ¢ = 0, the claim

follows. O

Lemma 34. For ¢ < 8 we have

e c ] 1—¢/8
= b B2 2.362
WD T T3 ( ) , (2.362)

and furthermore for ¢ = 8:

up— b =] (2.363)
T T b '

Proof. To prove (2.362), considering the shape of the function h(t) =
t¢/(1 + bt®) we find that the supremum is in fact a maximum which is

located at t = b~Y/8 (8/c — 1)/, Inserting this back into the function

h(t) yields (2.362). Equation (2.363) follows from lfztg = %1/(171518)4-1 <

1
L O

Proof of theorem 25: Applying Lemma 33 to A(u) w? yields:
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t

(A w)O) = ¢ | dplt—pPwi(o) < ¢ | dpwt(o

0

= (),
A2 w)0) = 5 [dpte— gt < S0
(A9 () w?) (1) = 2
(AD () w?) (t) = 524;2 (2.364)

Multiplying with 1/w?(t) and using Lemma 34 as well as 1/w(t)? <
(1+0t®%)~!, we find:

w (1) (A () w) (1) < Vab
w (1) (AD ) w?) (1) < S
w2 () (AP () w?) (1) < o
w2 (1) (AY () w?) (1) < 24’;45/4 b3/4 (2.365)

Using (2.360), we can employ these inequalities (whose right-hand
sides are inversely proportional to powers of b) to estimate the norm
of A. According to (2.360), we have, first on S and by linear extension
also on the whole of B,,:

AL < 1K sup ao™(1) (1 +8(1+ 200 Alu) w?) (1), (2:366)

Now we use (2.365) for the various contributions A® (1) to A(u) =
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St A® (), finding:

235 ¢ UK 3/42 K UK
LKL, U PR R
b2 18b BT (3001

4] < K]+ |

b21 |
< K+ (25° + /18 + 3%42 + p* /(2 - 39/%)) (1 + 2p)?

(2.367)

K]
< |K|+ 5t T (16 + pu*) (1 + 2u)*. (2.368)

Recalling that b = ‘ K|° 7 (16 4+ ) (1 4+ 2u)® (see (2.252)), we finally
obtain that:

Al < K] + 'LM (16 4+ 5)(1+20)° = K] +1 K] = 1. (2369)
We have thus shown that A defines (by linear extension) a contraction
on B,,. Thus, the Neumann series 1) = >/, AFqpfree vields the unique
(global-in-time) solution of the equation ¢ = 1T + A, O

2.4 Summary and Conclusions

In this chapter we have extended the analysis of spin-0 and spin-1/2
delayed-equations. The resulting degree of understanding is quite dif-
ferent in the two cases.

Extending previous work for Klein-Gordon particles [72, 70] to the
Dirac case, we have established the existence of dynamics for a class
of integral equations (2.20) which express direct interactions with time
delay at the quantum level. To obtain this result, we have used both
simplifying assumptions (A) of a cut-off of the spacetime before t = 0,
and (B) of a smoother interaction kernel than the choice (2.26). While
we have tried to justify assumption (A) by considering the equation on
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the FLRW universe that features a Big Bang, no physical justification
has been given for assumption (B).

In fact, assumption (B) consists of two parts here:

Firstly, we have assumed that K is complex-valued while it could be
matrix-valued in the most general case. The reason for this assumption
is that our proof requires the integral operator A to be a map from
a certain Sobolev space onto itself in which weak derivatives with
respect to the Dirac operators of the two particles can be taken. If K
were matrix-valued, it would not commute with these Dirac operators
in general. Then Ay would contain new types of weak derivatives
which cannot be taken in the initial Sobolev space. As illustrated in
Sec. 2.3.2.2, this creates a situation where more and more derivatives
have to be controlled, possibly up to infinite order where the success of
an iteration scheme seems unlikely. At present, we do not know how
to deal with this issue. Improving on this point, however, defines an
important task for future research, as e.g. electromagnetic interactions
involve interaction kernels proportional to v{ys, (see [64]).

Secondly, the physically most natural interaction kernel is given by a
delta distribution along the light cone, K(x1,22)ocd((x1 — 22),(z1 —
x2)*). In the Dirac case, the distributional derivatives make general-
izations of results about more singular interaction kernels obtained in
the KG case such as [72, 70] as well as section 2.2 difficult, and we
have not attempted it here. Another interesting question is whether
the smallness condition on K can be alleviated such that arbitrarily
peaked functions are admitted. This could allow taking a limit where
K approaches the delta distribution along the light cone.

Improving upon any of these two points would be very desirable.

In the case of scalar particles, we have proved the existence and unique-
ness of solutions of the fully singular scalar integral equation (2.22)
and its N-particle generalization (2.68). Following previous works and
the Dirac case, we have depended upon assumption (A), i.e. a cut-off
in time; however, in contrast to those cases considering a more regular
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interaction kernel than what is present in (2.22), i.e. assumption (B)
was not necessary. We have given the same justification for assump-
tion (A) as in the Dirac case and in [70] by extending the main part
of our result to the FLRW spacetime.

We have worked with a weighted L* norm both for time and space
variables in the case of scalar particles, while it would be more natural
to use a weighted L*L? norm instead. It would then be a challenging
task to find the right inequalities to obtain similar estimates as we
did. Moreover, one could also try to prove higher regularity not only
in the sense of integrability but also differentiability. An interesting
question, for example, is whether one can apply the Klein-Gordon
operators ([, + m3) to the solutions of (2.22) in a weak sense.

This work provides a rigorous proof of the existence of interacting rel-
ativistic quantum dynamics in 1+3 spacetime dimensions; in particu-
lar, this model does not suffer from ultraviolet divergences which are
typically encountered in quantum field theoretic models. Of course,
the model does not describe particle creation and annihilation and is
therefore a toy model rather than an alternative to QFT. Neverthe-
less, one might find the fact that direct interactions, even singular
ones along the light cone, can be made mathematically rigorous, re-
markable. One might wonder whether in the long run the mechanism
of interaction through multi-time integral equations and direct inter-
actions could contribute to a rigorous formulation of Quantum Field
Theory.



Chapter 3

Quantum Field Theoretic
Approach to Interactions

3.1 Introduction

3.1.1 Motivation

In this chapter we will turn our attention to the widely used disper-
sion relation for relativistic quantum systems obtained by filling up
the negative energy states; see more details below. It is the result of
joint work with my supervisors. For the fermionic parts of a Quantum
Field Theory this approach is the standard one. The motivation and
introduction closely follows [16]. While the rigorous quantum field the-
oretic formulation of free relativistic fermions is well-established [20]
the introduction of interaction faces difficulties. In fact, introducing
an external electromagnetic field acting on the fermions, while ne-
glecting all interactions between the fermions, is already a non-trivial
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matter. The completely satisfactory formulation of such an external
field quantum electrodynamics (QED) is, to the best of my knowledge,
still to be formulated, despite the famous works of Dirac [22|, Feyn-
man [35], Schwinger [95], Ruisenaars [86, 87|, Langmann and Mickels-
son [59], Derezinski and Gérard [20] and Thaller [99]. Not to mention
a full QED including an interaction with a photon field. In recent
years, there have been several novel attempts to the problem among
them are what is called the causal fermion systems [37], which has a
wider scope. There has been progress on the rigorous treatment of
the search for minimizers in the static problem where a formulation
in terms of Fock spaces has been emitted in favour of one in terms
of projectors onto polarizations |50, 52, 49, 48, 43, 42|, see [51] for a
summary and [53| for a dynamic result in this formulation including
Coulomb interaction but not magnetic fields and [44] for a derivation
of the Euler-Heisenberg energy. Finally, there is the approach to con-
struct the geometric phase of external field QED [90, 75, 13, 15, 14],
which succeeded in constructing a time evolution operator but failed
to identify a unique canonical choice. This subsection continues with
a heuristic introduction into the latter approach.

When Dirac found the equation now bearing his name he recognized
that the range of kinetic energies accessible to the particles is | —
w0, —m] u [m, ] [24]. So he was worried that particles coupled to
an electromagnetic field might radiate and lower their kinetic energy
without bound, also cf. [46, Example 12.1]. Since particles capable
of such behaviour would not form stable matter, he devised a way to
introduce a stable ground state into the system. Instead of applying
the Dirac equation

0= (id —m)v, (3.1)
for v € L?(R3,C*) =: H to a fixed finite number of electrons, he sought
to apply its evolution to an infinite antisymmetric product of the form

Q=p1 Apan..., (3.2)
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where (@ )ren forms an ONB of the negative spectral subspace H~
of H with respect to the free Hamiltonian corresponding to the equa-
tion (3.1). Thus, making use of Pauli’s exclusion principle for fermions
no particle is any longer able to lower its kinetic energy. This object
Q) resulting from filling up all the negative energy states is called the
Dirac sea and constitutes the ground state introduced to this system.
Let U : H © be a one-particle evolution such as the time evolution
subject to an external field A € C*(R* R* to act upon the particles,
changing (3.1) to

0= (iff — A— m)y. (3.3)

where we have set the electric charge of the electron to one. Then 2
might be evolved according to

EUQ:UgolAUQOQA.... (34)

The first step towards a theory including interactions is to allow for
such an external field. We might now imagine a field A that acts only
during a brief period of time. Such a field could pull a particle of
the Dirac Sea €2, say 1, out of H~ and above the surface H* 3 £ =
U4, where H* is the positive spectral subspace of the Hamiltonian
corresponding to (3.1). Such a field might not disturb the other wave
functions much and the Dirac Sea after the action of the field might
be represented by

U=EAPAQ3A.... (3.5)

Now, according to Dirac, since £ € H™, the corresponding particle
behaves qualitatively differently compared to the remaining part of
the Dirac sea which consists of wave functions taken from H~. This
particle appears above the surface where it leaves behind a hole, the
missing wave function ¢ € H~. These holes are also called positrons.



112 CHAPTER 3. INTERACTION IN QFT

Following Dirac’s argument, whenever the wave functions of very neg-
ative energy are left relatively unperturbed by the action of the process
we can switch to a leaner description. If 2 remains unchanged below
a certain level, such as in our heuristic example, it suffices to follow
the generated particles e.g. £ and the created holes e.g. ;. If on the
other hand all wave functions are affected one has to keep track of a
net evolution of €2 as well. As in this description the particle number
is not a constant, creation operators are introduced. These act as

a* () pa Az A =EANQPIAP3A L. (3.6)

The adjoint of the creation operator is called annihilation operator
and is denoted by a. Using these equation (3.5) can be condensed to

U= a*(§)aler)S2 (3.7)

Given a one-particle time evolution operator U4, its lift U4 acting on
objects like the wedge product (3.2) needs to fulfil

UAa* () = a*(UA)UA. (3.8)

Requirement (3.8) is enough to fix U4 up to a phase. Now, still a*(y)Q
behaves differently for x € H* compared to x € H~, so in order to
completely forget about the Dirac sea in the notation one performs
the splitting

a*(f) =b*(f)+c(f) 0 (f) =a*(P7f), ¢(f) =a™(Pf), (3.9)

exploiting linearity of a*, where the orthogonal projectors onto the
negative and positive energy subspaces of H are denoted by P~ :
H — H~ and P := 1 — P~ respectively. Now, the space generated
by elements of the form b*(f1) b*(f2) ... b*(f,)(2 is called electron Fock
space F. while the space generated by c(f1) c¢(f2) ...c(f,)2 is called
hole Fock space Fj,. Here, the hole Fock space is generated by the
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annihilation operators of negative energy acting on the vacuum, which
is another remnant of the fact that €2 is an infinite product state. This
can be hidden by one more change in notation

& (f) = elf). (3.10)

Since c¢ is antilinear, but d* is supposed to be linear, one replaces
H~ by H~- as the domain of definition of d*. By H~ we denote the
space that is identical to H~ as a set, but multiplication is defined by
(Cx H*) 3 (A f) — Af. Resulting in a corresponding replacement

of Fj, by Fj. Turning the full space into

F-F®F. (3.11)

Using this we can represent §2 by |0) = 1®1 and ¥ by b*(&£)d*(1)]0).
Forgetting about the structure of (2 leads to problems, as we will see
now. Using the techniques recalled in the following sections one can
express the probability of creation of at least one pair due to time
evolution from ty to ¢; by a lift fulfilling (3.8) subject to an external
potential A as a Fredhom determinant, 2(1 — y/dety- (1 — [U£_[?)).
Picking an ONB (¢y)neny of HY and (p_p)neny of H~ this yields to
leading order

> Kew, Ut to)p-mdl® = UL (81, t0) 17, (3.12)

k,neN

where Uy 5 := PTUPT for any operator U and | - ||, is the Hilbert-
Schmidt norm. The space of operators of type H O induced by this
norm is denoted by I5(#). As a probability the expression (3.12) needs
to be bounded by one; however, this is not always the case.

Theorem 35 (Ruijsenaars [86, 87|). For times ty,t; € R the right-
hand side of (3.12) < oo if and only if A(ty) =0 = A(t1).
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There is one more classical theorem to take note of in this context.

Theorem 36 (Shale-Stinespring [97]). The one-particle operator U
has a lift U : F < satisfying (3.8) if and only if Uy, Uz € Iy(H).

Combined these theorems imply that unless the condition A = 0,
which is highly artificial in the light of Lorentz and gauge invariance,
is fulfilled there is no representation of the time evolution operator
subject to the field A into Fock space.

Stated in this way the last statement might nudge one into concluding
that the Fock space representation is a dead end. In fact, the situation
is more subtle. To get a heuristic idea, recall that positive and negative
energy states differ in the direction of their spinors. Meaning that
multiplying a negative energy state with e.g. v matrices will in general
result in a mixture of positive and negative energy states. Incidentally,
this is exactly what happens in the Hamiltonian

H* = (=i - grad +m) + Ay =27 - A (3.13)

Since there are infinitely many particles in the wedge product of 2 and
there is no mechanism of suppression for states of large momentum,
the sum in (3.12) does not converge for A + 0. However, as it turns
out there is a U4(ty,to) : F O whenever A(t;) = 0 = A(ty). This
implies that once the vector parts A vanishes, only finitely many pairs
remain, justifying the term “virtual pairs” for the infinity of pairs that
appear and vanish together with A.

As we can read off of our construction of Fock space, this space consists
of infinite wedge products that are sufficiently close to the initial state
2. We just found out that, this space is not large enough to contain
the state also at later times when the external field is non-zero, but
that does not mean that we cannot find a mapping from the initial
state to the later ones. It would be enough to adapt the choice of space
at later times to the external field present at that time. These spaces
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will in general not give a physically meaningful distinction between
electrons and parts of the Dirac sea. Such a distinction may have to
wait for a full interacting theory of QED, where it may be given in
terms of ground states or states homogeneous and isotropic enough
such that excitations above it behave effectively free. However, such
a distinction is not necessary to answer physical questions such as
which currents are induced by strong external fields or how Maxwell’s
equations are modified by those currents.

In the last decade progress has been made to construct the evolution
operator of external field QED mapping states of one Fock space to an-
other and to identify the remaining freedom of picking Fock spaces at
each hypersurface or point in time. The results generalize theorems 35
and 36 in a way that exposes the gauge and relativistic invariance in-
herent to the problem, which is not apparent in the original versions.
In order to state those theorems we need some mathematical notation
which we introduce first.

3.1.2 Overview of Previous Results

This subsection will first introduce some notation of [13, 15, 14, 16|
in order to state the results of [14] and prepare for the sections to
come. While doing so we will closely follow [16]. Throughout the
whole chapter the class of four potentials we are interested in is

V= C*(R* RY). (3.14)

All the results could be extended with a reasonable amount of addi-
tional work to slightly more general four-potentials, but not to physi-
cally realistic ones such as the Coulomb potential.

Any notion of time evolution in a relativistic setting needs to gener-
alize the notion of simultaneity. For this reason we introduce Cauchy
surfaces.
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Definition 37 (Cauchy surface, definition 2.1 of [16]). A Cauchy sur-
face X = R* is a smooth, 3-dimensional submanifold of R* that fulfils
the following three conditions:

a) Every inextensible, two-sided, time- or light-like, continuous path
in R* intersects ¥ in a unique point.

b) For every x € 3, the tangential space T,Y. is space-like.

c) The tangential spaces to ¥ are bounded away from light-like di-
rections in the following sense: The only light-like accumulation
point of | s 1w is zero.

Definition 38 (Hy, definition 2.2 of [16]). For every Cauchy surface
> there is a parametrization

Y = {mx(7) = (t=(2), 7) | ¥ e R}, (3.15)

with a smooth function ts, : R® — R. Agreeing with standard notation,
d*x = dx’dx'dz?dz? denotes the standard volume form over R*, where
the product of forms is the wedge product. By d*x we denote the form
d*x = dztdz?dz® both on R* and on R®. When contracting a form w
with a vector v we will be denoting this by i,(w). We will keep writing
iv(w) also for the spinor matriz valued vector v = (V°, 4%, 72,v3) =

YHe,:

in(d'z) = ", (d'z). (3.16)

For any x € ¥ restricting the 3-form i, (d*x) to the tangent space T,
results in

iy (d'2) = pi(a)in(d'2) = (v“ ) 'y(%a—()) P (37)
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Being able to write a Poincaré covariant measure on Cauchy surfaces
we may introduce the scalar product

bop > j B(@)is (d)i(@) = (b, (3.18)

and ¢ = ¢™y°. With respect to this scalar product we define Hy, =
L3(%,CY).

As is well known (e.g. [3, 15]) the Dirac equation coupled to an external
potential, equation (3.3), has a one-particle evolution operator for each
pair of Cauchy surfaces X, ¥’

UE’,Z . 7‘[2 - 7‘[2/, (3.19)

Using this covariant replacement of the standard Hilbert-space we re-
peat the heuristic Fock space construction of subsection 3.1.1 in a
slightly more general and detailed fashion.

Definition 39 (Fock space of generalized polarization, definition 2.4
of [16]). Let Pol(Hs) denote the set of all closed, linear subspaces
V < Hs such that both V and V* are infinite dimensional. Any
V € Pol(Hyx) is called polarization of Hy. For V € Pol(Hy), let
PY : Hs — V denote the orthogonal projection of Hx onto V. The
Fock space corresponding to V' on the Cauchy surface ¥ is defined to
be

F(V,Hs) = P F(V,Hs), F(V.Hs):= P (VH"eV™,

CEZ n,meNg
c=m—n

(3.20)
where @ is the Hilbert space direct sum, A the antisymmetric tensor
product of Hilbert spaces and H"™ is the n-fold antisymmetric product
of the Hilbert space H and V is the conjugate complex vector space of
V', which is identical to V as a set, but multiplication is defined by
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(C x V)3 (A f) = Xf. Furthermore, for the special case H := Hy,
with Yo earlier than the support of any four-potential considered in
this chapter we introduce the abbreviations

P~ =P} (3.21)
Pt =1-P, (3.22)

where H™ is the negative spectral subspace of the Hamiltonian (3.13)
for A =0. We also introduce the abbreviation

F = F(H 1), (3.23)

as well as Q2 € F for a fived element with m,n = 0 in equation (3.20)
and |2 = 1.

Pick Cauchy surfaces 3,3 and polarizations V' € Pol(Hg), V' €
Pol(Hy) then we can give the analogue of the lift condition (3.8)
in this setting: for all i) € Hy

U‘é/’zl;v’zag(w) = a;'(US,E@b)U\é',E’;VS: (llft Condition)
holds, where a¥, and a¥ are the creation operator associated to F(V, Hy)
and F(V', Hsy) respectively.

The rephrasing of theorem 36 adapted to the more general notation
we have developed now is

Theorem 40 ( [14], also cor. 2.5 of [16])). Let ¥,%' be Cauchy sur-
faces, V € Pol(Hsx), and V' € Pol(Hsxs) be polarizations. Then the
following two statements are equivalent:

a) There is a unitary operator [7‘4,72,;\,72 F(V,X) - F(V', Y that
satisfies the (lift condition)

b) The operators Py, *U& « PY and PY, Ug‘,.ZPgl are Hilbert-Schmidt
operators.
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So the question given an initial state in an initial Fock space F(V,X),
which Fock space we may pick at a final Cauchy surface ¥’ such that
there is a lift fulfilling the (lift condition) now becomes a question of
polarizations. We know a priori that UQZ has a lift from F(V, ) to
F (UQEV, ¥). Furthermore, we have a distinguished polarization for
very early times, namely the negative energy states with respect to the
free Hamiltonian. Thus, we may characterize all relevant polarization
classes into the following equivalence classes

Definition 41 (polarization classes, def. 2.6 of [16]). For a Cauchy
surface X and a potential A €V we define

Cs(A) :={W € Pol(Hs) | W ~ Uiy s, 1, (3.24)

where Yy, is a Cauchy surface earlier than supp A and Hy, s the
subspace spanned by the wave functions in the negative spectrum of
the free Dirac Hamiltonian. Furthermore, for V,V' € Pol(Hs) we
write V ~ V' whenever PY — PY' is a Hilbert-Schmidt operator.

Using this we immediately find

Corollary 42 (polarization classes and lifts, cor 2.7 of [16]). Let ¥, %’
be Cauchy surfaces and V € Cx(A),V' € Pol(Hsr) be polarizations.

Then there is a unitary operator Ul sy« F(V,X) — F(V',X') sat-
isfying the (lift condition) if and only if V' € Csy(A).

The definition 41 suggests a dependence of Cx(A) on all of A as a
function of time. As indicated in the last subsection, this is not the
case.

Theorem 43 (Cx(A) depends on Alry, thm. 1.5 of [14]). Pick a
Cauchy surface ¥ and A, A" € V. Then we have

CE(A) = CE(A,> < A‘TE = A/|T2, (325)
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where Alrs, = A'lrs means that for all x € ¥ and y € T,X the relation
Au(x)yt = Al (z)y" holds.

This is a version of theorem 35 for general Cauchy surfaces. The next
theorem shows how the polarization classes change with the gauge and
Lorentz transforms.

Theorem 44 (transformation of polarization classes, thm. 1.6 of [14]).
Let A€V be a four-potential and 3 a Cauchy surface.

a) Let (s,A) e C** x SO'(1,3) be an orthochronous Lorentz trans-
form, i.e. the tuple fulfils A~g,, A" = g and AEA" = s 1yFs
and acts on wave functions as ¥ — sp(A7') (see sec. 2.8
of [15]). Then we have

VeCx(A) = (5,A)V e Chs(AAATL)). (3.26)

b) Let A/ = A+ dC be the gauge transformed potential, for some
¢ € C*(RYR). Then the gauge transformation acts on wave
functions as e : Hy, O, — e~ and one obtains

VeClx(A) < e “VeCCg(A+dl). (3.27)

Theorems 44, 43 and corollary 42 make clear in which way the original
plan to work in a single Fock space was misguided and how it may be
adapted to make it work.

When trying to construct an evolution operator from a Cauchy sur-
face ¥ to a second one Y subject to an external field A, one has
to choose an initial polarization V' € Cx(A) and a final polarization
V' € Csy(A). Then there is an evolution operator U O sy, unique
up to a phase. Picking polarizations is akin to picking a patch of co-
ordinates on a non-trivial manifold, in the sense that there may not
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be a canonical choice and the choice is going to influence the rep-
resentation of all the relevant objects. Nevertheless, one can obtain
valuable information from calculations done with respect to one such
choice and always transform the results to the representation induced
by any other choice. Carrying out such a procedure will for every
de F(V,X) and ¥ e F(V',¥') result in finite transition probabilities
KW, U 5 5 ®)|? without the need for renormalization.

To make the discussion more concrete, we are going to introduce a
particular representation of the Fock spaces and evolution operators
discussed so far. This representation is heavily inspired by Dirac’s
original idea discussed in subsection 3.1.1 and is usually referred to as
infinite wedge space. For further details please have a look at section
2 of [13].

The basic idea behind this representation is a generalization of the
following point of view of the scalar product of finitely many fermions
but works for any Hilbert space H. Pick N € N and two states
AU, A® € H"N that can be written as the wedge product of N wave
functions

AV =1y A Ay (3.28)
AP =1 A A D, (3.29)

then the standard scalar product (¥, ®) in H" can be written as a
determinant

%%t(\lf D), (3.30)

where ® and ¥ are interpreted to be linear maps of type RY — H
Vk W € — Q/Jk (331)
VEk:®:ep— ¢y (3.32)

where (€x)ke1,...,n} is an ONB of RY and the star denotes the adjoint.
Non product states first have to be decomposed into a sum of product
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states, then the determinant is continued to be linear in the left and
right factor. Replacing RY by an index space /, e.g. [?(N) the space of
square summable sequences, and using the Fredholm determinant this
particular representation of the scalar product of H™ can be directly
generalized to an infinite number of particles. In this representation,
product states ® can be thought of as maps

Such maps will be called Dirac seas. The corresponding wedge product
can be thought of as
AP =1 Apa.... (3.34)

However, as operators on an infinite dimensional Vector space ¢ only
have a Fredholm determinant if they are in the set 1 + [;(¢) (here I
denotes the space of operators with finite trace-norm), only Dirac seas
&, U : { — H satisfying

U0, U0, o*P e 1 + I, (¢) (3.35)

have a scalar product. Starting with one particular infinite wedge
product A® and collecting all infinite wedge products AV such that
(3.35) is fulfilled and formal linear combinations thereof and taking
the completion with respect to the pairing (3.30) results in what is
referred to as infinite wedge space Fpe. For a rigorous construction
please have a look at [13, section 2.1].

It is worth noticing here, that if one starts from some other infinite
wedge product AU such that ®*W € 14 I;(¢) to construct Fay one finds
Faw = Fae, so there is no unique vacuum state in the infinite wedge
space. Pick a second Hilbert space H’' and some unitary operator
U :H — H', which can be thought of as Ug‘,j Next we define the
operation form the left of U by

EU . .F/\@ — ]:/\UQM (336)
LoA = NUY = (Ugyy) A (Utha) A ..., (3.37)
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where W : ¢ — H satisfies U*® € 1 + I1(¢). The operator Ly is a
lift of U in the sense of the (lift condition) and maps one Fock space
to another. The resulting target space Faye is quite implicit and for
H==Hs, H =Hs and U = Ug‘,z in general not identical to Fpg for
some @' : ¢ — H' even if range(®) € Cx(A) and range(®’) € Cw(A)
hold. This shortcoming of the construction can be overcome by adding
an additional operation from the right. Let ¥ : ¢/ — Hy such that
range(V) = range(®’) holds, then there is a unitary R : ¢/ — ¢ such
that ® = WR. Analogously to the action from the left we define one
from the right:

Rr: Fav — Faer, (3.38)
Rph® = N@'R), (3.39)

also here the @’ generate the infinite wedge space Fay. The spaces
Faw and Fpagp only coincides if ¢/ = ¢ and R has a determinant, i.e.
R e 1+ [;(f). The next theorem helps us to decide in which cases
there is a unitary R : ¢/ — ¢ such that Faper = Fae holds.

Theorem 45 (thm. 36 for £ and R, [13, thm. 2.26], [16, thm 3.1]
). Let H,0,H' 0 be Hilbert spaces, V € Pol(H) and V' € Pol(H’)
polarizations, ® : £ — H and ®' : ¢’ — H' be Dirac seas such that
range(®) = V and range(®’) = V' Then the following two statements
are equivalent

a) The off diagonal operators PV UPY and PV'UP"" are Hilbert-
Schmidt operators.

b) There is a unitary R : { — (' such that Faer = Fauer-

So returning to ¢ : £ — Hy, ¢’ : { — Hyy, with range(P) € Cx(A),
range(®’) € Csy(A) for some Cauchy surfaces ¥, ¥’ and some A € V,
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condition a) of the last theorem is satisfied so the existence of R : £ — ¢
such that the evolution operator

rTA . A
UV’,E’,V,E : .F/\@ — .F/\(b/, UV’,E/,V,E = £U§/ . o RR (340)

is well-defined and unitary is ensured. The operators Rz are unique
up to a phase, see [13, cor. 2.28], as might have been expected since
the (lift condition) allows for exactly this much freedom. A sim-
ple choice of ¢,/ that makes it possible to guess a choice for R is
¢ = range(®) < Hy, ¢! = range(P’) < Hyy. As discussed in subsec-
tion 3.1.1 one might hope that the motion of the electrons of very
negative energy is irrelevant for understanding excitations at the sur-
face. However, as we saw the motion of the electrons at great depth
made it impossible to directly compare the time evolved states with
the original ones. We can use R to revert this motion. So the idea
is to pick R’ = (PV'UP"Y)~" whenever PV'UPV is invertible, but this
choice is not unitary. If PV'UPY is not invertible one can perform the
construction outlined next in several steps and assemble a lift of the
total operator U. This is possible, because of for two unitary operators
Uy, Uy and corresponding lifts Uy, Us,

0,0, (3.41)

is a lift of U1U;. By virtue of the scalar product of two infinite wedge
products being a determinant and the equation

det((AR)*BR) = det(R*A*BR) = det(RR*A*B) (3.42)
= det(RR*) det(A*B) = det(R*R) det(A*B), (3.43)
is also true for bounded operators A, B, R of appropriate type when-

ever R is invertible and R*R, A*B each have a determinant. So the
operation from the right Rz may still be defined and a posteriori
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be corrected by a factor of 4/det(R™R')~! to turn it into a unitary
operator. Using

1= UYUA = (P + PVHUA(PY' + PV UAPY + PVY), (3.44)
and splitting the equation up according to the different initial and
target spaces, this implies

PVUAPV'UAPY =1 - PYUA P UAPY. (3.45)

Polarizations V, V' belonging to the appropriate polarization classes
Ve Cx(A), V' e Cx(A) satisfy condition a) of theorem 45 and because
the product of Hilbert-Schmidt operators is trace class R’ € 1 +
LI, (V), i.e. has a determinant. Hence, we may define

Ui srvis © Fae — Faer, (3.46)
Uxé',z/,v,z = det |(PVIU§1',2PV)|R(PV’U§, <PY) ° EU;‘/,E' (3.47)

Well-definedness can be checked directly, the operator
UL @R = PVUS (PR = 1y (3.48)

clearly has a determinant on V’. By similar calculations as (3.42) it
follows that also all operators @’ UQ,E@R/ with A®’ € Frgr, AD € Fro
have a determinant.

So the construction of an evolution operator in external field QED was
successful.

3.2 Geometric Construction of the Phase

In this section we perform a geometric construction of the phase of the
evolution operator based on an object ¢t whose existence is conjec-
tured due to physical intuition. This construction is heavily inspired



126 CHAPTER 3. INTERACTION IN QFT

by [96]. This object ¢t has not itself been constructed yet, but the au-
thor and his collaborators hope to construct it in the near future. We
restrict ourselves to the scattering regime, because it reduces the avail-
able freedom. In this case we identify the initial and final Hilbert-space
both with H and use the polarization introduced in definition 39.
Because our notions of the argument of a complex number and the
argument of an invertible bounded operator is non-standard, we in-
troduce it next.

Definition 46 (polar decomposition, logarithmic derivative and deriva-
tive with respect to four-potential). For X : H — H bounded and
wnvertible we introduce

AG(X) = X|X| L. (3.49)

Furthermore, we define for any complex number z € C\{0}

ag(z) := ’Z?‘ (3.50)

In abuse of notation we define the expression

otn (1) i L) (3.51)

f@)
for any differentiable f : R — C\{0}, even if the expression In f(t)
cannot be interpreted as the principal branch of the logarithm.
We also introduce S* := {z € C| |z| = 1}. We will denote the space of
bounded linear functions from one normed vector space V into itself
by B(V).
Lastly we introduce the partial derivative in the direction of any four-
potential F' of an operator valued function F :V — B(F) by

OrT(F) := 0.T(eF)|oeo, (3.52)

where the limit is taken with respect to the operator norm topology.
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Definition 47 (scattering operator and phases). We define for all
A BeV

SA7B = Uéin,zout UZBout,Ehl’ (353)

where Yo and iy are Cauchy surfaces of Minkowski spacetime such
that

V(x,y) esupp Ausupp B x Tyt (z—y)? = 0=2"> 4", (3.54)
V(z,y) esupp A usupp B x Sou : (z —y)? = 0= 2" <¢° (3.55)
holds. For the special case A = 0 we define the shorthand S® = Sp p.

Define for any a,b elements of the same real or complex vector space
the line segment connecting them

ab:={sa+(1—-s)b]|sel0,1]}. (3.56)
Let
dm := {(A,B) e V* | P~ Sy P~ and (3.57)
P™Sp AP~ : H™ O are invertible}, (3.58)
we define
dom S := {(A,B)edm | A B x A B < dm}. (3.59)

Furthermore, we choose for all A, B € dom S the lift discussed at the
end of the last section

Sap = Rac(P-5a5P-))ELSA - (3.60)
For (A, B),(B,0),(C,A) e dom S, we define the complex numbers
YABC ‘= C}_[e_t<P_SA,BP_SB,CP_SQAP_), (3.61)

L'apc = ag(vap0) (3.62)
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We will see in lemma 53 that yap.c # 0 and P~ Sy pP~Sp.cP~Sca €
1+ I1(H™), so that T's pc is well-defined. Next, we introduce for
A, B,C €V the function

CA(F, G) = —i(}p&g%tI[P_SA7A+FP+SA7A+GP_]. (363)

Finally, let a,b be two subsets of Minkowski spacetime, we say a < b
(in words: “a is causally prior to b”) if and only if for all (x,y) € a x b

(z—y)P=0nra#y)=2"<y’ (3.64)

holds. For A, B € V in the expressions a < A, A < a, A < B the four-
potentials A, B are to be interpreted as supp A, supp B respectively.

Lemma 48 (properties of dom S). The set dom S has the following
properties:

1. contains the diagonal: {(A,A) | Ae V} < dom S.

2. openness: Vne N: {s e R* | (X_, spAy, DI siAy) € dom S}
is an open subset of R?" for all Ay,...As, € V.

3. symmetry: (A, A') e dom S < (A’,A)edomS
4. star-shaped: (A,tA) e dom S = Vsel t:(A,sA)edomS

5. well-definedness of S: domS € {A,BeV | P~ SapP™ : H™ ©
is invertible} — B(F).

Proof. We will only prove openness, as the other properties follow di-
rectly from the definition (3.59). So pickn e N, A; € Vforie N,i < 2n

and s € R?" such that (ZZ=1 spAg, Ziinﬂ skAk) e dom S. We have to
find a neighbourhood U < R?" of s such that {(};_, s}, Ax, P s Ar) |

s’ € U} < dom S holds. In doing so we have to ensure that the square
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2

n 2n
DisiAr D s A (3.65)
k=1 k=n+1

stays a subset of dm for all s € U. Now pick a metric d on R?*" and
define

2

n 2n
r:=inf { d(s,s) | Z sy A, Z A ndm® # &
k=1 k=n+1

It cannot be the case that r = 0, because the metric is continuous,
the square compact in R?" and the set of invertible bounded operators
(defining dm) is open in the topology generated by the operator norm.
If = o0 then U = R?*" will suffice. If »r € RT then U = B,(s,t) the
open ball of radius r around s works. O

3.2.1 Main Result of Construction

Since the phase of a lift of the one-particle scattering operator relative
to any other lift is fixed by a single matrix element, we may use vacuum
expectation values to characterize the phase of a lift. The function ¢
captures the dependence of this object on variations of the external
field. As it turns out, this function also has a very close connection
to the derivative of the current as given by Bogolyubov’s formula, cf.
definition 50 and the main result theorem 51. However, the support
properties of ¢ do not align nicely with the causality condition we
require, motivated in remark 52. So the need of a splitting ¢ = ¢ — ¢~
arises so that ¢* has only support in the causal past and ¢~ only in
the causal future in the sense specified below.
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Definition 49 (causal splitting). We define a causal splitting as a
function

ct VP - C, (3.66)
(A, F,G) = ci(F,Q), (3.67)
such that ¢t restricted to any finite dimensional subspace is smooth

in the first argument and linear in the second and third argument.
Furthermore, ¢t should satisfy

ca(F,G) = ci(F,G) - ci(G, F), (3.68)
ouch, y(F,G) = dgch, o(F, H), (3.69)
VE < G:c}i(F,G) = 0. (3.70)

Definition 50 (current). Given a lift SAB of the one-particle scatter-
ing operator Sa p for which the derivative in the following expression
exists, we define the associated current by Bogolyubov’s formula:

JAF) = i0r (92, Sa.4:rQ). (3.71)

Theorem 51 (existence of causal lift). Given a causal splitting c*,
there is a second quantized scattering operator S, lift of the one-particle
scattering operator S with the following properties

VA,B, CeV: SA,BS’B,O = S’AC (372)
VE < G:Saar = Sarcarric (3.73)

and the associated current satisfies

—2ics(F,G)  forG< F

anngG(F) = { 0 for F <G (3'74>
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Remark 52. One may wonder why we construct a lift with the prop-
erties (3.72) and (3.73). The project of finding a rigorous formulation
of external field QED could be considered a success once a lift 0972
of the evolution from one Cauchy surface to another Usys, has been
constructed from which a current can be calculated that agrees with ex-
periments to the degree that the approximations inherent to the model
are applicable. In the light of this goal properties (3.72) and (3.73)
should be judged. Property (3.72) is a basic requirement, any phase
that does not fulfil it will not be directly generalizable to the evolution
between different Cauchy surfaces. In the proof of the theorem we will
see that in order to satisfy it, it suffices to construct any global section,
i.e. a lift of So.a for any A € V. In order to see why our formula-
tion of Bogolyubov’s causality condition [5], i.e. equation (3.73), is a
reasonable second requirement we may quickly go through its proof in
the one-particle situation. Let A, F,G € V such that F < G. We may
then pick a Cauchy surface ¥’ such that supp F' < ¥ and ¥ < supp G.
This implies

SA+G7A+G+F = Uézj;%out SILS;ZI; <375)

= Ui SUss U oS Ug s (3.76)

= Uz, 2 U Us oo Usls, = Us, nUsls, (377)

= UQ”,E'US',EW gout,Z/Uéfjerjn = é‘m,zout g:;le = SA,A+Fa (3-78)

where for the marked equality we used the support properties of F' and
G relative to X' and that 5124/,2 only depends on values of A in the
volume delimited by X' and 3. For a lift of Ué,’z we would expect
the last calculation to hold in the second quantized language as well.
So property (3.73) is a way of incorporating attributes of the lift of
the time evolution between different hypersurfaces without mentioning
those hypersurfaces directly.
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3.2.2 Proof of Theorem 51

The connection between vacuum expectation values and ¢ becomes
clearer with the next lemma.

Lemma 53 (properties of I'). The function I has the following prop-
erties for all A, B,C,D € V such that the expressions occurring in
each equation are well-defined:

Ya,B,c # 0 (3.79)
F'apc = ag((?jl{ejz(P_ — P SacP"ScaP~

PS4 pPtSpeP SoaP))  (3.80)
Iype = ag((Q,Sa858050,40)) (3.81)
Papec=Tpca= T ! (3.82)

B,AC

Faap=1 (3.83)
Fagcl'saplacplcsp =1 (3.84)
F'asc=Ipeclapclasp (3.85)
Sac=TapcSapSpc (3.86)
ca(B,C) = 0pocInl'aaypasc (3.87)
Q. Sy ) = det PSP, (3.89)

Proof. Pick A, B,C € Vsuch that (X,Y) e dom S for X, Y € {4, B,C}.
By definition 7 is

YAB,C = gifft(PfsA,BpfsB,cpfSc,AP*). (3.89)
The operator whose determinant we take in the last line is a product

P SapP SpcP ScaP~ = P SopP~ P SpcP~ P ScaP.
(3.90)
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The three factors appearing in this product are all invertible due to
the definition of dom .S, therefore if the determinant exists we have
va,8,c # 0. To see that it does exist, we reformulate

Yan0 = det(P~SaP SpcP ScaP”) (3.91)

= det(P~SacP ScaP” — P SapP*SpoP ScaP”)  (3.92)

= det(P” — P"SocP"SaP” — P SapP SpcP  ScaP”),
(3.93)

now we know by theorem 35 of Ruijsenaars that PTSxy P~ is a
Hilbert-Schmidt operator for our setting, hence v and also I" are well-
defined.

Equation (3.93) also proves (3.80). Next we show (3.81). In the no-
tation of the last section we have Q = e? A\ @ for some ¢ € R with
the injection ® : H~ — H. We begin by reformulating the right-hand
side of (3.81)

, gA,J3§B,(J§(:,AQ> (3.94)

= <ew /\ P, et /\ (SA,BSB,CSC,A(I) AG(Pfsc’Apf)fl
AG(P~SgcP)! AG(P_SABP_)_]L»

=(A\ @, N\ (PAG(P~ScaP7)™ (3.95)
X AG(P SB’CP ) 1AG<P75A’BP7)71)>
= det ((®)* [® AG(P~ScaP™) " AG(P~SpcP)~! (3.96)
x AG(P~SapP7)'])
= %e; (AG(P~Sc,aP™) ' AG(P~SpcP)™ (3.97)

x AG(P~SapP7)™")
1

= detH_ AG<P_SA,BP_) AG(P_SBL‘P_) AG(P_SC7AP_>' (398)
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We first note that dety,- |[P~SxyP~| € R* for X, Y € {A, B,C}. This
is well-defined because

(€, Sxy ) = (% N\ @, % N(Sxy®AGP SxyP)™")) (3.99)
= cql{e:c (@*Sxy®AG(P~ SxyP™)™") (3.100)
= gl{e:c (P~SxyP~ AG(P~SxyP™)™") (3.101)
= det (AG(P~SxyP ™) 'P SxyP") (3.102)
= det (AG(P~Sxy P ) ' AG(P~SxyP7)|P~SxyP7|)  (3.103)
= det [P Sxy P (3.104)

holds, proving equation (3.88). Moreover, this determinant does not
vanish, since P~ Sy y P~ is invertible. Also, clearly the eigenvalues are
positive since |P~Sxy P~| is an absolute value. We continue with the
result of (3.98). Thus, we find

(Q,54,858,50,4Q)7" (3.105)
= (}{e_t (AG(P_SAVBP_)AG(P_SB@'P_) AG(P_SQAP_)) (3106)
= ("}-[e—t (AG(P_SAVBP_)AG(P_SBQ'P_)P_SC’AP_
X ’Pisc,Api‘il) (3107)
= glie:c (AG(P’SABP*) AG(P753,0P7>P7507AP7)
X c}{e_t |P~ScaP~ |7t (3.108)
= (}{e:c (Pisc,Api AG(PisA’Bpi)AG<P75370P7))
X (;I{e_t |P~ScaP~ |7t (3.109)

_ detq- (P_SA,BP_P_SB’CP_P_SQAP_)
~ dety|P=SapP~| - dety|P~SpcP~|-dety |P~ScaP-|
(3.110)
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Now since the denominator of this fraction is real we can use (3.62)
to identity

ag(<Q,§A,B§B7C§CVAQ>) = FZ}B,C’ (3111)
which proves (3.81).
For the first equality in (3.82) we use det(X (1 + Y)X 1) = det(1 +
Y) for any Y trace-class and X bounded and invertible. So we can
cyclically permute the factors P~Sx y P~ in the determinant and find

Capc = ag(g}le_t P~SapP SpcP ScaP™)
= ag((}{ej P’SC,AP’SA,BP’SB,CP*) = FC,A,B-

For the second equality of (3.82) we use (3.62) to represent both I'4 5 ¢
and I'p 4 ¢. Using this and the manipulations of the determinant we
already employed, we arrive at

Iagclsac (3.112)
= ag((?i{ej(P’SABP’SB’CP’SC,AP’)) (3.113)
X ag(%i_[e_t(P_SB,AP_SAgP_SqBP_)) (3.114)

= ag((}ﬁt(P’SABP’SBCP’SQAP’)) (3.115)
X (ag((;ﬁt(P_SB,cP_SCVAP_SA’BP_)))* (3.116)

= ag((}ﬁt(P_SABP_SB@P_SQAP_)) (3.117)
X (ag((}{q:(P_SA,BP_SB,CP_SQAP_)))* (3.118)
(3.119)

= ’ag((;{e_t(P_SABP_SB7CP_SC,AP_))‘2 = 1,
which proves (3.82).
Next, using (3.61) inserting twice the same argument yields
Ya,AC = (?i{e:c P_SAycP_Sc,AP_ = %e}(P_SC,AP_)*P_SC,AP_ € R+,
(3.120)
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hence (3.83) follows.

For proving (3.84) we will use the definition of I directly and repeat-
edly use that we can cyclically permute operator groups of the form
P=SxyP~ for X,Y € {A, B,C, D} in the determinant, i.e.

det Pis)(’yPiO = det Opisx’ypi, (O)

whenever O has a determinant. This is possible, because P~ Sy y P~
is bounded and invertible. Furthermore, we will use that

det 0102 = det 01 det 02 ((—))

holds whenever both O; and Os have a determinant. Moreover, for any
X, Y the expression (P~ SxyP~)*P~SxyP~ is the modulus squared
of an invertible operator and hence its determinant is positive which
means that

agdet(P~SxyP™)*P~"SxyP™ =1. (ag| |)

These three rules will be repeatedly used. We calculate
Uascl'saplacoplosp (3.121)
= ag(;l{e_t P_SA,BP_SBLvP_SC,AP_
X ag gl_[e:c PisBAPiSA’DPiSD’BPi FA,C’,DFC,B,D (3122)

Q) ag(;l{@:ﬁP_SADP_SD’BP_SB,AP_

X ag(ite_t P_SABP_SB,CP_SC’AP_ FA,C’,DFC,B,D (3123)

(;) ag(;[-ﬁt (PisA,DP75D7B[PisB,Api;S’ABPi]
X SB,CP_SC,AP_) I'acpl'enp
(3.124)

© e det P~ 8S5,0P”Sc.aP”SapP Sp.s [P~Sp AP~ S4pP"]
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xTacplepp (3.125)
) ag det P~ Sp,cP™Sc.aP”SapP” Sp.sP”
X ag 9}{6} P=Sp AP SapP~ Tacplensp
(3.126)
E ag %i{e_t P=SpcP ScaP SapP SpsP~ Tacplenp
(3.127)
© e det P~ S pP~Sp.sP~SpcP ScaP” Tacolopn (3.128)
— agdet P~ SacP ScoP SpaP”
x agdet P~S4pPSp.P SpoP ScaP” Tosp (3129)

) ag det (P~ SacP SepP [P SpaP P SapP]

x SpsP SpcP SoaP”) Tepp  (3.130)
© e det (P~ Sp P SpcP SoaP SacP SopP~
x [P~SpaP P~ SapP]) Tepp (3.131)
) ag det P~ Sp s P~ S5 P~ So.aP” SacP SonP”
X ag %ej P~ SpaP P SapP™ Tcnp
(3.132)
el og det (P~SpsP~SpoP [P~ScaP™SacP]
x P~ ScpP )Tcpp (3.133)
© ag det P~Sc,pP~SpaP~Sp.oP~[P~ScaP~SacP"]
x Topp (3.134)
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(;) ag(}{ejP’ScﬁDP’SD,BP’SB,(;Pf

X agdet P_SQAP_SACP_ FC’,B,D (3135)

Ca D o det P~ ScpP” Sp.sP SpoP” Tepp (3.136)

= ag%l{e_tP_SQDP_SDBP_SB,CP_
X ag(}{e:c P’SC,BP’SB,DP’SD,CP’ (3137)
— |ag %e_t P~ ScpP SppP SpcP|* =1. (3.138)

Equation (3.85) is a direct consequence of (3.84) and (3.82).
For (3.86) we realize that according to [13] two lifts of the same one-
particle operator can only differ by a phase, that is

Sac=¢&SapSee (3.139)

for some £ € C, [£| = 1.
In order to identify £ we recognize that S Xy = g;lx for four potentials
X,Y and find

167" = SapSpoSca. (3.140)

Now we take the vacuum expectation value on both sides of this equa-
tion and use (3.81) to find

5_1 = ag<Q,§A7B§B7ch7AQ> = FZ}B,C' (3.141)

Finally, we prove (3.87). We start from the right-hand side of this
equation and work our way towards the left-hand side of it. In the
following calculation we will repeatedly make use of the fact that
(P~ Saa+8P~ Sa+p aP™)is the absolute value squared of an invertible
operator and has a determinant, which is therefore positive. For the
marked equality we will use that for a differentiable function z : R — C
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at points t where z(t) € R* holds, we have

(/121 (2)

2! —z 22+ 22 z 222

)+ — t) = t) — t
ENFER I P R P
=i(3(2")/2(t). (3.142)
Furthermore, we will use the following expressions for the derivative

of the determinant which holds for all operator valued functions on
the reals M : R — 1 + I;(#) such that M is invertible for at 0

0. det M (g)].—o = det M (0) tr(M*(0)0. M (£)|.—0), (3.143)

likewise we need the following expression for the derivative of M ~! for
M : R — (H — H) such that M (t) is invertible and bounded for every
teR

asMil(g)‘E:O = _M71(0>66M(€)|6:0M71(0)- (3'144)

The handling of derivatives of operators in the following calculation is
justified by the section on regularity 4.1. We compute

&B(?C In FA,A+B,A+C (3145)

(162 Oplc In ag((}f_t<P_SA,A+BP_SA+B,A+CP_SA+C,AP_)) (3.146)

Oc ag(dety- (P~ Saa+BP~SayBarc P SascaP™))
ag(dety- (P=Saa+BP~SaypaP 7))
= 636(; ag(%i{e_t(P_SA7A+BP_SA+B,A+CP_SA+C7AP_)) (3148)

Socdety-(P~SaarBP ™ SasparcP™SarcaP™)
dety—(P~=Saa+BP~SaypaP~)
dety- (P~ Saa+P~SaypaP™)
dety, - (P~ Saa4+P~SaypaP~)
x Str((P~SaarsP SarpaP™)™!

X aCP_SA7A+BP_SA+B,A+0P_SA+C7AP_)] (3150)

— 0p (3.147)

* .
=zé’B

(3.149)

— 2'83[
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The fraction in front of the trace equals 1. As a next step we replace
the second but last projector P~ = 1—P*, the resulting first summand
vanishes, because the dependence on C' cancels. This results in

(3150) = —i053 tl"((P_SA7A+BP_SA+B7AP_>_1
X 0cP~Saa+BP ™ SarparcP Sarc,aP™). (3.151)

Now, because PTP~ = 0 only one summand of the product rule sur-
vives:

(3.151) = —idpStr((P~SaassP SaypaP )"
X acP*SA,A+BP’SA+B,AP+SA+C7AP*). (3.152)

Next we use (MN)™' = N~'M~! for invertible operators M and N
for the first factor in the trace and cancel as much as possible of the
second factor:

(3.152) = —iopStr((P~SaypaP™) ' P Saip.a
XP+(905A+C,AP_) (3153)
= —Z'%tr(aB[(P_SA+B7AP_)_1P_SA+B7A

xP*&CSAJFC,AP*]) (3.154)
= —i%tr(é’BP_SA+B,AP+8CSA+C,AP_) (3155)
= i tr(&BP_SA7A+BP+&CSA,A+CP_) (3156)
= —i@Bé‘C%tr(P*SA7A+BP+SA’A+cP’) (3157)
which proves the claim.
]

In order to construct the lift announced in theorem 51, we first con-
struct a reference lift S, that is well-defined on all of V. Afterwards we
will study the dependence of the relative phase between this global lift
S(] 4 and a local lift given by SO 5SE 4 for B — A small. By exploiting
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properties of this phase and the causal splitting ¢ we will construct
a global lift that has the desired properties.
Since V is star shaped, we have 0 A < V.

Definition 54 (ratio of lifts). For any A, B € V and any two lifts
Sy, S p of the one-particle scattering operator Sap we define the
ratio

51,4 B 1
—— €8 (3.158)
Sh.B
to be the unique complex number z € S* such that
zShp="5Sip (3.159)

holds.

Theorem 55 (existence of global lift). There is a unique map 5‘07. :
V — U(F) which maps A€V to a lift of So.a and solves the parallel
transport differential equation

S
A, B €V linearly dependent = Op—2AtB 0, (3.160)

0,A5 4,A+B
subject to the initial condition 5’0’0 =1.

The proof of theorem 55 is divided into two lemmas due to its length.
We will introduce the integral flow ¢4 associated with the differential
equation (3.160) for some A € V. We will then study the properties
of ¢4 in the two lemmas and finally construct 5”07 4= 04(0,1). In
the first lemma we will establish the existence of a local solution. The
solution will be constructed along the line 0 A. In the second lemma
we patch local solutions together to a global one.
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Lemma 56 (¢ local existence and uniqueness). There is a unique
da: {(t,s) € R? | (tA,sA) € dom S} := dom ¢y — U(F) for every
A eV satisfying

V(t,s) e dom ¢y : ¢palt,s) is a lift of Siasa ( )
V(t,s),(s,0),(I,t) e domey : pa(t,s)pa(s,l) = opalt,l) (3.162)
VieR:oa(t,t) =1 ( )

vseR:a 2AG00 o (3164

SA,tA t=s

Proof. We first define the phase
z:{(A,B) e dom S | A, B linearly dependent} — S* (3.165)

by the differential equation

d d
%ln 2(tA, zA) = — <@ln FtA’xAyA) - (3.166)
and the initial condition
2(AA) =1 (3.167)
for any A € V. The phase z takes the form
xr , d
2(tA,zA) =exp [ — | dz o InTiaya04 ) (3.168)
t y=z'

Please note that both differential equation and initial condition are
invariant under rescaling of the potential A, so z is well-defined. We
will now construct a local solution to (3.160) and define ¢4 using this
solution. Pick A € V the expression

Sosa = So.aSasaz(A,sA) (3.169)
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solves (3.160) locally. Local here means that s is close enough to 1
such that (A, sA) € dom S. Calculating the argument of the derivative
of (3.160) we find:

SO,(S+€)A go aSa, (s+e)a2(A, (s +¢€)
SO,SA§5A7(8+8)A So.4S 454554 (s10)2(A, sA

(3.86) go,AgA saSsa (sl asa,54042(A, (s + ) A) (3.171)

SOASASASSA(S+E (A sA

)
I‘A sA,(s+e AZ( (3 + 8) )
z(A, sA)

)) (3.170)

(3.172)

Now we take the derivative with respect to € at ¢ = 0, cancel the
factor that does not depend on e and relabel s = x to obtain

0= (%(FA,mA,yA Z(A, yA))) (3173)

y=z

: (3.174)

Yy=x

d d
— e Inz(tA,zA) = <—@ In FtA,mA,yA)

Xz

where we rescaled A so that the expression matches exactly the defin-
ing differential equation of z. The initial condition of z equation (3.167)
is necessary to match the initial condition in (3.169) for s = 1. The
connection to ¢ from the statement of the lemma can now be made.

We define
¢A(t, S) = Z(tA, SA)gtA,SA7 (3175)

for (tA,sA) e dom S. Since S is a lift of S, we see that (3.161) holds.
Equation (3.163) follows from (3.167) and Sya 44 = 1 for general ¢ € R.
Equation (3.164) follows by plugging in (3.175) and using the defining
differential equation for z (3.166) as well as its initial condition (3.167)
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and the property (3.82) of I':

o, Lalt:s)l - _ 5 A 5A)Siasn (3.176)
tASA |,y SiasA -
=0, 2(tA, sA)|,_, = —z(tA,tA) <disln FtA,tA,SA) =0. (3.177)
s=t
It remains to see that (3.162), i.e. that
da(t,s)pa(s,l) = oal(t,l) (3.178)

holds for (tA,sA), (sA,lA), (tA,lA) € domS. In order to do so we
plug in the definition (3.175) of ¢4 and obtain

Ga(t, s)pa(s,l) = ga(t,l)  (3.179)

— 2(tA, sA)z(sA, 1A)SiasaSsa1a = 2(tA LA)Siaua  ( )
— 2(tA,sA)z(sA,1A)Sia 45404  (3.181)

= 2(tA,1A)S1asaSsa04 0504 ( )

= 2(tA,sA)z(sA 1A z(tATA) T = Thasana.  ( )

In order to check the validity of the last equality we plug in the integral
formula (3.168) for z, we also abbreviate - = ¢,

2(tA, sA)z(sA 1A)z(tA, IA) ™

1
_ e_ Sf da’ (az/ In FtA,yA,z/A) ’y:z/_ss dzx’ (az’ In FsA,yA,z’A)’

y=a'

l
— 67 Sls da’ (ale In FtA,yA,:L"A) |y:mliss dz’ (aJ/ In I‘sA,yA,:L"A) |y:;L’/

(3.184)
(3.185)
et §ida’ (@0 InTy 4 4 ara)|, 0 (3.186)
(3.187)
(3.188)

(3:85) e_ Sls da’ (ax’ lnFsA,yA,x/A)‘y:x/_Sls dz’ (aac’ lnFtA,sA,x’A)|y:$/
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— P da’ (0, In rtA,yA,SA)|y:Z,—gls da’ (0 10Ty 4 4 aa ,

My

3.189

xXe

— e_ S; da’ (6z/ lnFtA,sA,z’A)‘y:z/

(

(3.190
— e S; dl"(?m/ lnFtA,sA,z’A (3191

(

(3.83)
= "T'iasa1a,

)
)
)
3.192)

which proves the validity of the consistency relation (3.178).
In order to prove uniqueness we pick A € V and assume there is ¢’
also defined on dom ¢4 and satisfies (3.161) to (3.164). Then we may
use (3.161) to conclude that for any (¢, s) € dom ¢4 there is (¢, s) € S*
such that

dalt, s) = ¢'(t, )y, 5) (3.193)
holds true. Picking [ such that (t,s),(s,1), (t,]) € dom ¢, and us-
ing (3.162) we find

¢/<t7 5)7(t7 5) = (bA(ta S) = ¢A<t7 l)(bA(l? 5) (3194)
=t D¢ (¢, Dy s)¢' (L s) = v, Dy(l, )¢/ (8, s), (3.195)

hence we have

Yt s) = (& D (Ls). (3.196)
From property (3.163) we find
At t) =1, (3.197)

for any ¢. Using equation (3.164) we conclude that

0= 2B _p alethls.Y) (3.198)
SsAtA l_g Ssapa g
s, t s,t
N2 G0 PR Y 2\ L) (3.199)
SAtA t=s sAtA t=sg

=0 (s 1)),y (3:200)
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Finally, we find for general (s,t) € dom ¢ 4:

ax’Y(Sa x)’x:t = az(”)/(sat)f}/(twf))‘w:t = 7(57 t)axPY(ta x)’x:t = 0.
(3.201)
So ¥(t,s) = 1 everywhere. We conclude ¢4 = ¢'.
O

Lemma 57 (¢ global existence and uniqueness). For any A € V the
map ¢4 constructed in lemma 56 can be uniquely extended to all of R*
keeping its defining properties

V(t,s) e R?: ¢a(t,s) is a lift of Siasa

(3.202)

(t,5), (s,0), (1,£) € R < da(t, 8)pals, 1) = pa(t, 1) (3.203)
VEeR: da(t,t) =1 (3.204)

(3.205)

VSG]R:@M =0.

SAtA li—g

Proof. Pick A e V. For x € R we define the set
Uy, :={yeR| (zA4,yA) e dom S}, (3.206)

which according to properties 2 and 4 of lemma 48 is an open interval
and fulfils that |, .z U, x U, is an open neighbourhood of the diagonal
{(z,z) | * € R}. Therefore, ¢, is defined for arguments that are
close enough to each other. Since properties (3.205) and (3.204) only
concern the behaviour of ¢4 at the diagonal any extension fulfils them.
We pick a sequence (zx)ren, < R such that

U Un =R (3.207)
kENo
holds and .
W¥ne Ny : | J Uy, =: dom, (3.208)

k=0
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is an open interval. Please note that such a sequence always exists.
We are going to prove that for any n € Ny There is a function v, :
dom,, x dom,, — U(F), which satisfies the conditions

V(t,s) € dom, x dom, : 1, (t,s) is a lift of S;asa  (3.209)
Vs, k,l € dom, : ¥, (k, $)n(s, 1) = ¥, (k1)  (3.210)
Yo,y e dom, : (vA,yA) € dom S = ¥, (2,y) = palx,y)  (3.211)

and is the unique function to do so, i.e. any other function n fulfilling
properties (3.209)-(3.211) possibly being defined on a larger domain
coincides with v,, on dom,, x dom,,.

We start with ¢y = ¢4 restricted to U,, x U,,. This function is a
restriction of ¢4 and because of lemma 56 it fulfils all of the required
properties directly.

For the induction step we pick ¢t € dom,, NU,

zny, and define 1,1 on
the domain dom,,,; x dom,, 1 by

Un(,Yy) for z,y € dom,,

o da(z,y) for z,y e U, .,

Cast (@) = 3 0 ea(ty) for o e dom,y o U, (3.212)
dalz, t),(t,y) for y € dom,,z € U,

Tn+1-"

In order to complete the induction step we have to show that ¢, is
well-defined and fulfils properties (3.209)-(3.211) with n replaced by
n + 1 and is the unique function to do so.

To see that 1,1 is well-defined we have to check that the cases in the
definition agree when they overlap.

1. If we have z,y € dom, nU,,,, all four cases overlap; however,

the alternative definitions all equal ¢4(x,y):

(3.211 (3.162)

Ualz,y) 2V pae,y) P2 dale,0)6alty)

3.211) [ ¥n(z,t)Pn(t,y)
- {mu,tm(t,y). (3.213)
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2. Furthermore, if we have z € dom,,, y € dom,, n"U,, ,, cases one

and three overlap. Here both alternatives are equal to ¥, (x,y),
since x,y € dom,, and we obtain:

(2, )t )

(3. 210 3211

wn(%y) l/)n(f t)¢A<t y) (3'214>

3. Additionally, if y € dom,,, x € dom,, "U,,,,, cases one and four

overlap. Here they are equal to ¢, (z,y), since z,y € dom, a
quick calculation yields:

(e, )t )

(3.210) (3.211)

Un(z,y) " oale n(ty). (3.215)

4. Moreover, if we have y € U, ,,, * € dom, nU,,,, cases two

and three overlap. Here both candidate definitions are equal to

da(x,y), since z,t € U, ,, we arrive at:

(3.162) (3.211)

da(z,y) " Gaz,0)da(t, y) ", )alt,y). (3.216)

5. Also, if we have x € Uy, ., y € dom,, nU,, ,, cases two and four
overlap. In this case both alternatives are equal to ¢a(z,y),

since y,t € U,, ., we get:

(3.162) (3:211)

pa(z,y) ¢A(5€ t)palt,y) ¢A(37 )t y). (3.217)

We proceed to show the induction claim, starting with (3.209), . ,. By
the induction hypothesis we know that ¢, (z,y) as well as ¢p4(x,y) are
lifts of Syay4 for any (x,y) in their domain of definition. Therefore,
we have for z,y € dom,, UU,, .,

Un(z,y) for x,y € dom,,,
o QSA(:Ea y) for z,Y € Uccn+17
Vartl®9) = (@ )dalty) for zedomyye Uy, D)
da(z, t),(t,y) foryedom,,zel,,,,,
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where each of the lines is a lift of S;4 4,4 Whenever the expression is
defined.

Equation (3.210),,, we will again show in a case by case manner
depending on the s, k and [:

1. s,k,0 € dom,: (3.210)
hypothesis;

ni1 follows directly from the induction

2. s,k edom, and [l € U,

1/)n+1(3»k)¢n+1(k 1) = (s, k)bn(k, t)palt, 1)
20 (5, 0048, 1) = Yasa(s,1), (3218
3. 5,1 e dom, and ke U,,,,:
wnms k>wn+1<k, 1) = (s, tm(t k)G a(t, K)u(t, 1)
CILEID s (1) 2 Gu(s,0) = i (s.D),
4. sedom, and k,l € U,,,,:
Vny1 (8, K) i1 (K1) = (s, t)dalt, k)pa(k, 1)
B2 (5, )0a(t 1) = (s, 1),
5. k,ledom, and s€ U,,,,:
Uni1(8, k) Uni1(B, 1) = da(s, t)n(t, k)n(k, 1)
B2 (5, 0)u(t,1) = Vi (5.1),
6. ke dom, and s,l € U,,,,:

wn+1(57 k)wnJrl(ka l) =

(bA(S? t)wn(tv k>wn<k7 t)(bA(ta l)
C20 o a(s (1, 1)da(t, 1)

(3.211), (3.163) (s, )balt )
L 0as 1) = Ynia(s,1),

(3. 162
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7. l e dom,, and s,k € U.

Une1(s, k) ni1 (k1) = dals, k)palk, t)n(t, 1)
@ 162 ¢A( )wn(ta l) = ,lvbn-&-l(S? l)a

8. and if s,k,l e U,:
wnH(S,k’)wnH(k ) =¢a(s, k)pa(k,l)
2 G a(5,1) = a5, 1),

To see (3.211),,,, i.e. that 9,1 coincides with ¢4 where both func-

tions are defined pick x,y € dom,; such that (rA,yA) € domS).
Recall the definition of v,

Un(z,y) for x,y € dom,,,
o QSA(:Ea y) for z,Y € Uccn+17
Vartl®9) =y (@ )pa(ty) for zedomyye Uy, D)
da(z, t),(t,y) foryedom,,zel,,,,.

Therefore, if x, y € dom,, we may use the induction hypothesis directly
and if z,y € U,,,, we also arrived at the claim we want to prove.
Excluding these cases, we are left with rows number three and four of
this definition with the restriction

3. x e dom,\ U,,,,,y € U,,,,\ dom, or

4. y e dom,\ Uy, ,,,x €U, ,\ dom,,

n+17

respectively. Because ¢ satisfies t € dom,, "U,,, ., we have in both cases
t € Ty. By using property 4 of lemma 48 we infer from (xA,yA) €
dom S that in both cases (xA,tA), (tA,yA) € dom S also holds. Hence,

we may apply the induction hypothesis (3.211), .
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It remains to show uniqueness. So let zﬁnﬂ be defined on dom,, , ;xdom,, 1

fulfil

V(t,s) € dom,, 1 x dom,,1 : QZ(t, s) is a lift of Sia 54, (3.2091;)

Vs, k,leR:a(k,s)(s, 1) = ¥k, 1), (3.210;)

V(x,y) € dom,,; : (zA,yA) € dom S = ) (x,y) = palx,y). (3.211;)
Now pick z,y € dom,,,;. We proceed in a case by case manner

1. If 2,y € dom, holds, then ¥1(2,y) = ns1(z,y) follows di-
rectly from the induction hypothesis.

2. Similarly, if z,y € Uy, ,, holds, we have

U1 (2,y) = Palz,y) = Ynir (2, y). (3.219)
3. Additionally, if x € dom,,,y € U,, ., holds, then
(3.212
Vi1 (2, y) )¢n(x )oalt,y) (3.220)
tedom,, mUzn 1 (3.2105) ~
’ wﬂJrl(x t>¢n+l<t y) =" %H(%y) (3'221>

is satisfied.

4. Conversely, if y € dom,,,z € U,

2n.1 holds, we may use the same
calculation to obtain

(3.212)

%H(%Z/) ¢A(x t)l/}n(t y) (3‘222)

tedom,, mUzn_H (3.210,7)

¢n+1(flf t)wnJrl(t y) = v 7wEVLJrl('x73/)' (3223)

Now we have established a unique extension ), of ¢4 fulfilling prop-
erties (3.209)-(3.211).
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We know that for each n € N the function 1,1 : dom? ; — U(F)
is an extension of ¢, : dom> — U(F). Furthermore, the sets dom,,
cover R according to equation (3.207). Consequently, there is a unique
common extension, by small abuse of notation again called ¢, : R? —
U(F), of all ¢,,. This function fulfils the claim (3.202)-(3.205), because
any t,[, s € R are contained in some dom,,.

O
Lemma 57 enables us to define a global lift.
Definition 58 (global lift). For any A €V we define
Soa = d4(0,1). (3.224)

Using lemma 57 we are now in a position to prove theorem 55.

proof of theorem 55. The operator S fulfils the claimed differential
equation (3.160) due to the global multiplication property (3.203) and
the differential equation (3.205). Its uniqueness is inherited from the
uniqueness of ¢4 for A € V from lemma 57. [

Definition 59 (relative phase). Let (A, B) € dom S, we define z(A, B)e
St by
2(A,B) := B (3.225)
So,454,B
Please note that for such A, B the lift Sa p is well-defined. This means
that the product in the denominator is a lift of So.p and according to
definition 58 the ratio is well-defined.

Remark 60. The function z defined here is an extension of the func-
tion z appearing locally in the proof of lemma 56, cf. formula (3.165).
Please note that z is smooth when restricted to W? n dom S for any
finite dimensional subspace W <V, since S is smooth as a solution to
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a differential equation with smooth initial conditions. The parameter
S appearing in the defining differential equation of,SAY 1s smooth since it
18 directly constructed in terms of the one-particle scattering operator
which s smooth due to section 4.1 in the appendix.

Lemma 61 (properties of the relative phase). For all
(A, F),(F,G), (G, A) e dom S, as well as or all H, K € V, we have

2(AF) = z(F, A)~! (3.226)
2(F,A)z(A,G)2(G, F) = Tpaq (3.227)
Oudxnz(A+H, A+ K) =ca(H, K). (3.228)

Proof. Pick A, F,G €V as in the lemma. We start off by analysing

A - 3.225 ~ — —

SO,FSF,G ( = ) Z(A, F)SO7ASA7FSF’G (3.229)
3.86 _ A —
0 (A, F)T Y050 48 (3.230)

Exchanging A and F' in this equation yields
So.aSac = 2(F, AT}y 5 rSra. (3.231)
This is equivalent to
SO,FgF,G = z(F, A)AFF,A,GS(),A§A7G ) (3.232)

Comparing the last equation with formula (3.230) and taking the per-
mutation properties (3.82) of I' into account this implies that

2(A,F) = z(F, A)™" (3.233)

holds true. Equation (3.230) solved for Sy 1S4 also gives us

(3.225

S’QG = ) Z(A, G)SO,AgA,G (3234)
U239 (A, G)2(A, F) 'Ta r.cSorSrc. (3.235)
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The latter equation compared with

A (3.225

SO,G = : Z(F, G)SO,FEF,G7 (3.236)
yields a direct connection between I' and z:

2(A,G)
2(A, F)

FA,F,G = Z(F, G), (3237)

which we rewrite using the antisymmetry (3.226) of z as
Lare = 2(F,G)z(A, F)z(G, A). (3.238)

Finally, in this equation, we substitute F' = A + &1 H as well as G =
A+ e K, where 1,5 is small enough so that z and I' are still well-
defined. Then we take the second logarithmic derivative to find

551352 In Z(A +eH, A+ 62K) = 551552 In FA,A+51H,A+52K
G0 L (H K). (3.239)

]

So we find that c4 is the second mixed logarithmic derivative of z. In
the following we will characterize z more thoroughly by ¢ and c¢*.

Definition 62 (p-forms of four potentials, phase integral). Forpe N,
we introduce the set QP of p-forms to consist of all mapsw : VxVP — C
such that w is linear and antisymmetric in its p last arguments and
smooth in its first argument when restricted to any finite dimensional
subspace of V.

Additionally, we define the 1-form x € Q' by

Xa(B) :=0dplnz(A, A+ B) (3.240)
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for all A, B € V. Furthermore, for p € N and any differential form
w e QP, we define its exterior derivative, dw € QP by

1

(dw)a(By, ..., Bpi1) = > (=1)""'05 warp, (Bi,- .., B, ... Bys1),

1

bS]
F

b
Il

(3.241)

for A,By,...,Bp1 € V, where the notation E\k denotes that By 1s
dropped as an argument.

Lemma 63 (connection between ¢ and the relative phase). The dif-
ferential form x fulfils

(dx)a(F,G) = 2ca(F,G) (3.242)
for all A, F,G e V.
Proof. Pick A, F,G €V, we calculate
(dx)a(F,G) = 0pdglnz(A+ F,A+ F + Q)

— O0p0cInz(A+ G, A+ F +G) (3.243)

= 0pOc(Inz(A, A+ F+G)+Inz(A+ F,A+Q)) (3.244)
—0p0c(Inz(A, A+ F+G)+Inz(A+G,A+ F)) (3.245)
B2 90rdcInz(A+ F,A+G) P2 2c,(F, Q). (3.246)
O

Now since dc = 0, we might use Poincaré’s lemma as a method inde-
pendent of z to construct a differential form w such that dw = c.

Lemma 64 (Poincaré). Let w € QP for p € N be closed, i.e. dw = 0.

Then w s also exact, more precisely we have

1
w= df Ly frfwdt, (3.247)
0
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where X, 1; fort € R and f are given by

X RxV—->RxV, (3.248)
(t,B) — (1,0) (3.249)
VteR:y:V >RxV, (3.250)
B — (t, B) (3.251)
fiRx V=V, (3.252)
(t,B) — tB (3.253)
iy QP — QP (3.254)
w— (A4 Y,....Y, 1) mwa(W,Y3,....Y,1))  (3.255)

For a proof see section 4.2 of the appendix. This lemma gives the next
definition meaning.

Definition 65 (antiderivative of a closed p form). For a closed exterior
form w € QP we define the form T|w]

1
Q! 5 ] = f iy frudt. (3.256)
0

For A, By,...,B,_1 €V it takes the form

1
H[w]A(Bl,...,Bp_l)zf P (A By, By 1)dt. (3.257)

0
By lemma 64 we know dll|w] = w if dw = 0.

Now we found two one forms each produces ¢ when the exterior deriva-
tive is taken. The next lemma informs us about their relationship.

Lemma 66 (inversion of lemma 63). The following equality holds

x = 2Mc|. (3.258)
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Proof. By definition 65 of IT and lemma 63 we have d(y — 2I1¢c]) = 0.
Hence, by the Poincaré lemma 64, we know that there is v : V — R
such that

dv = x — 2I][c] (3.259)

holds. Using the definition 59 of z, the parallel transport equation (3.160)
translates into the following ODE for z:

Oplnz(0,B) =0, 0d:Inz(A,(14+¢)A)|c=o=0 (3.260)
for all A, B € V. Therefore, we have
Xo(B) =0 =1clo(B), xa(A)=0=1cla(A), (3.261)

which implies
az—:UeA’s:O = 07 aEUA+€A’€:O = 0. (3262)

In conclusion, v is constant. O

From this point on we will assume the existence of a function ¢t ful-

filling (3.68), (3.69) and (3.70). Recall property (3.69):
VA, F,G, H : dyct, 4 (F,G) = dact, o(F, H). (3.263)

For a fixed F' € V), this condition can be read as d(ct(F,-)) =0. As a
consequence we can apply Poincaré’s lemma 64 to define a one form.

Definition 67 (integral of the causal splitting). For any A, F €V,
we define
Ba(F) := 2" (F, )] a. (3.264)

Lemma 68 (relation between the integral of the causal splitting and
the phase integral). The following two equations hold:

B = —2c, (3.265)
d(B+x) = 0. (3.266)
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Proof. We start with the exterior derivative of 5. Pick A, F,G € V:

dBa(F,G) = 0pfarr(G) — dgfa+c(F) (3.267)
= d(2Me (G, ]) (1) = d(2er (F,)]) (6) (3.268)
= 2¢5(G, F) — 265 (F,G) Y —2c,(F, ). (3.269)

This proves the first equality. The second equality follows directly by
dx = 2c. O]

Definition 69 (corrected lift). Since 5 + x is closed, we may use
lemma 64 again to define the phase

a =105+ x]. (3.270)

Furthermore, for all A, B € V we define the corrected second quantized
scattering operator

Sou = €45 4, (3.271)
San =Sy 1505 (3.272)
Using this definition one immediately gets:

Corollary 70 (group structure of the corrected lift). We have
SA,BSBC = SA,C fO’f’ all A,B,C eV.

Theorem 71 (causality of the corrected lift). The corrected second

quantized scattering operator fulfils the following causality condition
for all A, F,G €V such that F < G:

Sansr = Sarcarcir- (3.273)

Proof. Let A, F,G € V such that FF < G. For the first quantized
scattering operator we have

Sarcarc+r = Saa+r, (3.274)
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which we proved in remark 52. So that by definition of S we obtain

SarcArGrF = SAArF- (3.275)
Therefore, any lift this equality is true up to a phase, meaning that

f(A F,G) 1= 2ALGALGHE (3.276)

Sa,A+F

is well-defined. We see immediately
f(A0,G) =1= f(A, F,0). (3.277)

Pick Fi, F5 < G1,G5. We abbreviate F' = F; + I3, G = G1 + G5 and
we calculate

S
f(A,F, G) = M (3278)
SAA+F
_ SA44GAF+G SA+G1ALG+F (3.279)

Sataarai+F  Saarr

SA+GA+C+P S A+GHFLA+F+G  SA+G1 A+GLAF (3.250)

SA+G1,A+F1+G1SA+G1+F1,A+G1+F SA,A+F

_ §A+G,A+G+F1 §A+G+F1,A+F+G f(A, G1,F1 + F2) (3281)
SA+G1,A+F1+G1 SA+G1+F1,A+G1+F
= f(A+ G, F1,Gy) f(A+ G+ F1, F5,Go) f(A, Gy, F1 + F5).
(3.282)

Taking the mixed logarithmic derivative we find:

6p25(;2 In f(A, Fi+ F5, Gy + Gg) = 6F2602 In f(A + Fy + Gl, s, GQ)
(3.283)
Next we pick Fy, = a1 F; and Gy = a» Gy for aq, s € RT small enough
sothat (A+ (14+a1)Fi +(1+ )G, A+ Fi+G1),(A+(1+aq)Fy +
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(I+a)Gr, A+ Fy+ (1 +a2)G), (A+ (1T +a) Py + (1 +ag)Gr, A+
(1+ 1) F1 + Gy) € dom S holds. We abbreviate A’ = A+ G + Fi, use
the definition of z (3.225) and compute

f(A Fy, Gy)

(3.271)
= exp(—Qarryc, + Qaye, + Qayr — an)

A1 N
y SO,A/+G2 SO,A’+G2+F2

1 A (3.284)
SO7A/SO,A/+F2
(3.225)
= eXp(—aA/+F2+G2 + dA Gy + OA+Fy — OZA/)
2(A'+ Gy, A+ Gy + ) §A’+G2,A’+G2+FQ (3.285)
Z(A’)A’-{-FQ) §A’,A’+Fg .
Fy<Go
=" exp(—Qartmyc, + Qe + Qaryp — Q)
2(A'+ Gy, A+ Gy + Fy) (3.256)

Z(A/, A+ Fg)

Most of the factors do not depend on both F, and G5, so taking the
mixed logarithmic derivative things simplify:

(?G20p2 ln f(A,, FQ, G2> =

aGQaFQ(_aA’-i-FQ-‘rGQ + In Z(A/ + G2’ A/ + G2 + Fg)) (3287)
3.270), (3.240
( ):( ) an(_/BA,+GQ(F2) - XA’+G2 (F2) + XA/+G2(F2)) (3288>
(3.264) —2¢}(Fy, G) BRIy (3:289)

So by (3.283) we also have

&FQaGQ In f(A, F1 + FQ, G1 + GQ) =0 (3290)
= &alﬁaz In f(A, Fl(l + Oél), G1<1 + 062)). (3291)
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Using this then we can integrate and obtain

0 0
0= J dOzl f d&g(}alao@ In f(A, Fl(]. + Oél), Gl(l + 052)) (3292)
-1 -1

=In f(A, Fl, Gl) —1In f(A, 0, Gl) —1In f(A, Fl, 0) (3293)
+1n f(A,0,0)
B2 1 £(A, FLL G, (3.294)

Recalling equation (3.276), the definition of f, this ends our proof. [

Next, we investigate the current associated with S.

Theorem 72 (evaluation of the current of the corrected lift). For
general A, F' €V we have

Ja(F) = —=iBa(F). (3.295)
So in particular for G €V
0cis . o(F) = —2ick(F, Q). (3.296)
holds.
Proof. Pick A, F €V as in the theorem. We calculate
i0r In <Q §A,A+FQ> (3.297)
(3.271

21 o (—aA+F —a4+In <Q S(ggéo,A+FQ>) (3.298)
(3.225

29 i0p (—ansr + M 2(A, A+ F) + Q54 4,0Q))  (3.299)
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The last summand vanishes, as can be seen by the following calculation

0rn (€, Sy a0 r Q) (3.300)

388) ;o In det [P~ Sp0r P (3.301)

= Sorndet((PSaaerP) P Sa 0 PY) (3.302)

= %6F %eit(PisA+F,AP78A,A+FP7) (3.303)

— P SairaP SaarPT)  (3304)

— (P Saasr P+ 0p P SapaPT) = 0 (3.305)

where we made use of (3.143). Theorem 90 serves to justify the nec-
essary regularity. So we are left with

jA(F) = i@p(—&A+F+an(A,A+F)) (3306)
= i(—=Ba(F) = xa(F) + xa(F)) = —iBa(F). (3.307)

Finally, by taking the derivative with respect to G € V and using the
definition of S we find

6ng+G(F) = —22'04A_(F, G) (3308)

]

proof of theorem 51. The operator S constructed in this subsection
fulfils properties (3.72) and (3.73) by corollary 70 and theorem 71.
The characterization of the current (3.74) follows form theorem 72
and the properties of ¢*, (3.68) to (3.70). ]
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3.3 Analyticity of the Scattering Operator

In this section we will present a relatively simple formula for the second
quantized scattering operator in terms of the one-particle scattering
operator. This formula is valid for small external fields, where “small”
will be made precise later. The formula has implications for the ana-
lyticity of the second quantized scattering operator for general external
fields, which we will also present. Also, this section is concerned with
the scattering regime. The notation introduced in the last sections
still applies. The shorthand defined next will turn out to be useful.
Let B : H — H be linear and bounded, then we introduce

B, ; = P*BP*, (3.309)

where #, # € {+, —} holds. Recall the definition of Fock space in this
setting

e}
F=@ H)"eH)". (3.310)
m,p=0
We denote the sectors of Fock space of fixed particle numbers by F,,, ,,.
A fixed element of Fy of norm 1 will be denoted by (2.
The annihilation operator a acts on an arbitrary sector of Fock space
Fmp, for any m, p € Ny with the operator type

aH X Fup— Fr1p® Fmpitls (3.311)

where the second argument is usually not included in the parenthesis,
as is common practice for bounded operators on a Hilbert space. We
start out by defining a on elements of {/\;", o1 @ A’_, ¢ | Ve : . €
H*, ¢. € H™} which spans a dense subset of F, ,, then one continues
this operator uniquely by linearity and finally by the bounded linear
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extension theorem to all of F,,;, and then again by linearity to all of
H ® Fnp. On the dense set we define a(¢) by

a(9) /m\ o ® /\ e (3.312)

l c=1

~ M- 1+k<P+¢,¢k>/\¢z®/\¢c+/\s@z®P ¢A/\¢c

k=1
l#k
(3.313)

where (, ) denotes that the scalar product of H. The first summand
on the right-hand side is taken to vanish for m = 0. The operator
norm of a is given by

la(@)] = [l (3.314)

The operators a and its adjoint a* fulfil the canonical anticommutation
relations:

V9,9 < {a(¢), a*(¥)} = a(@)a”(¥) + a*(P)a(¢) = (o, ¢)  (3.315)
Vo, ¢ {a*(9), 0 (¥)} = {a(9),a(¢)} = 0. (3.316)

Now for the construction of the second quantized S-matrix please re-
call the lift condition

VoeH: Shoa(d) =a (SA¢) oS4, (lift condition)

which is to be satisfied by any lift S of the one-particle scattering
matrix S4.

In the appendix we carry out an explicit, albeit heuristic, construction
of a power series expression of a lift of S4 in section 4.3 that culminates
in the formula which will be directly verified in this section.

In order to state this formula, we have to introduce some more nota-
tion.
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3.3.1 Differential second quantization

Let B € B(H) be skew adjoint, i.e. iB is self adjoint such that B, _
is a Hilbert-Schmidt operator. We would like to construct a version
dI'(B) of B that acts on Fock space and also is skew adjoint. The
proof of the skew adjointness of dI'(B) is a bit lengthy, as is typical
of such proofs. Even though one might speed it up a little by using
the tools available e.g. in [20] the author is of the opinion that it is
instructive to give a direct proof. In this subsection we will associate
with every set C' © N such that |C'| < oo the sequence (Cy)1<k<|c| such
that

Vi<k<|C|:CreC (3.317)
V1<k<l<|C’|:Ok<Cl (3318)
hold. This notation is confined to within the proofs of this subsection.

The strategy of this subsection is to construct an operator in two steps
that is essentially self adjoint on the dense domain of the next

Definition 73 (Fock space of finitely many particles). We introduce

0
Fi= O Fop (3.319)

m,p=0
where 5 refers to the algebraic direct sum. Furthermore, we define
FcF (3.320)
such that for each element o € F° there is a basis an ONB (@r)ren 0of
H*t and an ONB (@_j)ren of H™ such that

P

o€ span{ Ha*(gbLk)Ha(gé_cc)Q (3.321)

k=1 c=1

’ m,pe N7 (Lk)k7 (Cc>c = Na ’L’ =m, ’C’ :p} (3322)
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holds. Here and elsewhere, the product is defined inductively:

M M-1
[1H= (H fk:) S, (3.323)
k=1 k=1
for all M € N and factors fy, i.e. factors increase in index from left
to right.

Constructing dI" piecewise turns out to be advantageous.

Definition 74. We define the following operators of type F° — F

dT(Byy) = Y, a*(Bystpn)alen) (3.324)
dT(B__) == = Y a(p_n)a*(B__p_y) (3.325)
dD(B_y) := Y a*(B_ypn)a(en) (3.326)

where the sum converges in the strong operator topology and (on)n,
(p_n)n are arbitrary ONBs of H* and H~.

Lemma 75. The operatorsdl' (B, ),dI'(B__) and dT'(B_, ) restricted
to ‘ng,p have the following type

AC(B )z, : Fop = Fop (3.327)
A0(B- )|z, = Fpp = Fp (3.328)
AC(B- )7, : Fop = Fm-1p1 (3.329)
and fulfil the following bounds for all m,p
AT(B, )l | < (m +4)| By | (3.330)
|dI'(B- )pran <(p+4)[B-| (3.331)
[A(B_ )z, | < 21B- 41, (3.332)
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Moreover, the operator dF(B,Jr)\;gw also assumes the following form

dD(B_y)|7,, ==, a*(o-r)a(Bi—p_i)| 7., (3.333)

keN

The equality of operators can then be continued to all of F.

Proof. Pick a € Fﬁw for m,p € Ny, o can be expressed in terms of
some ONB (@k)kzeN of H+ and (@—k)keN of H~

m p
a= > apc|]a*(@n) ] [al@-c). (3.334)
L,CcN =1 c=1
|L|=m,|C|=p

In this expansion only finitely many coefficients «.. are non-zero. Our
operators all map the vacuum onto the zero vector, so commuting
them through the products of creation and annihilation operators in
the expansion of @ we can make the action of them more explicit:

m b—1
dl'(B+y)a = Z OéL,CZ a*(Pr,) Z a* (B +¢n){¢n; PL,)
L,CcN b=1Il=1 neN
|L|=m,|C|=p
< ] e*@)] Jalg-c)0 (3.335)
l=b+1 c=1
m b—1 m D
= > ave ) | et @r)a*(Bevdr)[ | o (@) ] Ja(@-c.)0
L,CcN b=11=1 l=b+1 c=1

(3.336)

We notice, that dI'(B4 4 )a € Fp,, holds. What is left to show for the
first operator is therefore its norm. For estimating this we see that
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B, . in the last line can be replaced by

Bp, = [ 1= 160,X¢n| | Biv, (3.337)
=1
l#b

due to the antisymmetry of fermions. Expanding

[T (B, 1)l = <dF(B++)047dF<B++) )

m

Z aLCaL’C/ Z na* SOLZ beSOLb)
/. .Cc’'eN b,b' =
=L Zm = Cl=p
m P b—1
H a*(WLl)Ha(@cc)Q7Ha*(@;) a* (B &r1)
l=b+1 c=1 =1
m p
[ e (@) [ [al@-c)0 (3.338)
I=b+1 c=1

we see that in fact C' and C” need to agree, because we can just com-
mute the corresponding annihilation operators from one end of the
scalar product to the other. Furthermore, only a single wave function
on each side of the scalar product is modified, this implies that in order
for the scalar product not to vanish |L n L'| = m — 2 has to hold. For
the case L # L' we split up the sum over sets into the sum over a new
L such that |L| = m — 2 holds and an additional sum over four indices
ny < no,p; < pa. The double sum over b,0" only has contributions
where b = n; or b = ny and V' = p; or b/ = py are selected. Because
each factor in the first half is orthogonal to each other factor in this
half and analogously for the second half, this will result in a sum of
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eight terms. In the case L' = L the full sum contributes, yielding
HdF(B++>04H2 =

_ I ny| |P1
- Z Z ALu{ng,ne},CELU{p1,p2},C [n2] [pQ]

L,CcN  nqi<ng,py<pgeN\L

|L||C‘ p {ni,n2}#{p1,p2}

(<90n17 <Pp1><BLU{m n2} % s Béu{pl,p2}¢p2> (3.339)

—{ny, BE PP G, Bl MY, B (3.340)

+ (BLm ”Q}som,cpm><90n27BL°{p1 P3G (3.341)
—(Bptmmad g, BIVPIPY G, M By, By (3.342)
+(Pny, BRI G ><BLU{"1 "2 By B (3.343)
- <@n1795p2><BLU{"1 "G, BEOPRlG (3.344)

+ (Bt g, BECPIP G MG, Bpay (3.345)
( )

(BRI G NG, B ’m}@py)

+ ) Jowel Z H (Pr,) a*(BL,¢r,) (3.347)

L,CcN b=
|L|=m,|C|=p
1_[ a* Qle Q Ha Qle a* Lb/SOLb H a* ¢Lz))Q>
1=b+1 I=b'+1
where
[Zl] = (_1)|{leL|l<n1}\+|{l€L|l<n2}| (3348)
2

keeps track of the number of anti commutations. This is non-standard
notation, but it is meant to keep the notation as compact as possible
and its use is contained to this subsection.
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Due to the antisymmetry each summand containing a factor without
an occurrence of the B operator are only non-zero if ny = p; or ny = ps.
Each factor containing exactly one occurrence of B obtains a similar
restriction. So we can split the block of terms into one corresponding
to the two cases just mentioned.

HdF(B++)04||2 =

= 2 Z aLu{?’u na},COLU{ 3,C b
P1,p2 Do

L,CcN ny<ng,p; <pgeN\L
‘C| =P ém,m}#{phm}

|L]
% (_ <¢nl’BLu{P17p2} = ><BLu{n1,n2}<)5n27 §0p1>1n1;ép1 (3349)

(Bt g G WK By, BRI G 0,
+ <90n17 BLU{pl’pQ} D ><BLU{n1’n2}S0n27 ¢p2>1n1¢P2

<BLu{n1 nz}@nn @p2><90n27 BLU{pl p2}90p1>1"2¢p2>

i —— n u{n} ~ v ~
+Z ZaLu{n},CaLu{p},C [p] (B }gon,BpL Wey  (3.350)

L,CcN n#peN\L
|Cl=p

|L|=m—1
+ D owel Z Ha ¢r,) a*(BL,ér,) (3.351)
L,CcN b=
|L|=m,|C|=p
m -1 m
H a*(¢L1)97na*(¢Lz) a*<BIL,b/<)5Lb) H CL*(@LZ))Q>7
I=b+1 1=1 1=t/ +1

where we also summarized the terms of the second block. The restric-
tions n; < ny and p; < po have the effect that the negative terms sum
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up to just one term without restrictions, while the positive terms add
up to two such terms.

For the term (3.350) we add and subtract the term where n = p. The
enlarged sum can then be reformulated

_ uind ~ Lu{n'} ~ n
> 2 ooty oBy M Ga, By G ln’]
L,CcN n,n/eN\L

|Ll=m—1

ICl=p

TS et

L,CcN TLGN\L
|L|=m—1,|C|=p

2

2

N _|n
-y (1 -y \sol><sol\) BeeYowmed ||| G352
L,CcN leL neN\L
|L|=m—1
ICl=p
Now the operator product inside the norm has operator norm | B, |
and so we can estimate the whole object by

(3.352) < [laf* B ]*. (3.353)

We need to estimate the term we added to complete the norm square
in (3.350), this is done as follows

D> lesomnePIBr M G, P

L,CcN nEN\L
\Ll=m_LjC|2p

< IBesPlacel® = By . (3.354)
L,CcN
|L|=m,|C|=p
For (3.349) and the following 3 lines we notice that we may replace
all one-particle operators with B, ,, since the projector acts as the
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identity in these cases. Subsequently, the two terms of equal sign are
identical except for the extra condition on the sum, resulting in

(3.349) =
- n P
2 Z ALu{ng,n2},CYLU{p1,p2},C [n;] lp;] (3355)

L,CcN nj<ng,p; <pgeN\L

ICl=p {n1,n2}#{p1,
\L|:m—é{ 1,n2}#{p1,p2}

X <<B++¢n1 ) @pl ><¢n2a B++¢p2><1n1¢172 + 1”2?5101) (3356>

(G Basp X Bos B ) (L + 1m¢p2>). (3.357)

Next, we are going to repeatedly add and subtract terms, such that we
may factorize the n and the p sums. In order to do so we impose the
condition {ni,ns} # {p1,p2} in the sum by the factor 1 — &, p, Oy py-
Similarly, we rewrite the other conditions in the following way

1”17&172 + 1”2#171 = 2 - 6n1,p2 - 5n2,p17 (3358)
1”1#101 + 1n2¢p2 =2- 5n1,p1 - 6n2,p2- (3359)

These are to be multiplied by 1 — 65, p, 0, p, resulting in the two ex-
pressions

2 = On1ps = Onapr = 200, p1Ons o (3.360)
2 - 6”17}71 - 6n2,p27 (3361)

where the upper expression yields the restrictions on the sum of over
(Bi4@nys Ppy XPny> Bi+Pp, ) and the lower expression analogously for
(Pnys Byt Ppy X BisPnys Ppy - For the term without further restrictions
we may add the sum of the terms (3.356) and (3.357), the rest is
treated separately.
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The terms are all estimated after rewriting the scalar products as a
single sum of two scalar products in H* @ H™*.
2:

S n||p
2) ) Wi COLU(ppahC [n;] [pj (3.362)

L,CcN nj<ngeN\L
\CI P 5)1<p2€N\L

|L|l=m—
X <<B++@n1 ) @p1><§5n27 B++¢p2> - <95n1, B++§5p2><B++95n27 @p1>)
(3.363)

_22<

L,CcN nj<ngeN\L

l ] aLU{n1,n2},CB++95m & Sbma (3364)

Z lzj ALU{py,p2},CPp1 @ B++95p2> (3.365)

p1<p2eN\L

|: :| aLU{n17n2}7c¢n1 ® B++¢n27 (3366)

_22<

L,CcN ‘ng <TL2€N\L

Z Lg;] aLU{P17p2}7CB++95’P2 ® ¢P1> (3367)

p1<p2eN\

< 4B, |?al? (3.368)

5”1 sP1 :

- n
Z Z ALu{ng,n2},CYLU{p1,p2},C |:7’L;:| [g;] 5n1,p1 (3369)

L,CcN njy<ngeN\L
ICl=p p1<p2eN\L
Li=m-5 \

X <S5n1; B++95p2><B++95n27 ¢p1> (3-370)
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S 0] [0
=2, L G o0Luts).C [n] [p] (3.371)

L,CcN [<n,peN\L
|Cl=p
|L|=m—2

X L@, B+ @pX B+ 8ns P1) (3.372)
2

=> > <s5z,B++ > aLu{l,p},Cl?)]¢> (3.373)

L,CcN [eN\L l<peN\L
|Cl=p
|L|=m—2

<[Bi|? Z 3 lowopmel < IBosPlal? (3.374)

L,CcN  [<peN\L

—6n1,p2 - 5n2,p1 :

_Z 2 QLU{n n2},COLU{p p2}0[ ] l j (5n1,P2 + §n2,p1>

L,CcN njy<ngeN\L
\CI =p §1<p26N\L
|L|=m—

(3.375)
X (B14@nys Py X Prgs Bt Ppa) (3.376)

_ 010
= _2 ZaLu{l,n},cOéLu{l,p},c ln] lp] (3.377)

L,CcN n,p,leN\L
|Cl=p

|L|=m—2
< (Lpetcn(Bs 50X Brs ) (3.378)
+ Lncicp(B1+@n, 21X @1, B++S5p>> (3.379)

== 2. (3.380)

L,0cN [eN\L
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[ <9++9012 QLo 090> < o [QEoting,0Pn; B++S5> (3.381)
peEN\L neN\L

p<l
<B++8012 QLU{lp}, c<P> < OéLu{z,n},O§5m B++95> ]
peN\L neN\L
>

(3.382)
< 2B, | af? (3.383)

Ons,p, ¢ completely analogous to 9, ,, one arrives at
< 1By Pl (3.384)

6711 sP1 5712 sP2 :

I ni| | P1
- 22 Z ALu{n1,n2},CYLu{p1,p2},C [n2] [p2] On1,p1Onapy (3.385)

L,CcN nj<ngeN\L
IC\ P §1<p2€N\L

|L|=m—
X <B++90n17 (pp1><90n27 B++§5p2> (3386)
= =2 D lasompncl (Bt @n, $n)(@p Bii By (3.387)
L,CcN n<peN\L
|Cl=p
|L|=m—2
< 2|Bos P [e? (3.388)

So all together we have
(3.349) < 10| B4 || (3.389)

What remains is term (3.351), for this term there are two cases. If
b = V' then the scalar product is equal to (Bf, &y, Bf, ¢u). If b # Vf
the scalar product is, up to a sign, equal to (Bf, @y, 9o ){@y, BL, Pr)-
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However, both of these terms can be estimated by |B, |?. So all m?
summands of this sum contribute | By, [?. Overall this estimate yields

|dC(Byy)al* < (3.353) + (3.354) + (3.389) + |l *m?| B, |]?
= lal*(12 + m*)| B+ |*.

For convenience of notation the estimate can be weakened to
A0 (By+)al < (m + 4)| B+ ol (3.390)

A completely analogous argument works for dI'(B__). So lets move
on to dI'(B_,). Applying it to the same « € fg’p again we permute
all the operators to the right, where they annihilate the vacuum. The
remaining terms are

m

Yia*(Boign)alen) Y ave | [a*(@r) ] Jalg-c.)@
neN L,CcN =1
|L|=m,|C|=p

m p
= D aned, Y )T o, 01, X By Bosipn)
neN

L,CcN b=1d=1
|L|=m,|C|=p

c=1

m p

<] Ja* (@) ] Jal@-c)0
1%b czd

(3.391)

From here we can eliminate the sum over n, and reintroduce a sum
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over the ONB of H~ to arrive at the expression for dI'(B_.):

m p
= 2 aLvCZ Z(_l)m+b+d<B+—¢—C¢z’¢Lb>

L,CcN b=1d=1
|L|=m,|C|=p
m p
<[ Ja* (@) | [al@-co (3.392)

1%b zd

m P

Z Z Z Z <_1)m+b+d<¢—0d7 90—/6><B+—90—k7 @Lb>
b=1d=1 keN

ILI ICI =p

m /4
Ha or, Hagp o) (3.393)
cHd

l;éb

m p
= 2 (p—k)a(By_p_y) ZOéLCHG oL, HGSO )2 (3.394)
1

keN L,CcN = c=
|L|=m,|C|=p

For the estimate of the operator norm we continue with expression (3.392).
By counting the remaining creation and annihilation operators we im-
mediately see that dI'(B_;)a € F,,—1,-1. We take the norm squared
of the expression and notice that the scalar product is only not zero
in cases where |L\L'| < 1 and |C\C'| < 1. Furthermore, whenever
L = L’ holds, the two sums of 1 < b, b’ < m collapses to a single sum
over this range and analogously for C' = C’" and d,d’. In case L # L’
no sum over b or b’ remains for the same reason. Hence, we arrive at

[dAr(B_al* < >, > lewomncomllaromycoml  (3:395)

C,LcN nynygeN\L
[L| =m—=1 1, 1,e N\C
[Cl=p-1
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5711,712511712 Z Z |<B+—Q5—da S5b>|2 (3396)

beLu{ni}deCu{li}

+ (1 - 5N1,n2)6l1712 Z |<B+—95—d> ¢N1>||<95n27 B+—¢—d>| (3397>
deCu{l1}

+ 57%1,712(1 - 511,12) Z |<B+—¢7—l17 ¢b>||<¢7b’ B+—¢—l2>| (3398>

beLu{ni}
+ (1= 0y o) (1=01, 1) (B4 Py P [Py BoPy )l |- (3:399)

In the next step we split the sum into the four already indicated,
estimate the terms (1 —¢) < 1 and eliminate sums with the remaining
Kronecker deltas. For the first term, we subsequently enlarge the sum
over part of the Basis ¢ in the scalar product to the sum over all basis
elements, yielding

[AC(B_p)al® < o> >0 [KBs—@—c, @)l (3.400)
beN ceN
+ Z Z |OzLu{n1},C’||<B+—¢7—d7¢n1>| (3401>
C,LcN n1,n9eN\L
\L\‘;‘z;l deC
x ‘O‘LU{nz},CH<¢)nza Bi_¢_g)| (3.402)
+ >, D, lascopllorcoul (3.403)
C‘}‘L,CN l1,lg€N\C
Cl=p-1
x D VKB @1y, @I, By— Bl (3.404)
belL
+ Z 2 ‘aLu{ng},Cu{lg}‘|aLu{n1},Cu{l1}| (3405)
C,L=N nyn,eN\L
“L(;“::T]'::ll Ll e N\C

X ‘<B+*()57117¢n1>’|<¢n27B+*¢*l2>|' (34O6>



3.3. ANALYTICITY 179

Now we identify the sums over li,ly and ni,ns as scalar products
between factors of |«| and factors involving B, _ in tensor products
of /2(N) and apply the Cauchy-Schwarz inequality. Additionally, we

identify Y Deen [{(Bi—@—c, @p)|* = | B+—|7,- This results in

|dT(B-+)al* < |al|B-+]1, (3.407)

+ Z Z |O‘LU{n},C‘22 Z |<B+7957d795U>‘2 (3.408)
C.L=N neN\L deC ueN\L
\L\‘ﬂmpl

+ >0 D lancomld] D) KBe—@ouw, @)l (3.409)
(‘*L,‘L:N leN\C beL ueN\C

[Cl=p-1

+ >0 D lasomoon® Y KB g0, Gu)I (3.410)

(LLN neN\L uwe N\L
Ll =m—-11eN\C de N\C
[Cl=p—1
< 4alP|B_s 3. (3.411)

O

Corollary 76. The operators dI'(B__) and dI'(B4,) can be extended
by continuity on ]-"B%p to unbounded operators on all of F'. The oper-
ator dT'(B_y) can be continuously extended to all of F.

Lemma 77. The operator (dT'(B_.))" acts on elements of F° as

— Y a*(Be_p_n)a(p_n) = —dT(B,_). (3.412)

neN

So also dT'(B,_) : F* — F can be extended continuously to all of F.
Moreover, dT'(B_.) + dI'(B,_) is skew-adjoint.

Proof. Pick 3, a € F°. We use the form (3.333) to obtain
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(8,dT(B_)a) = 2 a(Bs_p_y)a >

neN

Y8 (ema(Beip Z<a (By o )alp)B,0)

neN neN

-(-% (Bt _n>5,a> (3.413)

So we see that d['(B,_) and dI'(B_,)* agree on F° which is dense.
So they are the same bounded and continuous operator on all of Fock
space. ]

Definition 78. We define the set

= {B: M O [linear, | B|+|B+—|r,+|B-+[r, € R, B*= —B}
(3.414)
and the operator

dD(B) := dT'(B.y) + dT(B,_) + dD(B_,) + d['(B__).  (3.415)

Furthermore, we endow B with the topology induced by the norm B —
|B + B+~ + [ B—+]1-

Lemma 79. The operator dU'(B) is skew symmetric and real linear
in its argument B € B. Moreover, for each m,p € N the functional
dI'()|7,  is bounded and hence continuous as a map from B to the set
of bounded linear operators of type F), , — F}, 1, 1@F, ;OF 11

Proof. Since the sum of skew symmetric operators is skew symmetric,
it suffices to show skew symmetry of dI'(B; ) and dI'(B__). More-
over, since both of these operators are extended versions of operators
of type F° — F it suffices to show skew symmetry on this domain.
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We will only do the calculation for dI'(B, 1), the other calculation is
analogous. Pick 3,a € F° and basis ¢, ¢’ such that 3, « are express-
ible with finite sums over elements of the generating sets with respect
to their respective basis. We calculate

|L'] IC']
(B,dl(Biy)a) = Z Br C'L.C H(l oL H(l $—cr)
L,I/,C,C'eN

|L\ IC]

D" (Beron)alea) | [a* (@) | [al¢le,)®
neN =1 c=1
|| IC”]

= Z B c/aLcZ H (@r) H (P-cr)2,
L,L',C,C'cN neN c=1
|L\ €]

a*(Birpn)alen) | Ja*(¢h,) | [ (¢ o,)0
=1 c=1
|L'] IC']

= > Bueane Y, { a*(pa)a(Biien) Ha or) | [a(@-c),
L,I/,C,C'"eN neN =1

|L| |C]
Ha*<¢;l>na<¢:cc>sz>.

=1 c=1

In the next step we perform the standard anticommutations to move
the operator B, , from the annihilation operator to the creation op-
erator:

IC]
QOLL H ~7CC)Q

c=1
(3.416)

Z Br.c Z B++<Pn

L,CcN neN

H:h
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IL| -1

2 Bred, | [a(@r)(-1)a* (Bsrr,)

LOcN  b=11=1

(3.417)
|L| €]
H a* (b1, HCL ¢-c. )N
I=b+1
(3.418)
|L| €]
Y, Bre(=1) ) a*(Bispn)alpn) | [a*(pr) | [a(p-c)®
L,CcN keN 1=1 =1
(3.419)
== Z (B++pr)alen)B,
keN
(3.420)
where we used BY, = —B,,. This yields
B,dl'(Bs4)ay = =dI(By4 )5, ). (3.421)

Real linearity follows directly from the definition of dI' on F° and
hence by extension on all of 7. Continuity of the restriction to any
F.p follows directly from the forms of the bounds of lemma 75. [

Now we would like to define ed"®)_ in order to do so, we will show that

dI'(B) is essentially skew-adjoint. One way of doing so is by Nelson’s
analytic vector theorem.

Theorem 80 (Nelson’s analytic vector theorem). Let C' be a sym-
metric operator on a Hilbert space H. If dom(C) contains a total
set S < (), dom(C™) of analytic vectors, then C is essentially self
adjoint. A wvector ¢ € (\_, dom(C") is called analytic if there is
t > 0 such that >, Wt” < o0 holds. A set S is said to be total if
span(S) = H
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For a proof see e.g. [85].

Lemma 81. For any a € F',;t > 0 and B € B the operator dI'(B) :
F' — F satisfies

EHdF Vol _ o (3.422)

Proof. By definition of F' there are m, p € N such that o € ©;" , B"_, Fi .
Fix t > 0. We dissect « into its parts of fixed particle numbers:

1=0c=0 k=0

Using the following abbreviations

Iy :=dl'(B_4) (3.424)
[g:=dl(B.y)+dl'(B__) (3.425)
8 := max{| By | + |B_|, | B—s. |1} (3.427)
we estimate
k
a0 IS S | S
ze{—1,0,+1}* [|b=1
k
S0 YN 1 | RERO [ T
ze{—1,0,+1}% b=1
k
k
< 3o %{g}%ﬁl}kb]j[ Lol s (3.429)

At this point the factors only depend on the number of particles the
Fock space vector attains as we act on it with the operators I'y for
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# € {—1,0,1}. As these bounds increase with the particle number we
can restrict the set {—1,0,+1} in the last line to {0, +1}. We notice
that the bound in (3.429) will only increase if we exchange each pair
ZTiy1 = 1,x; = 0 by the pair x; = 1,x;.1 = 0 so that the norm of the
operator that acts like a particle number operator is taken after the
particle number is increased. Therefore, we for each fixed lezl T, =d
we can estimate the maximum by lemma 75 to be 8%(c+1+ 8 +2d)*~,
which we bound by (28)*(¢/2 +1/2 + 4 + d)*~?. The factor constant
in d will be omitted for the maximization problem. For maximizing

(¢/2+1/2+ 4+ d)+ (3.430)

we treat d as a continuous variable take the derivative and set it to
zero. From the form of the function to be maximized it is clear that
it is equal to 1 for d = k and at d = —¢/2 — [/2 — 3, it is bigger in
between. We abbreviate y = ¢/2 + [/2 + 4. We calculate

k—d

0=(y+d)"%(~In(y +d) + ﬂ) (3.431)
— % In(y + d) (3.432)

— ’;% 1= 14 In(ely +d)) (3.433)
> elk+y) = e(y + d)In(e(y + d)) (3.434)
= e(k+y) =In(e(y + d)) Infe(y+d)) (3.435)
= Wole(k +y)) = In(e(y + d)) (3.436)
— Wolelkty)-1 _y — g (3.437)

where we made use of the Lambert W function, which is the inverse
function of x — ze” and has multiple branches; however as e(y+d) > 0
Wy is the only real branch which is applicable here, it corresponds to
the inverse of x — xe® for x > —1. From the form of the maximizing
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value we see, that it is always bigger than —y. Plugging this back onto
our function we find its maximum

max (y + d)F = e(Wole(k+1)=1)(k+y)~(Woe(k+y)) e olettv =1
de]—y,0[

— o~ (k+y)+(k+y)Wo(e(kty)) +e 0TI —((k+y)e) /e

_ o 2k ) Wo (k4)e)+ ct i iey

ek +) (=24 Wo((k+y)e)+Wo(k+y)e) ) (3.438)

9

where we repeatedly used Wy(x)eVo@

we find

= x. Putting things together

IP(B) ar. ]| < (68) a2 Walemo+Wat+) ™) (3 439)

Dividing this by k! and using the lower bound given by Sterling’s
formula we would like to prove that

o8]
Z Gﬂt k k(1—In(k))— 3 In(k)+(k+y) (—2+Wo ((k+y)e)+ Wo ((k+y)e) 1) < 0
k=1

(3.440)

holds, where we neglected constant factors and the summand k& = 0
which do not matter for the task at hand. Next we are going to use
an inequality about the growth of W, proven in [54]. For any = > e

e In(ln(z))
e—1 In(x)

Wo(z) < In(z) — In(In(z)) + (3.441)

holds true. Plugging this into our sum the exponent is bounded from
above by
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B = In(k) — 3 (k) + (5 + )| 1+ 0k + ) (1 + In(k + )
e In(l+In(k+vy))
e—1 1+In(k+y)

1
=—y+Mn@+%)+MMk+w—§m®H

I—(e—1)In(k+y
(e—=1)1+1In(k+vy))
)

<yhn(k+y) — %m(k) (k4 ) Wol(k + y)e) '+ (3.442)

1—(e—1)In(k +y)
(e—1)(1+1n(k+y))

Now it is important to notice that the only remaining term that grows
faster than linearly in magnitude is the last summand. This term;
however, is negative for large k, as the fraction converges to —1 for
large k, while the double logarithm in front grows without bounds. So
there is a k* big enough such that for all £ > k* (3.442) is smaller
than —k(In(65t) + 1), proving that (3.440) in fact holds.

Wk + y>e>1]

(k+y) {ln(l —i—ln(k—l—y)) +W0((/€+y)6)1]

(k+y)In(1 +1n(k + y))

]

Theorem 82. The operator dI'(B) : F' — F is essentially skew ad-
joint and hence by Stones theorem generates a strongly continuous

"

unitary group <et dﬁ)) , where dAU'(B) is the closure of dI'(B).
t

Proof. In order to apply Nelson’s analytic vector theorem we pick
S = F'. Pick a € F'. We need to show that there is ¢ > 0 such that

iﬁﬂ@ﬁw<w (3.443)

holds. This is guaranteed by the last lemma. O]
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Lastly in this subsection, we will investigate the commutation proper-
ties of dI'(B) with general creation and annihilation operators. These
properties are the reason we are interested in this operator, they will
prove to be very useful in the next subsection.

Theorem 83. For ¢y e H and a € F' we have
[AD(B), * (¥)]a = a*(By)a, (3.444)
where a* can be either a or a*.

Proof. Because dI'(B) is defined as the extension of an operator on
FY it suffices to show the desired identity on this space. We will do
the case a(¢), the other case is completely analogous. As a first step
we decompose dI'(B) into its four parts

[dT'(B), a(¢)] = [d(By+) + dI'(B-) + dI'(B_+) + dI'(B_-), a(y)],
(3.445)

each of those parts is evaluated directly. We begin with the B, , part,
this can be expressed as

[AT(B4 ) a(¢)]  (3.446)
= Y " (Brrpaalpa)a(®) — 3 a()a* (Borpa)alp,)  (3.447)

neN neN

= Y [, Biypna(pn) + a()a*(Biapn)alp,)]  (3.448)

neN

— Y a(@)a* (Biygn)alen).  (3.449)

neN

Let o € FY. Now applying the expression in the last two lines to a,
considering each o, ), € Fy,, separately and commuting the annihila-
tion operators in (3.448) and (3.449) to the right, the sums over n will



188 CHAPTER 3. INTERACTION IN QFT

be absolutely convergent. Hence, we may split the firs sum into two
and observe the cancellation between the last two terms. Continuing
we find

[dT(Biy),a(¥)] o = = Y {0, Boypnyalpn)a (3.450)

=—a (Z<B++90m77/}>90n> a=a (Z«D”’ B++¢>Qpn> o (3'451>

=a(Bii)a, (3.452)

where we used B* = —B*. The final extension of this equation to all
a € F' happens via the continuous linear extension theorem on 7, ,
for each m,p € N. The proof in all seven other cases are completely
analogous, except that the off diagonal terms switch. More precisely,
from the excatly analogous calculation it follows that

[dD(B_:),a” (¢)]a = a* (B4_v) a (3.453)

and
[A0(B,-), a*(¥)]o = a* (B_.4b) o (3.454)
hold. Putting things together again we obtain

[AD(B,), a()] + [AT(B_.),a(¥)]  (3.455)

+[AT(B, ) a(@)] + [AT(B_),a(¥)] = (3.450)

a(Byy9) + a(By ) + a(B_y ) + a(B-_) < (3.457)
[dT(B), a(y)] = a(By) (3.458)

on all of F'.
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3.3.2 Presentation and Proof of the Formula

In this subsection we verify the formula for the S-matrix directly. For
a heuristic derivation see section 4.3 of the appendix.

Theorem 84 (Analyticity for small A). Let A € V be such that the
one particle scattering operator S? fulfils

|1 -S4 <1. (3.459)

We define In(S4) by the norm convergent Taylor series of the logarithm
around the identity. Then the operator dT'(In(S*)) is unbounded, es-
sentially skew-adjoint, which gives meaning to S:

G4 = dPin(s™), (3.460)
The unitary operator S* is a lift of 52, i.e. it fulfils the (lift condition).

Proof. In order to establish this theorem we need to verify that the
expression given in equation (3.460) for the scattering operator is a
well-defined object and fulfils the (lift condition).

Well-definedness is established, by theorem 82, because for unitary
SA with |1 — 84| < 1 the power series of the logarithm converges and
fulfils

© 1 QAVk
J1n(54)] = | In(1 (1 $4)] = H— YO ae

< i |1 —S4)* — —In(1—|1-S4) (3.462)
k=1 k

implying that the power series of the logarithm around the identity is
a well-defined map from the one-particle operators of norm less than
one to the bounded one-particle operators. Moreover, this operator
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fulfils [In(S™)]* = In(S4)* = In(S4)~! = —1In(S4), so d['(In S4) is
a well-defined unbounded operator that is essentially skew adjoint on
the finite particle sector of Fock space F'. Finally, the off diagonal
Hilbert-Schmidt norm can also be controlled by the same norm of S4:

PSP s = 1P (- S L (3463
© _ QA\k
Z u S (3.464)
<Al Y max(t - S IP - ST (3469
5211
= — 3.466
e

Let ¢ € H and a € F/, for any k € Ny we see applying the commutation
relation of dI':

[(lns4) Y] (?) ((msh)'¢) (arms)a

=0

[
ME‘

<];)a ((1ns%)™*" ) (@r(n )" a
i <l) ((msh)'¢) (arans*) " a

_ i ((b 1) + <’Z)> a ((In5%)e) (dr(In $4)" ' a
_ ]:Zj) (k Z 1>a ((In5%)p) (d(In 54))"" " a,

l

Il
o

o

+
M=

o
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so we see that for k e N

(dr(in 54))" }; ( ) (I 5%)p) (dr(In 54)" " a

(3.467)
holds. Using what we just obtained, we conclude
A =1 k
dF(lnS Z E dF IHSA ) CL(SO)O[
k=0
o0 1 k k? b
=) — ((In S*)’¢) (dl(In S4))™
zkz(b) ((1n.5)') (dr(ns*) "o

1
!

—u (elnSAgp) pdlnst) (SAQO) pdl(ns4)

(I 5%)°¢) (AT (In54))"

M8

Il
o

=01

[+

For the marked equality changing order of summation is justified, be-
cause by the bounds |a((In S4)¢p)| < |In S*|° and lemma 81 the sum
obtained by changing the order of summands converges absolutely.
Clearly multiplying the second quantized operator by an additional
phase as in (84) does not influence this calculation. So (lift condition)
holds when applied to any a € F" and can be continued to all of F by
continuity of S4. O

The last theorem can be restated as for A small enough there is a
power series of operators on F that converges against a lift of S4.
Power series in A is used here in the sense that it is of the form
D ken, Tk(A), where Tj(A) is homogeneous in A of degree k. The next
theorem establishes such a power series for all A € V.
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Theorem 85 (Analyticity for all A). Let A € V and S* be the cor-
responding one-particle scattering operator. There is a lift S4 of S4
that fulfils for all o € F'

M
|5%a = Tu(A)af === 0, (3.468)

where T,(A)

\bl1|+kll

- > > H kl o (3.469)

RENN VI <N :belt =1

VI<\ quh
ZI 1“!‘
Ky, by 1y
<] bz l dr ]_[ Ziter o || (3.470)
1,02

la=1

are unbounded operators defined on F' that are homogeneous of degree
a in A. Here, N € N is chosen such that

N
=]]s (3.471)
k=1
and
VE<SN:|1-5 <1 (3.472)
holds true, where Si* is given by
St = Ust 20 Uslos.e (3.473)
and
S =142, (3.474)
deN

s a norm converent series where Zy 4 is homogeneous of degree d.
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Proof. Pick A € V. Recall the definition 47 of the one-particle scat-
tering operator S4
SA = Uginyzout UEAoutaEin' (3475>

Equation (3.471) then holds by virtue of equation (3.473). Please note
that the existence of an IV as given in the theorem can be inferred from

the norm convergent Dyson series, i.e. equation (4.8) of the appendix.
Then, by the theorem 84,

SA = AT (n(SE) (3.476)

is a lift of Si* for each k, so the product
~ N ~
st=11s# (3.477)
k=1
is a lift of S4. Pick a € F'. Note that the convergence of

2 % (dF(ln 5?&)) " (3.478)

kNENO N

is guaranteed by lemma 81. We calculate

N N-1 1 ke
" - - B
S%a = l:!_[l Q= l:!_[l k kz k_]\;' (dF(ln SN)) «Q (3479)
= = ~NeENp
N—-2 1 kn
” - N
-8 3 sty (orsh) o @

By unitary of SZA we may pull them into the sum, and expand again
since inside the sum its argument is again in F'. We may continue this
process by induction. Since all of these sums are absolutely convergent,
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we may forget about the order in which they are to be carried out in
our notation:

5%: > H '(dF In S; ))kl o. (3.481)

..... kNENo =1

Since a € F/, there is a maximal number of particles of each summand.
This implies that dI is continuous as a function of In S;*, which allows
us to pull the Taylor series out of dI'. The logarithm of S/ is given
by a norm convergent series in A,

st ==Yt st - S EVE (Y 12/*) (3.452)

k=1 k=1 k ceNp
k+1 k
— Z k d 112 (3.483)
keN v=1

ce Nk

This may be plugged into the expression for S# and the sum may be
pulled out of dI' due to linearity and continuity

=) ‘H<Z dF(H ))kl (3.484)

keNY =1 beN
ceNy

Since all of these sums are absolutely convergent, we may reorder the

sum according to degree of homogeneity'

|bll [+,

Sla=> > > HW (3.485)

aeNkeNN VI<N: bzeN* li=1
VI<N:qeN

Zz 1‘(’1‘ a
ki, 1 biy iy
A
<] —dr [1% .. || o (3.486)
lp=1 \ “ll2 v=1
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3.4 Summary and Conclusions

In the third chapter of this thesis we worked on a quantum field theo-
retic formulation of electromagnetic interactions. While this approach
is more conventional than what was presented in chapter 2 that does
not at all imply that the general theory has been worked out on a
mathematically rigorous level. So much so that our work on external
field QED, i.e. neglecting all interaction between particles, can be
regarded as at the frontier of our present understanding. The chap-
ter started with a short summary of the approach to construct a lift
of the one-particle time evolution operator where we mentioned the
shortcoming of the present method, not uniquely identifying the phase
of this operator. Subsequently, we gave a geometric construction of
said phase in the scattering regime from an object ¢* very closely re-
lated to the current induced by an external field. If such an object
were identified the residual freedom might be reduced to an irrelevant
constant phase and a single number related to the charge of the elec-
tron. Furthermore, we showed that there is a lift of the one-particle
scattering operator that is analytic in the external field and gave a
compact explicit formula for weak fields.

I hope that in the near future the construction of ¢* will succeed, so
that one can further analyse a self-consistent model. In such a model
one feeds the current generated by the fermion field induced by the
action of an electrodynamic field into Maxwell’s equations and acts
with the resulting fields again on the fermion field. Such a model
would incorporate a mean field interaction between the fermions and
would thus be a further step in the direction of a fully interacting
theory.






Chapter 4

Appendix

4.1 Regularity of the One-Particle
Scattering Operator
In this section we analyse the construction of the one-particle scat-

tering operator S, carried out in [13] and answer whether operators
like

Pt 05S%Sa 5P (4.1)

are Hilbert-Schmidt operators. This is important for the geometric
construction carried out in section 3.2.

Since this section is heavily inspired by [13], we need to introduce some
notation from this paper.

Definition 86. Let A €V, we define the integral operator Q4 : H O

197
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by giving its integral kernel, which is also denoted by Q*:

B xRS () - Q)= T BTy
with Z4+(p,q) := P=(p)Z2*(p — ) P (q), (4.3)
ZA = —ien"y A, (4.4)
A 1 —ipz 33
A, = e JR3 A, (z)e P d’x, (4.5)

and E(p) := v/m? + |p|?. (4.6)

Fact 87. Please recall that for general A, F' €V and ty,t; € R we have
the well known equations for the one-particle time evolution operators

UA(t1,t0) = U(ty, to) + fl dt U%(ty, t) ZA () U (t, te)  (4.7)

0

t1
UAE (1 10) = UMt 1) + J dt UA (b, ) ZF (UM (4 1), (4.8)

to

Definition 88. For any A € V, we introduce the integral operator
Q" H O by its kernel

R x R x R® 3 (t,p,q) — Q" (t.p,q) = 6:Q*(t,p, q), (4.9)

where the time dependence is due to the time dependence of the four-
potential A. The following notion of even and odd part of an arbitrary
bounded linear operator T : F <O on Fock space will come in handy:

Togq := PYTP™ + P~TP* (4.10)
T..:= P*TP* + P"TP". (4.11)

Additionally, we define the norm

T:HO |Tloprr, = [T] + [ Toaal 1, (4.12)



4.1. REGULARITY OF THE ONE-PARTICLE SCATTERING
OPERATOR 199

where | - | is the operator norm and | - |1, is the Hilbert-Schmidt norm
and the space

Y =T . F - F||T| < oo, |Toaalz, < o} (4.13)

Lemma 89. The space 139 equipped with the norm || - |opsr, is @
Banach space.

Proof. Let (T,)nen = 199 be a Cauchy sequence with respect to
|llopr,- Then it follows directly that (7,,)nen is also a Cauchy se-
quence with respect to || - | and (7}, odd)nen is a Cauchy sequence with
respect to | - |z,. Since the space of bounded operators equipped with
| - || and the space of Hilbert-Schmidt operators equipped with | - |,
both are complete we have

T, T—”“% T (4.14)
Tn,odd m’ T2 (415)

for some bounded operator 7! and some Hilbert-Schmidt operator 72,
Now because the Hilbert-Schmidt norm fulfils

1T < 1T, (4.16)
we obtain directly
Tn,odd TLHOO) T27 (417)

I
hence T4, = T?. Therefore, T € 1394 holds. Finally, since | |op+1, =

|| + || -oqa [z, is true, we find

T, =2, T (4.18)

Ilop+12

proving completeness. O
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For the following theorem and lemma we are going to make use of
the following shorthand notation of [13]. For operator valued maps
Ty, Ty : R? — B(H) we define for t;,t, € R

1
T1T2 = J dt Tl(tl,t)Tg(t,to), (419)

to

as a map of the same type as T} and 75 whenever this is well-defined.
Furthermore, for operator valued functions Wy, Wy : R — B(H) we
define

W, (tt) = Th(t', t)Ch (1) (4.20)
WiTy (t',t) .= W(t))Ti(t',t) (4.21)
WiW, (t) := Wi (t)Wa(t), (4.22)

as maps of the same type as 71,7 and C respectively.

Pick k € N, A H, € V for b < k and t,ty such that t; is later
and to is earlier than the support of A and all H,. Whenever the
shorthand (4.20) and (4.21) is used without specific arguments, by
convention t' = t1,t = t;. We abbreviate

k
H:=>'H, B:=A+H. (4.23)
b=1
We introduce
RE(#,1) = (1— QP)UP(1 + QP) (¢, 1), (4.24)

for general ¢',t € R. Because of the choice of ¢, ¢y we have
RE(ty,t0) = (1 — QPYUP(1 + QP) = UP(t1, 1), (4.25)

because B = 0 both at t; and ¢,.
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So it suffices to study the family of operators RZ. As shown in the
proof of [13, lemma 3.5] RP for B € V is the limit in the sense of the
operator norm of the sequence

RP:=0, RP ., :=U°F°RJ+U°+G”, (4.26)

where F and G are given By

FP=(—Q" + ZB — QP ZP)(1 + @), (4.27)
GP .= - UQPQ" (4.28)
+U(=Q"" + Zow — QPZP)QPQPUB(1 + QP). (4.29)

Finally, we introduce the auxiliary norms for operators 7" and W de-
pending on one and two scalar variables respectively.

ITlop 2 = sup e T ()] + sup e Toga(t) |7, (4.30)

t€[t17t0] te[tl,to]

||l := sup e 7T (t)] (4.31)
tG[tl,to]

[Wlo:= sup [W(tt)] (4.32)
t,t’E[tl,to]

IT|y = sup e T4, (4.33)
te[t1,to]

[Wiko == sup [W(t,t)]n, (4.34)
t,t’'e[t1,t0]

for v = 0.

Now we have collected enough tools to prove

Theorem 90 (Smoothness of S). Letn e N, A, Hy € V for k < n, pick

t1 after supp A U | J,.,, supp Hy, and to before supp A U |, ., supp Hy
then the derivative

Or, - .. O UATEo=1 Ho (1) ) (4.35)
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exists with respect to the topology induced by the norm || - |op+1, -

Proof. We will follow the corresponding proof in [13]|. In the proof
of the Gronwall lemma in [13, equation (3.42)] we also have that the
recursive equation

RE = U°FERE | 4+ U°FB ,UFPR? , (4.36)
+U°FB GP + U°FB . U° + U° + G (4.37)

is fulfilled by the same sequence of operators for n > 2. Furthermore,
we introduce the notation

[k] = {leN|I<k} (4.38)

Vu < [k]: 00 = | | O, (4.39)
keu

A" = RE., - RY, (4.40)

where the product of derivatives is to be understood as the mixed
derivative with respect to all the factors and we use the derivative
defined in (3.52).
Hence, we have for such n:

A, =UFE A, + UFDGUFPA, .
Abbreviating U°FZ =:a, U°FB,U°FP := b, we obtain

A, = al\,_i + bA,_s. (4.41)

we estimate for any set u < [k]:
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sup [0, Adaa (> to) [ 12y

pPSu

<sup sup e V() Z(&p\wa DA (t, 10)

PEu te(to,t1]

wep I

+sup sup e Y-l | pt Z(ﬁp\wb OuwA" ) (t, 1) P~

PEU te(to,t1] wlp

+sup sup e V(tt) | p- 2(8p\wb OuwA" ) (t, 1) Pt

pPEu te [to,tl]

wep

< sup sup eV (tt0) Z |(Op\wa awAgd_dl)(tatO)”Iz

PEu te(to,t1] wsp

+2sup sup e () 2 |(Opwb A" ) (t,to)|n

PSU te[to t1] wSp

Iz

1P

203

(4.42)

(4.43)

(4.44)

(4.45)
(4.46)

(4.47)

< sup sup e~ ZJ A |Opwalts ) QAP (1) |1 (448)

pPSu te[to,tl] wSp

+ 2sup sup e V(o) dt Wb(t, 1) QA" 2(t o)1, (4.49
Op\ 2

pPSU te[to t1 wSp

<sup sup e~ ZJ 081 walo|Ow AT (¢ o) |1

pPSu te[to t1 wp

(4.50)

+2sup sup e V) ZJ dt' | Opwb(t, )] ]| 0w A" (', t0)]| (4.51)

pPSuU te[to,tﬂ wSp

<sup sup e Y] f dte" |0 wallol QAT - o)l

PEu te(to,t1] wsp

+25up sup ¢ Y f 4 | ublr0|0wdA™2(, o),

PEU te(to,t1] wlp

(4.52)

(4.53)
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1 n
< sup 2 IomwalolowAsgg (o)l s

PSU 4 ch

2 n—
+ =sup > [ Cuwb]n0l @A™ (- t0) |
Y pcu wep
olul -
< — sup |[dwalo Sup 10pAqq (5 t0) 124
Y wecu
|u|+1
_|_

sup |0y bl\faosup [0,A™72(:, to) 1

u'Cu

Similarly, we compute the operator norm:

sup |G A" (-, t0)

pSU

< sup e T sup 3 (Gpwa QA" (t o)
tE[to t1] PSU wsp

+ sup e T sup Y (00 QWA (¢ o)
te[to,t1] PSU 4o

< sup e ) supZJ dt'[Opwa(t, t') QA" to)|

te[to,t1] PSYU cp

4 sup D sup Y f 0711, ) 2" 2(110)]

tG[tO tl] PSU wCu

< s T sup 3 [ drale. 110, )

tE[to t1] PEU wCp

£ osup e up 3 f 4t |0y blt, ) 10w ™2 1)

te[tg,tl] pPSU wp

S sup e_vtS“PZJ dt'e" | 0pwalolwA™ (-, to)ll

tE[to,tl] pPSU wp

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)
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¢
+ sup e sup Y f 4t dupblloldwA™2(-, to)], (4.66)
tE[to,tl] PSuU wSp to
1 _
< Lo 7 16 waloloua™ (o), (1.67)
7 psu o,
1 e
+ = sup D |0publol A2 (- 1) (4.68)
P)/ pSu wep
olul
< - sup |Owallosup |0 A (-, )]l (4.69)
olul B
Ty [0wbllosup [0, A" (-, to) |, (4.70)

We can summarize the last calculations more briefly using the abbre-
viation

2|u\+1

sup {[|wallo, [Oub1, 00, [ Ourblo} - (4.71)

u'Su

o =

Here o is finite. This can be seen as follows: firstly, d,b = U%0,FZ,,U°FP
vanishes if [u| > 7 because the factors Q'%, QP and Z? are all linear
in B and the longest product of such operators appearing in b has six
factors, analogously all derivatives d,a = 0 for |u| = 4. Secondly, each
of the operators @’ C, Q¢ and Z¢ are bounded for every C' € V, hence
the polynomials a and b of these operators are also bounded. This
shows finiteness of the two operator norms appearing in the expres-
sion for «. For the Hilbert-Schmidt norm we see that d,b is always a
sum of terms where each term has a factor U%0,FZ,,U° with p < u.
This factor has finite Hilbert-Schmidt norm due to the I, estimate
lemma 91.

We can thus summarize the last two calculations
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SUPycy, a A" op+1a,
(Su " H g pAme* 2 ) (4.72)
Ppcu 10p op+1Iz2,y
@ o Sup,c ”apAnAHOerlg A,)
< p=t n— ’ 4.73
(1 O) (Suppgu ”aPA 2H0p+127’y ( )

-1
< (Oé a)” <SuppCu HapA1H0p+12fY
<

N———

(4.74)

This matrix can be diagonalized, its eigenvalues are

/\+=%<1i4/1+§>. (4.75)

The larger eigenvalue A, is less than 1 if and only if 0 < o < 0.5 holds
true, as can be seen from a quick calculation:

%<1+q/1+%><1 (4.76)

4 2
= A/l +—-—<——1 (4.77)
a o«

If a > % or a < 0 this inequality is not satisfied, otherwise we may

square both sides to find

1+ g <(2/a—1)?*=4/a* —4/a +1 (4.78)

1

So we conclude that for  large enough the right-hand side of (4.74)
tends to zero as c\’} for n — o0, with

¢ = \/sup 0pA 2, 1, + 5Up [ A e (480)
pPSU

pPSu
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Concerning the norms of d,A' and d,A: the operator norms of these
terms are finite, since they are polynomials of bounded operators linear
in the external potential. The Hilbert-Schmidt norm of the odd part
of these terms can be bounded using lemma 91.

That is, we have

SUp A" ops 1y < N 2255 0. (4.81)

pPEU

For 2 < m < n we obtain

n—1
sup |0, Ry, — &R lop+ 12y < D SUD A Jopsray (4.82)
pEuU ke PSU
0 m
m—00
0 4.83
< Saven 2 (459
since the norms | - |op+r, and | - [lop+1,4 are equivalent, we have just

proven that (3[,6]sz is a Cauchy sequence with respect to the norm
| - |op+z, and hence convergence by lemma 89.

]

The following lemma is a necessary ingredient for theorem 90. Morally,
it has already been proven in [13, Lemma 3.7|; however, as that paper
was not concerned with multiple four-potentials the lemma was not
formulated general enough for our needs here. So we restate it and
show how to modify the original proof.

Lemma 91 (I, estimates). Let k € N and A,H, € V for b < k.
Using the abbreviations introduced in (4.38) and (4.39) we have for
any u < k] the following bounds:

|0, U°F fd;& )0 < o0 (4.84)
|0,GAFZi=1 Ho | o < oo, (4.85)
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Proof. For B €V recall

Flua i=((=Q" + 25 — Q" Z%)(1 + Q"))ouu (4.86)
= - Q"+ 25Q" - Q25 - Q" 25,Q", (4.87)
GP .= —UQPQ" (4.88)
+U(=Q"" + Zoy — QP ZP)QPQPUP (1 + Q). (4.89)

Pick ke Nand A, B,H, €V for b < k.
According to [13, lemma 3.7] the operators U°ZZQBU°, U°QPZB U,
UQ'PU°, QBQB,Q"PQP and QBZBQP are Hilbert-Schmidt opera-

tors. Additionally, their Hilbert-Schmidt norm is uniformly bounded
in time and F and G fulfil the following norm bound:

|U°FE, . U° 10 < 0 and |GP 1,0 < 0. (4.90)

In fact, the proof given in [13] also works for non-identical four-potentials
A, B,C €V proving

|U°Z5QPU° 1,0 < 0, (4.91)
|U°QAZEU°| 10 < o0, (4.92)
|U°Q"PU° 1,0 < o0, (4.93)
Q% Q10 < 2, (4.94)
(4.95)
(4.96)

B
Q"7 Q1,0 < 0,

1QZ5Q 10 < 0
and therefore also
k
|0 UCF A Z=0 o0 o < o0 and |0,GATZb=0Fr | o < o0 (4.97)

for any u < [k].
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For the benefit of the reader, we will reproduce the proof of the esti-

mate .
|0,GAt X0 Ho | o < oo, (4.98)

to make clear the structure of the entire proof.

The operator GA+Xi-0 s consists of two summands. Each summand
is a product of operators with operator norm uniformly bounded in
time and containing a factor of QA+Xi-oHsQA+Xi—oHo Al the other
factors contributing to G stay bounded when differentiated and the
map @ : V — I is linear, so the bound

Q7 Q7 |0 < o0 (4.99)

for general B, D € V will suffice to prove (4.98).
Pick B, D €V, we estimate

Q0@ (4100

< > sup [P (p)y"7"P-(k)7'7" P+ (q)| (4.101)

+ :upR3\P—(p)vov“P+(/f)7°7”P—(Q)!) (4.102)
B.(t,p—k)D,(t,k — q)|

up Lgdk<E<> ER)ER +E@)| o 1Y

I2,(p,q)

where the index in the norm indicates with respect to which variables
the integral of the norm is to be performed. The prefactor is finite
since Py (p) : C* — C* is a projector for any p € R3. Abbreviating

3

&= >, (sup [Pr(p)y*y"P-(k)y°7" Py (q)| (4.104)
(=0 p,k,qeR3
+ sup |P_(p)y°+* P (k)y"" P_(q)]), (4.105)

p,k,geR3
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and using the integral estimate lemma [13, lemma 3.8 (iii)| we find

3
(4.100) < & Cy e 13y ) sup|BuOn|Du(O]ne (4.106)

=0 1€

Because of B, D € C®(R*), we have B(t), D(t) are analytic functions
decaying faster than any negative power at infinity for any ¢, so (4.106)
is finite.

Also, in order to proof the first estimate in (4.84) the proof of [13,
lemma 3.7| can be followed almost verbatim. First one dissects Foqq
into the sum U? (4.87)U° next the summands have to be bounded
individually. This is achieved by repeating the proof of the partial
integration lemma [13, lemma 3.6], estimates of the form of (4.100)-

(4.103) and making use of the integral estimate lemma [13, lemma
3.8].

]

Theorem 92 (Properties of Derivatives of S). Let A, H € V, pick t,
after supp A U supp H and to before supp A U supp H, let T} € I5(F)
then the following equalities are satisfied:

6H tr(TlPiUA(to, tl)UA+H(t1, to)P$)
= tr(Ty PYU (to, t1)0g U (11, o) PF) (4.107)

Proof. Let A, H € V and tgy,t; € R and T} be as in the theorem. The
proof of the two equalities is analogous, so we only explicitly prove the
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first one. The trace is linear, so we have

b (T1P+U (0,10 U0 11, 1) ~ UA(thto))P_)
—tr(T1P+UA(t0,tl)&HUA+H(t1,t0)P_)‘ (4108)

< | Tl P+UA(t0,t1) (UA+EH(t to) — UA(tlﬂfo))P_

— PTUA(to, t1)0g U (1, o) P~ (4.109)

I

For the first summand we insert the identity in the form Pt + P~ and
obtain

1
P*UA(to,tl)g (UATH (b1, t0) — U™ (t1, t0)) P~ (4.110)
1
= P U to, 1) PP = (UM (t1,t0) — Ut1, t0)) P~ (4.111)
S
1
+P+UA(t0,t1)P’g (UAT (1, t0) — U (t1, 1)) P~ (4.112)

Analogously for the second summand. Now because of the Smoothness
of S theorem 90 we know that

P (UA-i-EH(t t()) UA<t17 to)) P_ ﬂ) P_aHUA+H(t17 tO

m|>—~

1 .
P = (U1 (1), t0) — UA(t1, o)) P~ ﬁ ProgUAH (8, t0) P~
€ I
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holds true. Hence, we find in total

(4.109)

(4.115)
|71 1.
1
< |[PTUA(to, t1) HP+E(UA+EH<tl’t()) — Ut t0)) P~
— PTogUAT (4 to) P~ (4.116)
I
1
+ HP+UA(to,t1)P‘ E(UA“H(tl,to) — Uts,t0)) P
1P
— opU (1 1) P~ =5 0. (4.117)
O

4.2 Lemma of Poincaré in infinite
dimensions

In this section we give prove of the Poincaré lemma in infinite dimen-
sions used in section 3.2. First recall the lemma itself.

Lemma 93 (Poincaré). Let w € QP(V) forp € N be closed, i.e. dw = 0.
Then w s also exact, more precisely we have

1
w= df Ly frwdt, (4.118)
0
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where X, 1; fort € R and f are given by

X:RxV->RxV, (4.119)
(t, B) — (1,0) (4.120)
VieR:y:V—->RxV, (4.121)
B (t,B) (4.122)
fi RV, (4.123)
(t,B) — tB (4.124)
ix QP(V) - PV, (4.125)
W (AYL, . Y1) > wa(X, Y1, Y1) (4.126)

Proof. Pick some w € QP(V). We will first show the more general
formula

b b

tiix ffw dt + f tix frdwdt, (4.127)

a

fro-fiw=d|

a

where f; is defined as
VteR: fi:= f(t,-). (4.128)

The lemma follows then by b = 1,a = 0, ffw = w, ffw = 0and dw = 0
for a closed w. We begin by rewriting the right-hand side of (4.127):

b b
dJ tixfrw dt +f vix frdwdt

a a

b
= J (difix ffw + jix frdw)dt. (4.129)

a

Next we look at both of these terms separately. Let therefore p € N,
t,s, € R and A, B, € V for each N 32 k < p + 1. First, we calculate
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difix frfw:
(f*w)(t:A)((Slv Bl)? T (Sim Bp)) (4130)
= wia(s1A+tBy,...,5A+tB,)
= (in*w)(t,A)(<Sly Bl), RN (Sp—l’ Bp—l)) (4131)

= CL)tA(A7 8114 + tBl, Ce 7f)‘p,lAA + thfl)
= (tFixf*w)a(Bi,...,By1) = " 'wia(A, By, ..., B, 1) (4.132)

= (dijixf*w)a(By,...,By)

p
= Oclemo (D" ' wiatan, (A, By, . By, B,)  (4.133)
k=1
p —~
t+ 0clemo D (1) P (A + €By, By, ..., By, By) (4.134)
k=1

p
= 55‘5:0 Z tp(_l)k+1th+aBk (Aa Bla s 7Bk’7 S 7Bp)
k=1

+ ptttwia(By, ..., By).  (4.135)
Now, we calculate ¢ix f*dw:

(dw)A(Blv e 7Bp+1)

p+1
= 85|5=0 Z(_l)k+1wA+eBk(317 ceey Bk, e ,Bp+1)
k=1
(4.136)
(f*dw)(t, A)((s1, B1), - .. ($ps1, Bpi1)) (4.137)
= (dW)tA(SlA + tBl, ce ,Sp+1A + thJrl)

p+1

= Oclezo ) (D) (4.138)
k=1
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X th+a(skA+tBk)(SlA + tBl, ey SkA + tBk, . 78pA + th)

(Z'Xf*dw)(tA)((SlaBl)w"7(8177‘877)) (4139)
= a&’azow(tJre)A(SlA + tBl, ey SpA + th)

p
+ a5|5=0 Z (_
k=1

X WtA+a(skA+tBk)(A7 SlA + tBl, ce skar\tBk, ey SpA + th)
= tpa |5 Ow (t+e)A (Bl7 ey Bp)) (4140)

+ Zsktp H=1)*10 ccowiesea(A, By, ., By, ..., By)  (4.141)

+ 0cem OZ Vet (Wiegapeya(A, By, ..., Be, ..., By) (4.142)
+ winsen, (A, By, ..., By,...,B)) (4.143)
= 170.]._, (w tsoa(Bi, ..., B,) (4.144)

+Z th_,_EBkABl,...,E,...,Bp)>
(L;kin*dw)A(Bb BRI B ) =tr a<€|E=O (W(tJrE)A(Bla ce 7Bp) (4145)
+Z th+£BkAB17'-- Eﬁ"'aBp)>

Adding (4.135) and (4.145) we find for (4.129):

b
J (dijixfrw+ tjix ffdw)dt = (4.146)

a

b
f (tpa€|5:0w(t+€)A(Bl, . ,Bp> + ptpilth(Bl, ey Bp)>dt (4147)

a
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b b
= J (jt(tpth(Bl, ey Bp))dt = L %(ft*w)A(Bl, ey Bp)dt (4148)

= (ffw)a(B1,....,By) — (fiw)a(By,...,B,). (4.149)

]

4.3 Heuristic Construction of S-Matrix
expression

This section is dedicated to the heuristic construction of the expression
for the scattering operator stated in theorem 84.
We start from the power series of the one-particle scattering operator

SA:
P

where Zi(A) are bounded operators on H, which are homogeneous
of degree k in A. Our strategy in this section is to try an analogous
formal power series ansatz for the second quantized scattering operator

SvA

(4.150)

w|H

(4.151)

N|,_.

Here T} are assumed to be homogeneous of degree k in A; how-
ever, they will only turn out to be bounded on fixed particle num-
ber subspaces F,, , of Fock space. We will identify operators T}, such
that (4.151) holds up to a global phase. In order to fully charac-
terize S it is enough to characterize all of the T} operators. Using
the (lift condition) one can derive commutation relations for the op-
erators Tj by plugging in (4.150) and (4.151) into the (lift condition)
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and its adjoint and collecting all terms with the same degree of homo-
geneity. They are given by

L) = Y (7)o GO Ty (), @)

where a” is either a or a*. In the following we will derive a recursive
equation for the coefficients of the expansion of the second quantized
scattering operator. The starting point of this derivation is the com-
mutator of T,,,, equation (4.152).

4.3.1 Guessing Equations

Looking at equation (4.152) for a while, one comes to the conclusion
that if one replaces T;, by

%mz ( )Tk e (4.153)

no Ty with k& > m —2 will occur on the right-hand side of the resulting
equation. So if one subtracts the right polynomial in T}, for suitable k
one might achieve a commutator which contains only the creation re-
spectively annihilation operator concatenated with some one-particle
operator.

So having this in mind we start with the ansatz

Z > cbl_[Tbk (4.154)

g=2 beNd
|bl=m
Now in order to show that T}, and =,, agree up to operators which have
a commutation relation of the form (3.444), we calculate [T}, — Z,,, a¥ ()]
for arbitrary ¢ € H and try to choose the coefficients ¢, of (4.154) such



218 CHAPTER 4. APPENDIX

that all contributions vanish which do not have the form a# (], Za,¢)
for any suitable (ay)r = N. If one does so, one is led to a system of
equations of which the first few are written down to give an overview
of its structure. The objects a4, £; in the system of equations can be
any natural Number for any k,[ € N.

oy + 51)

0= Car,81 T Chiar T ( oy

as + [
0= Car,as,81 T Chi,ar,as T Cagar,fr T+ ( a )601,a2+51
2
ar + B
+ ( )Ca1+,31,a2
a1

0= Car,an,a3,81 T Car,a0,81,03 T Car,Br,a0,05 T Chian,an,az

ar + B ag + By
+ Car+p1,a2,03 T Cay,a+p61,a3
o5t B

az + (i
+ Caq,az,a3+p1
o

0= Car,a0,81,82 T Cay,Br,02,80 T CB1,a1,02,80 T Can,B1,82,02

ar + By
) (Cm +B1,a2,B2

1 Cor,a1,82,00 T CB1Basar,an T (
aq

ay + B
+ Ca1+61752,a2) + ( c )
B1,014P2,01

ag + By g + By
+ ( >Cal,az+51,52 + < ><Ca17517a2+52
() &%)
oy + 51) <042 + Bo

o s ) Cai+pB1,00+82

+ 051,a1,a2+/32) + (

0= Cay,B1,82,83.81 T CBi,a1,62,83,80 1 CBu,Ba,c1,83,81
+ C81,82,83,01,84 T CB1,B2,83,B4,01
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oy + B ag + 3
+ Cay+p1,82,63,81 T CB1,a1+P2,53,B4

aq a1
oy + B3 ar + By
+ CBy,B2,a1+B3,81 T CB1,B2,83,01+ P4
(6%} a1

0= Cay,a2,81,82,85 T Can,Br,a2,82,83 T CBi,01,02,62,83
1 Cay,B1,82,00,83 T CB1,01,82,02,83 T CB1,Ba,ar,a2,85
1 Cay,81,82,83,02 T CBr,a1,82,83,02 T CB1,B2,01,83,02

a + B
+ C81,82,83,01,02 T ( Bl ) (Cal+51,a27527ﬁ3

t Cay+81,82,00,83 T Ca1+51,52,53,a2)

as + B
+ Cay,az+81,B2,83
B

ag + [
+ ( ﬁ2 )(Cﬁl,a17a2+ﬁ2»33 + Ca1,51,a2+52,53)

ag + P
+ ( 52 >(c,31,a1+52,0<2,53 + CB1,a1+ﬁ2,Bs,az)

ag + B3
+ ( > (Coc1,51,52,a2+63 + C81,01,82,02+83

B3
ag + 3
+ Cﬁl,ﬁz,m,az-i-ﬁ:s) + ( 53 >051,52,a1+53,0¢2

ap + B\ (a2 + B
+ Cai 481,02+ 62,83

ap + P (a2 + B3
+ o o CBy,01+B2,02+ 3
+ )

Cay+B1,82,a2+83
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Solving the first few equations and plugging the solution into the con-
secutive equations one can see that at least the first few equations are
solved by

Caryop = o ( i ) , (4.155)

k Qg - Qg

where the last factor is the multinomial coefficient of the indices
ag, ..., € N

4.3.2 Recursive equation for Coefficients of the
second quantized scattering operator

We are going to use the following definition of binomial coefficients:

Definition 94. For ae C,be Z we define

b—1 g—1
(Z) = {0 =0 i1 Jorb=0 (4.156)

otherwise.

Defining the binomial coefficient for negative lower index to be zero
has the merit, that one can extend the range of validity of many rules
and sums involving binomial coefficients, also one does not have to
worry about the range of summation in many cases.

The coefficients which we have already guessed result in the following

Conjecture 95. For any n € N the n-th expansion coefficient of the
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second quantized scattering operator T, is given by

+dl an 3 ﬂ(%) lli[Zbl , (4.157)

for some C,, € C which depends on the external field A. The last
summand will henceforth be abbreviated by T',,.

Motivation: We compute the commutator of the difference between
T, and the first summand of (4.157) with the creation and annihila-
tion operator of an element of the basis of H. This will turn out to
be exactly equal to the corresponding commutator of the second sum-
mand of (4.157), since two operators on Fock space only have the same
commutator with general creation and annihilation operators if they
agree up to multiples of the identity this will conclude the motivation
of this conjecture.

In order to simplify the notation as much as possible, we will denote
by a*z either a(z(p,)) or a*(z(p,)) for any one-particle operator z
and any element ¢, of the orthonormal basis (¢p)pez oy of H. (We
need not decide between creation and annihilation operator, since the
expressions all agree)

In order to organize the bookkeeping of all the summands which arise
from iteratively making use of the commutation rule (4.152) we orga-
nize them by the looking at a spanning set of the possible terms that
arise our choice is
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m1 € N;mg € Ng,a e N™ e N™2 |a| + |8 =n

mi mo
{a# ]_[ Z, ]_[ Ty,

k=1 k=1

(4.158)
As a first step of computing the commutator in question we look at
the summand corresponding to a fixed value of the summation index
g of

-y 3 (=1) <7§> [17. (4.159)
=1 e I =1
|b|=n
We need to bring this object into the form of a sum of terms which
are multiples of elements of the set (4.158). This we will commit
ourselves to for the next few pages. First we apply the product rule

for the commutator:

leNg k=1
fi=n
(=17 (n\ & :
=2 (;)2 T, [1,.0*] [] 1,
‘%eﬁg k=1J=1 j=k+1

- P S0 % (4 amen [T,

j=k+1

in the second step we used (4.152). Now we commute all the T}s to
the left of a” to its right:
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(—1)7 /n &k CH— g
— I #
SEEG)E © S TI(2)e 2 17 1] 5
(4.160)

At this point we notice that the multinomial coefficient can be com-
bined with all the binomial coefficients to form a single multinomial
coefficient of degree g + k. Incidentally this is also the amount of
Z operators plus the amount of T operators in each product. More-
over, the indices of the multinomial index agree with the indices of
the Z and T operators in the product. Because of this, we see that if
we fix an element of the spanning set (4.158) a* [ |2, Zo, [ 1121 T,
each summand of (4.160) which contributes to this element, has the
prefactor

(~1)7 n
g (a1 ey By - -ﬁmz) (101

no matter which summation index [ € NY it corresponds to. In order
to do the matching one may ignore the indices o; and [; — o; which
vanish, because the corresponding operators Z, and Ty are equal to
the identity operator on H respectively Fock space.

Since we know that
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holds, all that is left to show is that

- i 3 % (%) ﬁTbl,a# (4.162)

g=1 lzeNg =1
[b|=n
_ (=1 (n
- Z Z g \b [
9=1 peng =1
|b|=n

also holds. For which we need to count the summands which are
multiples of each element of (4.158) corresponding to each ¢ in (4.159).
So let us fix some element K (mq, ms) of (4.158) corresponding to some
my € N,mg € Ng,a € N and [ € N2, Rephrasing this problem, we
can ask which products

112, (4.163)

1=1
for suitable g and (7;); produces, when commuted with a creation
or annihilation operator, multiples of K (mj, my)? We will call this
number of total contributions weighted with the factor —% bor-
rowed from (4.159) #K (my, mz). Looking at the commutation rela-
tions (4.152) we split the set of indices {71 ...7,} into three sets A, B
and C', where the commutation relation has to be used in such a way,
that

holds. Unfortunately not every splitting corresponds to a contribution
and not every order of multiplication of a legal splitting corresponds
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to a contribution either. However, [ [, Ty, [ [; T}, gives a contribution,
and it is in fact the longest product that does. We may apply the com-
mutation relations backwards to obtain any shorter valid combination
and hence all combinations. Transforming the commutation rule for
T}, read from right to left into a game results in the following rules.
Starting from the string

A1As .. Ap BiBy... B, (4.164)

representing the longest product, where here and in the following A’s
represent operators Ty which will turn into Z; by the commutation
rule, B’s represent operators T), which will stay T} after commutation
and (C’s represent operators T}, which will produce both a Z; in the
creation/annihilation operator and a Tj_; behind that operator. The
indices are merely there to keep track of which operator moved where.
So the game consists in the answering how many strings can we pro-
duce by applying the following rules to the initial string?

1. You may replace any occurrence of A;B; by B; A for any j and
k.

2. You may replace any occurrence of A;B; by Cj ; for any j and
k.

Where we have to count the number of times we applied the second
rule, or equivalently the number #C' of C’s in the resulting string,
because the summation index ¢ in (4.159) corresponds to my + mg —
#C.

Fix #C € {0,...,min(my, my)}. A valid string has m; + mqg — #C
characters, because the number of its Cs is #C', its number of As is
my — #C and its number of Bs is my — #C'. Ignoring the labelling of
the As, Bs and C's there are ( m1+ma—#C ) such strings. Now

. : . \#C (m1—#C) (m2—#C)
if we consider one such string without labelling, e.g.
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CAABACCBBACBBABBBB, (4.165)

there is only one correct labelling to be restored, namely the one where
each A and the first index of any C' receive increasing labels from left
to right and analogously for B and the second index of any C, resulting
for our example in

C11A2A3 By AyCs 3C64Bs B A7Cs 7 Bs ByAgB1gB11B12Bys.  (4.166)

So any unlabelled string corresponds to exactly one labelled string
which in turn corresponds to exactly one choice of operator product
[IT. Soreturning to our Operators, we found the number # K (mq, ms)
it is

mi1+ma (_1)g

g

#H (s, ma) -~ m% 9 <<m1 +mz —g) (g—m) (g - m2>)’

(4.167)
where the total minus sign comes from the total minus sign in front
of (4.162) with respect to (4.157).
Now since we introduced the slightly non-standard definition of bino-
mial coefficients used in [41] we can make use of the rules for summing
binomial coefficients derived there. As a first step to evaluate (4.167)
we split the trinomial coefficient into binomial ones and make use of
the absorption identity

Vae CYbeZ: b<b) (Z B i) (absorption)

for mo, mq1 # 0 as follows
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; )
g=max(mi,mz2) 9 ((ml +mg — g) (g - ml) (g - m2)

L ()

g=max(m1,m2)

(absorption) _ mi”u (_1)9 g — 1 me
me \me—1/)\g—my

g=max(m1,m2)

a2 o))

g=max(m1,mz2)

e yew(,™ (0

geZ

« —1 —1
(M) g

meo -1

where for the second but last equality m; > 0 is needed for the g =
0 summand not to contribute and for the marked equality we used
summation rule (5.24) of [41]. So all the coefficients vanish that fulfil
my,ms # 0. The sum for the remaining cases is readily computed,
since there is just one summand. Summarizing we find

(_1)1+m1 (_1)1+m2

+ Oy 0o,

#K(mh m2) = Omy,0
mi mo

where the second summand can be ignored, since terms with m; = 0
are irrelevant for our considerations.
So the left-hand side of (4.162) can be evaluated
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g=1 Eeg =1
[b]=n
n e (S ) o
_ i Z
|b]=n

which is exactly equal to the right-hand side of (4.162). This ends the
motivation of the conjecture.

4.3.3 Solution to Recursive Equation

So we found a recursive equation for the 7},s, now we need to solve it.
In order to do so we need the following lemma about combinatorial
distributions

Lemma 96. For any ge N, ke N

2 (g») = zg:(—l)l(g - l)’“(?) (4.168)

geNg =0
lgl=k

holds. The reader interested in terminology may be eager to know,
that the right-hand side is equal to g! times the Stirling number of the

second kind {];} .

Proof: We would like to apply the multinomial theorem, but there
are all the summands missing where at least one of the entries of ¢
is zero, so we add an appropriate expression of zero. We also give
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the expression in question a name, since we will later on arrive at a
recursive expression.

()5 () 3

geng geNg geNd
lg1=Fk |7|=k 51=F
3l:g;=0
-1
k k ES k
=9 — Z -] =9 —Z Z _ ) L5ty i (Vi i) A VEgs, =0
sy Y n=t gang I
|g|=k |g|=k
3l:g1=0

(4.169)

where in the last line the indicator function is to enforce there being
exactly n different indices ¢; for which g;, = 0 holds. Now since it does
not matter which entries of the vector vanish because the multinomial
coefficient is symmetric and its value is identical to the corresponding
multinomial coefficient where the vanishing entries are omitted, we
can further simplify the sum:

runs5(0) 3 )

n=1 GeNg—n
|gl=Fk

The inner sum turns out to be F(g — n, k), so we found the recursive
relation for F':

Flg,k) =g —:Zj (Z) Flg—n,k) =g" —z (i)F(n k), (4.170)

where for the last equality we used the symmetry of binomial coef-
ficients. By iteratively applying this equation, we find the following
formula, which we will now prove by induction
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+(_1)d+lgd (”*Z_l)( g )F(g—d—n,k). (4.171)

n+d

We already showed the start of the induction, so what’s left is the
induction step. Before we do so the following remark is in order: We
are only interested in the case d = g and the formula seems meaningless
for d > g; however, the additional summands in the left sum vanish,
whereas the right sum is empty for these values of d since the upper
bound of the summation index is lower than its lower bound.

For the induction step, pick d € Ny, use (4.171) and pull the first sum-
mand out of the second sum, on this summand we apply the recursive
relation (4.170) resulting in
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— n+d+1
g—d—2
—d-1
(= 9 g Flg—d—1—n.k). (4.172
() % (e nk). (1172

After the index shift we can combine the last two sums.
d+1 p
F(g, k) = —1’-4k(>
(9.1 = B0 -0

SO (B G N G [N
(—1)"2F(g—d—1—mn,k). (4.173)

In order to combine the two binomials we reassemble ( ngrl) (g—z—1)

into (n 2 +1) (”;ﬁl), which can be seen to be possible by representing

everything in terms of factorials. This results in

d+1

Flg.k) = S0 - 0 (])
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g

—d—2
+d g
—e " Flg—d—1—n.k). (4.174
+(=1) W1<J+J(n+d+0 (g n.k), (4174)

where we used the addition formula for binomials:

VneCvkeZ: (Z) - (”;1) + (Z:D (4.175)

This concludes the proof by induction. By setting d = ¢ in equa-
tion (4.171) we arrive at the desired result. O
Using the previous lemma, we are able to show the next

Lemma 97. For any k € N\{1} the following equation holds
k
—1)9 k
2< ) > (4) = 0. (4.176)
g=1

9 5 \g
g1=k

Proof: Let k € N\{1}, as a first step we apply lemma 96. We change
the order of summation, use (absorption), extend the range of sum-
mation and shift summation index to arrive at

g=1p=0 g=1p=0
k k
(9 _ g—1
Ny ewr () - S R (00)
g=1peZ p PEZL g=1 p
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Now we use equation (5.10) of [41]:

- 1
Vm,n e Ny : Z (k> = (n * ), (upper summation)

= \m m+ 1

which can for example be proven by induction on n.

We furthermore rewrite the power of the summation index p in terms
of the derivative of an exponential and change order summation and
differentiation. This results in

p=0 - P = a=0
k
ak—l ook ak—l o (Ozp)l
= o1 (1—e™) a—o:(_l) Dok—1 (; I
= a=0
ot k k+1
e (o (G ) )
a=0

We are now in a position to state the solution to the recursive equa-
tion (4.157) and motivate that it is in fact a solution.

Conjecture 98. Forn € N the solution of the recursive equation (4.157)
solely in terms of I'y and C, is given by

n g
=YY 3 %(%) [1Ea. (4.178)
g=1 9g: =1

N9 de{0,1}9
|

be
bl=n
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where F' is given by

Ty forb=0
Fa,b - {Oa fOT b _ 1 (4179)

For the reader’s convenience we remind her, that I', and the constants
C, are defined in conjecture 95.

Motivation: The structure of this proof will be induction over n.
For n = 1 the whole expression on the right-hand side collapses to
C1+T'1, which we already know to be equal to T7. For arbitrary n € N
we apply for the induction step the recursive equation (4.157) once
and use the induction hypothesis for all & < n and thereby arrive at
the rather convoluted expression

(4. 157) s, )9 (n+1 g
Toy1 = T +Chp + Z Z p ( i ) HTbl
9=2  peng =1
|b|l=n+1

n+1
AN P G i] > p (n P 1) I

g=2 ﬁbeNg =1
[b|=n+1

Z 2 2 o (CZ)H e (4.180)

g=1 zen9t &e{0,1}9
lcil=b

If we were to count the contributions of this sum to a specific product
[[F.,.; for some choice of (c;);,(e;); we would first recognize that
all the multinomial factors in (4.180) combine to a single one whose
indices are given by the first indices of all the F' factors involved. Other

(=1 [_, = to the sum. So
g1
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we need to keep track of how many contributions there are and which
distributions of g; they belong to.

Fix some product [[ F := ?:1 £y g In the sum (4.180) we pick
some initial short product of length ¢ and split each factor into g
pieces to arrive at one of length g if the product is to contribute to
[TF. So clearly )7 | g, = g holds for any contribution to [ F. The
reverse is also true, for any g and g1,...,9, € N such that )} g =
g holds the corresponding expression in (4.180) contributes to [] F.
Furthermore, [ [ F and g, g1, . . . g4 is enough to uniquely determine the
summand of (4.180) the contribution belongs to. For an illustration
of this splitting see

1 2 3 4 5 6 7 8 9 10 11
Fs F5oF7, Fgo Fo B9 Y Fsoby FyiFig
————— U

g1=3 g2=1 w3=2 ga=3 g5=2

o J
"

g=>5
Gt g+gs+gitgs=11=g.

We recognize that the sum we are about to perform is by no means
unique for each order of n but only depends on the number of appear-
ing factors and the number of splittings performed on them. By the
preceding argument we need

gEN

nEr
~ 7=

to hold for g > 1, in order to find agreement with the proposed so-
lution (4.179). Now proving (4.181) is done by realizing, that one
can include the right-hand side into the sum as the ¢ = 1 summand,
dividing the equation by g! and using lemma 97 with & = §. The
remaining case, § = 1, can directly be read off of (4.180). This ends
the motivation of this conjecture.

1
> ]:[ i —‘ (4.181)
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Conjecture 99. Forn e N, T, can be written as

c [l 1
-2 2 C.g.l_[c, ZHEFQZ. (4.182)

I1<c+g<n geNg
¢,geNp ceN¢

&l+1g]=n

Please note that for ease of notation we defined N° := {1}.

Motivation: By an argument completely analogous to the combina-
torial argument in the motivation of conjecture (95) we see that we
can disentangle the F's in (4.178) into I's and Cs if we multiply by a
factor of (C+9) where c¢ is the number of Cs and g is the number of I's
giving

g

-y ¥ (C+g> ! (ﬁ”ﬁ) o, TTr,, (4.183)
+9)I\gde

1<c+g<n GeNd =1 =1
¢,geNg ZeN¢

|el+1gl=n

which directly reduces to the equation we wanted to prove, by plugging
in the multinomials in terms of factorials.

Conjecture 100. As a formal power series, the second quantized scat-
tering operator can be written in the form

S = Zien T eZien . (4.184)

Motivation: We plug conjecture 99 into the defining Series for the
T,s giving
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S = 2 T (4.185)
TLENO

g9
=1+, > D) ig Cicql_[i'rgl (4.186)

neN 1<ct+g<n  geNg =1 gi:
¢,geNg ceNe
|el+gl=n

=17+ >, ). Clg’]_[cl Cl]_[ (4.187)

1<c+g geN9y =1

¢,9€Ng ceNe
IEAIEEAIE
= —C. —Iy (4.188)
c,geNg geNg 'g‘ Cl l =1 gl' l
ceN¢
1 g1
= Z Z H —Cl, > = ]_[—'Fg, (4.189)
ceNo c! ZeNe 1=1 a geNo I geno 121 I
1 {2 1
=2 .HZ EIES W I DI (4.190)
ceNp =1 keN geNg g: I=1beN ~°
c g
1 1
_ Z (2 ) > p <Z HF*’> (4.191)
ceNO keN g€Np beN
= eZien 10 eTien 1T, (4.192)
Conjecture 101. For A such that
1 -U4 < 1. (4.193)

The second quantized scattering operator fulfils
S = eXnen Gt (Al (In(V)) (4.194)

where C,, must be imaginary for any n € N in order to satisfy unitarity.
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Motivation: First the remark about C,, € iR for any n is a direct
consequence of the second factor of (4.194) begin unitary. This in turn
follows directly from dI'™*(K) = —dI'(K) for any K in the domain of
dI’. That InU is in the domain of dI" follows from (InU)* = InU* =
Ut =—InU and |U — 1| < 1.

We are going to change the sum in the second exponential of (4.184),
so let’s take a closer look at that: by exchanging summation we can
step by step simplify

gy
neN g=1 Beng g =1 ¢
|b|=n
—ar (3 ) (=Dt ﬁZ_b'l>
9 Niee Y =1 !
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=dr <Z<_15£(U—1)9) = dr (—Zl(ﬂ—w@)

geN gENg
—dl (In(1 — (1 - U))) =dl (In (U)). (4.195)

The last conjecture is proven directly in subsection 3.3.2.
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