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“Je n’ai fait celle-ci plus longue que parce que je n’ai pas eu le loisir
de la faire plus courte.”[79]
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Abstract
The main subject of this thesis is the problem of introducing inter-
actions into relativistic quantum mechanics. This problem has many
facets, two of which will be discussed.

The first one deals with a recent relativistically invariant integral equa-
tion for multi-time wave functions by Lienert [64]. From a mathemat-
ical point of view this proposal is promising, since variants of it have
been shown to be mathematically well-defined. In this thesis, firstly,
previous results on existence and uniqueness of solutions of a variant of
this equation for scalar particles are extended to include more realistic
types of interaction.
Secondly, a proof of existence and uniqueness of solutions of another
variant that allows to treat spin 1/2 particles is provided.

The second facet concerns interactions in the context of a variable
number of particles. Following famous works of Dirac [22], Feyn-
man [35] and Schwinger [95], we treat external electrodynamic fields
in an otherwise free Quantum Field Theory of electrons. In previous
results [86, 97, 75, 13, 15], candidates for the time evolution operator
have been constructed in this setting. This construction is unique up
to a phase, which may depend on the external field. This phase affects
the charge current density and should thus be identified. In this work,
this problem is addressed by a geometric, which was inspired by [90]
and developed jointly with my supervisors, construction assuming a
certain causality condition.
Secondly, a compact formula for the scattering operator in terms of the
corresponding one-particle scattering operator is provided and shown
to be well-defined, assuming certain conditions on the external field.
This formula is used to show that the second quantized scattering
operator is an analytic function of the external field in a certain sense.
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Das Hauptthema dieser Arbeit sind die Schwierigkeiten die dabei
auftreten Wechselwirkungen in die relativistische Quantenmechanik
einzuführen. Dieses Problem weist viele Facetten auf. Zwei dieser
Facetten werden bearbeitet.
Die erste handelt von einer kürzlich von Lienert [64] vorgestellten rela-
tivistisch invariante Integralgleichung für Wellenfunktionen für mehrere
Zeitkoordinaten. Aus einer mathematischen Perspektive ist diese Vorge-
hensweise vielversprechend, denn für Varianten dieser Gleichung wurde
bereits Wohldefiniertheit bewiesen. In dieser Arbeit werden zunächst
bestehende Resultate über Existenz und Eindeutigkeit von Lösungen
einer Variante dieser Gleichung für skalare Teilchen auf realistische
Wechselwirkungen erweitert. Weiterhin wird ein erstes Resultat über
Existenz und Eindeutigkeit von Lösungen für eine Variante der Gle-
ichung für spin-1/2 bewiesen.
Die zweite Facette handelt von Wechselwirkung im Kontext veränder-
licher Teilchenzahl. Wir behandeln die Theorie externer elektromag-
netischer Felder in ansonsten freier Quantenfeldtheorie im Sinne der
berühmten Arbeiten von Dirac [22], Feynman [35] and Schwinger [95].
Frühere Resultate [86, 97, 75, 13, 15] konstruierten Zeitentwicklung-
soperatoren bis auf eine Phase eindeutig, welche vom externen Feld
abhängen kann. Diese Phase beeinflusst die elektrische Stromdichte
und sollte daher identifiziert werden. In dieser Arbeit wird dieses
Problem durch eine geometrische Konstruktion, welche eine gewisse
Kausalitätsbedingung vorraussetzt und inspiriert wurde durch [90] und
gemeinsam mit meinen Betreuern entwickelt wurde, behandelt.
Anschließend wird eine kompakte Formel für den Streuoperator als
Funktion des Einteilchenstreuoperators angegeben und unter gewissen
Annahmen an das Feld wird dessen
Wohldefiniertheit gezeigt. Anschließend wir diese Formel verwendet
um zu zeigen, dass der Streuoperator in einem gewissen Sinne eine
Analytische Funktion des Feldes ist.
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Notes on Style

I want to follow the example of the textbooks I enjoy reading which
invite the reader to follow jointly the line of arguments together with
the text. So I will mostly be using the plural to refer to the reader as
well as myself.

Furthermore, the right-hand side of equations will be referred to by the
number of the equation or estimate in parentheses. These references
will also be used inside other equations and estimates.
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Chapter 1

Introduction

Interacting relativistic quantum physics in general and Quantum Field
Theory (QFT) in particular is in a curious state. On the one hand it
has been applied to predict the outcomes of experiments at particle
accelerators such as the Large Hadron Collider with extraordinary suc-
cess, on the other hand there is still no rigorous mathematical frame-
work except for the free theory. Bearing this in mind, we might ask
ourselves what kinds of interaction can be rigorously defined in a rel-
ativistic quantum mechanical setting at all. We are going to describe
two possible approaches in detail.

1. The first kind of interaction to be discussed is introduced for
a system of N P N persistent particles. In order for the wave
function of this system to transform covariantly with respect to
Poincaré transforms we will consider it a function ofN spacetime
points xk P R4, k “ 1, . . . , N . This multi-time formulation goes
back to Dirac [25]. It heavily inspired works that were essen-

1
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tial for the development of Quantum Electrodynamics such as
that of Tomonaga [102] and has influenced research since then,
see e.g. [74, 103] and [68] for an overview. A natural way of
introducing interaction in this setting would be to let the wave
function solve N Dirac equations each minimally coupled to a
multiplication operator; however, recent no-go theorems [82, 17]
show that such systems are either not interacting, not Poincaré
invariant or mutually inconsistent. The approach we will follow
in chapter 2 bypasses those no-go theorem in [82, 17] by intro-
ducing only a single integral equation for the wave function of
the particles. The equation under consideration will be of the
type

ψpx1, x2q “ ψfree
px1, x2q ` i

e1e2

4π

ż

d4x11 d
4x12 (1.1)

ˆ Sret
1 px1 ´ x

1
1qS

ret
2 px2 ´ x

1
2q γ

µ
1 γ2,µδppx

1
1 ´ x

1
2q

2
qψpx11, x

1
2q,

of Lienert [64] for the wave function ψ of two spin 1/2 parti-
cles. Subscripts 1 and 2 refer to quantities associated with the
respective particle: ek is the electric charge, the Dirac matri-
ces γαk are defined in (2.3) while ψfree and Sret

k refer to a solu-
tion and the retarded Greens function (2.5) of the free Dirac
equation (2.8), respectively. Equations like (1.1) have, in fact,
already been considered by Feynman [36, equation (4)] in a pa-
per of fundamental importance to the development of quantum
electrodynamics (QED) in writing down the “effect of exchange
of one quantum[. . . ] between two electrons”. The main differ-
ence between (1.1) and what appeared in [36] is that Feynman
only uses positive Fourier modes in time of the delta in the in-
tegral. Despite the fact that an equation close to (1.1) appeared
very early in the development of QED and the similarity be-
tween (1.1) and the Bethe-Salpeter equation, not much is known
about the mathematical properties of equation (1.1). Previous
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mathematical results about related equations are summarized in
subsection 2.1.2.

Two main results of this thesis extend the current solution theory
of equations of the same type as (1.1). The first of which, theo-
rem 15, extends previous results on the existence and uniqueness
of the dynamics of a version of equation (1.1) for spin-less par-
ticles to singular interaction along the light cone. The second of
which, theorem 25, is the first result on existence and uniqueness
of an equation of the type of (1.1) for spin 1/2 particles. The
non-Markovian nature of equations of this type and the fact that
the delay inherent in them is not bounded makes them techni-
cally challenging. Section 2.1 provides an overview of the state
of the art in this field.

2. The second kind of interaction we shall investigate is the in-
teraction of an external electromagnetic field with an otherwise
free quantum field representing spin 1/2 particles. Even in this
setting there are classical theorems by Ruijsenaars [86, 87] and
Shale and Stinespring [97] that seem to prevent a dynamical
mathematical description of the processes in question in the pres-
ence of magnetic fields. Judged by the timescales of this field a
short time ago this obstacle has been overcome by abandoning
the restriction to work in a static Fock space [13, 15, 14]. These
results form the basis upon which we will build our analysis in
chapter 3.

Chapter 3 contains two further main results of this thesis in
three theorems. The first, theorem 51 contains a construction
which partially fixes the phase freedom of previous results. The
phase is a relevant quantity here since it influences the current
via Bogolyubov’s formula. This theorem was difficult to obtain
as many ideas of the literature had to be combined and adapted.
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For example, differential geometric concepts of [96] of fibre bun-
dles, whose fibres are phases, lie at the heart of the proof of
theorem 51. Theorem 84 provides a well-defined formula that
gives the scattering operator of external field QED in terms of
the one-particle scattering operator. This result is then used to
prove theorem 85 which states that the second quantized scatter-
ing operator can be given in terms of a power series in the exter-
nal field convergent on the finite particle subspace. This theorem
may be useful in the future as it can support the derivation of
rigorous error bounds on power series expansions often employed
by physicists. This result is non-trivial as it relies on theorem 84
whose result had to be guessed first and whose proof relies on a
version of the Shale-Stinespring theorem for our representation.

Sections 2.2 and 2.3 of chapter 2 are based on the preprint [66] and the
successfully published paper [67], respectively. Both of these publica-
tions are the result of joint work with Matthias Lienert. The references
are given again in the respective sections. The results in chapter 3 are
the result of joint work with my supervisors and has not yet resulted
in publications.



Chapter 2

Direct Interaction in
Relativistic Quantum
Mechanics

As discussed in the last chapter in the paragraph above equation (1.1),
having interaction mediated by multiplication operators in a set of
Dirac equations is not a viable option, as was proven recently [82,
17]. As mentioned, one alternative approach to this problem is to
reformulate Dirac’s equation as an integral equation of type (1.1) and
explore the possibilities of interaction in that formulation. We will
take a few steps in this direction in this chapter. It is based on the
paper [67] and the preprint [66] which are a result of the joint work of
Lienert and the author of this thesis. While these results fall short of
establishing an empirically adequate relativistic quantum mechanical
theory, they do provide self-consistent relativistic interacting quantum
mechanical toy models in three spacial and one temporal dimension.

5
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Nevertheless, also from a physical perspective these models may still
be interesting, because they provide a tool to circumvent the ultravio-
let problem due to self-interaction. From a mathematical perspective,
the equation is not in Hamiltonian form and involves temporal inte-
grals, hence the well-developed theory of one-parameter unitary groups
cannot be directly applied. In fact, there are only few mathematical
results about equations of this type.
We will first give a heuristic derivation of this type of equation, briefly
review some relevant mathematical results that have been established
in the past, and finally discuss the new results of the paper [67] and
the preprint [66].

2.1 Overview

2.1.1 Heuristic Derivation

In order to motivate the subject of our study, we will now closely follow
the heuristic derivation of equation (1.1) given in [64]. This section
is organized as follows: We start by reformulating Dirac’s equation
for a single particle as an integral equation. The reformulated ver-
sion is then extended to two particles in a Poincaré invariant man-
ner. Extending the equation is conveniently done in the framework of
multi-time wave functions.
Dirac’s equation for one particle subject to an external potential V
takes the form

iBtφpt, ~xq “
`

H free
` V pt, ~xq

˘

φpt, ~xq, (2.1)

here φ denotes a potential C4-valued solution, ~x P R3, t P R and H free

is the Hamiltonian associated with a free Dirac particle. The latter
acts on wave functions as

H freeφ “ ´iγ0~γ ¨ gradφ`mγ0φ, (2.2)
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where ~γ “ pγ1, γ2, γ3q and gradφ denotes the gradient of φ with re-
spect to the non-temporal coordinates. The matrices γα P C4ˆ4 fulfil
the anti-commutation relation

@α, β P t0, 1, 2, 3u : tγα, γβu :“ γαγβ ` γβγα “ 2ηαβ, (2.3)

where η is the Minkowski metric. We will work with the p`,´,´,´q
metric signature and the standard Dirac representation of this alge-
bra. Squared four dimensional vectors always refer to the Minkowski
square, meaning for all a P C4, a2 :“ aαaα “ pa0q

2
´ ~a ¨ ~a. Small

arrows denote three-dimensional vectors, for a P C4 we denote by
~a :“ pa1, a2, a3qT . In the following, a slashed four vector denotes

{a :“ aαγ
α, (2.4)

where Einstein’s summation convention is used. We will be working
in units where ~ “ 1 “ c, i.e. Planck’s constant and the speed of light
are set to one.
We denote by Sret the retarded Green’s function of the non-interacting
Dirac equation, that is, the distribution Sret satisfies

`

iBt ´H
free

˘

Sret
“ δ4, (2.5)

supp Sret
Ď R`0 ˆ R3, (2.6)

in a suitable weak sense. Here δ4 denotes the Dirac measure in four
dimensions concentrated on the origin. This allows to recast (2.1) in
terms of the following integral equation

φpt, ~xq “ φfree
pt, ~xq`

ż 8

t0
dτ

ż

d3~y Sret
pt´ τ, ~x´~yqV pτ, ~yqφpτ, ~yq, (2.7)

where φfree denotes the solution of the non-interacting equation
`

iBt ´H
free

˘

φfree
“ 0, (2.8)
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subject to the initial condition φfreept0q “ φ0, t0 P R which for the
present purpose we think of as a sufficiently regular square integrable
function. Analogously, we may recast the two particle Dirac equation
including a C16ˆ16-valued interaction potential V to be specified later

iBtφpt, ~x1, ~x2q “
`

H free
1 `H free

2 ` V pt, ~x1, ~x2q
˘

φpt, ~x1, ~x2q, (2.9)

subject to the initial condition φpt0q “ φ0, t0 P R sufficiently regular
and square integrable, into the integral equation

φpt, ~x1, ~x2q “ φfree
pt, ~x1, ~x2q `

ż 8

t0

dt1
ż

d3~x11 d
3~x12 S

ret
1 pt´ t

1, ~x1 ´ ~x
1
1q

ˆSret
2 pt´ t

1, ~x2 ´ ~x
1
2qV pt

1, ~x11, ~x
1
2qφpt

1, ~x11, ~x
1
2q, (2.10)

where again, φfreeptq solves (2.9) for V “ 0 with the boundary condition
φfreept0q “ φ0 and Sret

k is the retarded Green’s function of the free Dirac
equation of particle number k. That is the distribution Sret

k satisfies
`

iBt ´H
free
k

˘

Sret
k “ δ4, (2.11)

supp Sret
k pt, ~xkq Ă R`0 ˆ R3, (2.12)

in a suitably weak sense, where

H free
k “ ´iγ0

k~γk ¨ gradk`mkγ
0, (2.13)

with

γµ1 “ γµ b 1 (2.14)
γµ2 “ 1b γµ (2.15)

and 1 P C4ˆ4 denotes the identity matrix and gradk is the gradient
with respect to the non-temporal coordinates of the k-th particle and
mk P R`0 the respective mass. Here, it is crucial to notice that the
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Green’s function of the free two particle Dirac equation factorizes into
a product of two Green’s functions of the Dirac equation for one par-
ticle.
Since equation (2.10) contains only one temporal variable but six spa-
tial ones, there is no unitary operator implementing Lorentz boots
on such wave functions and hence it is not a relativistically covariant
equation. In order to find a relativistically covariant equation, we will
directly generalize the one-particle equation (2.7) to two particles in-
stead of generalizing to two particles at the level of (2.1). Before we
do so let us first rewrite equation (2.7) it in a more suggestive way:

ψpxq “ ψfree
pxq `

ż

d4x1 Sret
px´ x1qV px1qψpx1q, (2.16)

where non-bold letters denote elements of Minkowski spacetime, and
we replaced φ by ψ in order to emphasize the change to a relativistic
notation. Furthermore, we replaced the lower bound in the temporal
integral domain by ´8 in order to render the total domain of integral
Poincaré invariant, which implies a change of the initial condition.
Please note that solutions of equation (2.16) have a conserved cur-
rent leading to a conserved integral over space-like Cauchy surfaces
reducing integrals over |ψ|2 for equal time hypersurfaces.
Equation (2.16) suggests the following generalization for two particles

ψpx1, x2q “ ψfree
px1, x2q (2.17)

`

ż

d4x11 d
4x12 S

ret
1 px1 ´ x

1
1qS

ret
2 px2 ´ x

1
2qKpx

1
1, x

1
2qψpx

1
1, x

1
2q,

where we integrate over all of R8 and ψfree is a solution of the free
Dirac equation both in x1 and x2 and their respective spinor indices:

D1ψ
free
px1, x2q “ γ0

1piBt1 ´H
free
1 qψfree

px1, x2q “ 0, (2.18)
D2ψ

free
px1, x2q “ γ0

2piBt2 ´H
free
2 qψfree

px1, x2q “ 0. (2.19)
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Nomenclature 1. The class of equations

ψ “ ψfree
` AKψ (2.20)

where the linear operator AK obeys

D1D2pA
Kψqpx1, x2q “ Kpx1, x2qψpx1, x2q, (2.21)

while the free parts ψfree are C16-valued and obey the restrictions (2.18)
and (2.19) and tempered distributions K P pSpR8q b C16ˆ16q1 for C16-
valued wave functions ψ will be referred to as spin-1/2 delay-equation.
The distribution K will be referred to as interaction kernel.
Similarly, the class of equations

ψ “ ψfree
` AKψ (2.22)

where ψ and ψfree are C´valued and ψfree and AK obey

plx1 `m
2
1qψpx1, x2q “ 0, (2.23)

plx2 `m
2
2qψpx1, x2q “ 0, (2.24)

plx1 `m
2
1qplx2 `m

2
2qpA

Kψqpx1, x2q “ Kpx1, x2qψpx1, x2q (2.25)

where mk P R` is the mass and lxk is the d’Alembert operator acting
on the spacetime coordinates of particle k P t1, 2u will be called spin-0
delay-equation with interaction kernel K P pSpR8qq1.

In the motivation we gave AK as the convolution of Kψ with the
retarded Green’s function. In nomenclature 1 we widened the class also
to other choices. An optimal choice in the sense of empirical adequacy
of the interaction kernel is not yet known. However, a simple way of
ensuring Poincaré invariance of spin-1/2 or spin-0 delay-equation is to
let K only depend on the squared Minkowski distance px1 ´ x2q

2 and
choose a Poincaré covariant form of AK . A choice that incorporates
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interaction along light-like distances, i.e. px1 ´ x2q
2 “ 0 and has a

correct non-relativistic limit [64, section 3.6] is given by

Kpx1, x2q “ i
e1e2

4π
γµ1 γ2,µ δppx1 ´ x2q

2
q, (2.26)

for the spin-1/2 case and

Kpx1, x2q “
λ

4π
δppx1 ´ x2q

2
q, (2.27)

with λ P R for the spin-0 case, where δ is the one-dimensional Dirac
measure. The model defined the spin-1/2 delay-equation with AK

given by the convolution with the retarded Green’s function in each
particle’s coordinates and interaction kernel given by (2.26) shows
some resemblance of Wheeler-Feynman electrodynamics for the fol-
lowing reason: there are only particles but no electrodynamic field,
the particles interact with each other along light-like distances, and
the particles do not interact with themselves.
Summarizing, we gave a heuristic line of arguments motivating the
class of spin-1/2 and spin-0 delay-equations and a special choice of
interaction kernel (2.26) and (2.27), respectively. In this thesis we will
study a spin-1/2 delay-equation with regular interaction kernel and a
spin-0 delay-equation incorporating (2.27). As mentioned in the be-
ginning of this section, there are only very few results on spin-1/2
and spin-0 delay-equations. The reason for this is that for these types
of equations the theory of one-parameter unitary groups cannot be
applied. Furthermore, the integrals on the right-hand side of these
equations involve the delayed wave function with arbitrarily large de-
lay. As for the theory of delayed differential equations, it is interesting
to study existence and uniqueness of solutions as well as dependence
on initial data. We will review the mathematical results which are for
our purposes most relevant in the next subsection before we move on
to the new results of this thesis and [66, 67].
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2.1.2 Previous Mathematical Results on Directly
Interacting Particles

In this subsection we summarize previous important mathematical ex-
istence results on spin-0 delay-equations introduced in nomenclature 1
as well as generalizations of them to curved spacetime. To the best
of my knowledge there are no mathematical existence results on spin-
1/2 delay-equations prior to the one of Lienert and myself in [67]. The
results we are going to cover are taken from [64] and [70]. Mentioned
below are only the theorems that are about a four dimensional space-
time; however, there are also results concerning lower dimensions; the
interested reader is referred to [64, 70]. Since not much is known about
the mathematical properties of spin-1/2 and spin-0 delay-equations the
first results on spin-0 delay-equations will be subject to the following
modifications:

(A) The physical motivation for equation (2.22) was given for ψ de-
fined on all of Minkowski spacetime. All the rigorous results
concerning vanishing curvature so far are about the domain
R`0 ˆ R3 “: M`

0 . That is, there is a beginning in time. This
modification has technical reasons. However, it may be justified
on physical grounds as current cosmological models also have
a beginning in time. In order to give this reasoning additional
weight the existence and uniqueness result was also proved on
Friedmann-Lemaître-Robertson-Walker (FLRW) spacetime. In
sections 2.2 and 2.3 we provide results on this spacetime for the
same reason. In the Klein-Gordon case the form of AK is then
given by Duhamel’s principle [33] i.e.

AKψpx1, x2q “

ż x0
2

0

dx11
0

ż x0
2

0

dx12
0
upx1, x2;x11

0
, x12

0
q, (2.28)
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where up¨, ¨;x11
0, x12

0
q is a solution to the homogeneous Klein-

Gordon equation in the first and second arguments on the do-
main tpx1, x2q P R8 | x0

1 ě x11
0
^ x0

2 ě x12
0
u subject to the

boundary conditions

upx1, x2;x11
0
, x12

0
q|x0

j“x
1
j
0 “ 0, (2.29)

Bx0
j
upx1, x2;x11

0
, x12

0
q|x0

j“x
0
j
1 “ Ujpx1, x2;x1

j̃

0
q|x0

j“x
0
j
1 , (2.30)

for j P t1, 2u and j̃ “ 3 ´ j, where Uj is again a solution of the
Klein-Gordon equation with boundary conditions:

plxj̃
`m2

j̃
qUjpx1, x2;x

10
j̃
q “ 0, (2.31)

Ujpx1, x2;x1
j̃

0
q|x0

j“x
0
j
“ 0, (2.32)

Bx0
j̃
Ujpx1, x2;x11

0
, x12

0
q|x0

j̃
“x1

j̃

0 “ Kpx1, x2qψpx1, x2q. (2.33)

Plugging in the formula for solutions to the Klein-Gordon equa-
tion in terms of the propagator and initial conditions and using
that the propagator agrees with the retarded Green’s function
on the domain [10, 11, 12] of integration yields

AKψpx1, x2q “

ż x0
2

0

dx11
0

ż x0
2

0

dx12
0

ż

d3~x11

ż

d3~x12 (2.34)

Gret
1 px

1
1qG

ret
2 px

1
2qKpx1 ´ x

1
1, x2 ´ x

1
2qψpx1 ´ x

1
1, x2 ´ x

1
2q,

the expressions for the operator given in the theorems below and
also in section 2.2. Note that for regular enough Kψ one can
exchange differentiation and integration and the properties of
the propagator to directly verify

plx1 `m
2
1qplx2 `m

2
2qpA

Kψqpx1, x2q “ Kpx1, x2qψpx1, x2q.
(2.35)

In section 2.3 we will modify this expression to make it a solution
of the inhomogeneous Dirac equation.
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(B) The interaction kernel K is replaced by various classes of less
singular objects. These classes do not include the singular inter-
action kernel proportional to δppx1 ´ x2q

2q motivated in the last
subsection. This modification is purely technical, and we do not
justify it. In section 2.3, where we treat Dirac particles, we will
also use a rather regular interaction kernel compared to (2.26).
The new result about Klein-Gordon particles presented in sec-
tion 2.2 employs the fully singular δppx1 ´ x2q

2q kernel.

The space B to be defined below provides the solution sense for the
following existence and uniqueness results.

Definition 1. For T ą 0, we define the Bochner space
B :“ L8pr0, T s2, L2pR6,Cqq, where L8pX, Y q and L2pX, Y q are the
spaces of essentially bounded and square integrable functions from X
to Y , respectively. That is, the Bochner space is the space of measur-
able functions from r0, T s2 to the space of measurable square integrable
functions from R6 to C with essentially finite L2 norm, i.e. @f P B :

ess sup
pt1,t2qPr0,T s2

}fpt1, t2, ¨q}
2
2 :“

inf
σĂr0,T s2

λpσq“0

sup
pt1,t2qPr0,T s2zσ

ż

R6

d6x|fpt1, t2, xq|
2
ă 8, (2.36)

where λ is the Lebesgue measure.

Theorem 2 (theorem 3.4 pd “ 3q of [72]). Let T ą 0, λ P C, for every
essentially bounded K : R8 Ñ C and every ψfree P B the equation
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ψpt1, ~x1, t2, ~x2q “ ψfree
pt1, ~x1, t2, ~x2q `

λ

p4πq2

ż

d3~x11d
3~x12

ˆ
Hpt1 ´ |~x1 ´ ~x

1
1|q

|~x1 ´ ~x11|

Hpt2 ´ |~x2 ´ ~x
1
2|q

|~x2 ´ ~x12|

ˆKpt1 ´ |~x1 ´ ~x
1
1|, ~x

1
1, t2 ´ |~x2 ´ ~x

1
2|, ~x

1
2q

ˆ ψpt1 ´ |~x1 ´ ~x
1
1|, ~x

1
1, t2 ´ |~x2 ´ ~x

1
2|, ~x

1
2q

has a unique solution ψ P B, where H is the Heaviside step function.

Theorem 3 (theorem 3.5 of [72]). Let T ą 0, λ P C, for every essen-
tially bounded f : R8 Ñ C and every ψfree P B the equation

ψpt1, ~x1, t2, ~x2q “ ψfree
pt1, ~x1, t2, ~x2q `

λ

p4πq2

ż

d3~x11d
3~x12

ˆ
Hpt1 ´ |~x1 ´ ~x

1
1|q

|~x1 ´ ~x11|

Hpt2 ´ |~x2 ´ ~x
1
2|q

|~x2 ´ ~x12|

ˆ
fpt1 ´ |~x1 ´ ~x

1
1|, ~x

1
1, t2 ´ |~x2 ´ ~x

1
2|, ~x

1
2q

|~x11 ´ ~x1|

ˆ ψpt1 ´ |~x1 ´ ~x
1
1|, ~x

1
1, t2 ´ |~x2 ´ ~x

1
2|, ~x

1
2q,

has a unique solution ψ P B.

The next results are about the open FLRW spacetime. There are also
results about the closed FLRW universe which we omit here. The
reader is referred to [70, theorem 4.3]. We have to introduce some
notation before we can present the next results. In order to do so we
follow [66, sec 3.3].
We consider particles on a flat (FLRW) spacetime M which admits a
global coordinate chart x ÞÑ pη, ~xq P R` ˆ R3. The metric g in these
coordinates at the point x is given by

gxpv1, v2q “ a2
pηqpv0

1v
0
2 ´ ~v1 ¨ ~v2q
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for all tangent vectors v1, v2 P TxM, i.e. the metric at every point is
a multiple of the Minkowski metric. The global time coordinate η is
called conformal time, and the scale function a : R` Ñ R is continuous
with limηÑ0 apηq “ 0 and apηq ą 0 for all η. In this spacetime the free
wave equation takes the form

plg ´R{6qχpxq “ 0, (2.37)

where R denotes the Ricci scalar and the Laplace Beltrami operator
acts on scalar functions χ on M as

lgχ “
1

a

| det g|
Bα

´

a

| det g|gα,βBβχ
¯

. (2.38)

The retarded and symmetric Green’s functions of equation (2.37) are
given by

Gret
Mpx, x

1
q “

1

4π

1

apηqapη1q

δpη ´ η1 ´ |~x´ ~x 1|q

|~x´ ~x 1|
(2.39)

Gsym
M px, x1q “

1

4π

1

apηqapη1q
δppη ´ η1q2 ´ |~x´ ~x 1|2q. (2.40)

This form may be derived exploiting the conformal equivalence of
FLRW spacetime and Minkowski spacetime, see [70, 58] for details.
The generalization of (2.22) to FLRW spacetime is straightforward: ψ
becomes a scalar function on M ˆM, one exchanges the Minkowski
spacetime volume element with

dV pxq “ a4
pηq dη d3~x, (2.41)

where the one-forms on the right-hand side are the canonical ones in
these coordinates and the product of one-forms is to be understood
as a wedge product. Equation (2.41) gives the invariant 4-volume
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form on M. As in the Minkowski case, the interaction kernel is given
by the symmetric Green’s function. With this, the generalization of
equation (2.22) with kernel (2.27) turns into:

ψpx, yq “ ψfree
px, yq`λ

ż

MˆM
dV pxq dV pyq Gret

Mpx, x
1
qGret

Mpy, y
1
q

ˆGsym
M px1, y1qψpx1, y1q. (2.42)

For regular and only weakly singular interaction kernels Kpx1, y1q in-
stead of Gsympx1, y1q, the problem of existence and uniqueness of solu-
tions of this equation has been treated in [70]:

Theorem 4 (theorem 4.1 of [70]). Let T ą 0, λ P C. Furthermore,
let a : r0,8q Ñ r0,8q be a continuous function with ap0q “ 0 and
apηq ą 0 for η ą 0, and K̃ : pr0,8q ˆ R3q2 Ñ C be essentially
bounded. Then for every ψfree with apη1qapη2qψ

free P B, the respective
integral equation on the 4´dimensional flat FLRW universe with scale
function apηq:

ψpη1, ~x1, η2, ~x2q “ ψfree
pη1, ~x1, η2, ~x2q `

λ

p4πq2apη1qapη2q
(2.43)

ˆ

ż

d~x11d~x
1
2a

2
pη1 ´ |~x1 ´ ~x

1
1|qa

2
pη2 ´ |~x2 ´ ~x

1
2|q

ˆ
Hpη1 ´ |~x1 ´ ~x

1
1|q

|~x1 ´ ~x11|

Hpη2 ´ |~x2 ´ ~x
1
2|q

|~x2 ´ ~x12|

ˆ K̃pη1 ´ |~x1 ´ ~x
1
1|, ~x

1
1, η2 ´ |~x2 ´ ~x

1
2|, ~x

1
2q

ˆ ψpη1 ´ |~x1 ´ ~x
1
1|, ~x

1
1, η2 ´ |~x2 ´ ~x

1
2|, ~x

1
2q

has a unique solution ψ for apη1qapη2qψ P B.

Theorem 5 (theorem 4.2 of [70]). Let f : pr0,8s ˆ R3q2 Ñ C be a
bounded function. Then, under the same assumptions as in theorem 4
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but with

K̃pη1, ~x1, η2, ~x2q “
fpη1, ~x1, η1, ~x2q

|~x1 ´ ~x2|
, (2.44)

the integral equation (2.43) has a unique solution ψ for apη1qapη2qψ P
B.

2.2 Singular light cone interactions of
spin-less particles

This section is based on the preprint [66] which is the result of joint
work with Matthias Lienert. We prove existence and uniqueness of
solutions of the spin-0 delay-equation (2.22) where the solution of the
inhomogeneous Klein-Gordon equation in the operator AK is given by
the expression in the previous subsection 2.1.2 obtained by Duhamel’s
principle to accommodate solutions on M`

0 and the interaction kernel
given by (2.27). In contrast to the results of subsection 2.1.2 the equa-
tion will not be subject to the assumption (B). Additionally, we will
extend the result to an arbitrary number of particles. This extension
is not the only possible one; however, we choose the extension called
most promising in [64]. In order to justify the treatment on the half-
space M`

0 , i.e. the cut-off in time, we extend the one-particle result to
the FLRW spacetime, where the cut-off appears naturally.

2.2.1 Overview

This subsection is structured as follows. In subsection 2.2.2 it is shown
how to precisely define the integral operator AK in equation (2.22),
i.e. by giving meaning to the delta distributions. Subsection 2.2.3
contains our main results: theorem 14 shows that in the case of mass-
less particles solutions grow at most exponentially in time. Our main
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result is theorem 15, an existence and uniqueness theorem for the full
(massive) case.
Subsection 2.2.3.2 deals with generalizing this existence and unique-
ness theorem to N scalar particles; the corresponding theorem, the-
orem 16, is a direct consequence of theorem 15. To the best of the
knowledge of Lienert and the author, this is the first rigorous result
about a multi-time integral equation for N -particles.
In Subsection 2.2.3.3 we show, as discussed above, also in this case it is
possible to extend the analysis from M`

0 to FLRW spacetime. That is,
we show the equivalent result of [70] for singular light cone interactions.
The respective existence and uniqueness theorem is theorem 18.
Subsection 2.2.4 contains the proofs.

2.2.2 Precise formulation of equation (2.22)

In the following, we show how to precisely define the integral operator
in spin-0 delay-equation (2.22) with simplifying assumption (A) and
interaction kernel (2.27).
It is necessary to take special care of the definition of the integral op-
erator as it contains certain combinations (convolutions and products)
of distributions (the Green’s functions). First, our strategy is to con-
sider the integral operator acting on Schwartz space S :“ SppM`

0 q
2q

where its action can be defined straightforwardly. Later it will be
shown that it is bounded on test functions with respect to a suitably
chosen weighted norm. This will make it possible to linearly extend
the integral operator to the completion of S with respect to that norm.
The retarded Green’s function of the Klein-Gordon equation with mass
m P R`0 is given by:

Gret
pxq “

1

4π|~x|
δpx0

´ |~x|q ´
m

4π
Hpx0

´ |~x|q
J1pm

?
x2q

?
x2

(2.45)
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where J1 is the Bessel function of the first kind of order one. Then,
with Kpx, yq “ λ

4π
δppx ´ yq2q, our integral equation (2.22) on pM`

0 q
2

turns into:
ψ “ ψfree

` Aψ (2.46)

where A “ A0 ` A1 ` A2 ` A12 and

pA0ψqpx, yq “
λ

p4πq3

ż x0

0

x1
0

ż

R3

d3~x 1
ż y0

0

dy1
0

ż

R3

ˆ
δpx0 ´ x10 ´ |~x´ ~x 1|q

|~x´ ~x 1|

δpy0 ´ y10 ´ |~y ´ ~y 1|q

|~y ´ ~y 1|

ˆ δppx1 ´ y1q2qψpx1, y1q, (2.47)

pA1ψqpx, yq “ ´
λm1

p4πq3

ż x0

0

dx1
0

ż

d3~x 1
ż y0

0

dy1
0

ż

d3~y 1

ˆHpx0
´ x1

0
´ |~x´ ~x 1|q

J1pm1

a

px´ x1q2q
a

px´ x1q2

ˆ
δpy0 ´ y10 ´ |~y ´ ~y 1|q

|~y ´ ~y 1|
δppx1 ´ y1q2qψpx1, y1q (2.48)

pA2ψqpx, yq “ ´
λm2

p4πq3

ż x0

0

dx1
0

ż

d3~x 1
ż y0

0

dy1
0

ż

d3~y 1

ˆ
δpx0 ´ x10 ´ |~x´ ~x 1|q

|~x´ ~x 1|
Hpy0

´ y1
0
´ |~y ´ ~y 1|q

ˆ
J1pm2

a

py ´ y1q2q
a

py ´ y1q2
δppx1 ´ y1q2qψpx1, y1q (2.49)

pA12ψqpx, yq “
λm1m2

p4πq3

ż x0

0

dx1
0

ż

d3~x 1
ż y0

0

dy1
0

ż

d3~y 1

ˆHpx0
´ x1

0
´ |~x´ ~x 1|q

J1pm1

a

px´ x1q2q
a

px´ x1q2
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ˆHpy0
´ y1

0
´ |~y ´ ~y 1|q

J1pm2

a

py ´ y1q2q
a

py ´ y1q2

ˆ δppx1 ´ y1q2qψpx1, y1q. (2.50)

We now manipulate these expressions in a heuristic way such that
the end results can be given a precise meaning on test functions. Let
ψ P S.

2.2.2.1 Rigorous definition of A0.

We consider the massless term A0 first which is also the most singu-
lar term. Using the delta distributions to dauntlessly eliminate the
integration over x10 and y10 results in:

pA0ψqpx, yq “
λ

p4πq3

ż

Bx0 p~xq

d3~x 1
ż

By0 p~yq

d3~y 1

ˆ
δppx0 ´ y0 ´ |~x 1| ` |~y 1|q2 ´ |~x´ ~y ` ~x 1 ´ ~y 1|2q

|~x 1||~y 1|

ˆ ψpx` x1, y ` y1q|x10“´|~x 1|, y10“´|~y 1|, (2.51)

Note that no complications arose because of the finite size of the in-
tegration domain on the two time dimensions. There is still one more
delta distribution left. We choose to use it to eliminate |~x 1| “: r. It is
convenient to introduce the vector

b “ x´ y ´ p´|~y 1|, ~y 1q. (2.52)

Then, the argument of the delta distribution can be written as:

pb0
´ |~x 1|q2 ´ |~b` ~x 1|2. (2.53)

This expression has a root in r for

r “ r˚ :“
1

2

b2

b0 ` |~b| cosϑ
(2.54)
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where ϑ is the angle between ~b and ~x 1. Of course, r˚ inherits the
restrictions of the range of r, thus, a valid root must fulfil

0 ă r˚ ă x0. (2.55)

The requirement 0 ă r˚ can be satisfied in two cases, either b2 ą 0
and b0 ą 0, or b2 ă 0 and cosϑ ă ´ b0

|~b|
. Using these restrictions, the

condition r˚ ă x0 can be converted into a restriction of the domain of
integration in ϑ:

1

2

b2

b0 ` |~b| cosϑ
ă x0

ðñ sgnpb2
qb2

ă 2x0 sgnpb2
qpb0

` |~b| cosϑq

ðñ
|b2|

2x0|~b|
´

sgnpb2qb0

|~b|
ă sgnpb2

q cosϑ

ðñ

#

cosϑ ą b2

2x0|~b|
´ b0

|~b|
, for b2 ą 0

cosϑ ă b2

2x0|~b|
´ b0

|~b|
, for b2 ă 0.

(2.56)

In case of b2 ă 0, the new restriction on cosϑ is stricter than cosϑ ă
´ b0

|~b|
; we thus use it to replace the latter. We evaluate the delta distri-

bution using spherical coordinates in ~y 1 and the usual rule

δpfpzqq “
ÿ

z˚:fpz˚q“0

δpz ´ z˚q

|f 1pz˚q|
, (2.57)

where fprq “ pb0 ´ rq2 ´ p~b ` x1q2 “ ´pr ´ r˚q2pb0 ` |~b| cosϑq. The
result is an expression for A0ψ which does not contain distributions
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any more:

pA0ψqpx, yq “
λ

p4πq3

ż

By0 p~yq

d3~y 1
ż 2π

0

dϕ

ż 1

´1

dcosϑ
|b2|

4pb0 ` |~b| cosϑq2|~y 1|
ˆ

1b2ą01b0ą01
cosϑą b2

2x0|~b|
´ b0

|~b|

` 1b2ă01
cosϑă b2

2x0|~b|
´ b0

|~b|

˙

ψpx`x1, y `y1q,

(2.58)

still subject to x10 “ ´r˚ “ ´|~x 1|, y10 “ ´|~y 1|. The different cases for
b have been implemented through the various indicator functions.

Definition 6. We define the operator A0 : S Ñ Bw, ψ ÞÑ A0ψ accord-
ing to (2.58), where Bw is defined in (2.65) and equality is to be read
as equality in Bw. Well-definedness and boundedness will be shown in
theorem 14 and 15.

2.2.2.2 Rigorous definition of A1.

Next, we turn to the definition of A1, starting from the heuristic ex-
pression (2.48). We first split up the delta distribution of the interac-
tion kernel according to (2.57). Then we use δpy0 ´ y10 ´ |~y ´ ~y 1|q to
eliminate y10 p“ y0 ´ |~y ´ ~y 1|q. Note that the order of these two steps
does not matter. This yields:

pA1ψqpx, yq “ ´
λm1

2p4πq3

ż 8

0

dx1
0

ż

d3~x 1
ż

d3~y 1 Hpx0
´ x1

0
´ |~x´ ~x 1|q

ˆ
J1pm1

a

px´ x1q2q
a

px´ x1q2
Hpy0 ´ |~y ´ ~y 1|q

|~y ´ ~y 1|

1

|~x 1 ´ ~y 1|
”

δpx1
0
´ y0

`|~y ´ ~y 1|´|~x 1´~y 1|q `δpx1
0
´ y0

`|~y ´ ~y 1|`|~x 1 ´ ~y 1|q
ı

ˆ ψpx1, y0
´ |~y ´ ~y 1|, ~y 1q. (2.59)
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Finally, we use the remaining delta distribution to eliminate x10. We
obtain:

pA1ψqpx, yq “ ´
λm1

2p4πq3

ż

d3~x 1
ż

d3~y 1
Hpy0 ´ |~y ´ ~y 1|q

|~y ´ ~y 1|

1

|~x 1 ´ ~y 1|
«

Hpx1
0
qHpx0

´ x1
0
´ |~x´ ~x 1|q

ˆ
J1pm1

a

px´ x1q2q
a

px´ x1q2
ψpx1, y1q

ˇ

ˇ

ˇ

ˇ y10“y0´|~y´~y 1|,

x10“y0́ |~y´~y 1 |̀ |~x 1 ~́y 1|

` Hpx1
0
qHpx0

´ x1
0
´ |~x´ ~x 1|q

ˆ
J1pm1

a

px´ x1q2q
a

px´ x1q2
ψpx1, y1q

ˇ

ˇ

ˇ

ˇ y10“y0´|~y´~y 1|,

x10“y0́ |~y´~y 1 |́ |~x 1 ~́y 1|

ff

. (2.60)

Note that the domain of integration is effectively finite due to the
Heaviside functions.

Definition 7. We define the operator A1 : S Ñ Bw, ψ ÞÑ A1ψ accord-
ing to (2.60), equality is to be read as equality in Bw. Well-definedness
and boundedness will be shown in theorem 15.

2.2.2.3 Rigorous definition of A2.

Starting from (2.49), the analogous steps as for A1 yield:

pA2ψqpx, yq“´
λm2

2p4πq3

ż

d3~x 1
ż

d3~y 1
Hpx0 ´ |~x´ ~x 1|q

|~x´ ~x 1|

1

|~x 1 ´ ~y 1|
«

Hpy1
0
qHpy0

´ y1
0
´ |~y ´ ~y 1|q

ˆ
J1pm2

a

py ´ y1q2q
a

py ´ y1q2
ψpx1, y1q

ˇ

ˇ

ˇ

ˇ x10“x0´|~x´~x 1|,

y10“x0´|~x´~x 1 |̀ |~x 1 ~́y 1|
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` Hpy1
0
qHpy0

´ y1
0
´ |~y ´ ~y 1|q

ˆ
J1pm2

a

py ´ y1q2q
a

py ´ y1q2
ψpx1, y1q

ˇ

ˇ

ˇ

ˇ x10“x0´|~x´~x 1|,

y10“x0´|~x´~x 1 |́ |~x 1 ~́y 1|

ff

. (2.61)

Definition 8. We define the operator A2 : S Ñ Bw, ψ ÞÑ A2ψ accord-
ing to (2.61), equality is to be read as equality in Bw. Well-definedness
and boundedness will be shown in theorem 15.

2.2.2.4 Rigorous definition of A12.

Here, we start with (2.50). We change variables p~x 1, ~y 1q ÞÑ p~x 1, ~z “
~x 1´~y 1q (Jacobi determinant “ 1), with the goal of using the remaining
delta distribution to eliminate |~z| “ |~x 1 ´ ~y 1| in mind. We find:

pA12ψqpx, yq “
λm1m2

p4πq3

ż 8

0

dx1
0

ż

d3~x 1
ż 8

0

dy1
0

ż

d3~zHpx0
´x1

0
´|~x´ ~x 1|q

ˆ
J1pm1

a

px´ x1q2q
a

px´ x1q2
Hpy0

´ y1
0
´ |~y ´ ~x 1 ` ~z|q

ˆ
J1pm2

a

py ´ y1q2q
a

py ´ y1q2
δppx1

0
´ y1

0
q
2
´ |~z|2qψpx1, y1q

ˇ

ˇ

ˇ

~y 1“~x 1´~z
. (2.62)

Now we use spherical coordinates for ~z and eliminate |~z| through the
delta distribution, using

δppx1
0
´ y1

0
q
2
´ |~z|2q “

1

2|~z|
δp|x01

´ y01
| ´ |~z|q. (2.63)
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This yields:

pA12ψqpx, yq “
λm1m2

2p4πq3

ż 8

0

dx1
0

ż

d3~x 1
ż 8

0

dy1
0

ż 2π

0

dϕ

ż π

0

dϑ

ˆ sinpϑq|x1
0
´ y1

0
|Hpx0

´ x1
0
´ |~x´ ~x 1|q

J1pm1

a

px´ x1q2q
a

px´ x1q2

ˆHpy0
´y1

0
´ |~y´~x 1`~z|q

J1pm2

a

py´y1q2q
a

py´y1q2
ψpx1, y1q

ˇ

ˇ

ˇ

~y 1“~x 1´~z, |~z|“|x01´y01|
.

(2.64)

Note that the domain of integration is again effectively finite.

Definition 9. We define the operator A12 : S Ñ Bw, ψ ÞÑ A12ψ
according to (2.64), equality is to be read as equality in Bw. Well-
definedness and boundedness will be shown in theorem 14 and 15.

Definition 10. Finally, A : S Ñ Bw is defined as the sum of the
individual A operators A “ A0 ` A1 ` A2 ` A12.

After we prove that A is well-defined, we will have collected rigor-
ous definitions of the ingredients of equation (2.22) on test functions.
However, this is not sufficient for our strategy of construction of solu-
tions. For a fixed point argument we need A to be defined at least on
the image ApSq, more convenient is to lift A to a Banach space.

2.2.2.5 Lifting A from test functions to a suitable Banach
space.

In order to prove the existence and uniqueness of solutions of the
integral equation ψ “ ψfree ` Aψ, we will define the operator A not
only on test functions but on a suitable Banach space which includes
(at least) sufficiently many solutions ψfree of the free multi-time Klein-
Gordon equations, plk`m

2
kqψ

freepx1, x2q “ 0, k “ 1, 2. We shall define
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this Banach space as the completion of S with respect to a suitable
norm. A good choice which works well for the upcoming existence and
uniqueness proofs is the class of weighted L8-norms.

Definition 11. Let w : R`0 Ñ R` be a monotonically increasing
function such that 1{w is bounded. Then our Banach space is given
by the completion

Bw “ S}¨}w (2.65)

with respect to the norm } ¨ }w : S Ñ R,

}ψ}w :“ ess sup
x,yPM`0

|ψpx, yq|

wpx0qwpy0q
. (2.66)

Our next goal is to find a weight function w such that the operator A
is not only bounded but even defines a contraction on Bw. By linear
extension, it is sufficient to estimate }Aψ}w on test functions ψ P S.
Before we move on to the main results of this section and its proofs,
we remark on the choice of space.

Remarks: 1. We have attempted to use a Bochner space, L8 in
the times and L2 in the space variables. However, we did not
succeed in obtaining suitable estimates for that case. This might
not be a problem in principle, but its treatment would require
further technical innovation. More precisely, one would need to
understand integral operators such as (2.58) whose kernel is in
L1 but not in L2.

2. Nevertheless, our definition of Bw contains a large class of free
solutions of the Klein-Gordon equation. As the Klein-Gordon
equation preserves boundedness, all bounded initial data for ψfree

lead to a free solution ψfree P Bw which can be used as an input
to our integral equation.
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2.2.2.6 Rigorous formulation of N particle problem

While there are different possibilities to generalize the two-particle
integral equation (2.22), we focus on the one advocated in [64] as the
most promising. For

ψ :
`

M`
0

˘N
Ñ C, px1, ..., xNq ÞÑ ψpx1, ..., xNq (2.67)

we consider the integral equation

ψpx1, ..., xNq “ ψfree
px1, ..., xNq `

λ

4π

ÿ

i,j“1,...,N ; iăj

(2.68)

ˆ

ż

M`0
d4xi

ż

M`0
d4xj G

ret
pxi ´ x

1
iqG

ret
pxj ´ x

1
jq

ˆ δppx1i ´ x
1
jq

2
qψpx1, ..., xi, ..., xj, ..., xNq.

Here, ψfree is again a solution of the free Klein-Gordon equations plk`

m2
kqφpxkq in each spacetime variable.

Equation (2.68) is written down in a heuristic way. Now we come to
its rigorous version.

Definition 12. Let ψ P S
`

pM`
0 q

N
˘

be a test function. Moreover, let
Apijq be the integral operator of definition 10 of the two-particle problem
acting on the variables xi and xj instead of x “ x1 and y “ x2. We
define the space pNqBw as the completion of S

`

pM`
0 q

N
˘

with respect to
the norm

}ψ}w “ ess sup
x1,...,xNPM`0

|ψ|px1, ..., xNq

wpx0
1q ¨ ¨ ¨wpx

0
Nq
, (2.69)

where the function w is defined as before. Finally, we define A :
S
`

pM`
0 q

N
˘

Ñ pNqBw by its action

pNqA “
ÿ

i,j“1,...,N ; iăj

Apijq. (2.70)
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As will be shown below, pNqA can be linearly extended to a bounded
operator on the Banach space pNqBw. Then we take the equation

ψ “ ψfree
`
pNqAψ, (2.71)

to be the rigorous version of (2.68) on pNqBw.

2.2.2.7 Rigorous formulation of the problem on FLRW
spacetime

Recall the formulation of the spin-0 delay-equation (2.22) on FLRW
spacetime, equation (2.42) which upon plugging in the expressions (2.39)
and (2.40) for the Green’s functions becomes

ψpη1,~x1, η2, ~x2q “ ψfree
pη1, ~x1, η2, ~x2q `

λ

p4πq3
1

apη1qapη2q
ż η1

0

dη11

ż

d3~x11

ż η2

0

dη12

ż

d3~x12a
2
pη11qa

2
pη12q

ˆ
δpη1 ´ η

1
1 ´ |~x1 ´ ~x

1
1|q

|~x1 ´ ~x11|

δpη2 ´ η
1
2 ´ |~x2 ´ ~x

1
2|q

|~x2 ´ ~x12|

ˆ δppη11 ´ η
1
2q

2
´ |~x11 ´ ~x

1
2|

2
qψpη11, ~x

1
1, η

1
2, ~x

1
2q. (2.72)

Now let
χpη1, ~x1, η2q “ apη1qapη2qψpη1, ~x1, η2q (2.73)

and χfreepη1, ~x1, η2q “ apη1qapη2qψ
freepη1, ~x1, η2q. Then (2.72) is equiv-

alent to:

χpη1, ~x1, η2, ~x2q“χ
free
pη1, ~x1, η2, ~x2q `

λ

p4πq3

ż η1

0

dη11

ż

d3~x11 (2.74)

ˆ

ż η2

0

dη12

ż

d3~x12
δpη1´η

1
1´|~x1´~x

1
1|q

|~x1´~x11|

δpη2´η
1
2´|~x2´~x

1
2|q

|~x2´~x12|

ˆ apη11qapη
1
2qδppη

1
1´η

1
2q

2
´ |~x11 ´ ~x

1
2|

2
qχpη11, ~x

1
1, η

1
2, ~x

1
2q.
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We can see that this equation has almost exactly the same form as the
massless version of (2.22) on M`

0 (see (2.47)). The only difference is
the additional appearance of the factor apη11qapη12q inside the integrals.

Definition 13. The operator Ã0 : S Ñ Bw is defined using coordinates
x “ pη1, ~xq, y “ pη2, ~yq:

p rA0χqpx, yq“
λ

p4πq3

ż

By0 p~yq

d3~y 1
ż 2π

0

dϕ

ż 1

´1

dcosϑ
|b2|

4pb0 ` |~b| cosϑq2|~y 1|

ˆ apη1 ` η
1
1qapη2 ` η

1
2qχpx` x

1, y ` y1q

ˆ

ˆ

1b2ą01b0ą01
cosϑą b2

2x0|~b|
´ b0

|~b|

` 1b2ă01
cosϑă b2

2x0|~b|
´ b0

|~b|

˙

, (2.75)

with η11 “ ´r˚ “ ´|~x 1|, η12 “ ´|~y 1|. (Here, b and r˚ are defined as
in (2.52) and (2.54), respectively).

We take the equation
χ “ χfree

` rA0χ (2.76)

to be the rigorous version of equation (2.74).

2.2.3 Results

This subsection is structured as follows. Sec. 2.2.3.1 (which is about
the two-particle case) contains the theorems about existence and unique-
ness of solutions which is the main result of Sec. 2.2. Sec. 2.2.3.2 ex-
tends these results to the N -particle case and in Sec. 2.2.3.3 we show
that a curved spacetime with a Big Bang singularity can provide a
natural reason for a cut-off in time.

2.2.3.1 The two-particle case

Theorem 14 (Bounds for A0 and wptq “ eγt; existence of massless
dynamics.).



2.2. SINGULAR LIGHT CONE INTERACTIONS OF SPIN-LESS
PARTICLES 31

For any γ ą 0, let wptq “ eγt. Then A0 can be linearly extended to a
bounded operator on Bw with norm

}A0} ď
λ

8πγ2
. (2.77)

Consequently, for all γ ą
b

λ
8π
, the integral equation ψ “ ψfree ` A0ψ

has a unique solution ψ P Bw for every ψfree P Bw.

Now we come to our main result.

Theorem 15 (Existence of dynamics in the massive case.).
For any α ą 0, let

wptq “ p1` αt2qeαt
2{2. (2.78)

Then A0, A1, A2 and A12 can be linearly extended to bounded operators
on Bw with norms

}A0} ď
λ

32π

1

α
, (2.79)

}A1} ď
5λm2

1

16π

1

α2
, (2.80)

}A2} ď
5λm2

2

16π

1

α2
, (2.81)

}A12} ď
λm2

1m
2
2

80π

1

α3
. (2.82)

Consequently, for all α ą 0 with

λ

8πα

ˆ

1

4
`

5pm2
1 `m

2
2q

2

1

α
`
m2

1m
2
2

10

1

α2

˙

ă 1, (2.83)

the integral equation ψ “ ψfree `Aψ has a unique solution ψ P Bw for
every ψfree P Bw.
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The proof can be found in Sec. 2.2.4.3.

Remarks: 1. Comparison of theorem 14 and 15 in the massless
case. At the first glance, the result of theorem 14 looks stronger
in the sense that for wptq “ eγt, the estimate of }A0} goes with
γ´2 while for wptq “ p1 ` αt2qeαt

2{2, the estimate of }A0} goes
with α´1. However, one should note that γ is the constant in
front of t while α occurs in combination with t2. Thus, if one
wants to draw a comparison between these different cases at
all, then it should be between γ and

?
α. Of course, the main

difference between the two theorems is the admitted growth rate
of the solutions. In this regard, theorem 14 contains the stronger
statement.

2. A physically realistic value of λ is 1
137

, the value of the fine struc-
ture constant. In that case, α need not even be particularly large
in order for condition (2.83) to be satisfied.

3. Initial value problem. By the integral equation (2.22), we obtain
that the solution ψ satisfies ψp0, ~x, 0, ~yq “ ψfreep0, ~x, 0, ~yq. If
ψfree is a solution of the free multi-time Klein-Gordon equations,
then it is itself determined by initial data at x0

1, x
0
2 “ 0. (As the

Klein-Gordon equation is of second order in time, these initial
data include data for Bx0ψ, By0ψ and Bx0By0ψ, see [77, chap. 5].)
Thus, we find that ψ is determined by these data at x0

1, x
0
2 “ 0

as well. Note that for later times, ψ and ψfree do not, in general,
coincide and consequently a similar statement does not hold.

4. Finite propagation speed. The theorem implies that
ψ “

ř8

k“0A
kψfree. As pAψfreeqpx, yq involves only values of ψfree

in pastpxqˆpastpyq where pastpxq denotes the causal past of x P
M`

0 (see equations (2.58), (2.60), (2.61), (2.64)), so do Akψfree

for all k P N and ψ. Therefore, we obtain: if the initial data for
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ψfree at x0 “ 0 “ y0 are compactly supported in a region R Ă

pt0u ˆ R3q
2, then for all Cauchy surfaces Σ ĂM`

0 , ψ|ΣˆΣ is sup-
ported in the causally grown set
GrpR,Σq “

´

Ť

px,yqPR futurepxq ˆ futurepyq
¯

X pΣ ˆ Σq where
futurepxq stands for the causal future of x PM`

0 .

5. Square integrable solutions. As a consequence of the previous
item, compactly supported and bounded initial data for ψfree lead
to a compactly supported and bounded solution ψ. In particular,
this implies that ψpx0, ¨, y0q lies in L2pR6q for all times x0, y0 ě 0.

2.2.3.2 The N-particle case

With these preparations, we are ready to formulate the N -particle
existence and uniqueness theorem.

Theorem 16 (Existence of dynamics for N particles.).
For any α ą 0, let wptq “ p1` αt2qeαt2{2. Then the operator pNqA can
be linearly extended to a bounded operator on pNqBw with norm

}
pNqA} ď

λ

8πα

ÿ

i,j“1,...,N ; iăj

ˆ

1

4
`

5pm2
i `m

2
jq

2

1

α
`
m2
i m

2
j

10

1

α2

˙

. (2.84)

If α is such that this expression is strictly smaller than one, the integral
equation (2.71) has a unique solution ψ PpNqBw for every ψfree PpNqBw.

The proof follows straightforwardly from that of theorem 15 using

}
pNqA} ď

ÿ

i,j“1,...,N ; iăj

}Apijq}w. (2.85)

For the norms of the operators Apijq, one can use the previous expres-
sions as these operators act only as the identity on variables xk with
k R ti, ju.
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Remark 17. To the best of my knowledge, theorem 16 is the first result
about the existence and uniqueness of solutions of multi-time integral
equations for N particles. While for the present contraction argument
the generalization to N particles has been straightforward, this is not
the case for other works. For example, the Volterra iterations used
in [72] become increasingly complicated with increasing particle num-
ber. For Dirac particles, a similar technique is used section 2.3. How-
ever, as the Dirac Green’s functions contain distributional derivatives,
one has to control weak derivatives of the solutions, and the number
of such derivatives depends on N . That situation also does not allow
for such a straightforward generalization to N particles as has been
possible here.

2.2.3.3 Result on FLRW Spacetime

Recall the rigorous definition 13 of the integral operator in the spin-0
delay-equation on FLRW spacetime (2.76). In terms of these, we can
formulate the respective existence and uniqueness theorem:

Theorem 18 (Existence of dynamics for an open FLRW universe).
Let a : R`0 Ñ R`0 be a continuous function with ap0q “ 0 and apηq ą 0
for η ą 0. Moreover, let

wptq “ exp

ˆ

γ

ż t

0

dτ apτq

˙

. (2.86)

Then, the operator rA0 satisfies the following estimate:

sup
χPSppM`0 q2q

} rA0χ}w
}χ}w

ď
λ

8πγ2
. (2.87)

rA0 can be extended to a linear operator on Bw which satisfies the same
bound. Moreover, for γ ă

b

λ
8π
, the equation χ “ χfree ` rA0χ has a

unique solution χ P Bw for every ψfree P Bw.
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The proof can be found in Sec. 2.2.4.4.

Remarks: 1. Manifest covariance. The theorem shows the exis-
tence and uniqueness of solutions of the manifestly covariant
integral equation (2.42). Our example of a particular FLRW
spacetime thus achieves its goal of demonstrating that a cut-off
in time can arise naturally in a cosmological context.

2. Initial value problem. As in the case of M`
0 , the solution χ

satisfies χp0, ~x, 0, ~yq “ χfreep0, ~x, 0, ~yq where χfree is determined
by the solution ψfree of the free conformal wave equation (2.37)
in both spacetime variables. Since ψfree is determined by initial
data at η1 “ 0 “ η2, so are χfree and χ.

3. Behaviour of ψ towards the Big Bang singularity. While the
transformed wave function χ remains bounded for η1, η2 Ñ 0, the
physical wave function ψpη1, ~x, η2, ~yq “

1
apη1qapη2q

χpη1, ~x, η2, ~yq di-
verges like 1

apη1qapη2q
. This is to be expected, as the Klein-Gordon

equation has a preserved "energy" (given by a certain spatial
integral) and as the volume in ~x, ~y contracts to zero towards the
Big Bang.

4. N-particle generalization. As shown in Sec. 2.2.3.2 for the
Minkowski half-space, it would also be possible to directly ex-
tend theorem 18 to N particles. To avoid duplication, we do not
carry this out explicitly for the curved spacetime example here.

2.2.4 Proofs

For t ě 0, we define the functions:

w0ptq “ wptq,
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and for n P N : wnptq “

ż t

0

dt1wn´1pt
1
q. (2.88)

Note that due to the properties of w, the functions wn are monoton-
ically increasing for all n P N; furthermore, by definition, they satisfy
wnp0q “ 0.
The theorem gives explicit bounds for the operators A0, A1, A2, A12 in
terms of the functionswn and is therefore together with Banach’s fixed
point theorem the main tool leading to the results of subsections 2.2.3,
2.2.3.2 and 2.2.3.3. The proof is the result of the next subsections.

Theorem 19 (Bounds of the integral operators on S.). For all ψ P
SppM`

0 q
2q, the integral operators A0, A1, A2, A12 satisfy the following

bounds:

sup
ψPSppM`0 q2q

}A0ψ}w
}ψ}w

ď
λ

8π

ˆ

sup
tě0

w1ptq

wptq

˙2

, (2.89)

sup
ψPSppM`0 q2q

}A1ψ}w
}ψ}w

ď
λm2

1

16π

„

3

ˆ

sup
tě0

tw1ptq

wptq

˙ˆ

sup
tě0

w2ptq

wptq

˙

` 3

ˆ

sup
tě0

w1ptq

wptq

˙ˆ

sup
tě0

tw2ptq

wptq

˙

` 2

ˆ

sup
tě0

w1ptq

wptq

˙ˆ

sup
tě0

w3ptq

wptq

˙

, (2.90)

sup
ψPSppM`0 q2q

}A2ψ}w
}ψ}w

ď
λm2

2

16π

„

3

ˆ

sup
tě0

tw1ptq

wptq

˙ˆ

sup
tě0

w2ptq

wptq

˙

` 3

ˆ

sup
tě0

w1ptq

wptq

˙ˆ

sup
tě0

tw2ptq

wptq

˙

` 2

ˆ

sup
tě0

w1ptq

wptq

˙ˆ

sup
tě0

w3ptq

wptq

˙

, (2.91)

sup
ψPSppM`0 q2q

}A12ψ}w
}ψ}w

ď
λm2

1m
2
2

96π

„ˆ

sup
tě0

t2w2ptq

wptq

˙ˆ

sup
tě0

tw1ptq

wptq

˙
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`
1

2

ˆ

sup
tě0

t2w3ptq

wptq

˙ˆ

sup
tě0

w1ptq

wptq

˙

.

(2.92)

In case these expressions are finite, A0, A1, A2, A12 extend to linear
operators all of on Bw with the same norms. Our next task is to
find suitable weight functions w such that this is actually the case.
We begin with the massless case where already an exponential weight
function leads to an estimate which remains finite after taking the
supremum. The massive case is treated subsequently; it is a little
more difficult since all the estimates for the operators A0, A1, A2, A12

have to be finite at the same time. This requires a different choice of
weight function (see theorem 15).

2.2.4.1 Proof of Theorem 19

The proof is divided into the proofs of the estimates (2.89), (2.90),
(2.91) and (2.92), respectively. Here, (2.89) is the most singular and
most difficult term which deserves the most attention.
Throughout this subsection, let ψ P SppM`

0 q
2q.

2.2.4.1.1 Estimate of the massless term (2.89). We start with
equation (2.58) and take the absolute value. Using, in addition, that

|ψpx, yq| ď }ψ}wwpx
0
qwpy0

q (2.93)

leads us to:

|A0ψ|px, yqď
λ}ψ}w
4p4πq3

ż

By0 p~yq

d3~y 1
ż 2π

0

dϕ

ż 1

´1

d cosϑ
|b2|

pb0`|~b| cosϑq2|~y 1|

ˆwpy0
´|~y 1|qw

˜

x0
´

1

2

b2

b2 ` |~b| cosϑ

¸
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ˆ

ˆ

1b2ą01b0ą01
cosϑą b2

2x0|~b|
´ b0

|~b|

` 1b2ă01
cosϑă b2

2x0|~b|
´ b0

|~b|

˙

. (2.94)

Next, we observe that the fraction |b2|

pb0`|~b| cosϑq2
is the derivative of the

fraction which occurs in the argument of the second w-function. In-
troducing u “ cosϑ allows us to rewrite (2.94) as

(2.94) “
λ}ψ}w
8p4πq2

ż

By0 p~yq

d3~y 1
ż 1

´1

du2 sgnpb2
q

ˆ Buw1

˜

x0
´

1

2

b2

b0 ` |~b|u

¸

wpy0
´ |~y 1|q

1

|~b||~y 1|
(2.95)

ˆ

ˆ

1b2ą01b0ą01
uą b2

2x0|~b|
´ b0

|~b|

` 1b2ă01
uă b2

2x0|~b|
´ b0

|~b|

˙

“
λ}ψ}w
4p4πq2

ż

By0 p~yq

d3~y 1
ż 1

´1

du Buw1

˜

x0
´

1

2

b2

b0 ` |~b|u

¸

wpy0
´ |~y 1|q

ˆ

¨

˚

˚

˚

˚

˚

˝

1b2ą01b0ą01
uą b2

2x0|~b|
´ b0

|~b|
loooooooooooomoooooooooooon

1

´ 1b2ă01
uă b2

2x0|~b|
´ b0

|~b|
loooooooomoooooooon

2

˛

‹

‹

‹

‹

‹

‚

1

|~b||~y 1|
. (2.96)

This form allows for a direct integration with respect to u. Before we
integrate, we check for both terms 1 and 2 whether the conditions
implicit in the characteristic functions can always be satisfied. (Oth-
erwise, the respective term would not contribute any further, and we
could drop it.) Unfortunately, this results in a tedious treatment in a
case by case manner. Recall that b “ x´ y ´ p´|~y 1|, ~y 1q.
First, we check for term 1 whether in the case b2 ą 0, b0 ą 0 it is
true that 1 ą b2

2x0|~b|
´ b0

|~b|
holds. (The comparison with 1 is due to the
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upper range for u.) We compute

1 ą
b2

2x0|~b|
´
b0

|~b|
ðñ 2x0

|~b| ` 2x0b0
ą b2

ðñ 2x0
pb0
` |~b|q ą pb0

` |~b|qpb0
´ |~b|q

b2ą0,b0ą0
ðñ 2x0

ą b0
´ |~b|

ðñ x0
` y0

´ |~y 1| ą ´|~b|. (2.97)

Now because of |~y 1| ă y0 we see that this inequality always holds
true. Hence, the respective term in (2.96) contributes without further
restrictions.
Next, we turn to the term 2 . Here we check whether b2 ă 0 implies
´1 ă b2

2x0|~b|
´ b0

|~b|
or whether extra conditions are needed. (The compar-

ison with ´1 is due to the lower bound for u.) A similar calculation
yields

´1 ă
b2

2x0|~b|
´
b0

|~b|
ðñ ´2x0

|~b| ` 2x0
|~b| ă b2 (2.98)

ðñ 2x0
pb0
´ |~b|q ă pb0

´ |~b|qpb0
` |~b|q (2.99)

b2ă0
ðñ 2x0

ą b0
` |~b|. (2.100)

This inequality need not always hold, as we can increase |~b| with re-
spect to b0 as much as we like, e.g., by picking |~x´~y| large. Therefore,
in this case, the respective term is only sometimes non-zero. We make
this clear by including the characteristic function 12x0ąb0`|~b|.
Taking these considerations into account, we now carry out the u-
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integration in (2.96):

|A0ψ|px, yq ď
λ}ψ}w
4p4πq2

ż

By0 p~yq

d3~y 1
wpy0 ´ |~y 1|q

|~b||~y 1|

ˆ

˜

1b2ą0,b0ą0

«

w1

˜

x0
´

1

2

b2

b0 ` |~b|

¸

´w1

¨

˝x0
´

1

2

b2

b0 ` |~b|maxp´1, b2

2x0|~b|
´ b0

|~b|
q

˛

‚

ff

(2.101)

´ 1b2ă012x0ąb0`|~b|

«

w1

¨

˝x0
´

1

2

b2

b0 ` |~b|minp1, b2

2x0|~b|
´ b0

|~b|
q

˛

‚

´w1

˜

x0
´

1

2

b2

b0 ´ |~b|

¸ff¸

. (2.102)

The minima and maxima in this expression result from the indicator
functions 1

uą b2

2x0|~b|
´ b0

|~b|

and 1
uă b2

2x0|~b|
´ b0

|~b|

, respectively.

Our next step is to simplify the complicated fractions in (2.101) and
(2.102) involving min and max. For (2.101) we use that 1{maxpa, bq “
minp1{a, 1{bq whenever a, b ą 0 or a, b ă 0 holds. Therefore, we have:

1

2

b2

b0 ` |~b|max
´

´1, b2

2x0|~b|
´ b0

|~b|

¯ “
1

2

b2

max
´

b0 ´ |~b|, b2

2x0

¯

“
1

2
min

˜

b2

b0 ´ |~b|
, 2x0

¸

“ min

˜

b0 ` |~b|

2
, x0

¸

.

The fraction in (2.102) can be simplified by observing that

b0
` |~b|min

˜

1,
b2

2x0|~b|
´
b0

|~b|

¸

“ min

ˆ

b0
` |~b|,

b2

2x0

˙

“
b2

2x0
(2.103)
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as the term contributes only for b2 ă 0 hence b0 ` |~b| ą 0 ą b2{p2x0q.
Thus,

1

2

b2

b0 ` |~b|minp1, b2

2x0|~b|
´ b0

|~b|
q
“ x0. (2.104)

With these simplifications, we obtain for (2.101) and (2.102) (using
w1p0q “ 0):

|A0ψ|px, yq ď
λ}ψ}w
4p4πq2

ż

By0 p~yq

d3~y 1
wpy0 ´ |~y 1|q

|~b||~y 1|

ˆ

˜

1b2ą0,b0ą0

«

w1

˜

x0
´
b0 ´ |~b|

2

¸

´w1

˜

x0
´min

˜

b0 ` |~b|

2
, x0

¸̧ ff

´1b2ă0 12x0ąb0`|~b|

«

w1

`

x0
´ x0

˘

´w1

˜

x0
´
b0 ` |~b|

2

¸ff¸

“
λ}ψ}w
4p4πq2

ż

By0 p~yq

d3~y 1
wpy0´|~y 1|q

|~b||~y 1|
1b2ą0,b0ą0

ˆw1

˜

x0 ` y0 ´ |~y 1| ` |~b|

2

¸

(2.105)

´
λ}ψ}w
4p4πq2

ż

By0 p~yq

d3~y 1
wpy0 ´ |~y 1|q

|~b||~y 1|
1b2ą0,b0ą0

ˆw1

˜

max

˜

x0 ` y0 ´ |~y 1| ´ |~b|

2
, 0

¸¸

(2.106)

`
λ}ψ}w
4p4πq2

ż

By0 p~yq

d3~y 1
wpy0 ´ |~y 1|q

|~b||~y 1|
1b2ă0 1x0`y0´|~y 1|ą|~b|

ˆw1

˜

x0 ` y0 ´ |~y 1| ´ |~b|

2

¸

. (2.107)
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We now want to carry out as many of the remaining ~y 1-integrations as
possible. In order to do so, we orient the coordinates such that ~x´ ~y
is parallel to the p~y 1q3 axis. Then the integrands in (2.105)- (2.107)
are independent of the azimuthal angle ϕ of the respective spherical
coordinate system pρ, θ, ϕq with standard conventions.
In order to perform the remaining angular and then the radial integral,
we need to find out which boundaries for θ and r result from the
characteristic functions. First we analyse for which arguments the
maximum in (2.106) is greater than zero and therefore contributes to
the integral (as w1p0q “ 0). We have:

x0 ` y0 ´ |~y 1| ´ |~b|

2
ą 0

ðñ px0
`y0

´|~y 1|q2 ą |~x´ ~y|2`|~y 1|2`2|~y 1||~x´~y|cos θ

ðñ cos θă
px0`y0q2

2|~y 1||~x´~y|
´
|~x´~y|

2|~y 1|
´
x0`y0

|~x´~y|
“: Px,yp|~y

1
|q. (2.108)

This calculation also helps to reformulate the second indicator func-
tion 1b2ă0 1x0`y0´|~y 1|ą|~b| in (2.107) (for which we have b2 ă 0). The
condition b0 ą 0 in (2.105) and (2.106) is readily seen to be equivalent
to

|~y 1| ą y0
´ x0. (2.109)

In order to perform the θ-integral we have to translate b2 ż 0 into
conditions on θ. We have:

b2
ą 0 ðñ px0

´ y0
` |~y 1|q2 ą |~x´ ~y|2 ` |~y 1|2 ` 2|~y 1||~x´ ~y| cos θ

ðñ cos θ ă
px´ yq2

2|~y 1||~x´ ~y|
`
x0 ´ y0

|~x´ ~y|
:“ Kx´yp|~y

1
|q. (2.110)

With these considerations, we have extracted relatively simple con-
ditions on the boundaries of the integrals in spherical coordinates.
However, if different restrictions of the boundaries conflict with each
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other, it may happen that for some parameter values the domain of
integration is the empty set. We check whether this is so term by
term, focusing on the θ-integration first. For term (2.105), θ needs to
satisfy ´1 ă cos θ ă minp1, Kx´yp|~y

1|qq, so we need to check whether
´1 ă Kx´yp|~y

1|q holds. We have:

´ 1 ă Kx´yp|~y
1
|q

ðñ ´2|~y 1||~x´ ~y| ă px´ yq2 ` 2|~y 1|px0
´ y0

q

ðñ 0 ă px´ yq2 ` 2|~y 1|px0
´ y0

` |~x´ ~y|q

ðñ

#

y0´x0`|~x´~y|
2

ă |~y 1| for |~x´ ~y| ą y0 ´ x0

y0´x0`|~x´~y|
2

ą |~y 1| for |~x´ ~y| ă y0 ´ x0.
(2.111)

Together with (2.109), we obtain the condition y0´x0ă|~y 1|ăy0´x0`|~x´~y|
2

ă y0´x0 in the second case which means that there is no contribution
to the integral. For y0 ´ x0 “ |~x´ ~y| we have Kx´yp|~y

1|q “ ´1 so this
case is also ruled out. So we focus on the first case,

y0 ´ x0 ` |~x´ ~y|

2
ă |~y 1| and |~x´ ~y| ą y0

´ x0, (2.112)

by including the characteristic function 1|~x´~y|ąy0´x0 in the integral.
Next, we turn to the radial integral. By comparing its upper limit
|~y 1| ă y0 and lower limit py0´x0`|~x´~y|q{2, we find that the integral
can only be non-zero for

y0
` x0

ą |~x´ ~y|. (2.113)

For equality the integral vanishes, because the integral domain, while
not empty, is of measure zero. We make this clear by including the
respective characteristic function.
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2.2.4.1.1.1 Simplification of term (2.105). These consider-
ations allow us to continue computing (2.105):

(2.105) “
λ}ψ}w
4p4πq2

1y0`x0ą|~x´~y|

ż y0

maxp0,y0´x0q

dρ

ż 2π

0

dϕ 1 y0´x0`|~x´~y|
2

ăρ

ˆ 1|~x´~y|ąy0´x0

ż minp1,Kx´ypρqq

´1

d cos θ
ρwpy0 ´ ρq

a

|~x´ ~y|2 ` ρ2 ` 2|~x´ ~y|ρ cos θ

ˆw1

˜

x0 ` y0 ´ ρ`
a

|~x´ ~y|2 ` ρ2 ` 2ρ|~x´ ~y| cos θ

2

¸

. (2.114)

Now we carry out the ϕ-integration and use the same trick for the
θ-integral as for the ϑ-integral in the ~x 1-integration earlier. Moreover,
we absorb some restrictions of ρ into the limits of the integrals. This
yields:

(2.105) “
λ}ψ}w
8p4πq

1y0`x0ą|~x´~y|ąy0´x0

ż y0

max
´

0,y0´x0, y
0´x0`|~x´~y|

2

¯

dρ

ż minp1,Kx´ypρqq

´1

dw
2wpy0 ´ ρq

|~x´ ~y|

ˆ Bww2

˜

x0 ` y0 ´ ρ`
a

|~x´ ~y|2 ` ρ2 ` 2ρ|~x´ ~y|w

2

¸

“
λ}ψ}w
4p4πq

1x0`y0ą|~x´~y|ąy0´x0

ż y0

max
´

0,y0´x0, y
0´x0`|~x´~y|

2

d̄ρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

«

w2

˜

x0`y0´ρ`
a

|~x´~y|2`ρ2`2ρ|~x´~y|minp1, Kx´ypρqq

2

¸

´w2

ˆ

x0 ` y0 ´ ρ` ||~x´ ~y| ´ ρ|

2

˙

(2.115)
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The square root can be simplified using the following identity:
b

|~x´ ~y|2 ` ρ2 ` 2ρ|~x´ ~y|Kx´ypρq

“
a

ρ2 ` px0 ´ y0q2 ` 2ρpx0 ´ y0q “ |x0
´ y0

` ρ|. (2.116)

Using this, we can effectively pull the minimum out of the square root.
We obtain:

(2.105)“
λ}ψ}w

16π
1x0`y0ą|~x´~y|ąy0´x0

ż y0

max
´

0,y0´x0, y
0´x0`|~x´~y|

2

d̄ρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

«

w2

ˆ

x0 ` y0 ´ ρ`minp|~x´ ~y| ` ρ, |x0 ´ y0 ` ρ|q

2

˙

´w2

ˆ

x0 ` y0 ´ ρ` ||~x´ ~y| ´ ρ|

2

˙

ff

. (2.117)

Next, we subdivide the conditions in the first indicator function into
two cases, (a) px ´ yq2 ě 0 and (b) px ´ yq2 ă 0. In case (a), the
condition |~x ´ ~y| ą y0 ´ x0 implies x0 ą y0. This, in turn, yields
max

´

0, y0 ´ x0, y
0´x0`|~x´~y|

2

¯

“ 0. Moreover, the condition x0 ` y0 ą

|~x ´ ~y| is automatically satisfied (note that x0, y0 ą 0). In case (b),
the condition |~x´ ~y| ą y0 ´ x0 is automatically satisfied. We find:

(2.105) “
λ}ψ}w

16π
1px´yq2ě0,x0ąy0

ż y0

0

dρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

„

w2

ˆ

x0 ` y0 ` |~x´ ~y|

2

˙

´w2

ˆ

x0 ` y0 ´ ρ` ||~x´ ~y| ´ ρ|

2

˙

`
λ}ψ}w

16π
1px´yq2ă0 1x0`y0ą|~x´~y|

ż y0

y0´x0`|~x´~y|
2

dρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

«

w2

ˆ

x0 ` y0 ´ ρ` |x0 ´ y0 ` ρ|

2

˙
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´w2

ˆ

x0 ` y0 ´ ρ` ||~x´ ~y| ´ ρ|

2

˙

ff

“
λ}ψ}w

16π
1px´yq2ě0,x0ąy0

ż y0

0

dρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

«

w2

ˆ

x0 ` y0 ` |~x´ ~y|

2

˙

´w2max

ˆ

x0 ` y0 ´ |~x´ ~y|

2
,
x0 ` y0 ` |~x´ ~y|

2
´ ρ

˙

ff

`
λ}ψ}w

16π
1px´yq2ă0 1x0`y0ą|~x´~y|

ż y0

y0´x0`|~x´~y|
2

dρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

«

w2max
`

x0, y0
´ ρ

˘

´w2max

ˆ

x0 ` y0 ´ |~x´ ~y|

2
,
x0 ` y0 ` |~x´ ~y|

2
´ ρ

˙

ff

. (2.118)

Here and in the following we abbreviatew2pmaxp¨ ¨ ¨ qq asw2 maxp¨ ¨ ¨ q,
and similarly for the minimum. This ends the calculation of (2.105):
we have arrived at an expression where no more exact calculations can
be done, and further estimates are needed.

2.2.4.1.1.2 Simplification of term (2.106). Next, we pro-
ceed with (2.106) similarly. In case the reader is not interested in the
details of the calculation, the result can be found in (2.126).
The restrictions of the integration variables for (2.106) are the same
as for (2.105), namely:

cos θ ă Kx´yp|~y
1
|q from (2.110), (2.119)
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y0 ´ x0 ` |~x´ ~y|

2
ă |~y 1| from (2.112) (2.120)

y0
´ x0

ă |~x´ ~y| ă y0
` x0 from (2.112) and (2.113). (2.121)

The only difference is that from the maximum in (2.106), we obtain
the additional restriction (2.108), i.e.

cos θ ă Px,yp|~y
1
|q. (2.122)

We need to check if there are new restrictions imposed by Px,yp|~y 1|q ą
´1. We compute

Px,yp|~y
1
|q ą ´ 1 ðñ

px0 ` y0q2

2|~y 1||~x´ ~y|
´
|~x´ ~y|

2|~y 1|
´
x0 ` y0

|~x´ ~y|
ą ´ 1 ðñ

|~y 1| ă
x0 ` y0 ` |~x´ ~y|

2
; (2.123)

however, the last inequality is already ensured by (2.121), x0 ą 0 and
|~y1| ă y0. In order to be able to evaluate (2.106) further, we next plug
the condition cos θ ă Px,yp|~y

1|q into the expression for |~b|. This yields
(recall that we use spherical variables for |~y 1|):

|~b| “
a

|~x´ ~y|2 ` ρ2 ` 2ρ|~x´ ~y| cos θ

ă

b

|~x´ ~y|2 ` ρ2 ` 2ρ|~x´ ~y|Px,ypρq

“
a

ρ2 ´ 2ρpx0 ` y0q ` px0 ` y0q2 “ x0
` y0

´ ρ. (2.124)

With this, we perform for (2.106) the analogous calculation to (2.114)–
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(2.117). This yields:

(2.106) “
λ}ψ}w

16π
1y0´x0ă|~x´~y|ăx0`y0

ż y0

max
´

0,y0´x0, y
0´x0`|~x´~y|

2

d̄ρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

„

w2

ˆ

x0`y0´ρ´minp|~x´~y|`ρ, |x0´y0`ρ|, x0`y0´ρq

2

˙

´w2

ˆ

x0 ` y0 ´ ρ´ ||~x´ ~y| ´ ρ|

2

˙

“
λ}ψ}w

16π
1px´yq2ě0,x0ąy0

ż y0

0

dρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

„

w2

ˆ

x0`y0´|~x´~y|

2
´ρ

˙

´w2

ˆ

x0`y0´ρ´||~x´~y|´ρ|

2

˙

`
λ}ψ}w

16π
1px´yq2ă0 1x0`y0ą|~x´~y|

ż y0

y0´x0`|~x´~y|
2

dρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

„

w2

ˆ

x0`y0´ρ´|x0´y0`ρ|

2

˙

´w2

ˆ

x0`y0´ρ´||~x´~y|´ρ|

2

˙

“
λ}ψ}w

16π
1px´yq2ě0,x0ąy0

ż y0

0

dρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

«

w2

ˆ

x0`y0´|~x´~y|

2
´ρ

˙

(2.125)

´w2min

ˆ

x0`y0´|~x´~y|

2
,
x0`y0`|~x´~y|

2
´ρ

˙

ff

`
λ}ψ}w

16π
1px´yq2ă0 1x0`y0ą|~x´~y|

ż y0

y0´x0`|~x´~y|
2

dρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

«

w2min
`

x0, y0
´ ρ

˘
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´w2min

ˆ

x0`y0´|~x´~y|

2
,
x0`y0`|~x´~y|

2
´ρ

˙

ff

. (2.126)

This ends the calculation of (2.106).

2.2.4.1.1.3 Simplification of term (2.107). We next turn
to (2.107). In case the reader is not interested in the details of
the computation, the result can be found in (2.139). First we note
that the restriction imposed by the first indicator function here is
cos θ ą Kx´yp|~y

1|q and the condition of the second indicator function
is cos θ ă Px,yp|~y

1|q. In order to to satisfy these conditions (and the
restrictions of the regular range of integration) it is required that

maxp´1, Kx´yp|~y
1
|q ă cos θ ă minp1, Px,yp|~y

1
|qq. (2.127)

This leads us to ask which restrictions on |~y 1| are imposed by the
conditions

Kx´yp|~y
1
|q ă 1, (2.128)

Px,yp|~y
1
|q ą ´ 1, (2.129)

Kx´yp|~y
1
|q ă Px,yp|~y

1
|q. (2.130)

These restrictions shall be computed next. With |~y 1| “ ρ, we find:

Kx´yp|~y
1
|q ă 1

ðñ
px´ yq2

2ρ|~x´ ~y|
`
x0 ´ y0

|~x´ ~y|
ă 1

ðñ px´ yq2 ă 2ρpy0
´ x0

` |~x´ ~y|q

ðñ

#

ρ ą y0´x0´|~x´~y|
2

for |~x´ ~y| ą x0 ´ y0,

ρ ă y0´x0´|~x´~y|
2

for |~x´ ~y| ă x0 ´ y0.
(2.131)
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The second case in the last line is in conflict with ρ ą 0, so we have to
impose the first condition on (2.107). We continue with Px,ypρq ą ´1.

Px,ypρq ą ´1

ðñ
px0 ` y0q2

2ρ|~x´ ~y|
´
|~x´ ~y|

2ρ
´
x0 ` y0

|~x´ ~y|
ą ´ 1

ðñ px0
` y0

q
2
´ |~x´ ~y|2 ą 2ρpx0

` y0
´ |~x´ ~y|q

ðñ

#

ρ ă x0`y0`|~x´~y|
2

for x0 ` y0 ą |~x´ ~y|,

ρ ą x0`y0`|~x´~y|
2

for x0 ` y0 ă |~x´ ~y|.
(2.132)

The second case is in conflict with ρ ă y0, so we implement indicator
functions corresponding only to the first case in (2.107). The third
condition Kx´ypρq ă Px,ypρq in fact does not impose any additional
conditions. This can be seen as follows:

Kx´ypρq ă Px,ypρq

ðñ
px´ yq2

2ρ|~x´ ~y|
`
x0 ´ y0

|~x´ ~y|
ă
px0 ` y0q2

2ρ|~x´ ~y|
´
|~x´ ~y|

2ρ
´
x0 ` y0

|~x´ ~y|

ðñ ´ 2x0y0
` 4ρx0

ă 2x0y0

ðñ ρ ă y0, (2.133)

which always holds true.
Taking into account the computed restrictions, we arrive at:

(2.107) cos θ“w
“

λ}ψ}w
4p4πq2

ż 2π

0

dϕ

ż y0

0

dρ

ż 1

´1

dw 1Kx´ypρqăwăPx,ypρq

ˆ 1 y0´x0´|~x´~y|
2

ăρăx0`y0`|~x´~y|
2

wpy0 ´ ρqρ
a

ρ2 ` |~x´ ~y|2 ` 2ρ|~x´ ~y|w

ˆ 1x0´y0ă|~x´~y|ăx0`y0w1

˜

x0`y0´
a

ρ2̀ |~x´~y|2̀ 2ρ|~x´~y|w

2

¸
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“
λ}ψ}w2π

4p4πq2
1x0´y0ă|~x´~y|ăx0`y0

ż min
`

y0,x
0`y0`|~x´~y|

2

˘

max
`

0, y
0´x0´|~x´~y|

2

˘

dρ

ˆ

ż minp1,Px,ypρqq

maxp´1,Kx´ypρqq

dw
´2wpy0 ´ ρq

|~x´ ~y|

ˆ Bww2

˜

x0 ` y0 ´
a

ρ2 ` |~x´ ~y|2 ` 2ρ|~x´ ~y|w

2

¸

“
λ}ψ}w

16π
1x0´y0ă|~x´~y|ăx0`y0

ż min
`

y0,x
0`y0`|~x´~y|

2

˘

max
`

0, y
0´x0´|~x´~y|

2

˘

dρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

«

w2

˜

x0`y0´ρ´
a

ρ2`|~x´~y|2`2ρ|~x´~y|maxp´1, Kx´ypρqq

2

¸

´w2

˜

x0`y0´ρ´
a

ρ2`|~x´~y|2`2ρ|~x´~y|minp1, Px,ypρqq

2

ff̧

. (2.134)

At this point, the expressions look quite formidable. We can, however,
achieve significant simplifications by inserting the functional form of
Kx,ypρq and Px,ypρq as in (2.124) and (2.116). This yields:

(2.107) “

λ}ψ}w
16π

1x0´y0ă|~x´~y|ăx0`y0

ż min

ˆ

y0,x
0`y0`|~x´~y|

2

˙

max
´

0, y
0´x0´|~x´~y|

2

¯

dρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

„

w2

ˆ

x0 ` y0 ´ ρ´maxp||~x´ ~y| ´ ρ|, |x0 ´ y0 ` ρ|q

2

˙

´w2

ˆ

x0 ` y0 ´ ρ´minp|~x´ ~y| ` ρ, x0 ` y0 ´ ρq

2

˙

(2.135)

Now we simplify the arguments of the w2-functions. For the first one,
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we have:

x0
`y0

´ρ´maxp||~x´~y|´ρ|, |x0
´y0

`ρ|q

“ x0
`y0

´ρ´maxp|~x´~y|´ρ, ρ´|~x´~y|, x0
´y0

`ρ, y0
´ρ´x0

q

“ min
`

x0
`y0

´|~x´~y|, x0
`y0

`|~x´~y|´2ρ, 2py0
´ρq, 2x0

˘

. (2.136)

For the second one we get

x0
`y0
´ρ´minp|~x´~y|̀ ρ, x0

`y0
´ρq “ maxpx0

`y0
|́~x´~y|́ 2ρ, 0q. (2.137)

Using this in (2.135), we find:

(2.107) “
λ}ψ}w

16π
1x0´y0ă|~x´~y|ăx0`y0

ż min
`

y0,x
0`y0`|~x´~y|

2

˘

max
`

0, y
0´x0´|~x´~y|

2

˘

dρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

„

w2 min

ˆ

x0`y0´|~x´~y|

2
,
x0`y0`|~x´~y|

2
´ρ, y0

´ρ, x0

˙

´w2 max

ˆ

x0`y0´|~x´~y|

2
´ρ, 0

˙

. (2.138)

As in the consideration below (2.117), we split the expression into
separate terms with px ´ yq2 ż 0. Using y0 ż x0 ` |~x ´ ~y|, we can
simplify the expressions involving the minimum. This results in:

(2.107) “
λ}ψ}w

16π
1px´yq2ě0,y0ąx0

ż
x0`y0`|~x´~y|

2

y0´x0´|~x´~y|
2

dρ
wpy0 ´ ρq

|~x´ ~y|

ˆ

„

w2 min

ˆ

x0`y0`|~x´~y|

2
´ρ, x0

˙

´w2max

ˆ

x0`y0´|~x´~y|

2
´ρ, 0

˙

`
λ}ψ}w

16π
1px´yq2ă0,|~x´~y|ăx0`y0

ż y0

0

dρ
wpy0 ´ ρq

|~x´ ~y|
(2.139)

ˆ

„

w2min

ˆ

x0`y0´|~x´~y|

2
, y0
´ρ

˙

´w2max

ˆ

x0`y0´|~x´~y|

2
´ρ, 0

˙

.

This concludes the calculation of (2.107).
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2.2.4.1.1.4 Summary of the first estimate. We have ob-
tained the following bound for |A0ψ|px, yq:

16π

λ}ψ}w
|A0ψ|px, yq ď 1px´yq2ě0,x0ąy0

ż y0

0

dρ
wpy0 ´ ρq

|~x´~y|

ˆ

«

w2

ˆ

x0`y0`|~x´~y|

2

˙

´w2max

ˆ

x0`y0´|~x´~y|

2
,
x0`y0`|~x´~y|

2
´ρ

˙

ff

` 1px´yq2ă0 1x0`y0ą|~x́ ~y|

ż y0

y0´x0`|~x́ ~y|
2

dρ
wpy0 ´ ρq

|~x´~y|

ˆ

”

w2max
`

x0, y0
´ ρ

˘

´w2max

ˆ

x0`y0´|~x´~y|

2
,
x0`y0` |~x´~y|

2
´ ρ

˙

ff

` 1px´yq2ě0,x0ąy0

ż y0

0

dρ
wpy0 ´ ρq

|~x´~y|

ˆ

«

w2

ˆ

x0 ` y0 ´ |~x´~y|

2
´ ρ

˙

´w2 min

ˆ

x0 ` y0 ´ |~x´~y|

2
,
x0 ` y0 ` |~x´~y|

2
´ρ

˙

ff

` 1px´yq2ă0 1x0`y0ą|~x́ ~y|

ż y0

y0´x0`|~x́ ~y|
2

dρ
wpy0´ρq

|~x´~y|

ˆ

«

w2 min
`

x0, y0
´ ρ

˘
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´w2 min

ˆ

x0 ` y0 ´ |~x´~y|

2
,
x0`y0` |~x´~y|

2
´ ρ

˙

ff

` 1px´yq2ě0,y0ąx0

ż
x0̀ y0̀ |~x́ ~y|

2

y0´x0´|~x́ ~y|
2

dρ
wpy0´ρq

|~x´~y|

ˆ

«

w2 min

ˆ

x0`y0` |~x´~y|

2
´ρ, x0

˙

´w2max

ˆ

x0`y0´|~x´~y|

2
´ρ, 0

˙

ff

` 1px´yq2ă0,|~x́ ~y|ăx0`y0

ż y0

0

dρ
wpy0 ´ ρq

|~x´~y|

ˆ

«

w2 min

ˆ

x0`y0´|~x´~y|

2
, y0
´ρ

˙

´w2max

ˆ

x0`y0´|~x´~y|

2
´ρ, 0

˙

ff

. (2.140)

In order to simplify the notation, we introduce the variables

ξ` :“
x0 ` y0 ` |~x´ ~y|

2
, (2.141)

ξ´ :“
x0 ` y0 ´ |~x´ ~y|

2
. (2.142)

Moreover, we collect terms with the same indicator functions. This
results in:

16π

λ}ψ}w
|A0ψ|px, yq ď

1px´yq2ă0,ξ´ą0

ż y0

0

dρ
wpy0´ρq

|~x´~y|

”

w2 minpξ´, y0
´ρq´w2maxpξ´´ρ, 0q
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` 1 y0́ x0`|~x́ ~y|
2

ăρ

`

w2px
0
q `w2py

0
´ρq´w2pξ

´
q´w2pξ

`
´ρq

˘

ı

(2.143)

` 1px´yq2ě0,x0ąy0

ż y0

0

dρ
wpy0´ρq

|~x´~y|

“

w2pξ
`
q `w2pξ

´
´ρq

´w2pξ
´
q´w2pξ

`
´ρq

‰

(2.144)

` 1px´yq2ě0,y0ąx0

ż ξ`

py0́ x0́ |~x́ ~y|q{2

dρ
wpy0´ρq

|~x´~y|

ˆ
“

w2 minpξ`´ρ, x0
q´w2maxpξ´´ρ, 0q

‰

. (2.145)

This estimate is an important stepping stone in the proof. Except
for special weight functions, the resulting expressions are too compli-
cated to be computed explicitly. We therefore continue with further
estimates. The main difficulty in these estimates is that the 1{|~x´ ~y|
singularity in the expressions needs to be compensated by the inte-
grand and that this cancellation needs to be preserved by the respec-
tive estimate. Fortunately, the mean value theorem turns out suitable
to provide such estimates.

2.2.4.1.1.5 Simplification of (2.143)- (2.145). First, we note
that since w,w1 and w2 are monotonously increasing and since ξ´ ď
ξ`, we have in (2.144):

w2pξ
´
´ ρq ´w2pξ

`
´ ρq ď 0. (2.146)

As the remaining terms in (2.144) still vanish in the limit |~x´ ~y| Ñ 0,
we may replace this difference by zero to obtain a suitable estimate.
Similarly, a brief calculation shows that we have ξ` ą y0 for px´yq2 ă
0. It follows that:

w2py
0
´ ρq ´w2pξ

`
´ ρq ă 0. (2.147)
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We shall use this in (2.143).
Further simplifications can be obtained using the mean value theo-
rem. We begin with the expression in the square brackets in (2.145).
The mean value theorem then implies that there is a χ P rmaxpξ´´
ρ, 0q,minpξ`´ρ, x0qs such that

w2minpξ`´ρ, x0
q ´w2maxpξ´´ρ, 0q

“
“

minpξ`´ρ, x0
q ´maxpξ´´ρ, 0q

‰

w1pχq. (2.148)

Therefore, we have:

w2minpξ`´ρ, x0
q ´w2maxpξ´´ρ, 0q

ď minpξ`´ ξ´, ξ`´ρ, x0
´ ξ´ ` ρ, x0

qw1minpξ`´ρ, x0
q

ď |~x´ ~y|w1minpξ`´ρ, x0
q ď |~x´ ~y|w1px

0
q. (2.149)

Note that the factor |~x ´ ~y| exactly compensates the 1{|~x ´ ~y| singu-
larity. This is the main reason the mean value theorem is so useful
here.
Analogously we find for the expression in the square bracket in the
first line of (2.143):

w2minpξ´, y0
´ρq ´w2maxpξ´´ρ, 0q

ď
“

minpξ´, y0
´ρq ´maxpξ´´ρ, 0q

‰

w1minpξ´, y0
´ρq

“ minpρ, ξ´, y0
´ ξ´, y0

´ρqw1minpξ´, y0
´ρq

ď py0
´ ξ´qw1minpξ´, y0

´ρq

ď |~x´ ~y|w1minpξ´, y0
´ρq, (2.150)

where we have used that the further restriction of that term, px´yq2 ă
0, implies |~x´ ~y| ą |x0 ´ y0| ě y0 ´ x0.
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With these considerations, we obtain a rougher but simpler estimate
than (2.143)- (2.145):

16π

λ}ψ}w
|A0ψ|px, yq

ď 1px´yq2ă0,ξ´ą0

ż y0

0

dρ wpy0
´ρq

”

w1minpξ´, y0
´ρq (2.151)

` 1 y0´x0`|~x´~y|
2

ăρ

w2px
0q ´w2pξ

´q

|~x´ ~y|

ı

(2.152)

` 1px´yq2ě0,x0ąy0

w2pξ
`q ´w2pξ

´q

|~x´ ~y|

ż y0

0

dρ wpy0
´ρq (2.153)

` 1px´yq2ě0,y0ąx0 w1px
0
q

ż ξ`

y0´x0´|~x´~y|
2

dρ wpy0
´ρq. (2.154)

Next, we continue estimating these terms separately so that only ex-
pressions without integrals remain.

2.2.4.1.1.6 Further estimate of (2.151). Using the mono-
tonicity of w1 as well as minpξ´, y0 ´ ρq ď ξ´, we find:

(2.151) ď 1px´yq2ă0,ξ´ą0w1pξ
´
q

ż y0

0

ds wpsq

“ 1px´yq2ă0,ξ´ą0w1pξ
´
qw1py

0
q. (2.155)

For the constraints given by the indicator function, we have ξ´ ă x0.
Thus:

(2.151) ď 1px´yq2ă0,ξ´ą0w1px
0
qw1py

0
q. (2.156)
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2.2.4.1.1.7 Further estimate of (2.152). We have:

(2.152) “ 1px´yq2ă0,ξ´ą0

w2px
0q ´w2pξ

´q

|~x´ ~y|

ż y0

y0´x0`|~x´~y|
2

dρwpy0
´ ρq

“ 1px´yq2ă0,ξ´ą0

w2px
0q ´w2pξ

´q

|~x´ ~y|

ż ξ´

0

dswpsq

“ 1px´yq2ă0,ξ´ą0

w2px
0q ´w2pξ

´q

|~x´ ~y|

“

w1pξ
´
q ´ w1p0q

loomoon

“0

‰

.

(2.157)

Applying the mean value theorem to w2 in the interval rξ´, x0s (note
that here ξ´ ă x0), we obtain that:

(2.152) ď 1px´yq2ă0,ξ´ą0

x0 ´ ξ´

|~x´ ~y|
w1px

0
qw1pξ

´
q. (2.158)

Next, we use that x0´ξ´

|~x´~y|
“

x0´y0`|~x´~y|
2|~x´~y|

ď 1 as |x0´y0| ă |~x´~y|. Thus:

(2.152) ď 1px´yq2ă0,ξ´ą0w1px
0
qw1pξ

´
q. (2.159)

Using also that for the given constrains ξ´ ă y0, we finally obtain:

(2.152) ď 1px´yq2ă0,ξ´ą0w1px
0
qw1py

0
q. (2.160)

2.2.4.1.1.8 Further estimate of (2.153). Here, we can di-
rectly carry out the remaining integral using the definition of w1 as
the integral of g:

(2.153) “ 1px´yq2ě0,x0ąy0

w2pξ
`q ´w2pξ

´q

|~x´ ~y|
w1py

0
q. (2.161)

Next, we apply the mean value theorem to w2 in the interval rξ´, ξ`s
noting that ξ`´ ξ´ “ |~x´ ~y|. This implies:

(2.153) ď 1px´yq2ą0,x0ąy0 w1pξ
`
qw1py

0
q. (2.162)
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Next, we note that px´ yq2 ě 0 ô |x0 ´ y0| ě |~x´ ~y|. Together with
x0 ą y0, we obtain x0 ě y0 ` |~x´ ~y| and therefore:

ξ` “
x0 ` y0 ` |~x´ ~y|

2
ď x0. (2.163)

Thus, we obtain:

(2.153) ď 1px´yq2ě0,x0ąy0 w1px
0
qw1py

0
q. (2.164)

2.2.4.1.1.9 Further estimate of (2.154). Here, we carry out
the remaining integral as well.

(2.154) ď 1px´yq2ą0,y0ąx0 w1px
0
qrw1pξ

`
q´w1ppy

0
´x0

´|~x´~y|q{2qs

ď 1px´yq2ą0,y0ąx0 w1px
0
qw1py

0
q. (2.165)

as ξ` ď y0.

2.2.4.1.1.10 Summary of the result. Gathering the terms
(2.156), (2.160), (2.164) and (2.165) yields:

16π

λ}ψ}w
|A0ψ|px, yq (2.166)

ď w1px
0
qw1py

0
q
`

2ˆ1px´yq2ă0,ξ´ą0`1px´yq2ě0,x0ąy0`1px´yq2ě0,y0ąx0

˘

.

Considering that the conditions in different indicator functions are
mutually exclusive, we finally obtain:

16π

λ}ψ}w
|A0ψ|px, yq ď 2w1px

0
qw1py

0
q. (2.167)

Dividing bywpx0qwpy0q, taking the supremum over x, y PM`
0 and fac-

torizing into one-dimensional suprema finally yields the claim (2.89).
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2.2.4.1.2 Estimate of the mixed terms (2.90) and (2.91). We
focus on A2 first, starting from its definition (2.61). We take the ab-
solute value and make use of |ψpx, yq| ď wpx0qwpy0q }ψ}w. Moreover,
we use:

|J1ptq{t| ď
1

2
. (2.168)

This yields:

|A2ψ|px, yq ď
λm2

2 }ψ}w
4p4πq3

ż

d3~x 1
ż

d3~y 1
Hpx0´|~x´~x 1|q

|~x´~x 1|

wpx0´|~x´~x 1|q

|~x 1´~y 1|

ˆ
“

wpx0
´|~x´~x 1|`|~x 1´~y 1|qHpx0

´|~x´~x 1|`|~x 1´~y 1|q

ˆHpy0
´ x0

`|~x´~x 1|´|~x 1´~y 1|´|~y´~y 1|q

`wpx0
´|~x´~x 1|´|~x 1´~y 1|qHpx0

´|~x´~x 1|´|~x 1´~y 1|q

ˆHpy0
´ x0

`|~x´~x 1|`|~x 1´~y 1|´|~y´~y 1|q
‰

. (2.169)

As the remaining singularities are independent of each other for a
suitable choice of integration variables (see below), we are left with an
integrable function on a finite domain.
The next task is to bring the expressions into a simpler form. One
possibility to do this is to use

Hpy0
´ x0

` |~x´ ~x 1| ` |~x 1 ´ ~y 1| ´ |~y ´ ~y 1|q

ď Hpy0
´ x0

` |~x´ ~x 1| ` |~x 1 ´ ~y 1|q (2.170)

for the second Heaviside function in the second summand. The first
Heaviside function in the first summand equals 1 anyway, as |~x´~x 1| ă
x0. We furthermore use

Hpy0
´ x0

` |~x´ ~x 1| ´ |~x 1 ´ ~y 1| ´ |~y ´ ~y 1|q

ď Hpy0
´ x0

` |~x´ ~x 1| ´ |~x 1 ´ ~y 1|q, (2.171)

as it simplifies the domain of integration. Overall, the domain of inte-
gration remains bounded. Introducing ~z1 “ ~x´ ~x 1, ~z2 “ ~x 1´ ~y 1 (with
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Jacobi determinant of modulus 1) and using spherical coordinates for
~z2, this leads to:

|A2ψ|px, yq
4p4πq3

λm2
2 }ψ}w

ď

ż

Bx0 p0q

d3~z14π

ż maxp0,y0´x0`|~z1|q

0

d3~z2
wpx0´|~z1|qwpx

0´|~z1|`|~z2|q

|~z1||~z2|
|~z2|

2

`

ż

Bx0 p0q

d3~z14π

ż x0´|~z1|

maxp0,x0´y0´|~z1|q

d|~z2|
wpx0 ´ |~z1|qwpx

0 ´ |~z1| ´ |~z2|q

|~z1||~z2|
|~z2|

2.

(2.172)

Using spherical coordinates also for ~z1, this can be further simplified
to:

|A2ψ|px, yq
16π

λm2
2 }ψ}w

ď

ż x0

0

dr1

ż maxp0,y0´x0`r1q

0

dr2 r1r2wpx
0
´r1qwpx

0
´r1`r2q (2.173)

`

ż x0

0

dr1

ż x0´r1

maxp0,x0´r1´y0q

dr2 r1r2 wpx
0
´r1qwpx

0
´r1´r2q. (2.174)

Our next task is to simplify the remaining integrals. We begin with
making the change of variables ρ “ x0 ´ r1:

|A2ψ|px, yq
16π

λm2
2 }ψ}w

ď

ż x0

0

dρ px0
´ ρqwpρq

ż maxp0,y0´ρq

0

dr2 r2wpρ` r2q

`

ż x0

0

dρ px0
´ ρqwpρq

ż ρ

maxp0,ρ´y0q

dr2 r2wpρ´ r2q. (2.175)
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Now we consider the r2-integral in both terms and integrate by parts.
This yields:

ż maxp0,y0́ ρq

0

dr2 r2wpρ`r2q “ maxp0, y0
´ρqw1py

0
q

´w2pmaxpρ, y0
qq`w2pρq, (2.176)

ż ρ

maxp0,ρ́ y0q

dr2 r2wpρ´r2q “ maxp0, ρ´y0
qw1py

0
q

`w2pminpρ, y0
qq. (2.177)

We now use ´w2pmaxpρ, y0qq`w2pρq ď 0 in the first term and then re-
insert the resulting estimate into (2.175). Considering also maxp0, y0´

ρq `maxp0, ρ´ y0q “ |y0 ´ ρ|, this yields:

|A2ψ|px, yq
16π

λm2
2 }ψ}w

ď

ż x0

0

dρ px0
´ ρqwpρq

“

|y0
´ ρ|w1py

0
q `w2pminpρ, y0

qq
‰

(2.178)

The first summand of (2.178) can be treated as follows. First we
focus on whether x0 ą y0 or x0 ď y0. In the first case, we then
differentiate between the cases ρ ă y0 and ρ ě y0 and split up the
integrals accordingly. This yields:

ż x0

0

dρ px0
´ ρqwpρq|y0

´ ρ|w1py
0
q

“ w1py
0
q 1x0ąy0

ż y0

0

dρ px0
´ ρqpy0

´ ρqwpρq (2.179)

´w1py
0
q 1x0ąy0

ż x0

y0

dρ px0
´ ρqpy0

´ ρqwpρq (2.180)

`w1py
0
q 1x0ďy0

ż x0

0

dρ px0
´ ρqpy0

´ ρqwpρq. (2.181)
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We now calculate these terms separately using integration by parts.
The first term yields:

(2.179) “ w1py
0
q1x0ąy0

“

px0
´ y0

qw2py
0
q ` 2w3py

0
q
‰

. (2.182)

We turn to (2.180):

(2.180) “ ´w1py
0
q1x0ąy0

“

py0
´x0

qpw2px
0
q

`w2py
0
qq`2w3px

0
q´2w3py

0
q
‰

. (2.183)

The result of (2.181) is:

(2.181) “ w1py
0
q1x0ďy0

“

py0
´ x0

qw2px
0
q ` 2w3px

0
q
‰

. (2.184)

Gathering the terms (2.182), (2.183) and (2.184) yields:

|A2ψ|px, yq
16π

λm2
2 }ψ}w

ď w1py
0
q1x0ąy0

“

2px0
´y0

qw2py
0
q`4w3py

0
q´2w3px

0
q
‰

`w1py
0
q|x0
´y0

|w2px
0
q ` 2w1py

0
q1x0ďy0w3px

0
q

ď 2w1py
0
q|x0
´y0

|w2px
0
q ` 2w1py

0
qw3px

0
q1x0ăy0

`w1py
0
q|x0
´y0

|w2px
0
q ` 2w1py

0
qw3px

0
q1x0ďy0

“ 3w1py
0
q|x0
´y0

|w2px
0
q ` 2w1py

0
qw3px

0
q

ď 3px0
` y0

qw1py
0
qw2px

0
q ` 2w1py

0
qw3px

0
q. (2.185)

In order to obtain }A2ψ}w, we divide by wpx0qwpy0q and take the
supremum over x, y PM`

0 . This results in:

sup
ψPSppM`0 q2q

}A2ψ}w
}ψ}w

(2.186)

ď
λm2

2

16π

˜

3 sup
x0,y0ě0

px0`y0qw2px
0qw1py

0q

wpx0qwpy0q
`2 sup

x0,y0ě0

w3px
0qw1py

0q

wpx0qwpy0q

¸

.
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After factorizing the two-dimensional suprema into one-dimensional
ones, this exactly yields the claim, (2.91).
For the operator A1, we find analogously:

sup
ψPSppM`0 q2q

}A1ψ}w
}ψ}w

ď
λm2

1

16π

˜

3 sup
x0,y0ě0

px0`y0qw1px
0qw2py

0q

wpx0qwpy0q
`2 sup

x0,y0ě0

w1px
0qw3py

0q

wpx0qwpy0q

¸

.

(2.187)

which, after factorization into one-dimensional suprema, yields the
claim (2.90).

2.2.4.1.3 Estimate of the mass-mass term (2.92). We begin
with (2.64). Taking the absolute value and using |ψpx, yq| ď
}ψ}wwpx

0qwpy0q as well as |J1ptq{t| ď
1
2
yields:

|A12ψ|px, yq

ď
λm1m2 }ψ}w

8p4πq3

ż 8

0

dx1
0

ż

d3~x 1
ż 8

0

dy1
0

ż 2π

0

dϕ

ż π

0

dϑ sinpϑq|x1
0
´y1

0
|

ˆHpx0
´ x1

0
´|~x´ ~x 1|qHpy0

´ y1
0
´|~y´~x 1`~z|q

ˆwpx1
0
qwpy1

0
q

ˇ

ˇ

ˇ

|~z|“|x01´y01|
, (2.188)

where, we recall, ~z is the variable for which the spherical coordinates
are used.
Next, we consider the ranges of integration which the Heaviside func-
tions imply. Hpx0 ´ x10 ´ |~x ´ ~x 1|q restricts the range of integration
of ~x 1 to the ball Bx0´x10p~xq and the range of the x10-integration to
p0, x0q. The range implied by the second Heaviside function is more
complicated. We therefore use the estimate

Hpy0
´ y1

0
´ |~y ´ ~x 1 ` ~z|q ď Hpy0

´ y1
0
q. (2.189)
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Then y10 P p0, y0q and there is no further restriction for the angular
variables. We obtain:

|A12ψ|px, yq ď
λm1m2 }ψ}w

8p4πq3

ż x0

0

dx1
0

ż

B
x0´x10

p~xq

d3~x 1
ż y0

0

dy1
0

ż 2π

0

dϕ

ż π

0

dϑ

ˆ sinpϑq|x1
0
´ y1

0
|wpx1

0
qwpy1

0
q. (2.190)

Performing the ~x 1-integration, as well as the angular integrals yields:

|A12ψ|px, yq

ď
λm1m2 }ψ}w

96π

ż x0

0

dx1
0
|x0
´x1

0
|
3wpx1

0
q

ż y0

0

dy1
0
|x1

0
´y1

0
|wpy1

0
q.

(2.191)

Our next task is to estimate the term explicitly in terms of the func-
tions wn only. To do so, we use

|x1
0
´ y1

0
| ď x1

0
` y1

0
. (2.192)

This yields:

|A12ψ|px, yq

ď
λm1m2}ψ}w

96π

ż x0

0

dx1
0
|x0
´x1

0
|
3wpx1

0
q

ż y0

0

dy1
0
px1

0
`y1

0
qwpy1

0
q. (2.193)

Let

Ipx0, y0
q “

ż x0

0

dx1
0
|x0
´x1

0
|
3wpx1

0
q

ż y0

0

dy1
0
px1

0
`y1

0
qwpy1

0
q (2.194)

and

Lpx1
0
, y0
q “

ż y0

0

dy1
0
px1

0
` y1

0
qwpy1

0
q. (2.195)
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Integration by parts yields:

Lpx1
0
, y0
q “x1

0
w1py

0
q`y0w1py

0
q´w2py

0
q

ďx1
0
w1py

0
q`y0w1py

0
q. (2.196)

Next, let

Iapx
0
q “

ż x0

0

dx1
0
|x0
´ x1

0
|
3wpx1

0
q,

Ibpx
0
q “

ż x0

0

dx1
0
x1

0
|x0
´ x1

0
|
3wpx1

0
q. (2.197)

Then:

Ipx0, y0
q ď Iapx

0
q y0w1py

0
q ` Ibpx

0
qw1py

0
q. (2.198)

We consider Ia first, using px0´x10q2 ď px0q2 and integrating by parts:

Iapx
0
q ď px0

q
2

ż x0

0

dx1
0
px0

´ x1
0
qwpx1

0
q (2.199)

“ px0
q
2

¨

˝px0
´ x1

0
qw1px

10
q|
x0

x10“0
looooooooooooomooooooooooooon

“0

`w2px
0
q

˛

‚“ px0
q
2w2px

0
q.

We turn to Ib, using x10px0 ´ x10q ď 1
4
px0q2 and integrating by parts

twice. This results in:

Ibpx
0
q ď

px0q2

4

ż x0

0

dx1
0
px0

´ x1
0
q
2wpx1

0
q “

px0q2

2
w3px

0
q. (2.200)

Considering (2.198), we therefore obtain:

Ipx0, y0
q ď px0

q
2w2px

0
q y0w1py

0
q `

px0q2

2
w3px

0
qw1py

0
q. (2.201)



2.2. SINGULAR LIGHT CONE INTERACTIONS OF SPIN-LESS
PARTICLES 67

Returning to (2.193), we divide by wpx0qwpy0q and take the supre-
mum, with the result:

sup
ψPSppM`0 q2q

}A12ψ}w
}ψ}w

ď
λm1m2 }ψ}w

96π

«

sup
x0,y0ě0

px0q2w2px
0q y0w1py

0q

wpx0qwpy0q

`
1

2
sup

x0,y0ě0

px0q2w3px
0qw1py

0q

wpx0qwpy0q

ff

. (2.202)

Factorizing the two-dimensional suprema into one-dimensional ones
yields the claim, (2.92).

2.2.4.2 Proof of Theorem 14

Let ψ P S. It only remains to calculate the supremum in (2.89) for
wptq “ eγt. We have:

w1ptq “
1

γ

`

eγt ´ 1
˘

(2.203)

and hence

sup
ψPSppM`0 q2q

}A0ψ}w
}ψ}w

ď
λ

8π

ˆ

sup
tě0

w1ptq

wptq

˙2

“
λ

4π

ˆ

sup
tě0

1

γ
p1´ e´γtq

˙2

“
λ

8πγ2
. (2.204)

This shows that A0 can be linearly extended to a bounded operator
on Bw which satisfies the same estimate, (2.77). Moreover, for γ ą
b

λ
4π
, A0 is a contraction and Banach’s fixed point theorem implies the

existence of a unique solution ψ P Bw of the equation ψ “ ψfree`A0ψ
for every ψfree P Bw.
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2.2.4.3 Proof of Theorem 15

Let again ψ P S. We need to calculate the suprema in (2.89) to (2.92)
for wptq “ p1` αt2qeαt2{2. We first note:

w1ptq “ teαt
2{2,

w2ptq “
1

α

´

eαt
2{2
´ 1

¯

,

w3ptq “
1

α

„
c

π

2α
erfip

a

α{2tq ´ t



. (2.205)

We can see that with each successive integration, the functions wn

grow slower than t Ñ 8. Furthermore, the leading terms in wn are
inversely proportional to increasing powers of α. These two properties
(and of course the fact that w1,w2,w3 can be written down in terms
of elementary functions) make this particular function wptq a suitable
choice for the proof.
As we need to estimate the behaviour of quotients like w3ptq{wptq for
t Ñ 8, we look for a simpler estimate of w3 in terms of exponential
functions. We note:

w3ptq “

ż t

0

dt1
1

α

´

eαt
12{2
´ 1

¯

ď
eαt

2{2

α
e´αt

2{2
a

2{α

ż

?
α{2t

0

dτ eτ
2

“

?
2

α3{2
eαt

2{2Dp
a

α{2 tq, (2.206)

where Dptq “ e´t
2 şt

0
dτ eτ

2 denotes the Dawson function. Using the
property |tDptq| ă 2

3
, we obtain:

tw3ptq ď
4

3

eαt
2{2

α2
. (2.207)
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We are now well-equipped to calculate the suprema occurring in (2.89)
to (2.92). Using

sup
tě0

tβ

1` t2
“

$

&

%

1 for β “ 0
1
2

for β “ 1
1 for β “ 2

(2.208)

we obtain:

sup
tě0

w1ptq

wptq
“ sup

tě0

t

1` αt2
“

1

2

1
?
α
, (2.209)

sup
tě0

tw1ptq

wptq
“ sup

tě0

t2

1` αt2
“

1

α
, (2.210)

sup
tě0

w2ptq

wptq
ď sup

tě0

1

α

1

1` αt2
“

1

α
, (2.211)

sup
tě0

tw2ptq

wptq
ď sup

tě0

1

α

t

1` αt2
“

1

2

1

α3{2
, (2.212)

sup
tě0

t2w2ptq

wptq
ď sup

tě0

1

α

t2

1` αt2
“

1

α2
. (2.213)

Using, in addition, the property |Dptq| ă 3
5
, we find:

sup
tě0

w3ptq

wptq
ď sup

tě0

?
2

α3{2

Dp
a

α{2tq

1` αt2
“

3
?

2

5

1

α3{2
ă

1

α3{2
, (2.214)

sup
tě0

t2w3ptq

wptq
ď sup

tě0

4

3

1

α2

t

1` αt2
“

2

3

1

α5{2
. (2.215)

In the last line, we have made use of (2.207).
With these results, we find for A0:

(2.89) ď
λ

8π

ˆ

1

2

1
?
α

˙2

“
λ

32π

1

α
. (2.216)
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This yields (2.79).
We continue with A1.

(2.90) ď
λm2

1

16π

„

3
1

α

1

α
` 3

1

2

1
?
α

1

2

1

α3{2
` 2

1

2

1
?
α

1

α3{2



“
λm2

1

16π

19

4

1

α2
ă

λm2
1

16π

5

α2
. (2.217)

This yields (2.80). Analogously, we obtain the estimate (2.81) for A2.
Finally, for A12, we have

(2.92) ď
λm2

1m
2
2

96π

„

1

α2

1

α
`

1

2

2

3

1

α5{2

1

2

1
?
α



“
λm2

1m
2
2

96π

7

6

1

α3
ă
λm2

1m
2
2

80π

1

α3
, (2.218)

which yields (2.82).
Now, the estimates (2.79) to (2.82) show that the operators A0, A1,
A2 and A12 are bounded on test functions. Thus, they can be linearly
extended to bounded operators on Bw with the same bounds.
The operator A “ A0 ` A1 ` A2 ` A12 then also defines a bounded
linear operator on Bw with norm

}A} ď }A0} ` }A1} ` }A2} ` }A12}. (2.219)

Using the previous results (2.79)- (2.82), we obtain:

}A} ď
λ

8πα

ˆ

1

4
`

5pm2
1 `m

2
2q

2

1

α
`
m2

1m
2
2

10

1

α2

˙

. (2.220)

If α is chosen such that this expression is strictly smaller than unity, A
becomes a contraction and the existence and uniqueness of solutions
of the equation ψ “ ψfree ` Aψ follows. This yields condition (2.83)
and ends the proof.
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2.2.4.4 Proof of Theorem 18

The proof can be reduced to the one for M`
0 . To do so, we take the

absolute value of (2.75) and use |ψ|pη1, ~x, η2, ~yq ď wpη1qwpη2q}ψ}w.
With

Gpηq “ apηq exp

ˆ

γ

ż η

0

dη1 apη1q

˙

(2.221)

G1pηq “

ż η

0

dη1 Gpηq (2.222)

we obtain the estimate

| rA0ψ|px, yq

ď
λ}ψ}w
4p4πq3

ż

Bη2 p~yq

d3~y 1
ż 2π

0

dϕ

ż 1

´1

d cosϑ
|b2|

pb0̀ |~b| cosϑq2|~y 1|
Gpη2´|~y

1
|q

ˆG

˜

η1 ´
1

2

b2

b2 ` |~b| cosϑ

¸

ˆ

ˆ

1b2ą01b0ą01
cosϑą b2

2η0
1 |
~b|
´ b0

|~b|

` 1b2ă01
cosϑă b2

2η1|
~b|
´ b0

|~b|

˙

. (2.223)

This estimate is identical to (2.94) with the only difference that the
function g is exchanged with G in the integral (but not in }¨}w). Thus,
going through the same steps as in Secs. 2.2.4.1, 2.2.4.3, we obtain:

sup
ψPSppr0,8qˆR3q2q

} rA0ψ}w
}ψ}w

ď
λ

8π

ˆ

sup
tě0

G1ptq

wptq

˙2

. (2.224)

Now, recalling wptq “ exp
´

γ
şt

0
dτ apτq

¯

we have

G1ptq “
1

γ
wptq (2.225)
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and it follows that

sup
ψPSppr0,8qˆR3q2q

} rA0ψ}w
}ψ}w

ď
λ

8πγ2
, (2.226)

which yields (2.87). The rest of the claim follows as before.

2.3 Directly Interacting Dirac Particles
This section is based on the scientific publication [67], which is the
result of joint work with Matthias Lienert. In it, we prove the existence
and uniqueness of solutions of the spin-1/2 delay-equation (2.20) for a
class of kernels K subject to the modifications (A) and (B). Similar to
the results of the last section an analogous result is proven on FLRW
spacetime. Furthermore, we show that the solutions are determined
by Cauchy data at the initial time; however, no Cauchy problem is
admissible at other times.

2.3.1 Introduction

In order to take a closer look at equation (2.20) and its constituents.
The solution to the inhomogeneous equation 2.21 represented by AKψ
in (2.20) will be constructed by D :“ ´iγµBµ´m acting on a solution
to the inhomogeneous Klein-Gordon equation. The operator D will
be referred to as the adjoint Dirac operator. Since DD “ l ` m2

holds, this is equivalent to the convolution with a Green’s function.
The solution to the inhomogeneous Klein-Gordon equation will be
constructed by Duhamel’s principle [33] using known the propagator of
the Klein-Gordon equation [10, 11, 12] as outlined in subsection 2.1.2
in simplifying assumption (A). Consequently, one has to define the
operator AK in (2.20) on a function space where one can take certain
weak derivatives. In contrast to most of non-relativistic physics, this
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also concerns the time derivatives here. The choice of function space
can be a tricky issue, as the fixed point scheme requires the integral
operator to preserve the regularity, so that the regularity needs to be in
harmony with the structure of the integral equation (see Sec. 2.3.2.2).
This section is structured as follows. In subsection 2.3.2, we specify
the integral equation (2.20) in detail. The difficulties with understand-
ing the distributional derivatives are discussed and a suitable function
space is identified. Subsection 2.3.3 contains the main results of this
section. In subsection 2.3.3.1, we formulate an existence and unique-
ness theorem (theorem 25) for equation (2.20) on M`

0 . It is shown
that the relevant initial data are equivalent to Cauchy data at t “ 0.
In subsection 2.3.3.2, we provide a physical justification for the cut-
off at t “ 0 by extending the results to a FLRW spacetime. In the
massless case, we show that an existence and uniqueness theorem can
be obtained from the one for M`

0 via conformal invariance. The re-
sult, theorem 27, covers a fully relativistic interacting dynamics in 1+3
spacetime dimensions. The proofs are carried out in subsection 2.3.4.

2.3.2 Setting of the problem

2.3.2.1 Definition of the integral operator on test functions

In this subsection, we show how the integral operator in (2.20) can be
defined rigorously on test functions. We consider the integral equa-
tion (2.20) on the Minkowski half space M`

0 as we did in the last
section. In order to define the meaning of the Green’s functions as
distributions, we introduce a suitable space of test functions:

S “ S
`

pM`
0 q

2,C16
˘

, (2.227)

the space of 16-component Schwarz functions on pM`
0 q

2. For an in-
teraction kernel K P C3pR8,Cq and a test function ψ P S, the equa-
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tion (2.20) takes the form

ψpx1, x2q “ψ
free
px1, x2q ` pAψqpx1, x2q (2.228)

:“ψfree
px1, x2q `D1D2

ż x0
1

0

dx
10
1

ż x0
2

0

dx
10
2

ż

R3

d3~x11

ż

R3

d3~x12

ˆGret
1 px1 ´ x

1
1qG

ret
2 px2 ´ x

1
2qrKψspx

1
1, x

1
2q (2.229)

where we used Duhamel’s principle to construct the solution to the
inhomogeneous Klein-Gordon equation as outlined in subsection 2.1.2
in simplifying assumption (A).

Remark 20. Recall the expression (2.45) for Gret. Note that this
includes terms of the form

ż

R3

d3~x1
δpt´ |~x´ ~x1|q

|~x´ ~x1|
fpt, ~x, ~x1q, (2.230)

for continuous functions f , which will be interpreted as

:“

ż

BBtp0q

d~x1
fpt, ~x, ~x1q

|~x´ ~x1|
. (2.231)

Expression (2.229) fulfills our requirements:

Lemma 21. For K P C3pR8,Cq and a test function ψ P S we have

D2D1Aψ “ D1D2Aψ “ Kψ. (2.232)
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where Dk “ piγ
µ
k Bxµk

´mkq, k “ 1, 2. Furthermore, we have

Aψ “
ź

j“1,2

´

A
p1q
j pmjqDj ` A

p2q
j pmjqDj ` A

p3q
j pmjq ` A

p4q
j pmjq

¯

Kψ,

(2.233)

D1Aψ “
´

A
p1q
2 pm2qD2 ` A

p2q
2 pm2qD2 ` A

p3q
2 pm2q ` A

p4q
2 pm2q

¯

Kψ,

(2.234)

D2Aψ “
´

A
p1q
1 pm1qD1 ` A

p2q
1 pm1qD1 ` A

p3q
1 pm1q ` A

p4q
1 pm1q

¯

Kψ,

(2.235)

where for j “ 1, 2, k “ 1, 2, 3, 4 the operator Apkqj pmq : C3pM`
0 ˆ

M`
0 ,C16q Ñ C3

`

M`
0 ˆ M`

0 ,C16
˘

is defined by letting the respective
operator Apkqpmq, given below, act on the j-th spacetime-variable and
spin index of ψpx1, x2q, ψ P S. 1

`

Ap1qpmqφ
˘

pxq “
1

4π

ż

Bx0 p0q

d3~y
1

|~y|
φpx` yq|y0“´|~y|, (2.236)

`

Ap2qpmqφ
˘

pxq “ ´
m

4π

ż 0

´x0

dy0

ż

B
|y0|p0q

d3~y
J1pm

a

y2q
a

y2
φpx` yq,

(2.237)
`

Ap3qpmqφ
˘

pxq “ ´
iγ0

4π

ż

BBx0 p0q

dσp~yq
φp0, ~x` ~yq

x0
, (2.238)

`

Ap4qpmqφ
˘

pxq “ iγ0 m

4π

ż

Bx0 p0q

d3~y
J1pm

a

px0q2 ´ ~y2q
a

px0q2 ´ ~y2

ˆ φp0, ~x` ~yq, (2.239)

1We deliberately avoid using tensor products here, as the completion of an
algebraic tensor product of Banach spaces depends sensitively on which completion
is taken.
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here φ P SpM`
0 ,C4q and the dependence of Ap1qj and Ap3qj on m is only

for notational convenience.

The proof can be found in subsection 2.3.4. The first part of this
lemma will enable us to work in a Banach space adapted to equa-
tion (2.228), while the second part is useful for working out the bounds
on Aψ. For the second part we gave the convolution with delta distri-
butions explicitly in terms of integrals over manifolds of one dimension
lower.
We now turn to the question of a suitable Banach space for equa-
tion (2.228).

2.3.2.2 Choice of Banach space

As we did in the last section, we would like to apply a contraction
mapping argument, for that we need a proper Banach space B as the
domain of A. The results reviewed in subsection 2.1.2 as well as the
results of subsection 2.2 suggest choosing

B0 “ L8
´

r0,8q2
px0

1,x
0
2q
, L2

pR6,C16
qp~x1,~x2q

¯

(2.240)

with norm
}ψ}B0 “ ess sup

x0
1,x

0
2ą0

}ψpx0
1, ¨, x

0
2, ¨q}L2 . (2.241)

However, as (2.233) involves the Dirac operators D1 and D2, B0 is not
sufficient for our problem. An appropriate Banach space B must allow
us to take at least weak derivatives of ψ. The choice of B is a delicate
matter. One can easily go wrong with demanding too much regularity,
as we shall see next.
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2.3.2.2.1 Possible problems with the choice of space. The
problem can best be illustrated with an example which is structurally
related to (2.20) but otherwise simpler. Consider the equation

fpt, xq “ f free
pt, zq `

ż t

0

dz1Kpz, z1qBtfpt, z
1
q, (2.242)

where f free, f,K : R2 Ñ C and f free is given. Equation (2.242) is
inspired by the term A1D1 in (2.233).
We would like to set up an iteration scheme for (2.242). As we cannot
integrate by parts to shift the t-derivative to K, we must demand
at least weak differentiability of f with respect to t. This suggests
using a Sobolev space such as B “ H1pR2q. To prove that the integral
operator in (2.242) maps B to B, we then have to estimate the L2-norm
of

Bt

ż t

0

dz1Kpz, z1qBtfpt, z
1
q “ Kpt, tqpBtfqpt, tq`

ż t

0

dz1Kpz, z1qB2
t fpt, z

1
q.

(2.243)
This expression, however, contains B2

t f . For this to make sense, we
must be allowed to take the second weak time derivative of f . This, in
turn, requires to choose a different Sobolev space, such as H2pR2q, and
to estimate the L2-norm of the second time derivative of the integral
operator acting on f which involves B3

t f , and so on. One is thus led to a
Sobolev space where all weak n-th time derivatives have to exist. Such
infinite-order Sobolev spaces have, in fact, been investigated in [30].
However, it does not seem realistic to get an iteration to converge on
these spaces. We therefore take a different approach.

2.3.2.2.2 A Banach space adapted to our integral equation.
Considering the form of the integral operator A (2.233) and the fact
that D “ ´2m ´ D holds, one can see that it is sufficient that the
derivatives D1ψ, D2ψ and D1D2ψ exist in a weak sense. As we want
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to prove later that A maps the Banach space to itself, we have to
estimate, among other things, a suitable norm of D1pAψq. If ψ P S is
a test function and K is smooth, we have

D1pAψq “
´

A
p1q
2 pm2qD2 ` A

p2q
2 pm2qD2 ` A

p3q
2 pm2q ` A

p4q
2 pm2q

¯

Kψ,

(2.244)

according to lemma 21. The crucial point now is that (2.244) does
not contain higher-order derivatives such as D2

1ψ. The same holds
true also for D2pAψq and D1D2pAψq. Thus, the problem of the toy
example (2.242) is avoided.
Together with the previous considerations about B0 (2.240), we are
led to define the Banach space Bw as the completion of S with respect
to the following Sobolev-type norm:

}ψ}2w “ ess sup
x0

1,x
0
2ą0

1

wpx0
1qwpx

0
2q
rψs2px0

1, x
0
2q (2.245)

where w : r0,8rÑ r0,8r is a monotonically increasing function which
is such that the function 1{w is bounded. We admit such a weight
factor with hindsight. As we shall see, a suitable choice of w will make
a contraction mapping argument possible.
In (2.245) we use the notation

rψs2px0
1, x

0
2q “

3
ÿ

k“0

}pDkψqpx
0
1, ¨, x

0
2, ¨q}

2
L2pR6,C16q (2.246)

with

Dk “

$

’

’

&

’

’

%

1, k “ 0
D1, k “ 1
D2, k “ 2
D1D2, k “ 3.

(2.247)
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Remark 22. One can see the purpose of equation (2.228) in determin-
ing an interacting correction to a solution ψfree of the free multi-time
Dirac equations Diψ

free “ 0, i “ 1, 2. Therefore, it is important to
check that sufficiently many solutions of these free equations lie in Bw.
This is ensured by the following Lemma (see Sec. 2.3.4 for a proof).

Lemma 23. Let ψfree be a solution of the free multi-time Dirac equa-
tions Diψ

free “ 0, i “ 1, 2 with initial data ψfreep0, ¨, 0, ¨q “ ψ0 P

C8c pR6,C16q. Furthermore, let w : r0,8rÑs0,8r be a monotonically
increasing function with wptq Ñ 8 for tÑ 8. Then ψfree lies in Bw.

Given the definition of A on S as in Sec. 2.3.2.1, we shall now proceed
with showing that A is bounded on this space. Furthermore, we show
that for a suitable choice of the weight factor w in Bw, we can achieve
}A} ă 1 on S. This allows to extend A to a contraction on Bw so
that the Neumann series ψ “

ř8

k“0A
kψfree yields the unique solution

of ψ “ ψfree ` Aψ.

2.3.3 Results

2.3.3.1 Results for a Minkowski half space

The core of our results is the following Lemma which allows us to
control the growth of the spatial norm of ψ with the two time variables.

Lemma 24. Let ψ P S, {Bk “ γµk Bk,µ, k “ 1, 2 and let K P C3pR8,Cq
with

}K} :“ sup
x1,x2PM`0

max
 

|Kpx1, x2q|, |{B1Kpx1, x2q|, (2.248)

|{B2Kpx1, x2q|, |{B1 {B2Kpx1, x2q|
(

ă 8. (2.249)
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Then we have:

rAψs2px0
1, x

0
2q ď }K}2

ź

j“1,2

`

1` 8p1` 2mjq
2Ajpmjq

˘

rψs2px0
1, x

0
2q,

(2.250)

where Ajpmq “
ř4
k“1 A

pkq
j pmq with Apkqj as defined in (2.327). The

expression rψs2px0
1, x

0
2q is understood as a function in C8

`

pM`
0 q

2,R`0
˘

to which the operators in front of it are applied.

The proof can be found in Sec. 2.3.4.1.
Lemma 24 can now be used to identify (with some trial and error) a
suitable weight factor w which allows us to extend A to a contraction
on Bw. Our main result is:

Theorem 25 (Existence and uniqueness of dynamics on a Minkowski
half space.). Let 0 ă }K} ă 1, µ “ maxtm1,m2u and

wptq “
?

1` bt8 exppbt8{16q, (2.251)

b “
}K}4

p1´ }K}q4
`

16` µ4
˘4
p1` 2µq8. (2.252)

Then for every ψfree P Bw, the equation ψ “ ψfree ` Aψ possesses a
unique solution ψ P Bw.

The proof is given in Sec. 2.3.4.2.

Remark 26. 1. Note that theorem 25 establishes the existence and
uniqueness of a global-in-time solution. The non-Markovian na-
ture of the dynamics makes it necessary to prove such a result
directly instead of concatenating short-time solutions. The key
step in our proof which makes the global-in-time result possible
is the suitable choice of the weight factor w.
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2. The main condition in theorem 25 is }K} ă 1. This may be
interpreted as the interaction must not being too strong. A con-
dition of that kind is to be expected solely because of the contri-
bution }pD1D2pAψqqpx

0
1, ¨, x

0
2, ¨q}L2 “ }Kψpx0

1, ¨, x
0
2, ¨q}L2 to

rAψspx0
1, x

0
2q. Taking our strategy for setting up the Banach space

for granted, we therefore think that one cannot avoid a condition
on the interaction strength. Note that conditions on the interac-
tion strength also occur at other places in quantum theory (albeit
in a different sense). For example, the Dirac Hamiltonian plus
a Coulomb potential is only self-adjoint if the prefactor of the
latter is smaller than a certain value.

3. Cauchy problem. Theorem 25 shows that ψfree uniquely deter-
mines the solution ψ. However, specifying a whole function in
Bw amounts to a lot of data. In case ψfree is a solution of the
free multi-time Dirac equations D1ψ

free “ 0 “ D2ψ
free much less

data are needed. ψfree is then determined uniquely by Cauchy
data, and hence ψ is as well. Furthermore, if ψfree is differen-
tiable, (2.20) yields

ψp0, ~x1, 0, ~x2q “ ψfree
p0, ~x1, 0, ~x2q. (2.253)

Thus, Cauchy data for ψfree at x0
1 “ x0

2 “ 0 are also Cauchy data
for ψ. The procedure works for arbitrary Cauchy data which
are appropriate for the free multi-time Dirac equations. Note,
however, that a Cauchy problem for ψ for times x0

1 “ t0 “ x0
2

with t0 ą 0 is not possible. The reason is that ψpt0, ~x1, t0, ~x2q ‰

ψfreept0, ~x1, t0, ~x2q in general (and contrary to (2.253) the point-
wise evaluation may not make sense for ψ).
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2.3.3.2 Results for a FLRW universe with a Big Bang
singularity

This subsection is analogous to subsection 2.2.3.3, we show that a Big
Bang singularity provides a natural and covariant justification for the
cut-off at t “ 0. As this justification is our main goal, we make the
point at the example of a particular class of FLRW spacetimes and do
not strive to treat more general spacetimes here. The reason for study-
ing these FLRW spacetimes is that they are conformally equivalent to
1
2
M`

0 [56]. Together with the conformal invariance of the massless
Dirac operator this allows for an efficient method of calculating the
Green’s functions which occur in the curved spacetime analogue of the
integral equation (2.17). By doing this, we show that the existence and
uniqueness result on these spacetimes can be reduced to theorem 25.
We start by giving heuristic arguments for our interpretation of equa-
tion (2.17) on this spacetime and then show that this interpretation
has a unique solution in a sense specified below.
As shown in [70], equation (2.17) possesses a natural generalization to
curved spacetimes M,

ψpx1, x2q “ ψfree
px1, x2q `

ż

dV px11q

ż

dV px12q S1px1, x
1
1qS2px2, x

1
2q

ˆ K̃px11, x
1
2qψpx

1
1, x

1
2q. (2.254)

Here, dV pxq is the spacetime volume element, Si are (retarded) Green’s
functions of the respective free Dirac equation, i.e.

DSpx, x1q “ r´gpxqs´1{2 δp4qpx, x1q, (2.255)

where gpxq is the metric determinant, D the covariant Dirac operator
on M, and ψ a section of the tensor spinor bundle over MˆM.
In order to explicitly formulate (2.254), we need to know the detailed
form of S. Note that results for general classes of spacetimes showing
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that S is a bounded operator on a suitable function space are not
sufficient to obtain a strong (global in time) existence and uniqueness
result. We therefore focus on the case of a flat FLRW universe where
it is easy to determine the Green’s functions explicitly. In that case,
the metric is given by

ds2
“ a2

pηqrdη2
´ d~x2

s (2.256)

where, as before, η is conformal time and apηq denotes the scale func-
tion. The coordinate ranges are given by η P r0,8r and ~x P R3. For
a FLRW universe with a Big Bang singularity, apηq is a continuous,
monotonically increasing function of η with apηq “ 0, corresponding
to the Big Bang singularity. The spacetime volume element reads

dV pxq “ a4
pηq dη d3~x. (2.257)

The crucial point now is that according to (2.256) the spacetime is
globally conformally equivalent to M`

0 , with conformal factor

Ωpxq “ apηq. (2.258)

In addition, for m “ 0, the Dirac equation is known to be conformally
invariant (see e.g. [98, 80]). More accurately, consider two spacetimes
M and ĂM with metrics

rgab “ Ω2 gab. (2.259)

Then the massless Dirac operator D on M is related to the massless
Dirac operator rD on ĂM by (see [98, 34]):

rD “ Ω´5{2DΩ3{2. (2.260)

This implies the following transformation behaviour of the Green’s
functions:

rGpx, x1q “ Ω´3{2
pxqΩ´3{2

px1qGpx, x1q. (2.261)
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One can verify this using (2.260) and the definition of Green’s func-
tions on curved spacetimes (2.255).
Denoting the Green’s functions of the Dirac operator on Minkowski
spacetime by Gpx, x1q “ Spx´ x1q and using coordinates η, ~x we thus
obtain the Green’s functions rG on flat FLRW spacetimes as:

rGpη, ~x; η1, ~x 1q “ a´3{2
pηqa´3{2

pη1q Spη ´ η1, ~x´ ~x 1q. (2.262)

With this result, we can write out in detail the multi-time integral
equation (2.254) for massless Dirac particles on flat FLRW spacetimes
(using retarded Green’s functions):

ψpη1,~x1, η2, ~x2q “ ψfree
pη1, ~x1, η2, ~x2q ` a

´3{2
pη1qa

´3{2
pη2q

ˆ

ż 8

0

dη11

ż

d3~x11

ż 8

0

dη12

ż

d3~x12a
5{2
pη11qa

5{2
pη12q (2.263)

ˆ Sret
1 pη1 ´ η

1
1, ~x1 ´ ~x

1
1qS

ret
2 pη2 ´ η

1
2, ~x2 ´ ~x

1
2q pK̃ψqpη

1
1, ~x

1
1, η

1
2, ~x

1
2q.

Note that we can regard ψ as a map ψ : pM`
0 q

2 Ñ C16 as the coordi-
nates η, ~x cover the flat FLRW spacetime manifold globally.
It seems reasonable to allow for a singularity of the interaction kernel,
i.e.

K̃pη1, ~x1, η2, ~x2q “ a´αpη1qa
´α
pη1qKpη1, ~x1, η2, ~x2q. (2.264)

Here, α ě 0. The singular behaviour is motivated by that of the
Green’s functions of the conformal wave equation, see subsection 2.2.3.3.
Recall from section 2.1 that the most natural interaction kernel on
M`

0 would be K̃px1, x2q9δppx1 ´ x2qµpx1 ´ x2q
µq which is a Green’s

function of the wave equation – a concept that can be generalized to
curved spacetimes using the conformal wave equation. Now, under
conformal transformations, Green’s functions of that equation trans-
form as (2.40)

rGpx, x1q “ Ω´1
pxqΩ´1

px1qGpx, x1q, (2.265)
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which corresponds to α “ 1 in (2.264).
Considering (2.264), our integral equation becomes:

ψpη1, ~x1, η2, ~x2q “ ψfree
pη1, ~x1, η2, ~x2q ` a

´3{2
pη1qa

´3{2
pη2q

ż 8

0

dη11

ˆ

ż

d3~x11

ż 8

0

dη12

ż

d3~x12

ˆ a5{2´α
pη11qa

5{2´α
pη12q S

ret
1 pη1 ´ η

1
1, ~x1 ´ ~x

1
1q

ˆ Sret
2 pη2 ´ η

1
2, ~x2 ´ ~x

1
2q pKψqpη

1
1, ~x

1
1, η

1
2, ~x

1
2q. (2.266)

Apart from the scale factors which produce a certain singularity of ψ
for η1, η2 Ñ 0, this integral equation has the form of (2.17) on M`

0 .
Indeed, we can use the transformation

χpη1, ~x1, η2, ~x2q “ a3{2
pη1qa

3{2
pη2qψpη1, ~x1, η2, ~x2q (2.267)

to transform the two equations into each other. Hence, we interpret
equation (2.266) to mean

ab ap3{2qψ “ ab ap3{2qψfree
` Apab ap5{2´ αqψq, (2.268)

where the operator abapβq : CppR`0 ˆR3q2,C16q Ñ CppR`0 ˆR3q2,C16q

multiplies pointwise with a in both coordinates:

ab apβqfpx1, x2q “ apx0
1qapx

0
2qfpx1, x2q (2.269)

and A is the operator of equation (2.228).

Theorem 27 (Existence and uniqueness of dynamics on a flat FLRW
universe). Let, 0 ď α ď 1 and let a : r0,8q Ñ r0,8q be a differentiable
function with ap0q “ 0 and apηq ą 0 for η ą 0. Moreover, assume that
K P C3 ppr0,8q ˆ R3q2,Cq with

}a1´α
pη1qa

1´α
pη2qK} ă 1. (2.270)
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Then for every ψfree with a3{2pη1qa
3{2pη2qψ

free P Bw, (2.268) has a
unique solution ψ with a3{2pη1qa

3{2pη2qψ P Bw (and with w as in the-
orem 25).

Proof. Using the transformation (2.268) on equation (2.268) yields

χ “χfree
` Apab ap1´ αqχq. (2.271)

This equation has the form of (2.228) on M`
0 with K replaced by

a1´αpη11qa
1´αpη12qK. Thus, theorem 25 yields the claim.

Remark 28. 1. Both ψfree and ψ have a singularity proportional
to a´3{2pη1qa

´3{2pη2q for η1, η2 Ñ 0.

2. For α ă 1, K has to compensate the singularities caused by
a´3{2pη1qa

´3{2pη2q in order for (2.270) to hold. In the most
natural case α “ 1, however, K only needs to satisfy }K} ă 1,
i.e. the same condition as for rK in theorem 25.

3. Let χfree “ a3{2pη1qa
3{2pη2qψ

free be differentiable and let χ be the
unique solution of (2.271). Then, by (2.271), we have:

χfree
p0, ~x1, 0, ~x2q “ χp0, ~x1, 0, ~x2q, (2.272)

i.e. χ satisfies a Cauchy problem "at the Big Bang".

4. Remarkably, theorem 27 covers a class of manifestly covariant,
interacting integral equations in 1+3 dimensions. Then the in-
teraction kernel K has to be covariant as well. A class of exam-
ples (see also [70]) is given by α “ 1 and

Kpx1, x2q “

"

fpdpx1, x2qq if x1, x2 are time-like related
0 else,

(2.273)
where dpx1, x2q denotes the geodesic distance of time-like sepa-
rated the events x1 “ pη1, ~x1q and x2 “ pη2, ~x2q, and f is an
arbitrary smooth function which leads to }K} ă 1.
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2.3.4 Proofs

We begin this subsection with a set of technical lemmas.

Lemma 29. For any f P C3pM`
0 ˆ M`

0 ,Cq the functions f 11, f 12 P
C3pM`

0 ˆM`
0 ,Cq defined by

f 11px, zq :“

ż x0
1

0

dx1
0

ż

R3

d3x1Gret
px´ x1qfpx1, zq (2.274)

f 12px, zq :“

ż x0
1

0

dx1
0

ż

R3

d3x1Gret
px´ x1qfpz, x1q (2.275)

fulfil for k P txl | l P t0, 1, 2, 3uu Y tzl | l P t0, 1, 2, 3uu

grad f 11px, zq “ e0

ż

R3

d3x1Gret
px´ x1qfpx1, zq|x10“x0

`

ż x0
1

0

dx1
0

ż

R3

d3x1Gret
px´ x1q grad fpx1, zq (2.276)

grad f 12px, zq “ e0

ż

R3

d3x1Gret
px´ x1qfpz, x1q|x10“x0

`

ż x0
1

0

dx1
0

ż

R3

d3x1Gret
px´ x1q grad fpz, x1q, (2.277)

where e0 is the unit vector in the zeroth direction and

plx `m
2
qf 11px, zq “ fpx, zq (2.278)

plx `m
2
qf 12pz, xq “ fpx, zq. (2.279)

Proof. Pick f P C3pM`
0 ˆM`

0 ,Cq, we will only check the first of each
of the three sets of equalities in the lemma, the proof of the second
case is identical. We abbreviate f 11 as f 1, write it more explicitly and
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check the stated regularity. We have

f 1px, zq “

ż x0
1

0

dx1
0

ż

R3

d3x1Gret
px´ x1qfpx1, zq (2.280)

“:

ż x0
1

0

dy0hpx, y0, zq. (2.281)

Remark 20 and the form of Gret

Gret
pxq “

1

4π|~x|
δpx0

´ |~x|q ´
m

4π
Hpx0

´ |~x|q
J1pm

?
x2q

?
x2

(2.282)

together result for any y0 P r0, x0r in:

hpx, y0, zq “

ż

BBx0 p0q

d2Spyq
1

4π|~y|
fpx` y, y0, zq|y0“´|~y| (2.283)

´
m2

4π

ż

B|y0|p0q

d3y
J1pm

a

y2q

m
a

y2
fpx` y, y0, zq (2.284)

“

ż

BB1p0q

d2Spyq
1

4π|~y|
fpx` x0y, y0, zq|y0“´|~y|x

0 (2.285)

´
m2

4π

ż

B1p0q

d3ypy0
q
3J1pmy

0
a

y2q

my0
a

y2
fpx` w, y0, zq|w0“y0, ~w“y0~y. (2.286)

Now, each of the two summands is in C3. We begin with the first
summand for h P C lptpx, y0, zq P R9 | x0 ě y0 ě 0, z0 ě 0u,Cq with
l ě 1 we define

h1px, y0, zq :“

ż

BB1p0q

d2Spyq
1

4π|~y|
hpx` x0y, y0, zq|y0“´|~y|x

0. (2.287)

Now, pick a direction of differentiation k. The factor 1
4π|~y|

is absolutely
integrable, while the remaining integrand hpx` x0y, y0, zq|y0“´|~y|px

0q2



2.3. DIRECTLY INTERACTING DIRAC PARTICLES 89

is in C l and the integration region is compact. Therefore, the differ-
ence quotient of hpx` x0y, y0, zq|y0“´|~y|px

0q2 in the direction k P txl |
l P t0, 1, 2, 3uu Y ty0u Y tzl | l P t0, 1, 2, 3uu is continuous and hence
bounded on any small neighbourhood of any point px, y0, zq which
means that by Lebesgue dominated convergence the first summand is
differentiable at least once and the resulting derivative equals

ż

BB1p0q

d2Spyq
1

4π|~y|
Bk

`

hpx` x0y, y0, zq|y0“´|~y|x
0
˘

. (2.288)

However, this is just the expression we started with where hpx `
x0y, y0, zq|y0“´|~y|x

0 is replaced by its derivative. Hence, by induction it
follows that the first summand in (2.285) is three times differentiable
in any set of directions k1, k2, k3 with derivative

ż

BB1p0q

d2Spyq
1

4π|~y|
Bk1Bk2Bk3

`

hpx` x0y, y0, zq|y0“´|~y|x
0
˘

. (2.289)

This function is continuous, since Lebesgue dominated convergence
can be applied once more for the same reasons to the limit px, y0, zq Ñ
px1, y10, z1q. For the term (2.286) the argument is similar. Recall the
power series representation of J1 [28, 10.2.2]:

J1pzq “
ÿ

kPN0

p´1qk

k!pk ` 1q!

´z

2

¯2k`1

, (2.290)

from this it follows that u ÞÑ J1puq{u is a smooth function. Hence, the
term (2.286) is an integral of a function in C3 over a compact domain,
and therefore we can pull three derivatives inside and still have a
continuous function. So overall, f 1 is an integral over a function in C3

and hence is itself in C3.
Equation (2.276) follows directly from the above.
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Next, we show that f 1 is a solution to the inhomogeneous Klein-Gordon
equation. For this we use that for the positive values of x0 we have

f 1px, zq “

ż x0
1

0

dy0

ż

R3

d3yGret
px´ yqfpy, zq (2.291)

“

ż x0
1

0

dy0

ż

R3

d3ypGret
´Gadv

qpx´ yqfpy, zq, (2.292)

according to the support properties of Gadv. Now, because the inner
integral can be interpreted as a convolution against the propagator of
the Klein-Gordon equation [10, 11, 12] it follows that

gpx, y0, zq :“

ż

R3

d3ypGret
´Gadv

qpx´ yqfpy, zq (2.293)

fulfils

plx `m
2
qgpx, y0, zq “ 0 on x0

ě y0, ~x P R3, z PM`
0 (2.294)

gpx, y0, zq “ 0 on x0
“ y0, x P R3, z PM`

0 (2.295)
Bx0gpx, y0, zq “ fpx, zq on x0

“ y0, x P R3, z PM`
0 (2.296)

(2.297)

holds. Therefore, we can directly calculate [33]:

plx `m
2
q

ż x0

0

dy0gpx, y0, zq (2.298)

“ pB
2
x0 ´∆`m2

q

ż x0

0

dy0gpx, y0, zq (2.299)

“ Bx0

˜ “0
hkkkkikkkkj

gpx, x0, zq`

ż x0

0

dy0
Bx0gpx, y0, zq

¸

(2.300)

`

ż x0

0

dy0
p´∆`m2

qgpx, y0, zq (2.301)
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“

“fpxq
hkkkkkkikkkkkkj

Bx0gpx, x0, zq`

ż x0

0

dy0

“0
hkkkkkkkkkkkikkkkkkkkkkkj

plx `m
2
qgpx, y0, zq . (2.302)

Lemma 30. For any f P C3pM`
0 ˆM`

0 ,C16q define the function f 1 P
C3pM`

0 ˆM`
0 ,C16q by

f 1px1, x2q :“

ż x0
1

0

dy0
1

ż x0
2

0

dy0
2

ż

R3

d3~y1

ż

R3

d3~y2G
ret
1 px1 ´ y1q

ˆGret
2 px2 ´ y2qfpy1, y2q. (2.303)

Moreover, we have

f 1px1, x2q “

ż x0
1

0

dy0
1

ż

R3

d3~y1G
ret
1 px1 ´ y1q

ż x0
2

0

dy0
2

ż

R3

d3~y2

ˆGret
2 px2 ´ y2qf

1
py1, y2q (2.304)

“

ż x0
2

0

dy0
2

ż

R3

d3~y2G
ret
2 px2 ´ y2q

ż x0
1

0

dy0
1

ż

R3

d3~y1

ˆGret
1 px1 ´ y1qf

1
py1, y2q. (2.305)

Proof. Plugging in the form of Gret and using remark 20 for equa-
tion (2.303) one obtains four terms. The proof that all of them are
absolutely integrable is analogous, so we will only do one term. Con-
sider the term

f 1px1, x2q :“
m2

2

16π2

ż

B
x0
1
p0q

d3y1
1

|~y1|

ż 0

´x0
2

dy0
2

ż

B
|y0

2 |
p0q

d3y2

J1pm2

a

y2
2q

m2

a

y2
2

fpx1 ` y1, x2 ` y2q|y0
1“´|~y1|

, (2.306)
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these integrals are absolutely integrable, because the domain of inte-
gration is bounded and the function ~y1 ÞÑ

1
|~y1|

is absolutely integrable
on bounded domains in three dimensions and the remaining integrand
is continuous and so bounded on the integral domain. Therefore, one
may interchange the order of integration for f . Since the analogous
argument holds for all summands we can exchange the order of inte-
gration in (2.303). The claimed regularity for f 1 holds, because f 1 in
the form of equation (2.305) is generated by applying lemma 29 once
to each variable x1 and x2.

Proof of lemma 21. Pick ψ P S, K P C3pR8,Cq as in the lemma. We
will only check D2D1Aψ “ Kψ and (2.234), the other cases are anal-
ogous. First we rewrite the integral expression in (2.229) using re-
mark 20 and the form of Gret the same way we did in the proofs of the
last two lemmas. This results in the form

ż x0
1

0

dy0
1

ż x0
2

0

dy0
2

ż

R3

d3~y1

ż

R3

d3~y2G
ret
1 px1 ´ y1qG

ret
2 px2 ´ y2q

ˆ rKψspy1, y2q (2.307)

“
ź

j“1,2

˜

A
p1q
j pmjq ` A

p2q
j pmjq

¸

Kψpx1, x2q, (2.308)

where the operators Aplqj are defined in the statement of the lemma.
Using lemma 2.3.4 we see that this expression is three times continu-
ously differentiable. Reordering the integrals in Aψ we get

Aψpx1, x2q “ D1D2

ż x0
1

0

dy0
1

ż

R3

d3~y1G
ret
1 px1 ´ y1q (2.309)

ż x0
2

0

dy0
2

ż

R3

d3~y2G
ret
2 px2 ´ y2qrKψspy1, y2q

(2.310)
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Next, we apply D1 to it. We compute

D1Aψpx1, x2q “ plx1 `m
2
1qD2

ż x0
1

0

dy0
1

ż

R3

d3~y1G
ret
1 px1 ´ y1q (2.311)

ż x0
2

0

dy0
2

ż

R3

d3~y2G
ret
2 px2 ´ y2qrKψspy1, y2q,

(2.312)

now we exchange differentiation, which is justified due to the lemma
provided by lemma 29. Then, we apply this lemma once more to
obtain:

D1Aψpx1, x2q “ D2plx1 `m
2
1q

ż x0
1

0

dy0
1

ż

R3

d3~y1G
ret
1 px1 ´ y1q (2.313)

ż x0
2

0

dy0
2

ż

R3

d3~y2G
ret
2 px2 ´ y2qrKψspy1, y2q (2.314)

“ D2

ż x0
2

0

dy0
2

ż

R3

d3~y2G
ret
2 px2 ´ y2qrKψspx1, y2q. (2.315)

At this point we realize that once plugging in the form of Gret
2 and

using the regularity proven in lemma 29 the last expression evaluates
to (2.234). The resulting expression is regular enough to apply D2,
which yields

D2D1Aψpx1, x2q (2.316)

“ D2D2

ż x0
2

0

dy0
2

ż

R3

d3~y2G
ret
2 px2 ´ y2qrKψspx1, y2q (2.317)

“ plx2 `m
2
2q

ż x0
2

0

dy0
2

ż

R3

d3~y2G
ret
2 px2 ´ y2qrKψspx1, y2q (2.318)

“ Kpx1, x2qψpx1, x2q, (2.319)
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proving the claim. The representation (2.233) then follows by ex-
changing Dirac operators and integrals and differentiating the change
of integration domain with the time dimensions, which is justified ac-
cording to lemma 29.

Proof of lemma 23. Consider a solution ψ of Diψ
free “ 0, i “ 1, 2

for compactly supported initial data at x0
1 “ 0 “ x0

2. As the Dirac
equation has finite propagation speed, ψfree is spatially compactly
supported for all times. Without loss of generality we may assume
}ψfreept1, ¨, t2, ¨q}L2pR6q “ 1 for all times t1, t2, so it follows that also
rψfreespt1, t2q “ 1. In the following we will construct a sequence of test
functions pψmqmPN satisfying ψm

mÑ8
ÝÝÝÑ
}¨}w

ψfree. Let η : R Ñ R be zero

for arguments less than 0, be 1 for arguments greater than 1 and in
between given by (see also Fig. 2.1)

ηptq “ exp

ˆ

´
1

t
exp

ˆ

1

t´ 1

˙˙

. (2.320)

Note that η is smooth and monotonically increasing. Next, we define
for every m P N

ψfree
m pt1, ~x1, t2, ~x2q :“e

´pt1´mqηpt1´mqe´pt2´mqηpt2´mqψfree
pt1, ~x1, t2, ~x2q.

(2.321)
This function is smooth and decreases rapidly in all variables and thus
lies in S. Now we estimate }ψfree ´ ψm}w. Pick m P N. First consider
}ψfree´ψm}L2pR6qpt1, t2q. This function is identically zero for all t1 ă m
and t2 ă m, so we obtain the estimate

sup
t1,t2ą0

1

wpt1q2wpt2q2
}ψfree

´ ψm}
2
L2pR6q

“ sup
t1,t2ą0

1

wpt1q2wpt2q2
ˇ

ˇ1´ e´ηpt1´mqpt1´mqe´ηpt2´mqpt2´mq
ˇ

ˇ (2.322)

ď
1

wp0q2wpmq2
. (2.323)
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Figure 2.1: The function ηptq.

For the other terms we use that ψfree solves the free Dirac equation in
each variable and that suptą0 Bte

´ηptqt “: α ă 8 is realized for some
positive value of t. So we find for i P t0, 1u:

sup
t1,t2ą0

1

wpt1q2wpt2q2
}Dipψ

free
´ ψmq}

2
L2pR6qpt1, t2q

“ sup
t1,t2ą0

1

wpt1q2wpt2q2
(2.324)

ˆ }γ0
i ψ

free
pt1, ¨, t2, ¨qe

´ηpt3´i´nqpt3´i´nqBtie
´ηpti´nqpti´mq}

2
L2pR6q

(2.325)

ď
α

wp0q2wpmq2
. (2.326)

For the inequality it has been used that the factor with a derivative
vanishes for ti ă m.
An analogous estimate repeated for the D1D2-term yields

sup
t1,t2ą0

1

wpt1q2wpt2q2
}D1D2pψ

free
´ψmq}

2
L2pR6qpt1, t2qď

α2

wpmq4



96 CHAPTER 2. DIRECT INTERACTION

ď
α2

wp0q2wpmq2
.

All in all, adding the estimates and taking the square root we find
}ψfree´ψn}w ď

1`α
wp0qwpnq

, which together with the asymptotic behaviour
of w implies convergence. It follows that the free solution ψfree can be
approximated by Cauchy sequences in S and hence is contained in Bw

which, we recall, has been defined as the completion of S with respect
to } ¨ }w.

2.3.4.1 Proof of Lemma 24

Throughout the following subsections, let ψ P S and K P C3pR8,Cq.
Furthermore, define δ :“ 1 ´ }K}2 ą 0, µ “ maxtm1,m2u and let w
be as in the statement of theorem 25.
We begin with some lemmas which are useful for estimating
rAψs2px0

1, x
0
2q.

Lemma 31. Let the following operators be defined on Cpr0,8qq:

`

Ap1qpmqf
˘

ptq “ t

ż t

0

dρ pt´ ρq2 fpρq,

`

Ap2qpmqf
˘

ptq “
m4t4

24 32

ż t

0

dρ pt´ ρq3 fpρq,

`

Ap3qpmqf
˘

ptq “ t2 fp0q,

`

Ap4qpmqf
˘

ptq “
m4t6

22 32
fp0q. (2.327)

Then, for j “ 1, 2 and k “ 1, 2, 3, 4, we define the operator Apkqj pmq
acting on functions φ P Cpr0,8q2q by letting Apkqpmq act on the j-th
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variable of φpt1, t2q. Then we have for all ψ P S, all m1,m2 ě 0 and
all k, l “ 1, 2, 3, 4:
›

›

›
A
pkq
1 pm1qA

plq
2 pm2qψpt1, ¨, t2, ¨q

›

›

›

2

L2
ďApkqj pm1qAplqj pm2q }ψpt1, ¨, t2, ¨q}

2
L2 .

(2.328)
Here, it is understood that the operators Apkqj are applied to the func-
tions defined by the norms which follow them, e.g.
Ap4q1 pm1q }ψpt1, ¨, t2, ¨q}

2
L2 “

m4
1t

6
1

22 32 }ψp0, ¨, t2, ¨q}
2
L2.

Proof. We prove (2.328) for k “ 1, l “ 2 and k “ 3, l “ 4. The
remaining cases can be treated in the same way. We begin with k “ 1,
l “ 2, using |J1pxq{x| ď

1
2
:

}A
p1q
1 pm1qA

p2q
2 pm2qψpx

0
1, ¨, x

0
2, ¨q}

2
L2 “

m2
2

p4πq4

ż

R3ˆR3

d3~x1 d
3~x2 (2.329)

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

B
x0
1
p0q

d3~y1

ż 0

´x0
2

dy0
2

ż

B
|y0

2 |
p0q

d3~y2
1

|~y1|

J1pm2

a

y2
2q

a

y2
2

ψpx1 ` y1, x2 ` y2q|y0
1“´|~y1|

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď
m2

2

p4πq4

ż

R3ˆR3

d3~x1 d
3~x2

ˆ

¨

˝

ż

B
x0
1
p0q

d3~y1

ż 0

´x0
2

dy0
2

ż

B
|y0

2 |
p0q

d3~y2
1

|~y1|
2

ˇ

ˇ

ˇ

ˇ

ˇ

J1pm2

a

y2
2q

a

y2
2

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‚

ˆ

˜

ż

B
x0
1
p0q

d3~y1

ż 0

´x0
2

dy0
2

ż

B
|y0

2 |
p0q

d3~y2 |ψ|
2
px1 ` y1, x2 ` y2q|y0

1“´|~y1|

¸

ď
m2

2

p4πq4

ż

R3ˆR3

d3~x1 d
3~x2 4πx0

1

ˆ

πm2
2px

0
2q

4

12

˙

ˆ

˜

ż

B
x0
1
p0q

d3~y1

ż 0

´x0
2

dy0
2

ż

B
|y0

2 |
p0q

d3~y2 |ψ|
2
px1 ` y1, x2 ` y2q|y0

1“´|~y1|

¸
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ď
m4

2 x
0
1 px

0
2q

4

3π2 28

ż

R3ˆR3

d3~x1 d
3~x2

ż

B
x0
1
p0q

d3~y1

ż 0

´x0
2

dy0
2

ż

B
|y0

2 |
p0q

d3~y2

ˆ |ψ|2px0
1 ´ |~y1|, ~x1 ` ~y1, x

0
2 ` y

0
2, ~x2 ` ~y2q. (2.330)

Exchanging the x and y integrals yields:

(2.330) ď
m4

2 x
0
1 px

0
2q

4

3π2 28

ż

B
x0
1
p0q

d3~y1

ż 0

´x0
2

dy0
2

ż

B
|y0

2 |
p0q

d3~y2

ˆ }ψpx0
1 ´ |~y1|, ¨, x

0
2 ` y

0
2, ¨q}L2

ď
m4

2 x
0
1 px

0
2q

4

3π2 28
4π

ż x0
1

0

dr1 r
2
1

ż 0

´x0
2

dy0
2

4π

3
|y0

2|
3

ˆ }ψpx0
1 ´ r1, ¨, x

0
2 ` y

0
2, ¨q}L2

ď
m4

2 x
0
1 px

0
2q

4

24 32

ż x0
1

0

dρ1 px
0
1 ´ ρ1q

2

ż x0
2

0

dρ2 px
0
2 ´ ρ2q

3
}ψpρ1, ¨, ρ2, ¨q}L2

“ Ap1q1 pm1qAp2q2 pm2q }ψpx
0
1, ¨, x

0
2, ¨q}

2
L2 . (2.331)

Next, we turn to the case k “ 3, l “ 4. Using that the modulus of the
largest eigenvalue of γ0 is 1, we obtain:

}A
p3q
1 pm1qA

p4q
2 pm2qψpx

0
1, ¨, x

0
2, ¨q}

2
L2 ď

m2
2

p4πq4px0
1q

2

ż

R3ˆR3

d3~x1 d
3~x1

ˆ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż

BB
x0
1
p0q

dσp~y1q

ż

B
x0
2
p0q

d3~y2

J1

´

m2

a

px0
2q

2 ´ ~y2
2

¯

a

px0
2q

2 ´ ~y2
2

|ψ|p0, ~x1 ` ~y2, 0, ~x2 ` ~y2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď
m4

2

p4πq4px0
1q

2

ż

R3ˆR3

d3~x1 d
3~x1

ˆ

¨

˚

˝

ż

BB
x0
1
p0q

dσp~y1q

ż

B
x0
2
p0q

d3~y2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

J1

´

m2

a

px0
2q

2 ´ ~y2
2

¯

m2

a

px0
2q

2 ´ ~y2
2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2
˛

‹

‚
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ˆ

˜

ż

BB
x0
1
p0q

dσp~y1q

ż

BB
x0
2
p0q

dσp~y2q |ψ|
2
p0, ~x1 ` ~y2, 0, ~x2 ` ~y2q

¸

“
m4

2

p4πq4px0
1q

2
4πpx0

1q
2 πpx

0
2q

3

3

ż

R3ˆR3

d3~x1 d
3~x1

ż

BB
x0
1
p0q

dσp~y1q

ˆ

ż

B
x0
2
p0q

d3~y2 |ψ|
2
p0, ~x1 ` ~y2, 0, ~x2 ` ~y2q. (2.332)

Exchanging the order of the x and y integrals yields:

(2.332) “
m4

2

3p4πq3
πpx0

2q
3

ż

BB
x0
1
p0q

dσp~y1q

ż

B
x0
2
p0q

d3~y2 }ψp0, ¨, 0, ¨q}
2
L2

“
m4

2 px
0
1q

2 px0
2q

6

22 32
}ψp0, ¨, 0, ¨q}2L2

“ Ap3q1 pm1qAp4q2 pm2q }ψpx
0
1, ¨, x

0
2, ¨q}

2
L2 . (2.333)

Lemma 32. For j “ 1, 2 let Ajpmq “
ř4
k“1 A

pkq
j pmq. Then the fol-

lowing estimates hold:

}pAψqpx0
1, ¨, x

0
2, ¨q}

2
L2 ď 64 }K}2p1` 2m1q

2
p1` 2m2q

2 (2.334)
ˆA1pm1qA2pm2q rψs

2
px0

1, x
0
2q, (2.335)

}pD1pAψqqpx
0
1, ¨, x

0
2, ¨q}

2
L2 ď 8 }K}2p1` 2m2q

2 (2.336)
ˆA2pm2q rψspx

0
1, x

0
2q, (2.337)

}pD2pAψqqpx
0
1, ¨, x

0
2, ¨q}

2
L2 ď 8 }K}2p1` 2m1q

2 (2.338)
ˆA1pm1q rψspx

0
1, x

0
2q, (2.339)

}pD1D2pAψqqpx
0
1, ¨, x

0
2, ¨q}

2
L2 ď }K}2 rψs2px0

1, x
0
2q, (2.340)

where rψs2px0
1, x

0
2q is regarded as a function of x0

1, x
0
2 to which the op-

erators in front of it are applied.
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Proof. We start with (2.335). Recalling (2.233), and usingD “ ´2m´
D the expression Aψ contains terms such as D1D2pKψq and DipKψq,
i “ 1, 2. Recalling also the definition of Dk (equation (2.247)), we
have:

D1D2pKψq “
3
ÿ

k“0

p∇3´kKqpDkψq (2.341)

with

∇k :“

$

’

’

&

’

’

%

1, k “ 0
i{B1, k “ 1
i{B2, k “ 2
´{B1 {B2, k “ 3.

(2.342)

Hence, noting (2.249):

|D1D2ψ| ď }K}
3
ÿ

k“0

|Dkψ|. (2.343)

Similarly, we find:

DipKψq ď }K}
3
ÿ

k“0

|Dkψ|, i “ 1, 2. (2.344)

Considering the definition of Apkqj pmq, j “ 1, 2, k “ 1, 2, 3, 4 it follows
that

|Aψ| ď }K}p1` 2m1qp1` 2m2q

3
ÿ

k“0

ź

j“1,2

“

Ajpmjq
p1q
`

A
p2q
j pmjq ` A

p3q
j pmjq ` A

p4q
j pmjq

‰

|Dkψ|. (2.345)

In slight abuse of notation, we here use the same symbols for the oper-
ators Apkqj pmq acting on functions with and without spin components.
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The idea now is to make use of lemma 31. In order to be able to apply
the lemma, we first note that by Young’s inequality for a1, ..., aN P R,
we have

´

řN
i“1 ai

¯2

ď N
řN
i“1 a

2
i and thus:

|Aψpx1, x2q|
2
ď 64 }K}2p1` 2m1q

2
p1` 2m2q

2

ˆ

4
ÿ

i,j“1

3
ÿ

k“0

ˇ

ˇA
piq
1 pm1qA

pjq
2 pm2q |Dkψ|

ˇ

ˇ

2
. (2.346)

Integrating over this expression and using lemma 31, we obtain:

}pAψqpx0
1,¨, x

0
2, ¨q}

2
L2 ď 64 }K}2p1` 2m1q

2
p1` 2m2q

2

ˆ

4
ÿ

i,j“1

3
ÿ

k“0

Apiq1 pm1qApjq2 pm2q}pDkψqpx
0
1, ¨, x

0
2, ¨q}

2
L2 . (2.347)

Recalling the definition of rψs2px0
1, x

0
2q, equation (2.246) yields (2.335).

Next, we turn to (2.337). Here, we use lemma 21 and D “ ´2m´D
to obtain

D1pAψq“
´

A
p1q
2 pm2q p´2m2 ´D2q`A

p2q
2 pm2qp´2m2 ´D2q

`A
p3q
2 pm2q`A

p4q
2 pm2q

¯

pKψq. (2.348)

Considering the form of Apkqj pmjq this implies:

|D1pAψq| ď }K}p1` 2m2q

4
ÿ

i“1

ÿ

kPt0,2u

A
piq
2 pm2q |Dkψ|. (2.349)

We now square and use Young’s inequality, finding:

|D1pAψq|
2
ď 8 }K}2p1` 2m2q

2
4
ÿ

i“1

ÿ

kPt0,2u

A
piq
2 pm2q |Dkψ|

2. (2.350)
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Integrating and using lemma 31 yields:

}D1pAψqpx
0
1, ¨, x

0
2, ¨q}

2
L2 ď 8 }K}2p1` 2m2q

2

ˆ

4
ÿ

i“1

ÿ

kPt0,2u

Apiq2 pm2q }pDkψqpx
0
1, ¨, x

0
2, ¨q}

2
L2 . (2.351)

Adding the terms with k “ 1, 3 and using the definition of rψs2px0
1, x

0
2q

gives us (2.337).
The estimate (2.339) follows in an analogous way.
Finally, for (2.340) we also use lemma 21 to get

D1D2pAψq “ Kψ. (2.352)

Squaring and integrating gives us:

}D1D2pAψqpx
0
1, ¨, x

0
2, ¨q}

2
ď }K}2 }ψpx0

1, ¨, x
0
2, ¨q}

2
L2

ď }K}2 rψs2px0
1, x

0
2q, (2.353)

which yields (2.340).

These estimates are the core of:

Proof of Lemma 24: We use lemma 32 together with the definition of
rψs2px0

1, x
0
2q to obtain:

rAψs2px0
1, x

0
2q ď (2.335)` (2.337)` (2.339)` (2.340). (2.354)

Summarizing the operators into a product yields (2.250).
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2.3.4.2 Proof of Theorem 25

In order to prove theorem 25, we combine the previous estimates to
show that }A} ă 1, first on test functions ψ P S and by linear extension
also on the whole of Bw. We start with equation (2.250) of lemma 24
using the definition of Aj for j “ 1, 2, as well as the following estimate,
valid for all ψ P S, t1, t2 ą 0:

rψspt1, t2q “ rψspt1, t2q
wpt1qwpt2q

wpt1qwpt2q
ď }ψ}wwpt1qwpt2q. (2.355)

Using this in (2.250) yields:

}Aψ}2wď sup
x0

1,x
0
2ą0

1

pwpx0
1qwpx

0
2qq

2
}K}2 (2.356)

ˆ
ź

j“1,2

`

1` 8p1` 2mjq
2Ajpmjq

˘

rψs2px0
1, x

0
2q, (2.357)

ď sup
x0

1,x
0
2ą0

}ψ}2

pwpx0
1qwpx

0
2qq

2
}K}2

ˆ
ź

j“1,2

`

1` 8p1` 2mjq
2Ajpmjq

˘

pw2
bw2

qpx0
1, x

0
2q, (2.358)

ď }K}2 }ψ}2w

´

sup
tą0

1

wptq2
(2.359)

ˆ
`

1` 8p1` 2mjq
2Apµq

˘

w2
ptq

¯2

, (2.360)

where µ “ maxtm1,m2u and Apµq “
ř4
k“1 Apkqpµq with Apkqpµq as

in (2.327).
Next, we shall estimate the term in the big round bracket. To this end,
we first note some special properties of w2, which motivated choosing
w as in (2.251).
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Lemma 33. For all t ą 0, we have

ż t

0

dτ w2
pτq “

t

1` bt8
w2
ptq. (2.361)

Proof: Differentiating the right side of the equation and using the
concrete function w2 as in (2.251) shows that it is, indeed, the anti-
derivative of w2. Since this function vanishes at t “ 0, the claim
follows.

Lemma 34. For c ă 8 we have

sup
tą0

tc

1` bt8
“

c

8
b´c{8

ˆ

8

c
´ 1

˙1´c{8

, (2.362)

and furthermore for c “ 8:

sup
tą0

t8

1` bt8
“

1

b
. (2.363)

Proof. To prove (2.362), considering the shape of the function hptq “
tc{p1` bt8q we find that the supremum is in fact a maximum which is
located at t “ b´1{8 p8{c´ 1q´1{8. Inserting this back into the function
hptq yields (2.362). Equation (2.363) follows from t8

1`bt8
“ 1

b
1

1{pbt8q`1
ď

1
b
.

Proof of theorem 25: Applying Lemma 33 to Apµqw2 yields:
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`

Ap1qpµqw2
˘

ptq “ t

ż t

0

dρ pt´ ρq2w2
pρq ď t3

ż t

0

dρw2
pρq

“
t4

1` bt8
w2
ptq,

`

Ap2qpµqw2
˘

ptq “
µ4 t4

24 32

ż t

0

dρ pt´ ρq3w2
pρq ď

µ4 t8

24 32

w2ptq

1` bt8
,

`

Ap3qpµqw2
˘

ptq “ t2,

`

Ap4qpµqw2
˘

ptq “
µ4 t6

22 32
. (2.364)

Multiplying with 1{w2ptq and using Lemma 34 as well as 1{wptq2 ď
p1` bt8q´1, we find:

w´2
ptq

`

Ap1qpµqw2
˘

ptq ď
?

2b´
1
2 ,

w´2
ptq

`

Ap2qpµqw2
˘

ptq ď
µ4

24 32 b
,

w´2
ptq

`

Ap3qpµqw2
˘

ptq ď
33{4

22 b1{4
,

w´2
ptq

`

Ap4qpµqw2
˘

ptq ď
µ4

24 35{4
b´3{4. (2.365)

Using (2.360), we can employ these inequalities (whose right-hand
sides are inversely proportional to powers of b) to estimate the norm
of A. According to (2.360), we have, first on S and by linear extension
also on the whole of Bw:

}A} ď }K} sup
tą0

w´2
ptq

´

p1` 8p1` 2µq2Apµqqw2
¯

ptq. (2.366)

Now we use (2.365) for the various contributions Apkqpµq to Apµq “
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ř4
k“1A

pkqpµq, finding:

}A} ď }K} `
”23.5}K}

b1{2
`
µ4}K}

18b
`

33{42}K}

b1{4
`

µ4}K}

2p35b3q1{4

ı

p1` 2µq2

bě1
ď }K}`

}K}

b1{4

`

23.5
` µ4

{18` 33{42` µ4
{p2 ¨ 35{4

q
˘

p1` 2µq2

(2.367)

ă }K} `
}K}

b1{4
p16` µ4

qp1` 2µq2. (2.368)

Recalling that b “ }K}4

p1´}K}q4
p16` µ4q4p1` 2µq8 (see (2.252)), we finally

obtain that:

}A} ă }K}`
}K}

b1{4
p16`µ4

qp1`2µq2 “ }K}`1´}K} “ 1. (2.369)

We have thus shown that A defines (by linear extension) a contraction
on Bw. Thus, the Neumann series ψ “

ř8

k“0A
kψfree yields the unique

(global-in-time) solution of the equation ψ “ ψfree ` Aψ.

2.4 Summary and Conclusions
In this chapter we have extended the analysis of spin-0 and spin-1/2
delayed-equations. The resulting degree of understanding is quite dif-
ferent in the two cases.
Extending previous work for Klein-Gordon particles [72, 70] to the
Dirac case, we have established the existence of dynamics for a class
of integral equations (2.20) which express direct interactions with time
delay at the quantum level. To obtain this result, we have used both
simplifying assumptions (A) of a cut-off of the spacetime before t “ 0,
and (B) of a smoother interaction kernel than the choice (2.26). While
we have tried to justify assumption (A) by considering the equation on
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the FLRW universe that features a Big Bang, no physical justification
has been given for assumption (B).
In fact, assumption (B) consists of two parts here:
Firstly, we have assumed that K is complex-valued while it could be
matrix-valued in the most general case. The reason for this assumption
is that our proof requires the integral operator A to be a map from
a certain Sobolev space onto itself in which weak derivatives with
respect to the Dirac operators of the two particles can be taken. If K
were matrix-valued, it would not commute with these Dirac operators
in general. Then Aψ would contain new types of weak derivatives
which cannot be taken in the initial Sobolev space. As illustrated in
Sec. 2.3.2.2, this creates a situation where more and more derivatives
have to be controlled, possibly up to infinite order where the success of
an iteration scheme seems unlikely. At present, we do not know how
to deal with this issue. Improving on this point, however, defines an
important task for future research, as e.g. electromagnetic interactions
involve interaction kernels proportional to γµ1 γ2µ (see [64]).
Secondly, the physically most natural interaction kernel is given by a
delta distribution along the light cone, Kpx1, x2q9δppx1 ´ x2qµpx1 ´

x2q
µq. In the Dirac case, the distributional derivatives make general-

izations of results about more singular interaction kernels obtained in
the KG case such as [72, 70] as well as section 2.2 difficult, and we
have not attempted it here. Another interesting question is whether
the smallness condition on K can be alleviated such that arbitrarily
peaked functions are admitted. This could allow taking a limit where
K approaches the delta distribution along the light cone.
Improving upon any of these two points would be very desirable.
In the case of scalar particles, we have proved the existence and unique-
ness of solutions of the fully singular scalar integral equation (2.22)
and its N -particle generalization (2.68). Following previous works and
the Dirac case, we have depended upon assumption (A), i.e. a cut-off
in time; however, in contrast to those cases considering a more regular
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interaction kernel than what is present in (2.22), i.e. assumption (B)
was not necessary. We have given the same justification for assump-
tion (A) as in the Dirac case and in [70] by extending the main part
of our result to the FLRW spacetime.
We have worked with a weighted L8 norm both for time and space
variables in the case of scalar particles, while it would be more natural
to use a weighted L8L2 norm instead. It would then be a challenging
task to find the right inequalities to obtain similar estimates as we
did. Moreover, one could also try to prove higher regularity not only
in the sense of integrability but also differentiability. An interesting
question, for example, is whether one can apply the Klein-Gordon
operators plk `m

2
kq to the solutions of (2.22) in a weak sense.

This work provides a rigorous proof of the existence of interacting rel-
ativistic quantum dynamics in 1+3 spacetime dimensions; in particu-
lar, this model does not suffer from ultraviolet divergences which are
typically encountered in quantum field theoretic models. Of course,
the model does not describe particle creation and annihilation and is
therefore a toy model rather than an alternative to QFT. Neverthe-
less, one might find the fact that direct interactions, even singular
ones along the light cone, can be made mathematically rigorous, re-
markable. One might wonder whether in the long run the mechanism
of interaction through multi-time integral equations and direct inter-
actions could contribute to a rigorous formulation of Quantum Field
Theory.



Chapter 3

Quantum Field Theoretic
Approach to Interactions

3.1 Introduction

3.1.1 Motivation

In this chapter we will turn our attention to the widely used disper-
sion relation for relativistic quantum systems obtained by filling up
the negative energy states; see more details below. It is the result of
joint work with my supervisors. For the fermionic parts of a Quantum
Field Theory this approach is the standard one. The motivation and
introduction closely follows [16]. While the rigorous quantum field the-
oretic formulation of free relativistic fermions is well-established [20]
the introduction of interaction faces difficulties. In fact, introducing
an external electromagnetic field acting on the fermions, while ne-
glecting all interactions between the fermions, is already a non-trivial

109
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matter. The completely satisfactory formulation of such an external
field quantum electrodynamics (QED) is, to the best of my knowledge,
still to be formulated, despite the famous works of Dirac [22], Feyn-
man [35], Schwinger [95], Ruisenaars [86, 87], Langmann and Mickels-
son [59], Dereziński and Gérard [20] and Thaller [99]. Not to mention
a full QED including an interaction with a photon field. In recent
years, there have been several novel attempts to the problem among
them are what is called the causal fermion systems [37], which has a
wider scope. There has been progress on the rigorous treatment of
the search for minimizers in the static problem where a formulation
in terms of Fock spaces has been emitted in favour of one in terms
of projectors onto polarizations [50, 52, 49, 48, 43, 42], see [51] for a
summary and [53] for a dynamic result in this formulation including
Coulomb interaction but not magnetic fields and [44] for a derivation
of the Euler-Heisenberg energy. Finally, there is the approach to con-
struct the geometric phase of external field QED [90, 75, 13, 15, 14],
which succeeded in constructing a time evolution operator but failed
to identify a unique canonical choice. This subsection continues with
a heuristic introduction into the latter approach.
When Dirac found the equation now bearing his name he recognized
that the range of kinetic energies accessible to the particles is s ´
8,´ms Y rm,8r [24]. So he was worried that particles coupled to
an electromagnetic field might radiate and lower their kinetic energy
without bound, also cf. [46, Example 12.1]. Since particles capable
of such behaviour would not form stable matter, he devised a way to
introduce a stable ground state into the system. Instead of applying
the Dirac equation

0 “ pi{B ´mqψ, (3.1)

for ψ P L2pR3,C4q “: H to a fixed finite number of electrons, he sought
to apply its evolution to an infinite antisymmetric product of the form

Ω “ ϕ1 ^ ϕ2 ^ . . . , (3.2)
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where pϕkqkPN forms an ONB of the negative spectral subspace H´

of H with respect to the free Hamiltonian corresponding to the equa-
tion (3.1). Thus, making use of Pauli’s exclusion principle for fermions
no particle is any longer able to lower its kinetic energy. This object
Ω resulting from filling up all the negative energy states is called the
Dirac sea and constitutes the ground state introduced to this system.
Let U : H ý be a one-particle evolution such as the time evolution
subject to an external field A P C8c pR4,R4 to act upon the particles,
changing (3.1) to

0 “ pi{B ´ {A´mqψ, (3.3)

where we have set the electric charge of the electron to one. Then Ω
might be evolved according to

LUΩ “ Uϕ1 ^ Uϕ2 ^ . . . . (3.4)

The first step towards a theory including interactions is to allow for
such an external field. We might now imagine a field A that acts only
during a brief period of time. Such a field could pull a particle of
the Dirac Sea Ω, say ϕ1, out of H´ and above the surface H` Q ξ “
UAϕ1, where H` is the positive spectral subspace of the Hamiltonian
corresponding to (3.1). Such a field might not disturb the other wave
functions much and the Dirac Sea after the action of the field might
be represented by

Ψ “ ξ ^ ϕ2 ^ ϕ3 ^ . . . . (3.5)

Now, according to Dirac, since ξ P H`, the corresponding particle
behaves qualitatively differently compared to the remaining part of
the Dirac sea which consists of wave functions taken from H´. This
particle appears above the surface where it leaves behind a hole, the
missing wave function ϕ1 P H´. These holes are also called positrons.
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Following Dirac’s argument, whenever the wave functions of very neg-
ative energy are left relatively unperturbed by the action of the process
we can switch to a leaner description. If Ω remains unchanged below
a certain level, such as in our heuristic example, it suffices to follow
the generated particles e.g. ξ and the created holes e.g. ϕ1. If on the
other hand all wave functions are affected one has to keep track of a
net evolution of Ω as well. As in this description the particle number
is not a constant, creation operators are introduced. These act as

a˚pξqϕ2 ^ ϕ3 ^ ¨ ¨ ¨ “ ξ ^ ϕ2 ^ ϕ3 ^ . . . . (3.6)

The adjoint of the creation operator is called annihilation operator
and is denoted by a. Using these equation (3.5) can be condensed to

Ψ “ a˚pξqapϕ1qΩ. (3.7)

Given a one-particle time evolution operator UA, its lift ŨA acting on
objects like the wedge product (3.2) needs to fulfil

ŨAa˚pψq “ a˚pUAψqŨA. (3.8)

Requirement (3.8) is enough to fix ŨA up to a phase. Now, still a˚pχqΩ
behaves differently for χ P H` compared to χ P H´, so in order to
completely forget about the Dirac sea in the notation one performs
the splitting

a˚pfq “ b˚pfq` c˚pfq , b˚pfq “ a˚pP`fq, c˚pfq “ a˚pP´fq, (3.9)

exploiting linearity of a˚, where the orthogonal projectors onto the
negative and positive energy subspaces of H are denoted by P´ :
H Ñ H´ and P` :“ 1 ´ P´ respectively. Now, the space generated
by elements of the form b˚pf1q b

˚pf2q . . . b
˚pfnqΩ is called electron Fock

space Fe while the space generated by cpf1q cpf2q . . . cpfnqΩ is called
hole Fock space Fh. Here, the hole Fock space is generated by the
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annihilation operators of negative energy acting on the vacuum, which
is another remnant of the fact that Ω is an infinite product state. This
can be hidden by one more change in notation

d˚pfq “ cpfq. (3.10)

Since c is antilinear, but d˚ is supposed to be linear, one replaces
H´ by H´ as the domain of definition of d˚. By H´ we denote the
space that is identical to H´ as a set, but multiplication is defined by
pC ˆH`q Q pλ, fq ÞÑ λ˚f . Resulting in a corresponding replacement
of Fh by Fh. Turning the full space into

F “ Fe b Fh. (3.11)

Using this we can represent Ω by |0y “ 1b 1 and Ψ by b˚pξqd˚pϕ1q|0y.
Forgetting about the structure of Ω leads to problems, as we will see
now. Using the techniques recalled in the following sections one can
express the probability of creation of at least one pair due to time
evolution from t0 to t1 by a lift fulfilling (3.8) subject to an external
potential A as a Fredhom determinant, 2p1 ´

a

detH´p1´ |U
A
`´|

2qq.
Picking an ONB pϕnqnPN of H` and pϕ´nqnPN of H´ this yields to
leading order

ÿ

k,nPN

|xϕk, U
A
pt1, t0qϕ´ny|

2
“ }UA

`´pt1, t0q}
2
I2
, (3.12)

where U˘¯ :“ P˘UP¯ for any operator U and } ¨ }I2 is the Hilbert-
Schmidt norm. The space of operators of type H ý induced by this
norm is denoted by I2pHq. As a probability the expression (3.12) needs
to be bounded by one; however, this is not always the case.

Theorem 35 (Ruijsenaars [86, 87]). For times t0, t1 P R the right-
hand side of (3.12) ă 8 if and only if ~Apt0q “ 0 “ ~Apt1q.
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There is one more classical theorem to take note of in this context.

Theorem 36 (Shale-Stinespring [97]). The one-particle operator U
has a lift Ũ : F ý satisfying (3.8) if and only if U˘, U¯ P I2pHq.

Combined these theorems imply that unless the condition ~A “ 0,
which is highly artificial in the light of Lorentz and gauge invariance,
is fulfilled there is no representation of the time evolution operator
subject to the field A into Fock space.
Stated in this way the last statement might nudge one into concluding
that the Fock space representation is a dead end. In fact, the situation
is more subtle. To get a heuristic idea, recall that positive and negative
energy states differ in the direction of their spinors. Meaning that
multiplying a negative energy state with e.g. γ matrices will in general
result in a mixture of positive and negative energy states. Incidentally,
this is exactly what happens in the Hamiltonian

HA
“ γ0

p´i~γ ¨ grad`mq ` A0 ´ γ
0~γ ¨ ~A. (3.13)

Since there are infinitely many particles in the wedge product of Ω and
there is no mechanism of suppression for states of large momentum,
the sum in (3.12) does not converge for ~A ‰ 0. However, as it turns
out there is a ŨApt1, t0q : F ý whenever ~Apt1q “ 0 “ ~Apt0q. This
implies that once the vector parts ~A vanishes, only finitely many pairs
remain, justifying the term “virtual pairs” for the infinity of pairs that
appear and vanish together with ~A.
As we can read off of our construction of Fock space, this space consists
of infinite wedge products that are sufficiently close to the initial state
Ω. We just found out that, this space is not large enough to contain
the state also at later times when the external field is non-zero, but
that does not mean that we cannot find a mapping from the initial
state to the later ones. It would be enough to adapt the choice of space
at later times to the external field present at that time. These spaces
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will in general not give a physically meaningful distinction between
electrons and parts of the Dirac sea. Such a distinction may have to
wait for a full interacting theory of QED, where it may be given in
terms of ground states or states homogeneous and isotropic enough
such that excitations above it behave effectively free. However, such
a distinction is not necessary to answer physical questions such as
which currents are induced by strong external fields or how Maxwell’s
equations are modified by those currents.
In the last decade progress has been made to construct the evolution
operator of external field QED mapping states of one Fock space to an-
other and to identify the remaining freedom of picking Fock spaces at
each hypersurface or point in time. The results generalize theorems 35
and 36 in a way that exposes the gauge and relativistic invariance in-
herent to the problem, which is not apparent in the original versions.
In order to state those theorems we need some mathematical notation
which we introduce first.

3.1.2 Overview of Previous Results

This subsection will first introduce some notation of [13, 15, 14, 16]
in order to state the results of [14] and prepare for the sections to
come. While doing so we will closely follow [16]. Throughout the
whole chapter the class of four potentials we are interested in is

V :“ C8c pR4,R4
q. (3.14)

All the results could be extended with a reasonable amount of addi-
tional work to slightly more general four-potentials, but not to physi-
cally realistic ones such as the Coulomb potential.
Any notion of time evolution in a relativistic setting needs to gener-
alize the notion of simultaneity. For this reason we introduce Cauchy
surfaces.
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Definition 37 (Cauchy surface, definition 2.1 of [16]). A Cauchy sur-
face Σ Ă R4 is a smooth, 3-dimensional submanifold of R4 that fulfils
the following three conditions:

a) Every inextensible, two-sided, time- or light-like, continuous path
in R4 intersects Σ in a unique point.

b) For every x P Σ, the tangential space TxΣ is space-like.

c) The tangential spaces to Σ are bounded away from light-like di-
rections in the following sense: The only light-like accumulation
point of

Ť

xPΣ TxΣ is zero.

Definition 38 (HΣ, definition 2.2 of [16]). For every Cauchy surface
Σ there is a parametrization

Σ “ tπΣp~xq :“ ptΣp~xq, ~xq | ~x P R3
u, (3.15)

with a smooth function tΣ : R3 Ñ R. Agreeing with standard notation,
d4x “ dx0dx1dx2dx3 denotes the standard volume form over R4, where
the product of forms is the wedge product. By d3x we denote the form
d3x “ dx1dx2dx3 both on R4 and on R3. When contracting a form ω
with a vector v we will be denoting this by ivpωq. We will keep writing
ivpωq also for the spinor matrix valued vector γ “ pγ0, γ1, γ2, γ3q “

γµeµ:

iγpd
4xq “ γµieµpd

4xq. (3.16)

For any x P Σ restricting the 3-form iγpd
4xq to the tangent space TxΣ

results in

iγpd
4xq “ {npxqinpd

4xq “

˜

γ0
´

3
ÿ

µ“1

γµ
BtΣp~xq

Bxµ

¸

d3x (3.17)
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Being able to write a Poincaré covariant measure on Cauchy surfaces
we may introduce the scalar product

φ, ψ ÞÑ

ż

Σ

φpxqiγpd
4γqψpxq “: xφ, ψy (3.18)

and φ “ φ:γ0. With respect to this scalar product we define HΣ “

L2pΣ,C4q.

As is well known (e.g. [3, 15]) the Dirac equation coupled to an external
potential, equation (3.3), has a one-particle evolution operator for each
pair of Cauchy surfaces Σ,Σ1

UΣ1,Σ : HΣ Ñ HΣ1 , (3.19)

Using this covariant replacement of the standard Hilbert-space we re-
peat the heuristic Fock space construction of subsection 3.1.1 in a
slightly more general and detailed fashion.

Definition 39 (Fock space of generalized polarization, definition 2.4
of [16]). Let PolpHΣq denote the set of all closed, linear subspaces
V Ă HΣ such that both V and V K are infinite dimensional. Any
V P PolpHΣq is called polarization of HΣ. For V P PolpHΣq, let
P V

Σ : HΣ Ñ V denote the orthogonal projection of HΣ onto V . The
Fock space corresponding to V on the Cauchy surface Σ is defined to
be

FpV,HΣq :“
à

cPZ
FcpV,HΣq, FcpV,HΣq :“

à

n,mPN0
c“m´n

pV Kq^n b V
^m
,

(3.20)
where

À

is the Hilbert space direct sum, ^ the antisymmetric tensor
product of Hilbert spaces and H^m is the n-fold antisymmetric product
of the Hilbert space H and V is the conjugate complex vector space of
V , which is identical to V as a set, but multiplication is defined by
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pC ˆ V q Q pλ, fq ÞÑ λ˚f . Furthermore, for the special case H :“ HΣ0

with Σ0 earlier than the support of any four-potential considered in
this chapter we introduce the abbreviations

P´ :“ PH´
Σ0

(3.21)
P` “ 1´ P´, (3.22)

where H´ is the negative spectral subspace of the Hamiltonian (3.13)
for A “ 0. We also introduce the abbreviation

F :“ FpH´,Hq, (3.23)

as well as Ω P F for a fixed element with m,n “ 0 in equation (3.20)
and }Ω} “ 1.

Pick Cauchy surfaces Σ,Σ1 and polarizations V P PolpHΣq, V 1 P
PolpHΣ1q then we can give the analogue of the lift condition (3.8)
in this setting: for all ψ P HΣ

ŨA
V 1,Σ1;V,Σa

˚
Σpψq “ a˚Σ1pU

A
Σ1,ΣψqŨ

A
V 1,Σ1;V,Σ, (lift condition)

holds, where a˚Σ1 and a˚Σ are the creation operator associated to FpV,HΣq

and FpV 1,HΣ1q respectively.
The rephrasing of theorem 36 adapted to the more general notation
we have developed now is

Theorem 40 ( [14], also cor. 2.5 of [16])). Let Σ,Σ1 be Cauchy sur-
faces, V P PolpHΣq, and V 1 P PolpHΣ1q be polarizations. Then the
following two statements are equivalent:

a) There is a unitary operator ŨA
V 1,Σ1;V,Σ : FpV,Σq Ñ FpV 1,Σ1q that

satisfies the (lift condition)

b) The operators P V 1K
Σ1 UA

Σ1.ΣP
V
Σ and P V 1

Σ1 U
A
Σ1.ΣP

V K

Σ are Hilbert-Schmidt
operators.
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So the question given an initial state in an initial Fock space FpV,Σq,
which Fock space we may pick at a final Cauchy surface Σ1 such that
there is a lift fulfilling the (lift condition) now becomes a question of
polarizations. We know a priori that UA

Σ1,Σ has a lift from FpV,Σq to
FpUA

Σ1,ΣV,Σ
1q. Furthermore, we have a distinguished polarization for

very early times, namely the negative energy states with respect to the
free Hamiltonian. Thus, we may characterize all relevant polarization
classes into the following equivalence classes

Definition 41 (polarization classes, def. 2.6 of [16]). For a Cauchy
surface Σ and a potential A P V we define

CΣpAq :“
 

W P PolpHΣq | W « UA
Σ,Σin

H´
Σin

(

, (3.24)

where Σin is a Cauchy surface earlier than suppA and H´
Σin

is the
subspace spanned by the wave functions in the negative spectrum of
the free Dirac Hamiltonian. Furthermore, for V, V 1 P PolpHΣq we
write V « V 1 whenever P V

Σ ´ P
V 1

Σ is a Hilbert-Schmidt operator.

Using this we immediately find

Corollary 42 (polarization classes and lifts, cor 2.7 of [16]). Let Σ,Σ1

be Cauchy surfaces and V P CΣpAq, V
1 P PolpHΣ1q be polarizations.

Then there is a unitary operator ŨA
V 1,Σ1;V,Σ : FpV,Σq Ñ FpV 1,Σ1q sat-

isfying the (lift condition) if and only if V 1 P CΣ1pAq.

The definition 41 suggests a dependence of CΣpAq on all of A as a
function of time. As indicated in the last subsection, this is not the
case.

Theorem 43 (CΣpAq depends on A|TΣ, thm. 1.5 of [14]). Pick a
Cauchy surface Σ and A,A1 P V. Then we have

CΣpAq “ CΣpA
1
q ðñ A|TΣ “ A1|TΣ, (3.25)
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where A|TΣ “ A1|TΣ means that for all x P Σ and y P TxΣ the relation
Aµpxqy

µ “ A1µpxqy
µ holds.

This is a version of theorem 35 for general Cauchy surfaces. The next
theorem shows how the polarization classes change with the gauge and
Lorentz transforms.

Theorem 44 (transformation of polarization classes, thm. 1.6 of [14]).
Let A P V be a four-potential and Σ a Cauchy surface.

a) Let ps,Λq P C4ˆ4ˆ SOÒ
p1, 3q be an orthochronous Lorentz trans-

form, i.e. the tuple fulfils Λµ
σgµνΛ

ν
τ “ gσ,τ and Λµ

νγ
ν “ s´1γµs

and acts on wave functions as ψ ÞÑ sψpΛ´1¨q (see sec. 2.3
of [15]). Then we have

V P CΣpAq ðñ ps,ΛqV P CΛΣpΛApΛ
´1
¨qq. (3.26)

b) Let A1 “ A ` dζ be the gauge transformed potential, for some
ζ P C8c pR4,Rq. Then the gauge transformation acts on wave
functions as e´iζ : HΣ ý, ψ ÞÑ e´iζψ and one obtains

V P CΣpAq ðñ e´iζV P CΣpA` dζq. (3.27)

Theorems 44, 43 and corollary 42 make clear in which way the original
plan to work in a single Fock space was misguided and how it may be
adapted to make it work.
When trying to construct an evolution operator from a Cauchy sur-
face Σ to a second one Σ1 subject to an external field A, one has
to choose an initial polarization V P CΣpAq and a final polarization
V 1 P CΣ1pAq. Then there is an evolution operator ŨA

V 1,Σ1;V,Σ, unique
up to a phase. Picking polarizations is akin to picking a patch of co-
ordinates on a non-trivial manifold, in the sense that there may not
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be a canonical choice and the choice is going to influence the rep-
resentation of all the relevant objects. Nevertheless, one can obtain
valuable information from calculations done with respect to one such
choice and always transform the results to the representation induced
by any other choice. Carrying out such a procedure will for every
Φ P FpV,Σq and Ψ P FpV 1,Σ1q result in finite transition probabilities
|xΨ, ŨA

V 1,Σ1,V,ΣΦy|2 without the need for renormalization.
To make the discussion more concrete, we are going to introduce a
particular representation of the Fock spaces and evolution operators
discussed so far. This representation is heavily inspired by Dirac’s
original idea discussed in subsection 3.1.1 and is usually referred to as
infinite wedge space. For further details please have a look at section
2 of [13].
The basic idea behind this representation is a generalization of the
following point of view of the scalar product of finitely many fermions
but works for any Hilbert space H. Pick N P N and two states
ΛΨ,ΛΦ P H^N that can be written as the wedge product of N wave
functions

ΛΨ “ ψ1 ^ ¨ ¨ ¨ ^ ψN (3.28)
ΛΦ “ φ1 ^ ¨ ¨ ¨ ^ φN , (3.29)

then the standard scalar product xΨ,Φy in H^N can be written as a
determinant

det
RN
pΨ˚Φq, (3.30)

where Φ and Ψ are interpreted to be linear maps of type RN Ñ H

@k : Ψ : ek ÞÑ ψk (3.31)
@k : Φ : ek ÞÑ φk (3.32)

where pekqkPt1,...,Nu is an ONB of RN and the star denotes the adjoint.
Non product states first have to be decomposed into a sum of product
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states, then the determinant is continued to be linear in the left and
right factor. Replacing RN by an index space `, e.g. l2pNq the space of
square summable sequences, and using the Fredholm determinant this
particular representation of the scalar product of HN can be directly
generalized to an infinite number of particles. In this representation,
product states Φ can be thought of as maps

Φ : `Ñ H, ek ÞÑ ϕk. (3.33)

Such maps will be called Dirac seas. The corresponding wedge product
can be thought of as

ΛΦ “ ϕ1 ^ ϕ2 . . . . (3.34)
However, as operators on an infinite dimensional Vector space ` only
have a Fredholm determinant if they are in the set 1 ` I1p`q (here I1

denotes the space of operators with finite trace-norm), only Dirac seas
Φ,Ψ : `Ñ H satisfying

Ψ˚Φ,Ψ˚Ψ,Φ˚Φ P 1` I1p`q (3.35)

have a scalar product. Starting with one particular infinite wedge
product ΛΦ and collecting all infinite wedge products ΛΨ such that
(3.35) is fulfilled and formal linear combinations thereof and taking
the completion with respect to the pairing (3.30) results in what is
referred to as infinite wedge space FΛΦ. For a rigorous construction
please have a look at [13, section 2.1].
It is worth noticing here, that if one starts from some other infinite
wedge product ΛΨ such that Φ˚Ψ P 1`I1p`q to construct FΛΨ one finds
FΛΨ “ FΛΦ, so there is no unique vacuum state in the infinite wedge
space. Pick a second Hilbert space H1 and some unitary operator
U : H Ñ H1, which can be thought of as UA

Σ1,Σ. Next we define the
operation form the left of U by

LU : FΛΦ Ñ FΛUΦ, (3.36)
LUΛΨ “ ΛUΨ “ pUψ1q ^ pUψ2q ^ . . . , (3.37)
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where Ψ : ` Ñ H satisfies Ψ˚Φ P 1 ` I1p`q. The operator LU is a
lift of U in the sense of the (lift condition) and maps one Fock space
to another. The resulting target space FΛUΦ is quite implicit and for
H “ HΣ, H1 “ HΣ1 and U “ UA

Σ1,Σ in general not identical to FΛΦ1 for
some Φ1 : ` Ñ H1 even if rangepΦq P CΣpAq and rangepΦ1q P CΣ1pAq
hold. This shortcoming of the construction can be overcome by adding
an additional operation from the right. Let Ψ : `1 Ñ HΣ1 such that
rangepΨq “ rangepΦ1q holds, then there is a unitary R : `1 Ñ ` such
that Φ1 “ ΨR. Analogously to the action from the left we define one
from the right:

RR : FΛΨ Ñ FΛΦ1 , (3.38)
RRΛΦ1 “ ΛpΦ1Rq, (3.39)

also here the Φ1 generate the infinite wedge space FΛΨ. The spaces
FΛΨ and FΛΨR only coincides if `1 “ ` and R has a determinant, i.e.
R P 1 ` I1p`q. The next theorem helps us to decide in which cases
there is a unitary R : `1 Ñ ` such that FΛUΦR “ FΛΦ1 holds.

Theorem 45 (thm. 36 for L and R, [13, thm. 2.26], [16, thm 3.1]
). Let H, `,H1, `1 be Hilbert spaces, V P PolpHq and V 1 P PolpH1q

polarizations, Φ : ` Ñ H and Φ1 : `1 Ñ H1 be Dirac seas such that
rangepΦq “ V and rangepΦ1q “ V 1 Then the following two statements
are equivalent

a) The off diagonal operators P V 1KUP V and P V 1UP V K are Hilbert-
Schmidt operators.

b) There is a unitary R : `Ñ `1 such that FΛΦ1 “ FΛUΦR.

So returning to Φ : `Ñ HΣ, Φ1 : `Ñ HΣ1 , with rangepΦq P CΣpAq,
rangepΦ1q P CΣ1pAq for some Cauchy surfaces Σ,Σ1 and some A P V ,
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condition a) of the last theorem is satisfied so the existence of R : `Ñ `
such that the evolution operator

ŨA
V 1,Σ1,V,Σ : FΛΦ Ñ FΛΦ1 , ŨA

V 1,Σ1,V,Σ “ LUA
Σ1,Σ

˝RR (3.40)

is well-defined and unitary is ensured. The operators RR are unique
up to a phase, see [13, cor. 2.28], as might have been expected since
the (lift condition) allows for exactly this much freedom. A sim-
ple choice of `, `1 that makes it possible to guess a choice for R is
` “ rangepΦq Ď HΣ, `1 “ rangepΦ1q Ď HΣ1 . As discussed in subsec-
tion 3.1.1 one might hope that the motion of the electrons of very
negative energy is irrelevant for understanding excitations at the sur-
face. However, as we saw the motion of the electrons at great depth
made it impossible to directly compare the time evolved states with
the original ones. We can use R to revert this motion. So the idea
is to pick R1 “ pP V 1UP V q´1 whenever P V 1UP V is invertible, but this
choice is not unitary. If P V 1UP V is not invertible one can perform the
construction outlined next in several steps and assemble a lift of the
total operator U . This is possible, because of for two unitary operators
U1, U2 and corresponding lifts Ũ1, Ũ2,

Ũ1Ũ2 (3.41)

is a lift of U1U2. By virtue of the scalar product of two infinite wedge
products being a determinant and the equation

detppARq˚BRq “ detpR˚A˚BRq “ detpRR˚A˚Bq (3.42)
“ detpRR˚q detpA˚Bq “ detpR˚Rq detpA˚Bq, (3.43)

is also true for bounded operators A,B,R of appropriate type when-
ever R is invertible and R˚R, A˚B each have a determinant. So the
operation from the right RR1 may still be defined and a posteriori
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be corrected by a factor of
a

detpR1˚R1q´1 to turn it into a unitary
operator. Using

1 “ UA˚UA
“ pP V

` P V K
qUA˚

pP V 1
` P V 1K

qUA
pP V

` P V K
q, (3.44)

and splitting the equation up according to the different initial and
target spaces, this implies

P VUA˚P V 1UAP V
“ 1´ P VUA˚P V 1KUAP V . (3.45)

Polarizations V, V 1 belonging to the appropriate polarization classes
V P CΣpAq, V

1 P CΣ1pAq satisfy condition a) of theorem 45 and because
the product of Hilbert-Schmidt operators is trace class R1˚R1 P 1 `
I1pV q, i.e. has a determinant. Hence, we may define

ŨA
V 1,Σ1,V,Σ : FΛΦ Ñ FΛΦ1 , (3.46)

ŨA
V 1,Σ1,V,Σ “ det |pP V 1UA

Σ1,ΣP
V
q|RpPV 1UA

Σ1,Σ
PV q ˝ LUA

Σ1,Σ
. (3.47)

Well-definedness can be checked directly, the operator

Φ1
˚
UA

Σ1,ΣΦR1 “ P V 1UA
Σ1,ΣP

VR1 “ 1V 1 (3.48)

clearly has a determinant on V 1. By similar calculations as (3.42) it
follows that also all operators Φ̃1UA

Σ1,ΣΦ̃R1 with ΛΦ̃1 P FΛΦ1 , ΛΦ̃ P FΛΦ

have a determinant.
So the construction of an evolution operator in external field QED was
successful.

3.2 Geometric Construction of the Phase
In this section we perform a geometric construction of the phase of the
evolution operator based on an object c` whose existence is conjec-
tured due to physical intuition. This construction is heavily inspired
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by [96]. This object c` has not itself been constructed yet, but the au-
thor and his collaborators hope to construct it in the near future. We
restrict ourselves to the scattering regime, because it reduces the avail-
able freedom. In this case we identify the initial and final Hilbert-space
both with H and use the polarization introduced in definition 39.
Because our notions of the argument of a complex number and the
argument of an invertible bounded operator is non-standard, we in-
troduce it next.

Definition 46 (polar decomposition, logarithmic derivative and deriva-
tive with respect to four-potential). For X : H Ñ H bounded and
invertible we introduce

AGpXq :“ X|X|´1. (3.49)

Furthermore, we define for any complex number z P Czt0u

agpzq :“
z

|z|
. (3.50)

In abuse of notation we define the expression

Bt ln fptq :“
Btfptq

fptq
, (3.51)

for any differentiable f : R Ñ Czt0u, even if the expression ln fptq
cannot be interpreted as the principal branch of the logarithm.
We also introduce S1 :“ tz P C | |z| “ 1u. We will denote the space of
bounded linear functions from one normed vector space V into itself
by BpV q.
Lastly we introduce the partial derivative in the direction of any four-
potential F of an operator valued function F : V Ñ BpFq by

BFT pF q :“ BεT pεF q|ε“0, (3.52)

where the limit is taken with respect to the operator norm topology.
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Definition 47 (scattering operator and phases). We define for all
A,B P V

SA,B :“ UA
Σin,Σout

UB
Σout,Σin

, (3.53)

where Σout and Σint are Cauchy surfaces of Minkowski spacetime such
that

@px, yq P suppAY suppB ˆ Σin : px´ yq2 ě 0 ñ x0
ą y0, (3.54)

@px, yq P suppAY suppB ˆ Σout : px´ yq2 ě 0 ñ x0
ă y0 (3.55)

holds. For the special case A “ 0 we define the shorthand SB “ S0,B.
Define for any a, b elements of the same real or complex vector space
the line segment connecting them

a b :“ tsa` p1´ sqb | s P r0, 1su. (3.56)

Let

dm :“ tpA,Bq P V2
| P´SA,BP

´ and (3.57)
P´SB,AP

´ : H´ ý are invertibleu, (3.58)

we define

domS :“ tpA,Bq P dm | A B ˆ A B Ď dmu. (3.59)

Furthermore, we choose for all A,B P domS the lift discussed at the
end of the last section

SA,B “ RAGppP´SA,BP´q´1qLSA,B . (3.60)

For pA,Bq, pB,Cq, pC,Aq P domS, we define the complex numbers

γA,B,C :“ det
H´
pP´SA,BP

´SB,CP
´SC,AP

´
q, (3.61)

ΓA,B,C :“ agpγA,B,Cq. (3.62)
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We will see in lemma 53 that γA,B,C ‰ 0 and P´SA,BP´SB,CP´SC,A P
1 ` I1pH´q, so that ΓA,B,C is well-defined. Next, we introduce for
A,B,C P V the function

cApF,Gq :“ ´iBFBG= trrP´SA,A`FP
`SA,A`GP

´
s. (3.63)

Finally, let a, b be two subsets of Minkowski spacetime, we say a ă b
(in words: “a is causally prior to b”) if and only if for all px, yq P aˆ b

`

px´ yq2 ě 0^ x ‰ y
˘

ñ x0
ă y0 (3.64)

holds. For A,B P V in the expressions a ă A,A ă a,A ă B the four-
potentials A,B are to be interpreted as suppA, suppB respectively.

Lemma 48 (properties of domS). The set domS has the following
properties:

1. contains the diagonal: tpA,Aq | A P Vu Ď domS.

2. openness: @n P N :
 

s P R2n |
`
řn
k“1 skAk,

ř2n
k“n`1 skAk

˘

P domS
(

is an open subset of R2n for all A1, . . . A2n P V.

3. symmetry: pA,A1q P domS ðñ pA1, Aq P domS

4. star-shaped: pA, tAq P domS ñ @s P 1 t : pA, sAq P domS

5. well-definedness of S: domS Ď tA,B P V | P´SA,BP´ : H´ ý

is invertibleu Ñ BpFq.

Proof. We will only prove openness, as the other properties follow di-
rectly from the definition (3.59). So pick n P N, Ai P V for i P N, i ď 2n
and s P R2n such that

`
řn
k“1 skAk,

ř2n
k“n`1 skAk

˘

P domS. We have to
find a neighbourhood U Ď R2n of s such that t

`
řn
k“1 s

1
kAk,

ř2n
k“n`1 s

1
kAk

˘

|

s1 P Uu Ď domS holds. In doing so we have to ensure that the square
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n
ÿ

k“1

s1kAk

2n
ÿ

k“n`1

s1kAk

2

(3.65)

stays a subset of dm for all s1 P U . Now pick a metric d on R2n and
define

r :“ inf

$

&

%

dps, s1q |
n
ÿ

k“1

s1kAk

2n
ÿ

k“n`1

s1kAk

2

X dmc
‰ H

,

.

-

.

It cannot be the case that r “ 0, because the metric is continuous,
the square compact in R2n and the set of invertible bounded operators
(defining dm) is open in the topology generated by the operator norm.
If r “ 8 then U “ R2n will suffice. If r P R` then U “ Brps, tq the
open ball of radius r around s works.

3.2.1 Main Result of Construction

Since the phase of a lift of the one-particle scattering operator relative
to any other lift is fixed by a single matrix element, we may use vacuum
expectation values to characterize the phase of a lift. The function c
captures the dependence of this object on variations of the external
field. As it turns out, this function also has a very close connection
to the derivative of the current as given by Bogolyubov’s formula, cf.
definition 50 and the main result theorem 51. However, the support
properties of c do not align nicely with the causality condition we
require, motivated in remark 52. So the need of a splitting c “ c`´c´

arises so that c` has only support in the causal past and c´ only in
the causal future in the sense specified below.
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Definition 49 (causal splitting). We define a causal splitting as a
function

c` : V3
Ñ C, (3.66)

pA,F,Gq ÞÑ c`ApF,Gq, (3.67)

such that c` restricted to any finite dimensional subspace is smooth
in the first argument and linear in the second and third argument.
Furthermore, c` should satisfy

cApF,Gq “ c`ApF,Gq ´ c
`
ApG,F q, (3.68)

BHc
`
A`HpF,Gq “ BGc

`
A`GpF,Hq, (3.69)

@F ă G : c`ApF,Gq “ 0. (3.70)

Definition 50 (current). Given a lift ŜA,B of the one-particle scatter-
ing operator SA,B for which the derivative in the following expression
exists, we define the associated current by Bogolyubov’s formula:

jŜApF q :“ iBF

A

Ω, ŜA,A`FΩ
E

. (3.71)

Theorem 51 (existence of causal lift). Given a causal splitting c`,
there is a second quantized scattering operator S̃, lift of the one-particle
scattering operator S with the following properties

@A,B,C P V : S̃A,BS̃B,C “ S̃A,C (3.72)

@F ă G : S̃A,A`F “ S̃A`G,A`F`G (3.73)

and the associated current satisfies

BGj
S̃
A`GpF q “

"

´2icApF,Gq for G ă F
0 for F ă G

(3.74)
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Remark 52. One may wonder why we construct a lift with the prop-
erties (3.72) and (3.73). The project of finding a rigorous formulation
of external field QED could be considered a success once a lift ŨA

Σ1,Σ

of the evolution from one Cauchy surface to another UΣ1,Σ has been
constructed from which a current can be calculated that agrees with ex-
periments to the degree that the approximations inherent to the model
are applicable. In the light of this goal properties (3.72) and (3.73)
should be judged. Property (3.72) is a basic requirement, any phase
that does not fulfil it will not be directly generalizable to the evolution
between different Cauchy surfaces. In the proof of the theorem we will
see that in order to satisfy it, it suffices to construct any global section,
i.e. a lift of S0,A for any A P V. In order to see why our formula-
tion of Bogolyubov’s causality condition [5], i.e. equation (3.73), is a
reasonable second requirement we may quickly go through its proof in
the one-particle situation. Let A,F,G P V such that F ă G. We may
then pick a Cauchy surface Σ1 such that suppF ă Σ1 and Σ1 ă suppG.
This implies

SA`G,A`G`F “ UA`G
Σin,Σout

UA`G`F
Σout,Σin

(3.75)

“ UA`G
Σin,Σ1

UA`G
Σ1,Σout

UA`G`F
Σout,Σ1

UA`G`F
Σ1,Σin

(3.76)
˚
“ UA

Σin,Σ1
UA`G

Σ1,Σout
UA`G

Σout,Σ1
UA`F

Σ1,Σin
“ UA

Σin,Σ1
UA`F

Σ1,Σin
(3.77)

“ UA
Σin,Σ1

UA
Σ1,Σout

UA
Σout,Σ1U

A`F
Σ1,Σin

“ UA
Σin,Σout

UA`F
Σout,Σin

“ SA,A`F , (3.78)

where for the marked equality we used the support properties of F and
G relative to Σ1 and that SAΣ1,Σ only depends on values of A in the
volume delimited by Σ1 and Σ. For a lift of UA

Σ1,Σ we would expect
the last calculation to hold in the second quantized language as well.
So property (3.73) is a way of incorporating attributes of the lift of
the time evolution between different hypersurfaces without mentioning
those hypersurfaces directly.
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3.2.2 Proof of Theorem 51

The connection between vacuum expectation values and c becomes
clearer with the next lemma.

Lemma 53 (properties of Γ). The function Γ has the following prop-
erties for all A,B,C,D P V such that the expressions occurring in
each equation are well-defined:

γA,B,C ‰ 0 (3.79)
ΓA,B,C “ agpdet

H´
pP´ ´ P´SA,CP

`SC,AP
´

´ P´SA,BP
`SB,CP

´SC,AP
´
qq (3.80)

Γ´1
A,B,C “ agpxΩ, SA,BSB,CSC,AΩyq (3.81)

ΓA,B,C “ ΓB,C,A “
1

ΓB,A,C
(3.82)

ΓA,A,B “ 1 (3.83)
ΓA,B,CΓB,A,DΓA,C,DΓC,B,D “ 1 (3.84)
ΓA,B,C “ ΓD,B,CΓA,D,CΓA,B,D (3.85)

SA,C “ ΓA,B,CSA,BSB,C (3.86)
cApB,Cq “ BBBC ln ΓA,A`B,A`C (3.87)

xΩ, SX,Y Ωy “ det
H´
|P´SA,BP

´
|. (3.88)

Proof. PickA,B,C P V such that pX, Y q P domS forX, Y P tA,B,Cu.
By definition γ is

γA,B,C “ det
H´
pP´SA,BP

´SB,CP
´SC,AP

´
q. (3.89)

The operator whose determinant we take in the last line is a product

P´SA,BP
´SB,CP

´SC,AP
´
“ P´SA,BP

´ P´SB,CP
´ P´SC,AP

´.
(3.90)
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The three factors appearing in this product are all invertible due to
the definition of domS, therefore if the determinant exists we have
γA,B,C ‰ 0. To see that it does exist, we reformulate

γA,B,C “ det
H´
pP´SA,BP

´SB,CP
´SC,AP

´
q (3.91)

“ det
H´
pP´SA,CP

´SC,AP
´
´ P´SA,BP

`SB,CP
´SC,AP

´
q (3.92)

“ det
H´
pP´ ´ P´SA,CP

`SC,AP
´
´ P´SA,BP

`SB,CP
´SC,AP

´
q,

(3.93)

now we know by theorem 35 of Ruijsenaars that P`SX,Y P´ is a
Hilbert-Schmidt operator for our setting, hence γ and also Γ are well-
defined.
Equation (3.93) also proves (3.80). Next we show (3.81). In the no-
tation of the last section we have Ω “ eiϕ

Ź

Φ for some ϕ P R with
the injection Φ : H´ ãÑ H. We begin by reformulating the right-hand
side of (3.81)

xΩ, SA,BSB,CSC,AΩy (3.94)

“ xeiϕ
ľ

Φ, eiϕ
ľ

`

SA,BSB,CSC,AΦ AGpP´SC,AP
´
q
´1

AGpP´SB,CP
´
q
´1 AGpP´SA,BP

´
q
´1
˘

y

“ x
ľ

Φ,
ľ

`

Φ AGpP´SC,AP
´
q
´1 (3.95)

ˆ AGpP´SB,CP
´
q
´1 AGpP´SA,BP

´
q
´1
˘

y

“ det
H´

`

pΦq˚
“

Φ AGpP´SC,AP
´
q
´1 AGpP´SB,CP

´
q
´1 (3.96)

ˆ AGpP´SA,BP
´
q
´1
‰˘

“ det
H´

`

AGpP´SC,AP
´
q
´1 AGpP´SB,CP

´
q
´1 (3.97)

ˆAGpP´SA,BP
´
q
´1
˘

“
1

detH´ AGpP´SA,BP´qAGpP´SB,CP´qAGpP´SC,AP´q
. (3.98)
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We first note that detH´ |P
´SX,Y P

´| P R` for X, Y P tA,B,Cu. This
is well-defined because

xΩ, SX,Y Ωy “ xeiϕ
ľ

Φ, eiϕ
ľ

pSX,Y Φ AGpP´SX,Y P
´
q
´1
qy (3.99)

“ det
H´

`

Φ˚SX,Y Φ AGpP´SX,Y P
´
q
´1
˘

(3.100)

“ det
H´

`

P´SX,Y P
´ AGpP´SX,Y P

´
q
´1
˘

(3.101)

“ det
H´

`

AGpP´SX,Y P
´
q
´1P´SX,Y P

´
˘

(3.102)

“ det
H´

`

AGpP´SX,Y P
´
q
´1 AGpP´SX,Y P

´
q|P´SX,Y P

´
|
˘

(3.103)

“ det
H´
|P´SX,Y P

´
| (3.104)

holds, proving equation (3.88). Moreover, this determinant does not
vanish, since P´SX,Y P´ is invertible. Also, clearly the eigenvalues are
positive since |P´SX,Y P´| is an absolute value. We continue with the
result of (3.98). Thus, we find

xΩ, SA,BSB,CSC,AΩy´1 (3.105)
“ det

H´

`

AGpP´SA,BP
´
qAGpP´SB,CP

´
qAGpP´SC,AP

´
q
˘

(3.106)

“ det
H´

`

AGpP´SA,BP
´
qAGpP´SB,CP

´
qP´SC,AP

´

ˆ |P´SC,AP
´
|
´1
˘

(3.107)
“ det

H´

`

AGpP´SA,BP
´
qAGpP´SB,CP

´
qP´SC,AP

´
˘

ˆ det
H´
|P´SC,AP

´
|
´1 (3.108)

“ det
H´

`

P´SC,AP
´ AGpP´SA,BP

´
qAGpP´SB,CP

´
q
˘

ˆ det
H´
|P´SC,AP

´
|
´1 (3.109)

“
detH´ pP

´SA,BP
´P´SB,CP

´P´SC,AP
´q

detH´ |P´SA,BP´| ¨ detH´ |P´SB,CP´| ¨ detH´ |P´SC,AP´|
.

(3.110)
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Now since the denominator of this fraction is real we can use (3.62)
to identity

agpxΩ, SA,BSB,CSC,AΩyq “ Γ´1
A,B,C , (3.111)

which proves (3.81).
For the first equality in (3.82) we use detpXp1 ` Y qX´1q “ detp1 `
Y q for any Y trace-class and X bounded and invertible. So we can
cyclically permute the factors P´SX,Y P´ in the determinant and find

ΓA,B,C “ agpdet
H´

P´SA,BP
´SB,CP

´SC,AP
´
q

“ agpdet
H´

P´SC,AP
´SA,BP

´SB,CP
´
q “ ΓC,A,B.

For the second equality of (3.82) we use (3.62) to represent both ΓA,B,C
and ΓB,A,C . Using this and the manipulations of the determinant we
already employed, we arrive at

ΓA,B,CΓB,A,C (3.112)
“ agpdet

H´
pP´SA,BP

´SB,CP
´SC,AP

´
qq (3.113)

ˆ agpdet
H´
pP´SB,AP

´SA,CP
´SC,BP

´
qq (3.114)

“ agpdet
H´
pP´SA,BP

´SB,CP
´SC,AP

´
qq (3.115)

ˆ pagpdet
H´
pP´SB,CP

´SC,AP
´SA,BP

´
qqq

˚ (3.116)

“ agpdet
H´
pP´SA,BP

´SB,CP
´SC,AP

´
qq (3.117)

ˆ pagpdet
H´
pP´SA,BP

´SB,CP
´SC,AP

´
qqq

˚ (3.118)

“ | agpdet
H´
pP´SA,BP

´SB,CP
´SC,AP

´
qq|

2
“ 1, (3.119)

which proves (3.82).
Next, using (3.61) inserting twice the same argument yields

γA,A,C “ det
H´

P´SA,CP
´SC,AP

´
“ det

H´
pP´SC,AP

´
q
˚P´SC,AP

´
P R`,
(3.120)
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hence (3.83) follows.
For proving (3.84) we will use the definition of Γ directly and repeat-
edly use that we can cyclically permute operator groups of the form
P´SX,Y P

´ for X, Y P tA,B,C,Du in the determinant, i.e.

detP´SX,Y P
´O “ detOP´SX,Y P

´, (ö)

whenever O has a determinant. This is possible, because P´SX,Y P´
is bounded and invertible. Furthermore, we will use that

detO1O2 “ detO1 detO2 (Ø)

holds whenever both O1 and O2 have a determinant. Moreover, for any
X, Y the expression pP´SX,Y P´q˚P´SX,Y P´ is the modulus squared
of an invertible operator and hence its determinant is positive which
means that

ag detpP´SX,Y P
´
q
˚P´SX,Y P

´
“ 1. (ag| |)

These three rules will be repeatedly used. We calculate

ΓA,B,CΓB,A,DΓA,C,DΓC,B,D (3.121)
“ ag det

H´
P´SA,BP

´SB,CP
´SC,AP

´

ˆ ag det
H´

P´SB,AP
´SA,DP

´SD,BP
´ ΓA,C,DΓC,B,D (3.122)

(ö)
“ ag det

H´
P´SA,DP

´SD,BP
´SB,AP

´

ˆ ag det
H´

P´SA,BP
´SB,CP

´SC,AP
´ ΓA,C,DΓC,B,D (3.123)

(Ø)
“ ag det

H´

`

P´SA,DP
´SD,B

“

P´SB,AP
´SA,BP

´
‰

ˆ SB,CP
´SC,AP

´
˘

ΓA,C,DΓC,B,D
(3.124)

(ö)
“ ag det

H´
P´SB,CP

´SC,AP
´SA,DP

´SD,B
“

P´SB,AP
´SA,BP

´
‰
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ˆ ΓA,C,DΓC,B,D (3.125)
(Ø)
“ ag det

H´
P´SB,CP

´SC,AP
´SA,DP

´SD,BP
´

ˆ ag det
H´

P´SB,AP
´SA,BP

´ ΓA,C,DΓC,B,D

(3.126)
(ag| |)
“ ag det

H´
P´SB,CP

´SC,AP
´SA,DP

´SD,BP
´ ΓA,C,DΓC,B,D

(3.127)
(ö)
“ ag det

H´
P´SA,DP

´SD,BP
´SB,CP

´SC,AP
´ ΓA,C,DΓC,B,D (3.128)

“ ag det
H´

P´SA,CP
´SC,DP

´SD,AP
´

ˆ ag det
H´

P´SA,DP
´SD,BP

´SB,CP
´SC,AP

´ ΓC,B,D (3.129)

(Ø)
“ ag det

H´

`

P´SA,CP
´SC,DP

´
“

P´SD,AP
´P´SA,DP

´
‰

ˆ SD,BP
´SB,CP

´SC,AP
´
˘

ΓC,B,D (3.130)
(ö)
“ ag det

H´

`

P´SD,BP
´SB,CP

´SC,AP
´SA,CP

´SC,DP
´

ˆ
“

P´SD,AP
´P´SA,DP

´
‰˘

ΓC,B,D (3.131)
(Ø)
“ ag det

H´
P´SD,BP

´SB,CP
´SC,AP

´SA,CP
´SC,DP

´

ˆ ag det
H´

P´SD,AP
´P´SA,DP

´ ΓC,B,D

(3.132)
(ag| |)
“ ag det

H´

`

P´SD,BP
´SB,CP

´
“

P´SC,AP
´SA,CP

´
‰

ˆ P´SC,DP
´
˘

ΓC,B,D (3.133)
(ö)
“ ag det

H´
P´SC,DP

´SD,BP
´SB,CP

´
“

P´SC,AP
´SA,CP

´
‰

ˆ ΓC,B,D (3.134)
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(Ø)
“ ag det

H´
P´SC,DP

´SD,BP
´SB,CP

´

ˆ ag detP´SC,AP
´SA,CP

´ ΓC,B,D (3.135)
(ag| |)
“ ag det

H´
P´SC,DP

´SD,BP
´SB,CP

´ ΓC,B,D (3.136)

“ ag det
H´

P´SC,DP
´SD,BP

´SB,CP
´

ˆ ag det
H´

P´SC,BP
´SB,DP

´SD,CP
´ (3.137)

“ | ag det
H´

P´SC,DP
´SD,BP

´SB,CP
´
|
2
“ 1. (3.138)

Equation (3.85) is a direct consequence of (3.84) and (3.82).
For (3.86) we realize that according to [13] two lifts of the same one-
particle operator can only differ by a phase, that is

SA,C “ ξ SA,BSB,C (3.139)

for some ξ P C, |ξ| “ 1.
In order to identify ξ we recognize that SX,Y “ S

´1

Y,X for four potentials
X, Y and find

1ξ´1
“ SA,BSB,CSC,A. (3.140)

Now we take the vacuum expectation value on both sides of this equa-
tion and use (3.81) to find

ξ´1
“ agxΩ, SA,BSB,CSC,AΩy “ Γ´1

A,B,C . (3.141)

Finally, we prove (3.87). We start from the right-hand side of this
equation and work our way towards the left-hand side of it. In the
following calculation we will repeatedly make use of the fact that
pP´SA,A`BP

´SA`B,AP
´q is the absolute value squared of an invertible

operator and has a determinant, which is therefore positive. For the
marked equality we will use that for a differentiable function z : RÑ C
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at points t where zptq P R` holds, we have

pz{|z|q1ptq “
z1

|z|
ptq `

´z

|z|2
z1z˚ ` z˚1z

2|z|
ptq “

z1

2|z|
ptq ´

z2z˚1

2|z|3
ptq

“ ip=pz1qq{zptq. (3.142)

Furthermore, we will use the following expressions for the derivative
of the determinant which holds for all operator valued functions on
the reals M : RÑ 1` I1pHq such that M is invertible for at 0

Bε detMpεq|ε“0 “ detMp0q trpM´1
p0qBεMpεq|ε“0q, (3.143)

likewise we need the following expression for the derivative of M´1 for
M : RÑ pHÑ Hq such thatMptq is invertible and bounded for every
t P R

BεM
´1
pεq|ε“0 “ ´M

´1
p0qBεMpεq|ε“0M

´1
p0q. (3.144)

The handling of derivatives of operators in the following calculation is
justified by the section on regularity 4.1. We compute

BBBC ln ΓA,A`B,A`C (3.145)
(3.62)
“ BBBC ln agpdet

H´
pP´SA,A`BP

´SA`B,A`CP
´SA`C,AP

´
qq (3.146)

“ BB
BC agpdetH´pP

´SA,A`BP
´SA`B,A`CP

´SA`C,AP
´qq

agpdetH´pP´SA,A`BP´SA`B,AP´qq
(3.147)

“ BBBC agpdet
H´
pP´SA,A`BP

´SA`B,A`CP
´SA`C,AP

´
qq (3.148)

˚
“ iBB

=BC detH´pP
´SA,A`BP

´SA`B,A`CP
´SA`C,AP

´q

detH´pP´SA,A`BP´SA`B,AP´q
(3.149)

“ iBB

”detH´pP
´SA,A`BP

´SA`B,AP
´q

detH´pP´SA,A`BP´SA`B,AP´q

ˆ = trppP´SA,A`BP
´SA`B,AP

´
q
´1

ˆ BCP
´SA,A`BP

´SA`B,A`CP
´SA`C,AP

´
q

ı

(3.150)
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The fraction in front of the trace equals 1. As a next step we replace
the second but last projector P´ “ 1´P`, the resulting first summand
vanishes, because the dependence on C cancels. This results in

(3.150) “ ´iBB= trppP´SA,A`BP
´SA`B,AP

´
q
´1

ˆ BCP
´SA,A`BP

´SA`B,A`CP
`SA`C,AP

´
q. (3.151)

Now, because P`P´ “ 0 only one summand of the product rule sur-
vives:

(3.151) “ ´iBB= trppP´SA,A`BP
´SA`B,AP

´
q
´1

ˆ BCP
´SA,A`BP

´SA`B,AP
`SA`C,AP

´
q. (3.152)

Next we use pMNq´1 “ N´1M´1 for invertible operators M and N
for the first factor in the trace and cancel as much as possible of the
second factor:

(3.152) “ ´iBB= trppP´SA`B,AP
´
q
´1P´SA`B,A

ˆP`BCSA`C,AP
´
q (3.153)

“ ´i= trpBBrpP
´SA`B,AP

´
q
´1P´SA`B,A

ˆP`BCSA`C,AP
´
sq (3.154)

“ ´i= trpBBP
´SA`B,AP

`
BCSA`C,AP

´
q (3.155)

“ ´i= trpBBP
´SA,A`BP

`
BCSA,A`CP

´
q (3.156)

“ ´iBBBC= trpP´SA,A`BP
`SA,A`CP

´
q (3.157)

which proves the claim.

In order to construct the lift announced in theorem 51, we first con-
struct a reference lift Ŝ, that is well-defined on all of V . Afterwards we
will study the dependence of the relative phase between this global lift
Ŝ0,A and a local lift given by Ŝ0,BSB,A for B ´A small. By exploiting



3.2. GEOMETRIC CONSTRUCTION OF THE PHASE 141

properties of this phase and the causal splitting c` we will construct
a global lift that has the desired properties.
Since V is star shaped, we have 0 A Ă V .

Definition 54 (ratio of lifts). For any A,B P V and any two lifts
S 1A,B, S

2
A,B of the one-particle scattering operator SA,B we define the

ratio
S 1A,B
S2A,B

P S1 (3.158)

to be the unique complex number z P S1 such that

z S2A,B “ S 1A,B (3.159)

holds.

Theorem 55 (existence of global lift). There is a unique map Ŝ0,¨ :
V Ñ UpFq which maps A P V to a lift of S0,A and solves the parallel
transport differential equation

A,B P V linearly dependentñ BB
Ŝ0,A`B

Ŝ0,ASA,A`B
“ 0, (3.160)

subject to the initial condition Ŝ0,0 “ 1.

The proof of theorem 55 is divided into two lemmas due to its length.
We will introduce the integral flow φA associated with the differential
equation (3.160) for some A P V . We will then study the properties
of φA in the two lemmas and finally construct Ŝ0,A :“ φAp0, 1q. In
the first lemma we will establish the existence of a local solution. The
solution will be constructed along the line 0 A. In the second lemma
we patch local solutions together to a global one.
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Lemma 56 (φ local existence and uniqueness). There is a unique
φA : tpt, sq P R2 | ptA, sAq P domSu :“ domφA Ñ UpFq for every
A P V satisfying

@pt, sq P domφA : φApt, sq is a lift of StA,sA (3.161)
@pt, sq, ps, lq, pl, tq P domφA : φApt, sqφAps, lq “ φApt, lq (3.162)

@t P R : φApt, tq “ 1 (3.163)

@s P R : Bt
φAps, tq

SsA,tA

ˇ

ˇ

ˇ

ˇ

t“s

“ 0. (3.164)

Proof. We first define the phase

z : tpA,Bq P domS | A,B linearly dependentu Ñ S1 (3.165)

by the differential equation

d

dx
ln zptA, xAq “ ´

ˆ

d

dy
ln ΓtA,xA,yA

˙
ˇ

ˇ

ˇ

ˇ

y“x

(3.166)

and the initial condition
zpA,Aq “ 1 (3.167)

for any A P V . The phase z takes the form

zptA, xAq “ exp

˜

´

ż x

t

dx1
ˆ

d

dx1
ln ΓtA,yA,x1A

˙
ˇ

ˇ

ˇ

ˇ

y“x1

¸

. (3.168)

Please note that both differential equation and initial condition are
invariant under rescaling of the potential A, so z is well-defined. We
will now construct a local solution to (3.160) and define φA using this
solution. Pick A P V the expression

Ŝ0,sA “ Ŝ0,ASA,sAzpA, sAq (3.169)
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solves (3.160) locally. Local here means that s is close enough to 1
such that pA, sAq P domS. Calculating the argument of the derivative
of (3.160) we find:

Ŝ0,ps`εqA

Ŝ0,sASsA,ps`εqA
“
Ŝ0,ASA,ps`εqAzpA, ps` εqAq

Ŝ0,ASA,sASsA,ps`εqzpA, sAq
(3.170)

(3.86)
“

Ŝ0,ASA,sASsA,ps`εqΓA,sA,ps`εqAzpA, ps` εqAq

Ŝ0,ASA,sASsA,ps`εqzpA, sAq
(3.171)

“
ΓA,sA,ps`εqAzpA, ps` εqAq

zpA, sAq
(3.172)

Now we take the derivative with respect to ε at ε “ 0, cancel the
factor that does not depend on ε and relabel s “ x to obtain

0 “

ˆ

d

dy
pΓA,xA,yA zpA, yAqq

˙ˇ

ˇ

ˇ

ˇ

y“x

(3.173)

ðñ
d

dx
ln zptA, xAq “

ˆ

´
d

dy
ln ΓtA,xA,yA

˙
ˇ

ˇ

ˇ

ˇ

y“x

, (3.174)

where we rescaled A so that the expression matches exactly the defin-
ing differential equation of z. The initial condition of z equation (3.167)
is necessary to match the initial condition in (3.169) for s “ 1. The
connection to φ from the statement of the lemma can now be made.
We define

φApt, sq :“ zptA, sAqStA,sA, (3.175)

for ptA, sAq P domS. Since S is a lift of S, we see that (3.161) holds.
Equation (3.163) follows from (3.167) and StA,tA “ 1 for general t P R.
Equation (3.164) follows by plugging in (3.175) and using the defining
differential equation for z (3.166) as well as its initial condition (3.167)
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and the property (3.82) of Γ:

Bs
φApt, sq

StA,sA

ˇ

ˇ

ˇ

ˇ

s“t

“ Bs
zptA, sAqStA,sA

StA,sA

ˇ

ˇ

ˇ

ˇ

s“t

(3.176)

“ Bs zptA, sAq|t“s “ ´zptA, tAq

ˆ

d

ds
ln ΓtA,tA,sA

˙ˇ

ˇ

ˇ

ˇ

s“t

“ 0. (3.177)

It remains to see that (3.162), i.e. that

φApt, sqφAps, lq “ φApt, lq (3.178)

holds for ptA, sAq, psA, lAq, ptA, lAq P domS. In order to do so we
plug in the definition (3.175) of φA and obtain

φApt, sqφAps, lq “ φApt, lq (3.179)

ðñ zptA, sAqzpsA, lAqStA,sASsA,lA “ zptA, lAqStA,lA (3.180)

ðñ zptA, sAqzpsA, lAqStA,sASsA,lA (3.181)

“ zptA, lAqStA,sASsA,lAΓtA,sA,lA (3.182)
ðñ zptA, sAqzpsA, lAqzptA, lAq´1

“ ΓtA,sA,lA. (3.183)

In order to check the validity of the last equality we plug in the integral
formula (3.168) for z, we also abbreviate d

dx
“ Bx

zptA, sAqzpsA, lAqzptA, lAq´1 (3.184)

“ e
´
şs
t dx

1 pBx1 ln ΓtA,yA,x1Aq|y“x1´
şl
s dx

1 pBx1 ln ΓsA,yA,x1Aq|y“x1 (3.185)

ˆe
`
şl
t dx

1 pBx1 ln ΓtA,yA,x1Aq|y“x1 (3.186)

“ e
´
şs
l dx

1 pBx1 ln ΓtA,yA,x1Aq|y“x1´
şl
s dx

1 pBx1 ln ΓsA,yA,x1Aq|y“x1 (3.187)
(3.85)
“ e

´
şs
l dx

1 pBx1 ln ΓsA,yA,x1Aq|y“x1´
şs
l dx

1 pBx1 ln ΓtA,sA,x1Aq|y“x1 (3.188)
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ˆe
´
şs
l dx

1 pBx1 ln ΓtA,yA,sAq|
y“x1

´
şl
s dx

1 pBx1 ln ΓsA,yA,x1Aq|y“x1 (3.189)

“ e
´
şs
l dx

1 pBx1 ln ΓtA,sA,x1Aq|y“x1 (3.190)

“ e´
şs
l dx

1Bx1 ln ΓtA,sA,x1A (3.191)
(3.83)
“ ΓtA,sA,lA, (3.192)

which proves the validity of the consistency relation (3.178).
In order to prove uniqueness we pick A P V and assume there is φ1
also defined on domφA and satisfies (3.161) to (3.164). Then we may
use (3.161) to conclude that for any pt, sq P domφA there is γpt, sq P S1

such that
φApt, sq “ φ1pt, sqγpt, sq (3.193)

holds true. Picking l such that pt, sq, ps, lq, pt, lq P domφA and us-
ing (3.162) we find

φ1pt, sqγpt, sq “ φApt, sq “ φApt, lqφApl, sq (3.194)
“ γpt, lqφ1pt, lqγpl, sqφ1pl, sq “ γpt, lqγpl, sqφ1pt, sq, (3.195)

hence we have
γpt, sq “ γpt, lqγpl, sq. (3.196)

From property (3.163) we find

γpt, tq “ 1, (3.197)

for any t. Using equation (3.164) we conclude that

0 “ Bt
φ1ps, tq

SsA,tA

ˇ

ˇ

ˇ

ˇ

t“s

“ Bt
φAps, tqγps, tq

SsA,tA

ˇ

ˇ

ˇ

ˇ

t“s

(3.198)

“ Bt γps, tq
φAps, tq

SsA,tA

ˇ

ˇ

ˇ

ˇ

t“s

“ Bt γps, tq|t“s ` Bt
φAps, tq

SsA,tA

ˇ

ˇ

ˇ

ˇ

t“s

(3.199)

“ Bt γps, tq|t“s . (3.200)
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Finally, we find for general ps, tq P domφA:

Bxγps, xq|x“t “ Bxpγps, tqγpt, xqq|x“t “ γps, tqBxγpt, xq|x“t “ 0.
(3.201)

So γpt, sq “ 1 everywhere. We conclude φA “ φ1.

Lemma 57 (φ global existence and uniqueness). For any A P V the
map φA constructed in lemma 56 can be uniquely extended to all of R2

keeping its defining properties

@pt, sq P R2 : φApt, sq is a lift of StA,sA (3.202)
@pt, sq, ps, lq, pl, tq P R2 : φApt, sqφAps, lq “ φApt, lq (3.203)

@t P R : φApt, tq “ 1 (3.204)

@s P R : Bt
φAps, tq

SsA,tA

ˇ

ˇ

ˇ

ˇ

t“s

“ 0. (3.205)

Proof. Pick A P V . For x P R we define the set

Ux :“ ty P R | pxA, yAq P domSu, (3.206)

which according to properties 2 and 4 of lemma 48 is an open interval
and fulfils that

Ť

xPR UxˆUx is an open neighbourhood of the diagonal
tpx, xq | x P Ru. Therefore, φA is defined for arguments that are
close enough to each other. Since properties (3.205) and (3.204) only
concern the behaviour of φA at the diagonal any extension fulfils them.
We pick a sequence pxkqkPN0 Ă R such that

ď

kPN0

Uxk “ R (3.207)

holds and

@n P N0 :
n
ď

k“0

Uxk “: domn (3.208)
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is an open interval. Please note that such a sequence always exists.
We are going to prove that for any n P N0 There is a function ψn :
domnˆ domn Ñ UpFq, which satisfies the conditions

@pt, sq P domnˆ domn : ψnpt, sq is a lift of StA,sA (3.209)
@s, k, l P domn : ψnpk, sqψnps, lq “ ψnpk, lq (3.210)

@x, y P domn : pxA, yAq P domS ñ ψnpx, yq “ φApx, yq (3.211)

and is the unique function to do so, i.e. any other function ψ̃n fulfilling
properties (3.209)-(3.211) possibly being defined on a larger domain
coincides with ψn on domnˆ domn.
We start with ψ0 “ φA restricted to Ux0 ˆ Ux0 . This function is a
restriction of φA and because of lemma 56 it fulfils all of the required
properties directly.
For the induction step we pick t P domnXUxn`1 and define ψn`1 on
the domain domn`1ˆ domn`1 by

ψn`1px, yq :“

$

’

’

&

’

’

%

ψnpx, yq for x, y P domn

φApx, yq for x, y P Uxn`1

ψnpx, tqφApt, yq for x P domn, y P Uxn`1

φApx, tqψnpt, yq for y P domn, x P Uxn`1 .

(3.212)

In order to complete the induction step we have to show that ψn`1 is
well-defined and fulfils properties (3.209)-(3.211) with n replaced by
n` 1 and is the unique function to do so.
To see that ψn`1 is well-defined we have to check that the cases in the
definition agree when they overlap.

1. If we have x, y P domnXUxn`1 all four cases overlap; however,
the alternative definitions all equal φApx, yq:

ψnpx, yq
(3.211)
“ φApx, yq

(3.162)
“ φApx, tqφApt, yq

(3.211)
“

"

ψnpx, tqφnpt, yq
φApx, tqψnpt, yq.

(3.213)
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2. Furthermore, if we have x P domn, y P domnXUxn`1 cases one
and three overlap. Here both alternatives are equal to ψnpx, yq,
since x, y P domn and we obtain:

ψnpx, yq
(3.210)
“ ψnpx, tqψnpt, yq

(3.211)
“ ψnpx, tqφApt, yq. (3.214)

3. Additionally, if y P domn, x P domnXUxn`1 cases one and four
overlap. Here they are equal to ψnpx, yq, since x, y P domn a
quick calculation yields:

ψnpx, yq
(3.210)
“ ψnpx, tqψnpt, yq

(3.211)
“ φApx, tqψnpt, yq. (3.215)

4. Moreover, if we have y P Uxn`1 , x P domnXUxn`1 cases two
and three overlap. Here both candidate definitions are equal to
φApx, yq, since x, t P Uxn`1 we arrive at:

φApx, yq
(3.162)
“ φApx, tqφApt, yq

(3.211)
“ ψnpx, tqφApt, yq. (3.216)

5. Also, if we have x P Uxn`1 , y P domnXUxn`1 cases two and four
overlap. In this case both alternatives are equal to φApx, yq,
since y, t P Uxn`1 we get:

φApx, yq
(3.162)
“ φApx, tqφApt, yq

(3.211)
“ φApx, tqψnpt, yq. (3.217)

We proceed to show the induction claim, starting with (3.209)n`1. By
the induction hypothesis we know that ψnpx, yq as well as φApx, yq are
lifts of SxA,yA for any px, yq in their domain of definition. Therefore,
we have for x, y P domnYUxn`1

ψn`1px, yq “

$

’

’

&

’

’

%

ψnpx, yq for x, y P domn,
φApx, yq for x, y P Uxn`1 ,

ψnpx, tqφApt, yq for x P domn, y P Uxn`1 ,
φApx, tqψnpt, yq for y P domn, x P Uxn`1 ,

(3.212)
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where each of the lines is a lift of SxA,yA whenever the expression is
defined.
Equation (3.210)n`1 we will again show in a case by case manner
depending on the s, k and l:

1. s, k, l P domn: (3.210)n`1 follows directly from the induction
hypothesis;

2. s, k P domn and l P Uxn`1 :

ψn`1ps, kqψn`1pk, lq “ ψnps, kqψnpk, tqφApt, lq

(3.210)
“ ψnps, tqφApt, lq “ ψn`1ps, lq, (3.218)

3. s, l P domn and k P Uxn`1 :

ψn`1ps, kqψn`1pk, lq “ ψnps, tqφApt, kqφApt, kqψnpt, lq

(3.163), (3.162)
“ ψnps, tqψnpt, lq

(3.210)
“ ψnps, lq “ ψn`1ps, lq,

4. s P domn and k, l P Uxn`1 :

ψn`1ps, kqψn`1pk, lq “ ψnps, tqφApt, kqφApk, lq

(3.162)
“ ψnps, tqφApt, lq “ ψn`1ps, lq,

5. k, l P domn and s P Uxn`1 :

ψn`1ps, kqψn`1pk, lq “ φAps, tqψnpt, kqψnpk, lq

(3.210)
“ φAps, tqψnpt, lq “ ψn`1ps, lq,

6. k P domn and s, l P Uxn`1 :

ψn`1ps, kqψn`1pk, lq “ φAps, tqψnpt, kqψnpk, tqφApt, lq

(3.210)
“ φAps, tqψpt, tqφApt, lq

(3.211), (3.163)
“ φAps, tqφApt, lq

(3.162)
“ φAps, lq “ ψn`1ps, lq,
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7. l P domn and s, k P Uxn`1 :

ψn`1ps, kqψn`1pk, lq “ φAps, kqφApk, tqψnpt, lq

(3.162)
“ φAps, tqψnpt, lq “ ψn`1ps, lq,

8. and if s, k, l P Uz:

ψn`1ps, kqψn`1pk, lq “ φAps, kqφApk, lq

(3.162)
“ φAps, lq “ ψn`1ps, lq.

To see (3.211)n`1, i.e. that ψn`1 coincides with φA where both func-
tions are defined pick x, y P domn`1 such that pxA, yAq P domSq.
Recall the definition of ψn`1

ψn`1px, yq “

$

’

’

&

’

’

%

ψnpx, yq for x, y P domn,
φApx, yq for x, y P Uxn`1 ,

ψnpx, tqφApt, yq for x P domn, y P Uxn`1 ,
φApx, tqψnpt, yq for y P domn, x P Uxn`1 .

(3.212)

Therefore, if x, y P domn we may use the induction hypothesis directly
and if x, y P Uxn`1 we also arrived at the claim we want to prove.
Excluding these cases, we are left with rows number three and four of
this definition with the restriction

3. x P domn z Uxn`1 , y P Uxn`1z domn or

4. y P domn z Uxn`1 , x P Uxn`1z domn,

respectively. Because t satisfies t P domnXUxn`1 , we have in both cases
t P x y. By using property 4 of lemma 48 we infer from pxA, yAq P
domS that in both cases pxA, tAq, ptA, yAq P domS also holds. Hence,
we may apply the induction hypothesis (3.211)n.
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It remains to show uniqueness. So let ψ̃n`1 be defined on domn`1̂ domn`1

fulfil

@pt, sq P domn`1ˆ domn`1 : ψ̃pt, sq is a lift of StA,sA, (3.209ψ̃)

@s, k, l P R : ψ̃pk, sqψ̃ps, lq “ ψ̃pk, lq, (3.210ψ̃)

@px, yq P domn`1 : pxA, yAq P domS ñ ψ̃px, yq “ φApx, yq. (3.211ψ̃)

Now pick x, y P domn`1. We proceed in a case by case manner

1. If x, y P domn holds, then ψn`1px, yq “ ψ̃n`1px, yq follows di-
rectly from the induction hypothesis.

2. Similarly, if x, y P Uxn`1 holds, we have

ψn`1px, yq “ φApx, yq “ ψ̃n`1px, yq. (3.219)

3. Additionally, if x P domn, y P Uxn`1 holds, then

ψn`1px, yq
(3.212)
“ ψnpx, tqφApt, yq (3.220)

tPdomnXUxn`1
“ ψ̃n`1px, tqψ̃n`1pt, yq

(3.210ψ̃)
“ ψ̃n`1px, yq (3.221)

is satisfied.

4. Conversely, if y P domn, x P Uxn`1 holds, we may use the same
calculation to obtain

ψn`1px, yq
(3.212)
“ φApx, tqψnpt, yq (3.222)

tPdomnXUxn`1
“ ψ̃n`1px, tqψ̃n`1pt, yq

(3.210ψ̃)
“ ψ̃n`1px, yq. (3.223)

Now we have established a unique extension ψn of φA fulfilling prop-
erties (3.209)-(3.211).
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We know that for each n P N the function ψn`1 : dom2
n`1 Ñ UpFq

is an extension of ψn : dom2
n Ñ UpFq. Furthermore, the sets domn

cover R according to equation (3.207). Consequently, there is a unique
common extension, by small abuse of notation again called φA : R2 Ñ

UpFq, of all ψn. This function fulfils the claim (3.202)-(3.205), because
any t, l, s P R are contained in some domn.

Lemma 57 enables us to define a global lift.

Definition 58 (global lift). For any A P V we define

Ŝ0,A :“ φAp0, 1q. (3.224)

Using lemma 57 we are now in a position to prove theorem 55.

proof of theorem 55. The operator Ŝ fulfils the claimed differential
equation (3.160) due to the global multiplication property (3.203) and
the differential equation (3.205). Its uniqueness is inherited from the
uniqueness of φA for A P V from lemma 57.

Definition 59 (relative phase). Let pA,Bq P domS, we define zpA,BqP
S1 by

zpA,Bq :“
Ŝ0,B

Ŝ0,ASA,B
. (3.225)

Please note that for such A,B the lift S̄A,B is well-defined. This means
that the product in the denominator is a lift of S0,B and according to
definition 58 the ratio is well-defined.

Remark 60. The function z defined here is an extension of the func-
tion z appearing locally in the proof of lemma 56, cf. formula (3.165).
Please note that z is smooth when restricted to W2 X domS for any
finite dimensional subspace W Ď V, since Ŝ is smooth as a solution to
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a differential equation with smooth initial conditions. The parameter
S appearing in the defining differential equation of Ŝ is smooth since it
is directly constructed in terms of the one-particle scattering operator
which is smooth due to section 4.1 in the appendix.

Lemma 61 (properties of the relative phase). For all
pA,F q, pF,Gq, pG,Aq P domS, as well as or all H,K P V, we have

zpA,F q “ zpF,Aq´1 (3.226)
zpF,AqzpA,GqzpG,F q “ ΓF,A,G (3.227)

BHBK ln zpA`H,A`Kq “ cApH,Kq. (3.228)

Proof. Pick A,F,G P V as in the lemma. We start off by analysing

Ŝ0,FSF,G
(3.225)
“ zpA,F qŜ0,ASA,FSF,G (3.229)

(3.86)
“ zpA,F qΓ´1

A,F,GŜ0,ASA,G. (3.230)

Exchanging A and F in this equation yields

Ŝ0,ASA,G “ zpF,AqΓ´1
F,A,GŜ0,FSF,G. (3.231)

This is equivalent to

Ŝ0,FSF,G “ zpF,Aq´1ΓF,A,GŜ0,ASA,G . (3.232)

Comparing the last equation with formula (3.230) and taking the per-
mutation properties (3.82) of Γ into account this implies that

zpA,F q “ zpF,Aq´1 (3.233)

holds true. Equation (3.230) solved for Ŝ0,ASA,G also gives us

Ŝ0,G
(3.225)
“ zpA,GqŜ0,ASA,G (3.234)

(3.230)
“ zpA,GqzpA,F q´1ΓA,F,GŜ0,FSF,G. (3.235)
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The latter equation compared with

Ŝ0,G
(3.225)
“ zpF,GqŜ0,FSF,G, (3.236)

yields a direct connection between Γ and z:

zpA,Gq

zpA,F q
ΓA,F,G “ zpF,Gq, (3.237)

which we rewrite using the antisymmetry (3.226) of z as

ΓA,F,G “ zpF,GqzpA,F qzpG,Aq. (3.238)

Finally, in this equation, we substitute F “ A ` ε1H as well as G “
A ` ε2K, where ε1, ε2 is small enough so that z and Γ are still well-
defined. Then we take the second logarithmic derivative to find

Bε1Bε2 ln zpA` ε1H,A` ε2Kq “ Bε1Bε2 ln ΓA,A`ε1H,A`ε2K
(3.87)
“ cApH,Kq. (3.239)

So we find that cA is the second mixed logarithmic derivative of z. In
the following we will characterize z more thoroughly by c and c`.

Definition 62 (p-forms of four potentials, phase integral). For p P N,
we introduce the set Ωp of p-forms to consist of all maps ω : VˆVp Ñ C
such that ω is linear and antisymmetric in its p last arguments and
smooth in its first argument when restricted to any finite dimensional
subspace of V.
Additionally, we define the 1-form χ P Ω1 by

χApBq :“ BB ln zpA,A`Bq (3.240)
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for all A,B P V. Furthermore, for p P N and any differential form
ω P Ωp, we define its exterior derivative, dω P Ωp`1 by

pdωqApB1, . . . , Bp`1q :“
p`1
ÿ

k“1

p´1qk`1
BBkωA`BkpB1, . . . ,xBk, . . . , Bp`1q,

(3.241)
for A,B1, . . . , Bp`1 P V, where the notation xBk denotes that Bk is
dropped as an argument.

Lemma 63 (connection between c and the relative phase). The dif-
ferential form χ fulfils

pdχqApF,Gq “ 2cApF,Gq (3.242)

for all A,F,G P V.

Proof. Pick A,F,G P V , we calculate

pdχqApF,Gq “ BFBG ln zpA` F,A` F `Gq

´ BFBG ln zpA`G,A` F `Gq (3.243)
“ BFBGpln zpA,A` F `Gq ` ln zpA` F,A`Gqq (3.244)

´ BFBGpln zpA,A` F `Gq ` ln zpA`G,A` F qq (3.245)
(3.226)
“ 2BFBG ln zpA` F,A`Gq

(3.228)
“ 2cApF,Gq. (3.246)

Now since dc “ 0, we might use Poincaré’s lemma as a method inde-
pendent of z to construct a differential form ω such that dω “ c.

Lemma 64 (Poincaré). Let ω P Ωp for p P N be closed, i.e. dω “ 0.
Then ω is also exact, more precisely we have

ω “ d

ż 1

0

ι˚t iXf
˚ωdt, (3.247)
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where X, ιt for t P R and f are given by

X : Rˆ V Ñ Rˆ V , (3.248)
pt, Bq ÞÑ p1, 0q (3.249)

@t P R : ιt : V Ñ Rˆ V , (3.250)
B ÞÑ pt, Bq (3.251)

f : Rˆ V ÞÑ V , (3.252)
pt, Bq ÞÑ tB (3.253)

iW : Ωp
Ñ Ωp´1, (3.254)

ω ÞÑ ppA;Y1, . . . , Yp´1q ÞÑ ωApW,Y1, . . . , Yp´1qq (3.255)

For a proof see section 4.2 of the appendix. This lemma gives the next
definition meaning.

Definition 65 (antiderivative of a closed p form). For a closed exterior
form ω P Ωp we define the form Πrωs

Ωp´1
Q Πrωs :“

ż 1

0

ι˚t iXf
˚ωdt. (3.256)

For A,B1, . . . , Bp´1 P V it takes the form

ΠrωsApB1, . . . , Bp´1q “

ż 1

0

tp´1ωtApA,B1, . . . , Bp´1qdt. (3.257)

By lemma 64 we know dΠrωs “ ω if dω “ 0.

Now we found two one forms each produces c when the exterior deriva-
tive is taken. The next lemma informs us about their relationship.

Lemma 66 (inversion of lemma 63). The following equality holds

χ “ 2Πrcs. (3.258)
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Proof. By definition 65 of Π and lemma 63 we have dpχ´ 2Πrcsq “ 0.
Hence, by the Poincaré lemma 64, we know that there is v : V Ñ R
such that

dv “ χ´ 2Πrcs (3.259)

holds. Using the definition 59 of z, the parallel transport equation (3.160)
translates into the following ODE for z:

BB ln zp0, Bq “ 0, Bε ln zpA, p1` εqAq|ε“0 “ 0 (3.260)

for all A,B P V . Therefore, we have

χ0pBq “ 0 “ Πrcs0pBq, χApAq “ 0 “ ΠrcsApAq, (3.261)

which implies
BεvεA|ε“0 “ 0, BεvA`εA|ε“0 “ 0. (3.262)

In conclusion, v is constant.

From this point on we will assume the existence of a function c` ful-
filling (3.68), (3.69) and (3.70). Recall property (3.69):

@A,F,G,H : BHc
`
A`HpF,Gq “ BGc

`
A`GpF,Hq. (3.263)

For a fixed F P V , this condition can be read as dpc`¨ pF, ¨qq “ 0. As a
consequence we can apply Poincaré’s lemma 64 to define a one form.

Definition 67 (integral of the causal splitting). For any A,F P V,
we define

βApF q :“ 2Πrc`¨ pF, ¨qsA. (3.264)

Lemma 68 (relation between the integral of the causal splitting and
the phase integral). The following two equations hold:

dβ “ ´2c, (3.265)
dpβ ` χq “ 0. (3.266)
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Proof. We start with the exterior derivative of β. Pick A,F,G P V :

dβApF,Gq “ BFβA`F pGq ´ BGβA`GpF q (3.267)

“ d
´

2Πrc`¨ pG, ¨qs
¯

A
pF q ´ d

´

2Πrc`¨ pF, ¨qs
¯

A
pGq (3.268)

“ 2c`ApG,F q ´ 2c`ApF,Gq
(3.68)
“ ´2cApF,Gq. (3.269)

This proves the first equality. The second equality follows directly by
dχ “ 2c.

Definition 69 (corrected lift). Since β ` χ is closed, we may use
lemma 64 again to define the phase

α :“ Πrβ ` χs. (3.270)

Furthermore, for all A,B P V we define the corrected second quantized
scattering operator

S̃0,A :“ e´αAŜ0,A, (3.271)

S̃A,B :“ S̃´1
0,AS̃0,B. (3.272)

Using this definition one immediately gets:

Corollary 70 (group structure of the corrected lift). We have
S̃A,BS̃B,C “ S̃A,C for all A,B,C P V.

Theorem 71 (causality of the corrected lift). The corrected second
quantized scattering operator fulfils the following causality condition
for all A,F,G P V such that F ă G:

S̃A,A`F “ S̃A`G,A`G`F . (3.273)

Proof. Let A,F,G P V such that F ă G. For the first quantized
scattering operator we have

SA`G,A`G`F “ SA,A`F , (3.274)
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which we proved in remark 52. So that by definition of S we obtain

SA`G,A`G`F “ SA,A`F . (3.275)

Therefore, any lift this equality is true up to a phase, meaning that

fpA,F,Gq :“
S̃A`G,A`G`F

S̃A,A`F
(3.276)

is well-defined. We see immediately

fpA, 0, Gq “ 1 “ fpA,F, 0q. (3.277)

Pick F1, F2 ă G1, G2. We abbreviate F “ F1 ` F2, G “ G1 ` G2 and
we calculate

fpA,F,Gq “
S̃A`G,A`F`G

S̃A,A`F
(3.278)

“
S̃A`G,A`F`G

S̃A`G1,A`G1`F

S̃A`G1,A`G1`F

S̃A,A`F
(3.279)

“
S̃A`G,A`G`F1S̃A`G`F1,A`F`G

S̃A`G1,A`F1`G1S̃A`G1`F1,A`G1`F

S̃A`G1,A`G1`F

S̃A,A`F
(3.280)

“
S̃A`G,A`G`F1

S̃A`G1,A`F1`G1

S̃A`G`F1,A`F`G

S̃A`G1`F1,A`G1`F

fpA,G1, F1 ` F2q (3.281)

“ fpA`G1, F1, G2qfpA`G1 ` F1, F2, G2qfpA,G1, F1 ` F2q.
(3.282)

Taking the mixed logarithmic derivative we find:

BF2BG2 ln fpA,F1 ` F2, G1 `G2q “ BF2BG2 ln fpA` F1 `G1, F2, G2q.
(3.283)

Next we pick F2 “ α1F1 and G2 “ α2G1 for α1, α2 P R` small enough
so that pA` p1`α1qF1` p1`α2qG1, A`F1`G1q, pA` p1`α1qF1`



160 CHAPTER 3. INTERACTION IN QFT

p1 ` α2qG1, A ` F1 ` p1 ` α2qG1q, pA ` p1 ` α1qF1 ` p1 ` α2qG1, A `
p1`α1qF1`G1q P domS holds. We abbreviate A1 “ A`G1`F1, use
the definition of z (3.225) and compute

fpA1, F2, G2q

(3.271)
“ expp´αA1`F2`G2 ` αA1`G2 ` αA1`F2 ´ αA1q

ˆ
Ŝ´1

0,A1`G2
Ŝ0,A1`G2`F2

Ŝ´1
0,A1Ŝ0,A1`F2

(3.284)

(3.225)
“ expp´αA1`F2`G2 ` αA1`G2 ` αA1`F2 ´ αA1q

ˆ
zpA1 `G2, A

1 `G2 ` F2q

zpA1, A1 ` F2q

SA1`G2,A1`G2`F2

SA1,A1`F2

(3.285)

F2ăG2
“ expp´αA1`F2`G2 ` αA1`G2 ` αA1`F2 ´ αA1q

ˆ
zpA1 `G2, A

1 `G2 ` F2q

zpA1, A1 ` F2q
(3.286)

Most of the factors do not depend on both F2 and G2, so taking the
mixed logarithmic derivative things simplify:

BG2BF2 ln fpA1, F2, G2q “

BG2BF2p´αA1`F2`G2 ` ln zpA1 `G2, A
1
`G2 ` F2qq (3.287)

(3.270), (3.240)
“ BG2p´βA1`G2pF2q ´ χA1`G2pF2q ` χA1`G2pF2qq (3.288)

(3.264)
“ ´2c`A1pF2, G2q

F2ăG2, (3.70)
“ 0. (3.289)

So by (3.283) we also have

BF2BG2 ln fpA,F1 ` F2, G1 `G2q “ 0 (3.290)
“ Bα1Bα2 ln fpA,F1p1` α1q, G1p1` α2qq. (3.291)
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Using this then we can integrate and obtain

0 “

ż 0

´1

dα1

ż 0

´1

dα2Bα1Bα2 ln fpA,F1p1` α1q, G1p1` α2qq (3.292)

“ ln fpA,F1, G1q ´ ln fpA, 0, G1q ´ ln fpA,F1, 0q (3.293)
` ln fpA, 0, 0q

(3.277)
“ ln fpA,F1, G1q. (3.294)

Recalling equation (3.276), the definition of f , this ends our proof.

Next, we investigate the current associated with S̃.

Theorem 72 (evaluation of the current of the corrected lift). For
general A,F P V we have

jS̃ApF q “ ´iβApF q. (3.295)

So in particular for G P V

BGj
S̃
A`GpF q “ ´2ic`ApF,Gq. (3.296)

holds.

Proof. Pick A,F P V as in the theorem. We calculate

iBF ln
A

Ω, S̃A,A`FΩ
E

(3.297)

(3.271)
“ iBF

´

´αA`F ´ αA ` ln
A

Ω, Ŝ´1
0,AŜ0,A`FΩ

E¯

(3.298)

(3.225)
“ iBF

`

´αA`F ` ln zpA,A` F q ` ln
@

Ω, SA,A`FΩ
D˘

(3.299)
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The last summand vanishes, as can be seen by the following calculation

BF ln
@

Ω, SA,A`FΩ
D

(3.300)
(3.88)
“ iBF ln det

H´
|P´SA,A`FP

´
| (3.301)

“
i

2
BF ln det

H´
ppP´SA,A`FP

´
q
˚P´SA,A`FP

´
q (3.302)

“
i

2
BF det

H´
pP´SA`F,AP

´SA,A`FP
´
q (3.303)

“
i

2
trpBFP

´SA`F,AP
´SA,A`FP

´
q (3.304)

“
i

2
trpBFP

´SA,A`FP
´
` BFP

´SA`F,AP
´
q “ 0 (3.305)

where we made use of (3.143). Theorem 90 serves to justify the nec-
essary regularity. So we are left with

jApF q “ iBF p´αA`F ` ln zpA,A` F qq (3.306)
“ ip´βApF q ´ χApF q ` χApF qq “ ´iβApF q. (3.307)

Finally, by taking the derivative with respect to G P V and using the
definition of β we find

BGjA`GpF q “ ´2ic`ApF,Gq. (3.308)

proof of theorem 51. The operator S̃ constructed in this subsection
fulfils properties (3.72) and (3.73) by corollary 70 and theorem 71.
The characterization of the current (3.74) follows form theorem 72
and the properties of c`, (3.68) to (3.70).
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3.3 Analyticity of the Scattering Operator

In this section we will present a relatively simple formula for the second
quantized scattering operator in terms of the one-particle scattering
operator. This formula is valid for small external fields, where “small”
will be made precise later. The formula has implications for the ana-
lyticity of the second quantized scattering operator for general external
fields, which we will also present. Also, this section is concerned with
the scattering regime. The notation introduced in the last sections
still applies. The shorthand defined next will turn out to be useful.
Let B : HÑ H be linear and bounded, then we introduce

B#,#̃ “ P#BP #̃, (3.309)

where #, #̃ P t`,´u holds. Recall the definition of Fock space in this
setting

F :“
8
à

m,p“0

`

H`
˘^m

b
`

H´
˘^p

. (3.310)

We denote the sectors of Fock space of fixed particle numbers by Fm,p.
A fixed element of F0,0 of norm 1 will be denoted by Ω.
The annihilation operator a acts on an arbitrary sector of Fock space
Fm,p, for any m, p P N0 with the operator type

a :H ˆ Fm,p Ñ Fm´1,p ‘ Fm,p`1, (3.311)

where the second argument is usually not included in the parenthesis,
as is common practice for bounded operators on a Hilbert space. We
start out by defining a on elements of t

Źm
l“1 ϕl b

Źp
c“1 φc | @c : ϕc P

H`, φc P H´u which spans a dense subset of Fm,p, then one continues
this operator uniquely by linearity and finally by the bounded linear
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extension theorem to all of Fm,p and then again by linearity to all of
H b Fm,p. On the dense set we define apφq by

apφq
m
ľ

l“1

ϕl b
p
ľ

c“1

φc (3.312)

“

m
ÿ

k“1

p´1q1`kxP`φ, ϕky
m
ľ

l“1
l‰k

ϕl b
p
ľ

c“1

φc `
m
ľ

l“1

ϕl b P
´φ^

p
ľ

c“1

φc

(3.313)

where x, y denotes that the scalar product of H. The first summand
on the right-hand side is taken to vanish for m “ 0. The operator
norm of a is given by

}apφq} “ }φ}. (3.314)

The operators a and its adjoint a˚ fulfil the canonical anticommutation
relations:

@φ, ψ : tapφq, a˚pψqu “ apφqa˚pψq ` a˚pψqapφq “ xφ, ψy (3.315)
@φ, ψ : ta˚pφq, a˚pψqu “ tapφq, apψqu “ 0. (3.316)

Now for the construction of the second quantized S-matrix please re-
call the lift condition

@φ P H : S̃A ˝ apφq “ a
`

SAφ
˘

˝ S̃A, (lift condition)

which is to be satisfied by any lift S̃A of the one-particle scattering
matrix SA.
In the appendix we carry out an explicit, albeit heuristic, construction
of a power series expression of a lift of SA in section 4.3 that culminates
in the formula which will be directly verified in this section.
In order to state this formula, we have to introduce some more nota-
tion.
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3.3.1 Differential second quantization

Let B P BpHq be skew adjoint, i.e. iB is self adjoint such that B`´
is a Hilbert-Schmidt operator. We would like to construct a version
dΓpBq of B that acts on Fock space and also is skew adjoint. The
proof of the skew adjointness of dΓpBq is a bit lengthy, as is typical
of such proofs. Even though one might speed it up a little by using
the tools available e.g. in [20] the author is of the opinion that it is
instructive to give a direct proof. In this subsection we will associate
with every set C Ă N such that |C| ă 8 the sequence pCkq1ďkď|C| such
that

@1 ď k ď |C| : Ck P C (3.317)
@1 ď k ă l ď |C| : Ck ă Cl (3.318)

hold. This notation is confined to within the proofs of this subsection.
The strategy of this subsection is to construct an operator in two steps
that is essentially self adjoint on the dense domain of the next

Definition 73 (Fock space of finitely many particles). We introduce

F 1 :“
8
ë

m,p“0

Fm,p, (3.319)

where
Ë

refers to the algebraic direct sum. Furthermore, we define

F0
Ă F 1 (3.320)

such that for each element α P F0 there is a basis an ONB pϕ̃kqkPN of
H` and an ONB pϕ̃´kqkPN of H´ such that

α P span

#

m
ź

k“1

a˚pϕ̃Lkq
p
ź

c“1

apϕ̃´CcqΩ (3.321)

| m, p P N, pLkqk, pCcqc Ă N, |L|“m, |C|“p

+

(3.322)
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holds. Here and elsewhere, the product is defined inductively:
M
ź

k“1

fk “

˜

M´1
ź

k“1

fk

¸

fM , (3.323)

for all M P N and factors fk, i.e. factors increase in index from left
to right.

Constructing dΓ piecewise turns out to be advantageous.

Definition 74. We define the following operators of type F0 Ñ F

dΓpB``q :“
ÿ

nPN

a˚pB``ϕnqapϕnq (3.324)

dΓpB´´q :“ ´
ÿ

nPN

apϕ´nqa
˚
pB´´ϕ´nq (3.325)

dΓpB´`q :“
ÿ

nPN

a˚pB´`ϕnqapϕnq (3.326)

where the sum converges in the strong operator topology and pϕnqn,
pϕ´nqn are arbitrary ONBs of H` and H´.

Lemma 75. The operators dΓpB``q, dΓpB´´q and dΓpB´`q restricted
to F0

m,p have the following type

dΓpB``q|F0
m,p

: F0
m,p Ñ Fm,p (3.327)

dΓpB´´q|F0
m,p

: F0
m,p Ñ Fm,p (3.328)

dΓpB´`q|F0
m,p

: F0
m,p Ñ Fm´1,p´1 (3.329)

and fulfil the following bounds for all m, p

}dΓpB``q|F0
m,p
} ď pm` 4q}B``} (3.330)

}dΓpB´´q|F0
m,p
} ď pp` 4q}B´´} (3.331)

}dΓpB´`q|F0
m,p
} ď 2}B´`}I2 , (3.332)
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Moreover, the operator dΓpB´`q|F0
m,p

also assumes the following form

dΓpB´`q|F0
m,p
“´

ÿ

kPN

a˚pϕ´kqapB`´ϕ´kq|F0
m,p
. (3.333)

The equality of operators can then be continued to all of F .

Proof. Pick α P F0
m,p for m, p P N0, α can be expressed in terms of

some ONB pϕ̃kqkPN of H` and pϕ̃´kqkPN of H´

α “
ÿ

L,CĂN
|L|“m,|C|“p

αL,C

m
ź

l“1

a˚pϕ̃Llq
p
ź

c“1

apϕ̃´CcqΩ. (3.334)

In this expansion only finitely many coefficients α¨,¨ are non-zero. Our
operators all map the vacuum onto the zero vector, so commuting
them through the products of creation and annihilation operators in
the expansion of α we can make the action of them more explicit:

dΓpB``qα “
ÿ

L,CĂN
|L|“m,|C|“p

αL,C

m
ÿ

b“1

b´1
ź

l“1

a˚pϕ̃Llq
ÿ

nPN

a˚pB``ϕnqxϕn, ϕ̃Lby

ˆ

m
ź

l“b`1

a˚pϕ̃lq
p
ź

c“1

apϕ̃´CcqΩ (3.335)

“
ÿ

L,CĂN
|L|“m,|C|“p

αL,C

m
ÿ

b“1

b´1
ź

l“1

a˚pϕ̃Llqa
˚
pB``ϕ̃Lbq

m
ź

l“b`1

a˚pϕ̃lq
p
ź

c“1

apϕ̃´CcqΩ.

(3.336)

We notice, that dΓpB``qα P Fm,p holds. What is left to show for the
first operator is therefore its norm. For estimating this we see that
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B`` in the last line can be replaced by

BL
Lb

:“

¨

˚

˝

1´
m
ÿ

l“1
l‰b

|ϕ̃Llyxϕ̃Ll |

˛

‹

‚

B``, (3.337)

due to the antisymmetry of fermions. Expanding

}dΓpB``qα}
2
“ xdΓpB``qα, dΓpB``qαy

“
ÿ

L,C,L1,C1ĂN
|L1|“|L|“m,|C1|“|C|“p

αL,CαL1,C1
m
ÿ

b,b1“1

C

b´1
ź

l“1

a˚pϕ̃Llq a˚pBL
Lb
ϕ̃Lbq

m
ź

l“b`1

a˚pϕ̃Llq
p
ź

c“1

apϕ̃´CcqΩ,
b1´1
ź

l“1

a˚pϕ̃L1lq a˚pBL1

L1
b1
ϕ̃L1bq

m
ź

l“b1`1

a˚pϕ̃L1lq
p
ź

c“1

apϕ̃´C1cqΩ

G

(3.338)

we see that in fact C and C 1 need to agree, because we can just com-
mute the corresponding annihilation operators from one end of the
scalar product to the other. Furthermore, only a single wave function
on each side of the scalar product is modified, this implies that in order
for the scalar product not to vanish |LXL1| ě m´ 2 has to hold. For
the case L ‰ L1 we split up the sum over sets into the sum over a new
L such that |L| “ m´2 holds and an additional sum over four indices
n1 ă n2, p1 ă p2. The double sum over b, b1 only has contributions
where b “ n1 or b “ n2 and b1 “ p1 or b1 “ p2 are selected. Because
each factor in the first half is orthogonal to each other factor in this
half and analogously for the second half, this will result in a sum of
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eight terms. In the case L1 “ L the full sum contributes, yielding

}dΓpB``qα}
2
“

“
ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

n1ăn2,p1ăp2PNzL
tn1,n2u‰tp1,p2u

αLYtn1,n2u,CαLYtp1,p2u,C

„

n1

n2

 „

p1

p2



ˆ

ˆ

xϕ̃n1 , ϕ̃p1yxB
LYtn1,n2u
n2

ϕ̃n2 , B
LYtp1,p2u
p2

ϕ̃p2y (3.339)

´ xϕ̃n1 , B
LYtp1,p2u
p2

ϕ̃p2yxB
LYtn1,n2u
n2

ϕ̃n2 , ϕ̃p1y (3.340)

` xBLYtn1,n2u
n1

ϕ̃n1 , ϕ̃p1yxϕ̃n2 , B
LYtp1,p2u
p2

ϕ̃p2y (3.341)

´ xBLYtn1,n2u
n1

ϕ̃n1 , B
LYtp1,p2u
p2

ϕ̃p2yxϕ̃n2 , ϕ̃p1y (3.342)

` xϕ̃n1 , B
LYtp1,p2u
p1

ϕ̃p1yxB
LYtn1,n2u
n2

ϕ̃n2 , ϕ̃p2y (3.343)

´ xϕ̃n1 , ϕ̃p2yxB
LYtn1,n2u
n2

ϕ̃n2 , B
LYtp1,p2u
p1

ϕ̃p1y (3.344)

` xBLYtn1,n2u
n1

ϕ̃n1 , B
LYtp1,p2u
p1

ϕ̃p1yxϕ̃n2 , ϕ̃p2y (3.345)

´ xBLYtn1,n1u
n1

ϕ̃n1 , ϕ̃p2yxϕ̃n2 , B
LYtp1,p2u
p1

ϕ̃p1y

˙

(3.346)

`
ÿ

L,CĂN
|L|“m,|C|“p

|αL,C |
2

m
ÿ

b,b1“1

C

b´1
ź

l“1

a˚pϕ̃Llq a˚pBL
Lb
ϕ̃Lbq (3.347)

m
ź

l“b`1

a˚pϕ̃LlqΩ,
b1´1
ź

l“1

a˚pϕ̃Llq a˚pBL
Lb1
ϕ̃Lbq

m
ź

l“b1`1

a˚pϕ̃LlqqΩ

G

,

where
„

n1

n2



:“ p´1q|tlPL|lăn1u|`|tlPL|lăn2u| (3.348)

keeps track of the number of anti commutations. This is non-standard
notation, but it is meant to keep the notation as compact as possible
and its use is contained to this subsection.
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Due to the antisymmetry each summand containing a factor without
an occurrence of the B operator are only non-zero if n1 “ p1 or n2 “ p2.
Each factor containing exactly one occurrence of B obtains a similar
restriction. So we can split the block of terms into one corresponding
to the two cases just mentioned.

}dΓpB``qα}
2
“

“
ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

n1ăn2,p1ăp2PNzL
tn1,n2u‰tp1,p2u

αLYtn1,n2u,CαLYtp1,p2u,C

„

n1

n2

 „

p1

p2



ˆ

ˆ

´ xϕ̃n1 , B
LYtp1,p2u
p2

ϕ̃p2yxB
LYtn1,n2u
n2

ϕ̃n2 , ϕ̃p1y1n1‰p1 (3.349)

` xBLYtn1,n2u
n1

ϕ̃n1 , ϕ̃p1yxϕ̃n2 , B
LYtp1,p2u
p2

ϕ̃p2y1n2‰p1

` xϕ̃n1 , B
LYtp1,p2u
p1

ϕ̃p1yxB
LYtn1,n2u
n2

ϕ̃n2 , ϕ̃p2y1n1‰p2

´ xBLYtn1,n2u
n1

ϕ̃n1 , ϕ̃p2yxϕ̃n2 , B
LYtp1,p2u
p1

ϕ̃p1y1n2‰p2

˙

`
ÿ

L,CĂN
|C|“p

|L|“m´1

ÿ

n‰pPNzL

αLYtnu,CαLYtpu,C

„

n
p



xBLYtnu
n ϕ̃n, B

LYtpu
p ϕ̃py (3.350)

`
ÿ

L,CĂN
|L|“m,|C|“p

|αL,C |
2

m
ÿ

b,b1“1

C

b´1
ź

l“1

a˚pϕ̃Llq a˚pBL
Lb
ϕ̃Lbq (3.351)

m
ź

l“b`1

a˚pϕ̃LlqΩ,
b1´1
ź

l“1

a˚pϕ̃Llq a˚pBL
Lb1
ϕ̃Lbq

m
ź

l“b1`1

a˚pϕ̃LlqqΩ

G

,

where we also summarized the terms of the second block. The restric-
tions n1 ă n2 and p1 ă p2 have the effect that the negative terms sum
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up to just one term without restrictions, while the positive terms add
up to two such terms.
For the term (3.350) we add and subtract the term where n “ p. The
enlarged sum can then be reformulated

ÿ

L,CĂN
|L|“m´1

|C|“p

ÿ

n,n1PNzL

αLYtnu,CαLYtn1u,CxB
LYtnu
n ϕ̃n, B

LYtn1u
n1 ϕ̃n1y

„

n
n1



“
ÿ

L,CĂN
|L|“m´1,|C|“p

›

›

›

›

›

›

ÿ

nPNzL

αLYtnu,CB
LYtnu
n ϕ̃n

„

n
0



›

›

›

›

›

›

2

“
ÿ

L,CĂN
|L|“m´1

|C|“p

›

›

›

›

›

›

˜

1´
ÿ

lPL

|ϕ̃lyxϕ̃l|

¸

B``
ÿ

nPNzL

αLYtnu,Cϕ̃n

„

n
0



›

›

›

›

›

›

2

(3.352)

Now the operator product inside the norm has operator norm }B``}
and so we can estimate the whole object by

(3.352) ď }α}2}B``}2. (3.353)

We need to estimate the term we added to complete the norm square
in (3.350), this is done as follows

ÿ

L,CĂN
|L|“m´1,|C|“p

ÿ

nPNzL

|αLYtnu,C |
2
}BLYtnu

n ϕ̃n}
2

ď
ÿ

L,CĂN
|L|“m,|C|“p

}B``}
2
|αL,C |

2
“ }α}2}B``}

2. (3.354)

For (3.349) and the following 3 lines we notice that we may replace
all one-particle operators with B``, since the projector acts as the
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identity in these cases. Subsequently, the two terms of equal sign are
identical except for the extra condition on the sum, resulting in

(3.349) “
ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

n1ăn2,p1ăp2PNzL
tn1,n2u‰tp1,p2u

αLYtn1,n2u,CαLYtp1,p2u,C

„

n1

n2

 „

p1

p2



(3.355)

ˆ

ˆ

xB``ϕ̃n1 , ϕ̃p1yxϕ̃n2 , B``ϕ̃p2yp1n1‰p2 ` 1n2‰p1q (3.356)

´ xϕ̃n1 , B``ϕ̃p2yxB``ϕ̃n2 , ϕ̃p1yp1n1‰p1 ` 1n2‰p2q

˙

. (3.357)

Next, we are going to repeatedly add and subtract terms, such that we
may factorize the n and the p sums. In order to do so we impose the
condition tn1, n2u ‰ tp1, p2u in the sum by the factor 1 ´ δn1,p1δn2,p2 .
Similarly, we rewrite the other conditions in the following way

1n1‰p2 ` 1n2‰p1 “ 2´ δn1,p2 ´ δn2,p1 , (3.358)
1n1‰p1 ` 1n2‰p2 “ 2´ δn1,p1 ´ δn2,p2 . (3.359)

These are to be multiplied by 1 ´ δn1,p1δn2,p2 resulting in the two ex-
pressions

2´ δn1,p2 ´ δn2,p1 ´ 2δn1,p1δn2,p2 (3.360)
2´ δn1,p1 ´ δn2,p2 , (3.361)

where the upper expression yields the restrictions on the sum of over
xB``ϕ̃n1 , ϕ̃p1yxϕ̃n2 , B``ϕ̃p2y and the lower expression analogously for
xϕ̃n1 , B``ϕ̃p2yxB``ϕ̃n2 , ϕ̃p1y. For the term without further restrictions
we may add the sum of the terms (3.356) and (3.357), the rest is
treated separately.
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The terms are all estimated after rewriting the scalar products as a
single sum of two scalar products in H` bH`.
2 :

2
ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

n1ăn2PNzL
p1ăp2PNzL

αLYtn1,n2u,CαLYtp1,p2u,C

„

n1

n2

 „

p1

p2



(3.362)

ˆ

ˆ

xB``ϕ̃n1 , ϕ̃p1yxϕ̃n2 , B``ϕ̃p2y ´ xϕ̃n1 , B``ϕ̃p2yxB``ϕ̃n2 , ϕ̃p1y

˙

(3.363)

“ 2
ÿ

L,CĂN
|C|“p

|L|“m´2

B

ÿ

n1ăn2PNzL

„

n1

n2



αLYtn1,n2u,CB``ϕ̃n1 b ϕ̃n2 , (3.364)

ÿ

p1ăp2PNzL

„

p1

p2



αLYtp1,p2u,Cϕ̃p1 bB``ϕ̃p2

F

(3.365)

´ 2
ÿ

L,CĂN
|C|“p

|L|“m´2

B

ÿ

n1ăn2PNzL

„

n1

n2



αLYtn1,n2u,Cϕ̃n1 bB``ϕ̃n2 , (3.366)

ÿ

p1ăp2PNzL

„

p1

p2



αLYtp1,p2u,CB``ϕ̃p2 b ϕ̃p1

F

(3.367)

ď 4}B``}
2
}α}2 (3.368)

δn1,p1 :

ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

n1ăn2PNzL
p1ăp2PNzL

αLYtn1,n2u,CαLYtp1,p2u,C

„

n1

n2

 „

p1

p2



δn1,p1 (3.369)

ˆ xϕ̃n1 , B``ϕ̃p2yxB``ϕ̃n2 , ϕ̃p1y (3.370)
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“
ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

lăn,pPNzL

αLYtl,nu,CαLYtl,pu,C

„

0
n

 „

0
p



(3.371)

ˆ xϕ̃l, B``ϕ̃pyxB``ϕ̃n, ϕ̃ly (3.372)

“
ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

lPNzL

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

C

ϕ̃l, B``
ÿ

lăpPNzL

αLYtl,pu,C

„

0
p



ϕ̃p

G

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

(3.373)

ď }B``}
2

ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

lăpPNzL

|αLYtl,pu,C |
2
ď }B``}

2
}α}2 (3.374)

´́́δn1,p2 ´́́ δn2,p1 :

´
ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

n1ăn2PNzL
p1ăp2PNzL

αLYtn1,n2u,CαLYtp1,p2u,C

„

n1

n2

 „

p1

p2



pδn1,p2 ` δn2,p1q

(3.375)
ˆ xB``ϕ̃n1 , ϕ̃p1yxϕ̃n2 , B``ϕ̃p2y (3.376)

“ ´
ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

n,p,lPNzL

αLYtl,nu,CαLYtl,pu,C

„

0
n

 „

0
p



(3.377)

ˆ

ˆ

1pălănxB``ϕ̃l, ϕ̃pyxϕ̃n, B``ϕ̃ly (3.378)

` 1nălăpxB``ϕ̃n, ϕ̃lyxϕ̃l, B``ϕ̃py

˙

(3.379)

“ ´
ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

lPNzL

(3.380)
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«C

B``ϕ̃l,
ÿ

pPNzL
păl

„

0
p



αLYtl,pu,Cϕ̃p

GC

ÿ

nPNzL
lăn

„

0
n



αLYtl,nu,Cϕ̃n, B``ϕ̃l

G

(3.381)

`

C

B``ϕ̃l,
ÿ

pPNzL
pąl

„

0
p



αLYtl,pu,Cϕ̃p

GC

ÿ

nPNzL
ląn

„

0
n



αLYtl,nu,Cϕ̃n, B``ϕ̃l

Gff

(3.382)
ď 2}B``}

2
}α}2 (3.383)

δn2,p2 : completely analogous to δn1,p1 one arrives at

ď }B``}
2
}α}2. (3.384)

δn1,p1δn2,p2 :

´ 2
ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

n1ăn2PNzL
p1ăp2PNzL

αLYtn1,n2u,CαLYtp1,p2u,C

„

n1

n2

 „

p1

p2



δn1,p1δn2,p2 (3.385)

ˆ xB``ϕ̃n1 , ϕ̃p1yxϕ̃n2 , B``ϕ̃p2y (3.386)

“ ´2
ÿ

L,CĂN
|C|“p

|L|“m´2

ÿ

năpPNzL

|αLYtn,pu,C |
2
xB``ϕ̃n, ϕ̃nyxϕ̃p, B``ϕ̃py (3.387)

ď 2}B``}
2
}α}2 (3.388)

So all together we have

(3.349) ď 10}B``}
2
}α}2. (3.389)

What remains is term (3.351), for this term there are two cases. If
b “ b1 then the scalar product is equal to xBL

Lb
ϕ̃b, B

L
Lb
ϕ̃by. If b ‰ b1

the scalar product is, up to a sign, equal to xBL
Lb
ϕ̃b, ϕ̃byxϕ̃b1 , B

L
Lb1
ϕ̃b1y.
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However, both of these terms can be estimated by }B``}2. So all m2

summands of this sum contribute }B``}2. Overall this estimate yields

}dΓpB``qα}
2
ď (3.353)` (3.354)` (3.389)` }α}2m2

}B``}
2

“ }α}2p12`m2
q}B``}

2.

For convenience of notation the estimate can be weakened to

}dΓpB``qα} ď pm` 4q}B``}}α}. (3.390)

A completely analogous argument works for dΓpB´´q. So lets move
on to dΓpB´`q. Applying it to the same α P F0

m,p again we permute
all the operators to the right, where they annihilate the vacuum. The
remaining terms are

ÿ

nPN

a˚pB´`ϕnqapϕnq
ÿ

L,CĂN
|L|“m,|C|“p

αL,C

m
ź

l“1

a˚pϕ̃Llq
p
ź

c“1

apϕ̃´CcqΩ

“
ÿ

L,CĂN
|L|“m,|C|“p

ÿ

nPN

αL,C

m
ÿ

b“1

p
ÿ

d“1

p´1qm´1`b`d
xϕn, ϕ̃Lbyxϕ̃´Cd , B´`ϕny

ˆ

m
ź

l“1
l‰b

a˚pϕ̃Llq
p
ź

c“1
c‰d

apϕ̃´CcqΩ.

(3.391)

From here we can eliminate the sum over n, and reintroduce a sum
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over the ONB of H´ to arrive at the expression for dΓpB´`q:

“
ÿ

L,CĂN
|L|“m,|C|“p

αL,C

m
ÿ

b“1

p
ÿ

d“1

p´1qm`b`dxB`´ϕ̃´Cd , ϕ̃Lby

ˆ

m
ź

l“1
l‰b

a˚pϕ̃Llq
p
ź

c“1
c‰d

apϕ̃´CcqΩ (3.392)

“
ÿ

L,CĂN
|L|“m,|C|“p

αL,C

m
ÿ

b“1

p
ÿ

d“1

ÿ

kPN

p´1qm`b`dxϕ̃´Cd , ϕ´kyxB`´ϕ´k, ϕ̃Lby

ˆ

m
ź

l“1
l‰b

a˚pϕ̃Llq
p
ź

c“1
c‰d

apϕ̃´CcqΩ (3.393)

“´
ÿ

kPN

a˚pϕ´kqapB`´ϕ´kq
ÿ

L,CĂN
|L|“m,|C|“p

αL,C

m
ź

l“1

a˚pϕ̃Llq
p
ź

c“1

apϕ̃´CcqΩ. (3.394)

For the estimate of the operator norm we continue with expression (3.392).
By counting the remaining creation and annihilation operators we im-
mediately see that dΓpB´`qα P Fm´1,p´1. We take the norm squared
of the expression and notice that the scalar product is only not zero
in cases where |LzL1| ď 1 and |CzC 1| ď 1. Furthermore, whenever
L “ L1 holds, the two sums of 1 ď b, b1 ď m collapses to a single sum
over this range and analogously for C “ C 1 and d, d1. In case L ‰ L1

no sum over b or b1 remains for the same reason. Hence, we arrive at

}dΓpB´`qα}
2
ď

ÿ

C,L Ă N
|L| “ m´ 1
|C| “ p´ 1

ÿ

n1, n2 P NzL
l1, l2 P NzC

|αLYtn2u,CYtl2u||αLYtn1u,CYtl1u| (3.395)
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«

δn1,n2δl1,l2
ÿ

bPLYtn1u

ÿ

dPCYtl1u

|xB`´ϕ̃´d, ϕ̃by|
2 (3.396)

` p1´ δn1,n2qδl1,l2
ÿ

dPCYtl1u

|xB`´ϕ̃´d, ϕ̃n1y||xϕ̃n2 , B`´ϕ̃´dy| (3.397)

` δn1,n2p1´ δl1,l2q
ÿ

bPLYtn1u

|xB`´ϕ̃´l1 , ϕ̃by||xϕ̃b, B`´ϕ̃´l2y| (3.398)

`p1´δn1,n2qp1´δl1,l2q|xB`´ϕ̃´Cl1 , ϕ̃n1y||xϕ̃n2 , B`´ϕ̃´Cl2 y|

ff

. (3.399)

In the next step we split the sum into the four already indicated,
estimate the terms p1´ δq ď 1 and eliminate sums with the remaining
Kronecker deltas. For the first term, we subsequently enlarge the sum
over part of the Basis ϕ̃ in the scalar product to the sum over all basis
elements, yielding

}dΓpB´`qα}
2
ď }α}2

ÿ

bPN

ÿ

cPN

|xB`´ϕ̃´c, ϕ̃by|
2 (3.400)

`
ÿ

C,L Ă N
|L| “ m´ 1
|C| “ p

ÿ

n1,n2PNzL
dPC

|αLYtn1u,C ||xB`´ϕ̃´d, ϕ̃n1y| (3.401)

ˆ |αLYtn2u,C ||xϕ̃n2 , B`´ϕ̃´dy| (3.402)

`
ÿ

C,L Ă N
|L| “ m
|C| “ p´ 1

ÿ

l1,l2PNzC

|αL,CYtl2u||αL,CYtl1u| (3.403)

ˆ
ÿ

bPL

|xB`´ϕ̃´l1 , ϕ̃by||xϕ̃b, B`´ϕ̃´l2y| (3.404)

`
ÿ

C,L Ă N
|L| “ m´ 1
|C| “ p´ 1

ÿ

n1, n2 P NzL
l1, l2 P NzC

|αLYtn2u,CYtl2u||αLYtn1u,CYtl1u| (3.405)

ˆ |xB`´ϕ̃´l1 , ϕ̃n1y||xϕ̃n2 , B`´ϕ̃´l2y|. (3.406)



3.3. ANALYTICITY 179

Now we identify the sums over l1, l2 and n1, n2 as scalar products
between factors of |α| and factors involving B`´ in tensor products
of `2pNq and apply the Cauchy-Schwarz inequality. Additionally, we
identify

ř

bPN
ř

cPN |xB`´ϕ̃´c, ϕ̃by|
2 “ }B`´}

2
I2
. This results in

}dΓpB´`qα}
2
ď }α}2}B´`}

2
I2

(3.407)

`
ÿ

C,L Ă N
|L| “ m´ 1
|C| “ p

ÿ

nPNzL

|αLYtnu,C |
2
ÿ

dPC

ÿ

uPNzL

|xB`´ϕ̃´d, ϕ̃uy|
2 (3.408)

`
ÿ

C,L Ă N
|L| “ m
|C| “ p´ 1

ÿ

lPNzC

|αL,CYtlu|
2
ÿ

bPL

ÿ

uPNzC

|xB`´ϕ̃´u, ϕ̃by|
2 (3.409)

`
ÿ

C,L Ă N
|L| “ m´ 1
|C| “ p´ 1

ÿ

n P NzL
l P NzC

|αLYtnu,CYtlu|
2
ÿ

u P NzL
d P NzC

|xB`´ϕ̃´d, ϕ̃uy|
2 (3.410)

ď 4}α}2}B´`}
2
I2
. (3.411)

Corollary 76. The operators dΓpB´´q and dΓpB``q can be extended
by continuity on F0

m,p to unbounded operators on all of F 1. The oper-
ator dΓpB´`q can be continuously extended to all of F .

Lemma 77. The operator pdΓpB´`qq
˚ acts on elements of F0 as

´
ÿ

nPN

a˚pB`´ϕ´nqapϕ´nq “: ´dΓpB`´q. (3.412)

So also dΓpB`´q : F0 Ñ F can be extended continuously to all of F .
Moreover, dΓpB´`q ` dΓpB`´q is skew-adjoint.

Proof. Pick β, α P F0. We use the form (3.333) to obtain
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xβ, dΓpB´`qαy “

C

β,´
ÿ

nPN

a˚pϕ´nqapB`´ϕ´nqα

G

“´
ÿ

nPN

xβ, a˚pϕ´nqapB`´ϕ´nqαy “´
ÿ

nPN

xa˚pB`´ϕ´nqapϕ´nqβ, αy

“

B

´
ÿ

nPN

a˚pB`´ϕ´nqapϕ´nqβ, α

F

(3.413)

So we see that dΓpB`´q and dΓpB´`q
˚ agree on F0 which is dense.

So they are the same bounded and continuous operator on all of Fock
space.

Definition 78. We define the set

B :“ tB : H ý |linear, }B}`}B`´}I2`}B´`}I2 P R, B˚“ ´Bu
(3.414)

and the operator

dΓpBq :“ dΓpB``q ` dΓpB`´q ` dΓpB´`q ` dΓpB´´q. (3.415)

Furthermore, we endow B with the topology induced by the norm B ÞÑ
}B} ` }B`´}I2 ` }B´`}I2.

Lemma 79. The operator dΓpBq is skew symmetric and real linear
in its argument B P B. Moreover, for each m, p P N the functional
dΓp¨q|F 1m,p is bounded and hence continuous as a map from B to the set
of bounded linear operators of type F 1

m,p Ñ F 1
m´1,p´1‘F 1

m,p‘F 1
m`1,p`1.

Proof. Since the sum of skew symmetric operators is skew symmetric,
it suffices to show skew symmetry of dΓpB``q and dΓpB´´q. More-
over, since both of these operators are extended versions of operators
of type F0 Ñ F it suffices to show skew symmetry on this domain.
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We will only do the calculation for dΓpB``q, the other calculation is
analogous. Pick β, α P F0 and basis ϕ̃, ϕ1 such that β, α are express-
ible with finite sums over elements of the generating sets with respect
to their respective basis. We calculate

xβ, dΓpB``qαy “
ÿ

L,L1,C,C1ĂN

βL1,C1αL,C

C

|L1|
ź

l“1

a˚pϕ̃L1lq

|C1|
ź

c“1

apϕ̃´C1cqΩ,

ÿ

nPN

a˚pB``ϕnqapϕnq

|L|
ź

l“1

a˚pϕ1Llq

|C|
ź

c“1

apϕ1´CcqΩ

G

“
ÿ

L,L1,C,C1ĂN

βL1,C1αL,C
ÿ

nPN

C

|L1|
ź

l“1

a˚pϕ̃L1lq

|C1|
ź

c“1

apϕ̃´C1cqΩ,

a˚pB``ϕnqapϕnq

|L|
ź

l“1

a˚pϕ1Llq

|C|
ź

c“1

apϕ1´CcqΩ

G

“
ÿ

L,L1,C,C1ĂN

βL1,C1αL,C
ÿ

nPN

C

a˚pϕnqapB``ϕnq

|L1|
ź

l“1

a˚pϕ̃L1lq

|C1|
ź

c“1

apϕ̃´C1cqΩ,

|L|
ź

l“1

a˚pϕ1Llq

|C|
ź

c“1

apϕ1´CcqΩ

G

.

In the next step we perform the standard anticommutations to move
the operator B`` from the annihilation operator to the creation op-
erator:

ÿ

L,CĂN

βL,C
ÿ

nPN

a˚pϕnqapB``ϕnq

|L|
ź

l“1

a˚pϕ̃Llq

|C|
ź

c“1

apϕ̃´CcqΩ

(3.416)
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“
ÿ

L,CĂN

βL,C

|L|
ÿ

b“1

b´1
ź

l“1

a˚pϕ̃Llqp´1qa˚pB``ϕ̃Lbq

(3.417)

ˆ

|L|
ź

l“b`1

a˚pϕ̃Llq

|C|
ź

c“1

apϕ̃´CcqΩ

(3.418)

“
ÿ

L,CĂN

βL,Cp´1q
ÿ

kPN

a˚pB``ϕkqapϕkq

|L|
ź

l“1

a˚pϕ̃Llq

|C|
ź

c“1

apϕ̃´CcqΩ

(3.419)

“ ´
ÿ

kPN

a˚pB``ϕkqapϕkqβ,

(3.420)

where we used B˚`` “ ´B``. This yields

xβ, dΓpB``qαy “ ´ xdΓpB``qβ, αy . (3.421)

Real linearity follows directly from the definition of dΓ on F0 and
hence by extension on all of F 1. Continuity of the restriction to any
F 1
m,p follows directly from the forms of the bounds of lemma 75.

Now we would like to define edΓpBq, in order to do so, we will show that
dΓpBq is essentially skew-adjoint. One way of doing so is by Nelson’s
analytic vector theorem.

Theorem 80 (Nelson’s analytic vector theorem). Let C be a sym-
metric operator on a Hilbert space H. If dompCq contains a total
set S Ă

Ş8

n“1 dompCnq of analytic vectors, then C is essentially self
adjoint. A vector φ P

Ş8

n“1 dompCnq is called analytic if there is
t ą 0 such that

ř8

k“0
}Cnφ}
n!

tn ă 8 holds. A set S is said to be total if
spanpSq “ H
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For a proof see e.g. [85].

Lemma 81. For any α P F 1, t ą 0 and B P B the operator dΓpBq :
F 1 Ñ F satisfies

8
ÿ

k“0

}dΓpBqkα}

k!
tk ă 8. (3.422)

Proof. By definition of F 1 there arem, p P N such that α P
Ëm

l“0

Ëp
c“0 Fl,p.

Fix t ą 0. We dissect α into its parts of fixed particle numbers:

8
ÿ

k“0

}dΓpBqkα}

k!
tk ď

m
ÿ

l“0

p
ÿ

c“0

8
ÿ

k“0

}dΓpBqkαl,c}

k!
tk. (3.423)

Using the following abbreviations

Γ´1 :“ dΓpB´`q (3.424)
Γ0 :“ dΓpB``q ` dΓpB´´q (3.425)
Γ`1 :“ dΓpB`´q (3.426)
β :“ maxt}B``} ` }B´´}, }B´`, }I2u (3.427)

we estimate

}dΓpBqkαl,c} ď
ÿ

xPt´1,0,`1uk

›

›

›

›

›

k
ź

b“1

Γxbαl,c

›

›

›

›

›

ď
ÿ

xPt´1,0,`1uk

k
ź

b“1

›

›

›

›

Γxb |Fl`řb´1
d“1

xd,c`
řb´1
d“1

xd

›

›

›

›

}αl,c} (3.428)

ď 3k}α} max
xPt´1,0,`1uk

k
ź

b“1

›

›

›

›

Γxb |Fl`řb´1
d“1

xd,c`
řb´1
d“1

xd

›

›

›

›

. (3.429)

At this point the factors only depend on the number of particles the
Fock space vector attains as we act on it with the operators Γ# for
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# P t´1, 0, 1u. As these bounds increase with the particle number we
can restrict the set t´1, 0,`1u in the last line to t0,`1u. We notice
that the bound in (3.429) will only increase if we exchange each pair
xi`1 “ 1, xi “ 0 by the pair xi “ 1, xi`1 “ 0 so that the norm of the
operator that acts like a particle number operator is taken after the
particle number is increased. Therefore, we for each fixed

řk
b“1 xb “ d

we can estimate the maximum by lemma 75 to be βkpc` l`8`2dqk´d,
which we bound by p2βqkpc{2 ` l{2 ` 4 ` dqk´d. The factor constant
in d will be omitted for the maximization problem. For maximizing

pc{2` l{2` 4` dqk´d (3.430)

we treat d as a continuous variable take the derivative and set it to
zero. From the form of the function to be maximized it is clear that
it is equal to 1 for d “ k and at d “ ´c{2 ´ l{2 ´ 3, it is bigger in
between. We abbreviate y “ c{2` l{2` 4. We calculate

0 “ py ` dqk´dp´ lnpy ` dq `
k ´ d

y ` d
q (3.431)

ðñ
k ´ d

y ` d
“ lnpy ` dq (3.432)

ðñ
k ` y

y ` d
´ 1 “ ´1` lnpepy ` dqq (3.433)

ðñ epk ` yq “ epy ` dq lnpepy ` dqq (3.434)

ðñ epk ` yq “ lnpepy ` dqqelnpepy`dqq (3.435)
ðñ W0pepk ` yqq “ lnpepy ` dqq (3.436)

ðñ eW0pepk`yqq´1
´ y “ d, (3.437)

where we made use of the Lambert W function, which is the inverse
function of x ÞÑ xex and has multiple branches; however as epy`dq ą 0
W0 is the only real branch which is applicable here, it corresponds to
the inverse of x ÞÑ xex for x ą ´1. From the form of the maximizing
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value we see, that it is always bigger than ´y. Plugging this back onto
our function we find its maximum

max
dPs´y,8r

py ` dqk´d “ epW0pepk`yqq´1qpk`yq´pW0pepk`yqq´1qeW0pepk`yqq´1

“ e´pk`yq`pk`yqW0pepk`yqq`eW0pepk`yqq´1´ppk`yqeq{e

“ e
´2pk`yq`pk`yqW0ppk`yqeq`

epk`yq
eW0ppk`yqeq

“ epk`yqp´2`W0ppk`yqeq`W0ppk`yqeq´1q, (3.438)

where we repeatedly used W0pxqe
W0pxq “ x. Putting things together

we find

}ΓpBqkαl,c} ď p6βq
k
}α}epk`yqp´2`W0ppk`yqeq`W0ppk`yqeq´1q. (3.439)

Dividing this by k! and using the lower bound given by Sterling’s
formula we would like to prove that

8
ÿ

k“1

p6βtqkekp1´lnpkqq´ 1
2

lnpkq`pk`yqp´2`W0ppk`yqeq`W0ppk`yqeq´1q
ă 8

(3.440)

holds, where we neglected constant factors and the summand k “ 0
which do not matter for the task at hand. Next we are going to use
an inequality about the growth of W0 proven in [54]. For any x ě e

W0pxq ď lnpxq ´ lnplnpxqq `
e

e´ 1

lnplnpxqq

lnpxq
(3.441)

holds true. Plugging this into our sum the exponent is bounded from
above by
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kp1´ lnpkqq ´
1

2
lnpkq ` pk ` yq

”

´ 1` lnpk ` yq ´ lnp1` lnpk ` yqq

`
e

e´ 1

lnp1` lnpk ` yqq

1` lnpk ` yq
`W0ppk ` yqeq

´1



“ ´y ` k ln
´

1`
y

k

¯

` y lnpk ` yq ´
1

2
lnpkq`

pk ` yq

„

lnp1` lnpk ` yqq
1´ pe´ 1q lnpk ` yq

pe´ 1qp1` lnpk ` yqq
`W0ppk ` yqeq

´1



ď y lnpk ` yq ´
1

2
lnpkq ` pk ` yqW0ppk ` yqeq

´1
` (3.442)

pk ` yq lnp1` lnpk ` yqq
1´ pe´ 1q lnpk ` yq

pe´ 1qp1` lnpk ` yqq
.

Now it is important to notice that the only remaining term that grows
faster than linearly in magnitude is the last summand. This term;
however, is negative for large k, as the fraction converges to ´1 for
large k, while the double logarithm in front grows without bounds. So
there is a k˚ big enough such that for all k ą k˚ (3.442) is smaller
than ´kplnp6βtq ` 1q, proving that (3.440) in fact holds.

Theorem 82. The operator dΓpBq : F 1 Ñ F is essentially skew ad-
joint and hence by Stones theorem generates a strongly continuous
unitary group

´

et
{dΓpBq

¯

t
, where {dΓpBq is the closure of dΓpBq.

Proof. In order to apply Nelson’s analytic vector theorem we pick
S “ F 1. Pick α P F 1. We need to show that there is t ą 0 such that

8
ÿ

k“0

}dΓpBqkα}

k!
tk ă 8 (3.443)

holds. This is guaranteed by the last lemma.



3.3. ANALYTICITY 187

Lastly in this subsection, we will investigate the commutation proper-
ties of dΓpBq with general creation and annihilation operators. These
properties are the reason we are interested in this operator, they will
prove to be very useful in the next subsection.

Theorem 83. For ψ P H and α P F 1 we have

rdΓpBq, a#
pψqsα “ a#

pBψqα, (3.444)

where a# can be either a or a˚.

Proof. Because dΓpBq is defined as the extension of an operator on
F0 it suffices to show the desired identity on this space. We will do
the case apψq, the other case is completely analogous. As a first step
we decompose dΓpBq into its four parts

rdΓpBq, apψqs “ rdΓpB``q ` dΓpB´`q ` dΓpB´`q ` dΓpB´´q, apψqs ,
(3.445)

each of those parts is evaluated directly. We begin with the B`` part,
this can be expressed as

rdΓpB``q, apψqs (3.446)

“
ÿ

nPN

a˚pB``ϕnqapϕnqapψq ´
ÿ

nPN

apψqa˚pB``ϕnqapϕnq (3.447)

“
ÿ

nPN

r´xψ,B``ϕnyapϕnq ` apψqa
˚
pB``ϕnqapϕnqs (3.448)

´
ÿ

nPN

apψqa˚pB``ϕnqapϕnq. (3.449)

Let α P F0. Now applying the expression in the last two lines to α,
considering each αm,p P Fm,p separately and commuting the annihila-
tion operators in (3.448) and (3.449) to the right, the sums over n will
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be absolutely convergent. Hence, we may split the firs sum into two
and observe the cancellation between the last two terms. Continuing
we find

rdΓpB``q, apψqsα “ ´
ÿ

nPN

xψ,B``ϕnyapϕnqα (3.450)

“ ´a

˜

ÿ

nPN

xB``ϕn, ψyϕn

¸

α “ a

˜

ÿ

nPN

xϕn, B``ψyϕn

¸

α (3.451)

“ apB``ψqα, (3.452)

where we used B˚ “ ´B˚. The final extension of this equation to all
α P F 1 happens via the continuous linear extension theorem on Fm,p

for each m, p P N. The proof in all seven other cases are completely
analogous, except that the off diagonal terms switch. More precisely,
from the excatly analogous calculation it follows that

“

dΓpB´`q, a
#
pψq

‰

α “ a#
pB`´ψqα (3.453)

and
“

dΓpB`´q, a
#
pψq

‰

α “ a#
pB´`ψqα (3.454)

hold. Putting things together again we obtain

rdΓpB``q, apψqs ` rdΓpB´`q, apψqs (3.455)
` rdΓpB`´q, apψqs ` rdΓpB´´q, apψqs “ (3.456)

apB``ψq ` apB`´ψq ` apB´`ψq ` apB´´ψq ðñ (3.457)
rdΓpBq, apψqs “ apBψq (3.458)

on all of F 1.
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3.3.2 Presentation and Proof of the Formula

In this subsection we verify the formula for the S-matrix directly. For
a heuristic derivation see section 4.3 of the appendix.

Theorem 84 (Analyticity for small A). Let A P V be such that the
one particle scattering operator SA fulfils

}1´ SA} ă 1. (3.459)

We define lnpSAq by the norm convergent Taylor series of the logarithm
around the identity. Then the operator dΓplnpSAqq is unbounded, es-
sentially skew-adjoint, which gives meaning to S̃:

S̃A “ edΓplnpSAqq. (3.460)

The unitary operator S̃A is a lift of SA, i.e. it fulfils the (lift condition).

Proof. In order to establish this theorem we need to verify that the
expression given in equation (3.460) for the scattering operator is a
well-defined object and fulfils the (lift condition).
Well-definedness is established, by theorem 82, because for unitary
SA with }1´SA} ă 1 the power series of the logarithm converges and
fulfils

} lnpSAq} “ } lnp1´ p1´ SAqq} “

›

›

›

›

›

´

8
ÿ

k“1

p1´ SAqk

k

›

›

›

›

›

(3.461)

ď

8
ÿ

k“1

}1´ SA}k

k
“ ´ lnp1´ }1´ SA}q (3.462)

implying that the power series of the logarithm around the identity is
a well-defined map from the one-particle operators of norm less than
one to the bounded one-particle operators. Moreover, this operator
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fulfils rlnpSAqs˚ “ lnpSAq˚ “ lnpSAq´1 “ ´ lnpSAq, so dΓplnSAq is
a well-defined unbounded operator that is essentially skew adjoint on
the finite particle sector of Fock space F 1. Finally, the off diagonal
Hilbert-Schmidt norm can also be controlled by the same norm of SA:

}P` lnpSAqP´}I2 “ }P
` lnp1´ p1´ SAqqP´}I2 (3.463)

“

›

›

›

›

›

´P`
8
ÿ

k“1

p1´ SAqk

k
P´

›

›

›

›

›

I2

(3.464)

ď }SA`´}I2

8
ÿ

k“1

maxt}1´ SA}, }P´ ´ SA´´}u
k´1 (3.465)

“
}SA`´}I2

1´ }1´ SA}
. (3.466)

Let ϕ P H and α P F 1, for any k P N0 we see applying the commutation
relation of dΓ:

dΓplnSAq
k
ÿ

l“0

ˆ

k

l

˙

a
´

`

lnSA
˘l
ϕ
¯

`

dΓplnSAq
˘k´l

α

“

k
ÿ

l“0

ˆ

k

l

˙

a
´

`

lnSA
˘l`1

ϕ
¯

`

dΓplnSAq
˘k´l

α

`

k
ÿ

l“0

ˆ

k

l

˙

a
´

`

lnSA
˘l
ϕ
¯

`

dΓplnSAq
˘k´l`1

α

“

k`1
ÿ

b“0

ˆˆ

k

b´ 1

˙

`

ˆ

k

b

˙˙

a
`

plnSAqbϕ
˘ `

dΓplnSAq
˘k`1´b

α

“

k`1
ÿ

b“0

ˆ

k ` 1

b

˙

a
`

plnSAqbϕ
˘ `

dΓplnSAq
˘k`1´b

α,
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so we see that for k P N0

`

dΓplnSAq
˘k
apϕqα “

k
ÿ

b“0

ˆ

k

b

˙

a
`

plnSAqbϕ
˘ `

dΓplnSAq
˘k´b

α

(3.467)
holds. Using what we just obtained, we conclude

edΓplnSAqapϕqα “
8
ÿ

k“0

1

k!

`

dΓplnSAq
˘k
apϕqα

“

8
ÿ

k“0

1

k!

k
ÿ

b“0

ˆ

k

b

˙

a
`

plnSAqbϕ
˘ `

dΓplnSAq
˘k´b

α

˚
“

8
ÿ

c“0

8
ÿ

l“0

1

c!l!
a
`

plnSAqcϕ
˘ `

dΓplnSAq
˘l
α

“ a
´

elnSAϕ
¯

edΓplnSAqα “ a
`

SAϕ
˘

edΓplnSAqα.

For the marked equality changing order of summation is justified, be-
cause by the bounds }applnSAqcϕq} ď } lnSA}c and lemma 81 the sum
obtained by changing the order of summands converges absolutely.
Clearly multiplying the second quantized operator by an additional
phase as in (84) does not influence this calculation. So (lift condition)
holds when applied to any α P F 1 and can be continued to all of F by
continuity of S̃A.

The last theorem can be restated as for A small enough there is a
power series of operators on F that converges against a lift of SA.
Power series in A is used here in the sense that it is of the form
ř

kPN0
TkpAq, where TkpAq is homogeneous in A of degree k. The next

theorem establishes such a power series for all A P V .
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Theorem 85 (Analyticity for all A). Let A P V and SA be the cor-
responding one-particle scattering operator. There is a lift S̃A of SA
that fulfils for all α P F 1

}S̃Aα ´
M
ÿ

a“0

T̃apAqα}
MÑ8
ÝÝÝÝÑ 0, (3.468)

where T̃apAq

T̃apAq “
ÿ

kPNN0

ÿ

@l ď N : bl P Nkl

@l ď N : cl P Nbl
0

řN
l“1 |cl| “ a

N
ź

l1“1

p´1q|bl1 |`kl1

kl1 !cl1 !
(3.469)

ˆ

kl1
ź

l2“1

¨

˝

1

bl1,l2
dΓ

¨

˝

bl1,l2
ź

v“1

ZA
l1,cl1,l2,v

˛

‚

˛

‚, (3.470)

are unbounded operators defined on F 1 that are homogeneous of degree
a in A. Here, N P N is chosen such that

SA “
N
ź

k“1

SAk (3.471)

and
@k ď N : }1´ SAk } ă 1 (3.472)

holds true, where SAk is given by

SAk “ U
pk´1qA{N
Σin,Σout

U
Ak{N
Σout,Σin

, (3.473)

and
SAk “ 1`

ÿ

dPN

ZA
k,d, (3.474)

is a norm converent series where Zk,d is homogeneous of degree d.
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Proof. Pick A P V . Recall the definition 47 of the one-particle scat-
tering operator SA

SA “ U0
Σin,Σout

UA
Σout,Σin

. (3.475)

Equation (3.471) then holds by virtue of equation (3.473). Please note
that the existence of an N as given in the theorem can be inferred from
the norm convergent Dyson series, i.e. equation (4.8) of the appendix.
Then, by the theorem 84,

S̃Ak “ edΓplnpSAk qq (3.476)

is a lift of SAk for each k, so the product

S̃A “
N
ź

k“1

S̃Ak (3.477)

is a lift of SA. Pick α P F 1. Note that the convergence of

ÿ

kNPN0

1

kN !

ˆ

dΓplnSANq

˙kN

α (3.478)

is guaranteed by lemma 81. We calculate

S̃Aα “
N
ź

k“1

S̃Ak α “
N´1
ź

k“1

S̃Ak
ÿ

kNPN0

1

kN !

ˆ

dΓplnSANq

˙kN

α (3.479)

“

N´2
ź

k“1

S̃Ak
ÿ

kNPN0

S̃AN´1

1

kN !

ˆ

dΓplnSANq

˙kN

α. (3.480)

By unitary of S̃Al we may pull them into the sum, and expand again
since inside the sum its argument is again in F 1. We may continue this
process by induction. Since all of these sums are absolutely convergent,
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we may forget about the order in which they are to be carried out in
our notation:

S̃Aα “
ÿ

k1,...,kNPN0

N
ź

l“1

1

kl!

ˆ

dΓplnSAl q

˙kl

α. (3.481)

Since α P F 1, there is a maximal number of particles of each summand.
This implies that dΓ is continuous as a function of lnSAl , which allows
us to pull the Taylor series out of dΓ. The logarithm of SAl is given
by a norm convergent series in A,

lnSAl “ ´
8
ÿ

k“1

1

k
p1´ SAl q

k
“

8
ÿ

k“1

p´1qk`1

k

ˆ

ÿ

cPN0

1

c!
ZA
l,c

˙k

(3.482)

“
ÿ

k P N
c P Nk

0

p´1qk`1

k c!

k
ź

v“1

ZA
l,cv . (3.483)

This may be plugged into the expression for S̃A and the sum may be
pulled out of dΓ due to linearity and continuity

S̃Aα “
ÿ

kPNN0

1

k!

N
ź

l“1

˜

ÿ

b P N
c P Nb

0

p´1qb`1

b c!
dΓ

ˆ b
ź

v“1

ZA
l,cv

˙

¸kl

α. (3.484)

Since all of these sums are absolutely convergent, we may reorder the
sum according to degree of homogeneity:

S̃Aα “
ÿ

aPN

ÿ

kPNN0

ÿ

@l ď N : bl P Nkl

@l ď N : cl P Nbl
0

řN
l“1 |cl| “ a

N
ź

l1“1

p´1q|bl1 |`kl1

kl1 !cl1 !
(3.485)

ˆ

kl1
ź

l2“1

¨

˝

1

bl1,l2
dΓ

¨

˝

bl1,l2
ź

v“1

ZA
l1,cl1,l2,v

˛

‚

˛

‚¨ α. (3.486)
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3.4 Summary and Conclusions
In the third chapter of this thesis we worked on a quantum field theo-
retic formulation of electromagnetic interactions. While this approach
is more conventional than what was presented in chapter 2 that does
not at all imply that the general theory has been worked out on a
mathematically rigorous level. So much so that our work on external
field QED, i.e. neglecting all interaction between particles, can be
regarded as at the frontier of our present understanding. The chap-
ter started with a short summary of the approach to construct a lift
of the one-particle time evolution operator where we mentioned the
shortcoming of the present method, not uniquely identifying the phase
of this operator. Subsequently, we gave a geometric construction of
said phase in the scattering regime from an object c` very closely re-
lated to the current induced by an external field. If such an object
were identified the residual freedom might be reduced to an irrelevant
constant phase and a single number related to the charge of the elec-
tron. Furthermore, we showed that there is a lift of the one-particle
scattering operator that is analytic in the external field and gave a
compact explicit formula for weak fields.
I hope that in the near future the construction of c` will succeed, so
that one can further analyse a self-consistent model. In such a model
one feeds the current generated by the fermion field induced by the
action of an electrodynamic field into Maxwell’s equations and acts
with the resulting fields again on the fermion field. Such a model
would incorporate a mean field interaction between the fermions and
would thus be a further step in the direction of a fully interacting
theory.





Chapter 4

Appendix

4.1 Regularity of the One-Particle
Scattering Operator

In this section we analyse the construction of the one-particle scat-
tering operator SA carried out in [13] and answer whether operators
like

P`BBS
˚
ASA`BP

´ (4.1)

are Hilbert-Schmidt operators. This is important for the geometric
construction carried out in section 3.2.
Since this section is heavily inspired by [13], we need to introduce some
notation from this paper.

Definition 86. Let A P V, we define the integral operator QA : H ý

197
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by giving its integral kernel, which is also denoted by QA:

R3
ˆ R3

Q pp, qq ÞÑ QA
pp, qq :“

ZA
`´pp, qq ´ Z

A
´`pp, qq

ipEppq ` Epqqq
(4.2)

with ZA
˘¯pp, qq :“ P˘ppqZ

A
pp´ qqP¯pqq, (4.3)

ZA
“ ´ieγ0γαÂα, (4.4)

Âµ :“
1

p2πq3{2

ż

R3

Aµpxqe
´ipxd3x, (4.5)

and Eppq :“
a

m2 ` |p|2. (4.6)

Fact 87. Please recall that for general A,F P V and t0, t1 P R we have
the well known equations for the one-particle time evolution operators

UA
pt1, t0q “ U0

pt1, t0q `

ż t1

t0

dt U0
pt1, tqZ

A
ptqUA

pt, t0q (4.7)

UA`F
pt1, t0q “ UA

pt1, t0q `

ż t1

t0

dt UA
pt1, tqZ

F
ptqUA`F

pt, t0q. (4.8)

Definition 88. For any A P V, we introduce the integral operator
Q1A : H ý by its kernel

Rˆ R3
ˆ R3

Q pt, p, qq ÞÑ Q1
A
pt, p, qq “ BtQ

A
pt, p, qq, (4.9)

where the time dependence is due to the time dependence of the four-
potential A. The following notion of even and odd part of an arbitrary
bounded linear operator T : F ý on Fock space will come in handy:

Todd :“ P`TP´ ` P´TP` (4.10)
Tev :“ P`TP` ` P´TP´. (4.11)

Additionally, we define the norm

T : H ý }T }op`I2 “ }T } ` }Todd}I2 , (4.12)
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where } ¨ } is the operator norm and } ¨ }I2 is the Hilbert-Schmidt norm
and the space

Iodd
2 :“ tT : F Ñ F | }T } ă 8, }Todd}I2 ă 8u. (4.13)

Lemma 89. The space Iodd
2 equipped with the norm } ¨ }op`I2 is a

Banach space.

Proof. Let pTnqnPN Ă Iodd
2 be a Cauchy sequence with respect to

}¨}op`I2
. Then it follows directly that pTnqnPN is also a Cauchy se-

quence with respect to } ¨ } and pTn,oddqnPN is a Cauchy sequence with
respect to } ¨ }I2 . Since the space of bounded operators equipped with
} ¨ } and the space of Hilbert-Schmidt operators equipped with } ¨ }I2
both are complete we have

Tn
nÑ8
ÝÝÝÑ
}¨}

T 1 (4.14)

Tn,odd
nÑ8
ÝÝÝÑ
}¨}I2

T 2 (4.15)

for some bounded operator T 1 and some Hilbert-Schmidt operator T 2.
Now because the Hilbert-Schmidt norm fulfils

}T } ď }T }I2 , (4.16)

we obtain directly
Tn,odd

nÑ8
ÝÝÝÑ
}¨}

T 2, (4.17)

hence T 1
odd “ T 2. Therefore, T 1 P Iodd

2 holds. Finally, since } ¨ }op`I2 “

} ¨ } ` } ¨odd }I2 is true, we find

Tn
nÑ8
ÝÝÝÝÑ
}¨}op`I2

T 1, (4.18)

proving completeness.
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For the following theorem and lemma we are going to make use of
the following shorthand notation of [13]. For operator valued maps
T1, T2 : R2 Ñ BpHq we define for t1, t0 P R

T1T2 :“

ż t1

t0

dt T1pt1, tqT2pt, t0q, (4.19)

as a map of the same type as T1 and T2 whenever this is well-defined.
Furthermore, for operator valued functions W1,W2 : R Ñ BpHq we
define

T1W1 pt
1, tq :“ T1pt

1, tqC1ptq (4.20)
W1T1 pt

1, tq :“ W pt1qT1pt
1, tq (4.21)

W1W2 ptq :“ W1ptqW2ptq, (4.22)

as maps of the same type as T1, T1 and C1 respectively.
Pick k P N, A,Hb P V for b ď k and t1, t0 such that t1 is later
and t0 is earlier than the support of A and all Hb. Whenever the
shorthand (4.20) and (4.21) is used without specific arguments, by
convention t1 “ t1, t “ t0. We abbreviate

H :“
k
ÿ

b“1

Hb, B :“ A`H. (4.23)

We introduce

RB
pt1, tq :“ p1´QB

qUB
p1`QB

qpt1, tq, (4.24)

for general t1, t P R. Because of the choice of t1, t0 we have

RB
pt1, t0q “ p1´Q

B
qUB

p1`QB
q “ UB

pt1, t0q, (4.25)

because B “ 0 both at t1 and t0.
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So it suffices to study the family of operators RB. As shown in the
proof of [13, lemma 3.5] RB for B P V is the limit in the sense of the
operator norm of the sequence

RB
0 :“ 0, RB

n`1 :“ U0FBRB
n ` U

0
` GB, (4.26)

where F and G are given By

FB :“p´Q1
B
` ZB

ev ´Q
BZB

qp1`QB
q, (4.27)

GB :“´ U0QBQB (4.28)

`U0
p´Q1

B
` Zev ´Q

BZB
qQBQBUB

p1`QB
q. (4.29)

Finally, we introduce the auxiliary norms for operators T and W de-
pending on one and two scalar variables respectively.

}T }op`I2,γ :“ sup
tPrt1,t0s

e´γpt´t0q}T ptq} ` sup
tPrt1,t0s

e´γpt´t0q}Toddptq}I2 (4.30)

}T }γ :“ sup
tPrt1,t0s

e´γpt´t0q}T ptq} (4.31)

}W }0 :“ sup
t,t1Prt1,t0s

}W pt, t1q} (4.32)

}T }I2,γ :“ sup
tPrt1,t0s

e´γpt´t0q}T ptq}I2 , (4.33)

}W }I2,0 :“ sup
t,t1Prt1,t0s

}W pt, t1q}I2 , (4.34)

for γ ě 0.
Now we have collected enough tools to prove

Theorem 90 (Smoothness of S). Let n P N, A,Hk P V for k ď n, pick
t1 after suppAY

Ť

kďn suppHk and t0 before suppAY
Ť

kďn suppHk

then the derivative

BH1 . . . BHkU
A`

řk
b“1Hbpt1, t0q (4.35)
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exists with respect to the topology induced by the norm } ¨ }op`I2.

Proof. We will follow the corresponding proof in [13]. In the proof
of the Grönwall lemma in [13, equation (3.42)] we also have that the
recursive equation

RB
n “ U0FBevR

B
n´1 ` U

0FBoddU
0FBRB

n´2 (4.36)
`U0FBoddGB

` U0FB
oddU

0
` U0

` GB (4.37)

is fulfilled by the same sequence of operators for n ě 2. Furthermore,
we introduce the notation

rks “ tl P N | l ď ku (4.38)

@u Ď rks : Bu “
ź

kPu

BHk , (4.39)

∆n
“ RB

n`1 ´R
B
n , (4.40)

where the product of derivatives is to be understood as the mixed
derivative with respect to all the factors and we use the derivative
defined in (3.52).
Hence, we have for such n:

∆n “U
0FBev∆n´1 ` U

0FBoddU
0FB∆n´2.

Abbreviating U0FBev “: a, U0FBoddU
0FB :“ b, we obtain

∆n “ a∆n´1 ` b∆n´2. (4.41)

we estimate for any set u Ă rks:
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sup
pĎu

}Bp∆
n
oddp¨, t0q}I2,γ (4.42)

ď sup
pĎu

sup
tPrt0,t1s

e´γpt´t0q

›

›

›

›

›

ÿ

wĎp

pBpzwa Bw∆n´1
odd qpt, t0q

›

›

›

›

›

I2

(4.43)

` sup
pĎu

sup
tPrt0,t1s

e´γpt´t0q

›

›

›

›

›

P`
ÿ

wĎp

pBpzwb Bw∆n´2
qpt, t0qP

´

›

›

›

›

›

I2

(4.44)

` sup
pĎu

sup
tPrt0,t1s

e´γpt´t0q

›

›

›

›

›

P´
ÿ

wĎp

pBpzwb Bw∆n´2
qpt, t0qP

`

›

›

›

›

›

I2

(4.45)

ď sup
pĎu

sup
tPrt0,t1s

e´γpt´t0q
ÿ

wĎp

}pBpzwa Bw∆n´1
odd qpt, t0q}I2 (4.46)

` 2 sup
pĎu

sup
tPrt0,t1s

e´γpt´t0q
ÿ

wĎp

}pBpzwb Bw∆n´2
qpt, t0q}I2 (4.47)

ď sup
pĎu

sup
tPrt0,t1s

e´γpt´t0q
ÿ

wĎp

ż t

t0

dt1}Bpzwapt, t
1
q Bw∆n´1

odd pt
1, t0q}I2 (4.48)

` 2 sup
pĎu

sup
tPrt0,t1s

e´γpt´t0q
ÿ

wĎp

ż t

t0

dt1}Bpzwbpt, t
1
q Bw∆n´2

pt1, t0q}I2 (4.49)

ď sup
pĎu

sup
tPrt0,t1s

e´γpt´t0q
ÿ

wĎp

ż t

t0

dt1}Bpzwa}0}Bw∆n´1
odd pt

1, t0q}I2 (4.50)

` 2 sup
pĎu

sup
tPrt0,t1s

e´γpt´t0q
ÿ

wĎp

ż t

t0

dt1}Bpzwbpt, t
1
q}I2}Bw∆n´2

pt1, t0q} (4.51)

ď sup
pĎu

sup
tPrt0,t1s

e´γt
ÿ

wĎp

ż t

t0

dt1eγt
1

}Bpzwa}0}Bw∆n´1
odd p¨, t0q}I2,γ (4.52)

` 2 sup
pĎu

sup
tPrt0,t1s

e´γt
ÿ

wĎp

ż t

t0

dt1eγt
1

}Bpzwb}I2,0}Bw∆n´2
p¨, t0q}γ (4.53)
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ď
1

γ
sup
pĎu

ÿ

wĎp

}Bpzwa}0}Bw∆n´1
odd p¨, t0q}I2,γ (4.54)

`
2

γ
sup
pĎu

ÿ

wĎp

}Buzwb}I2,0}Bw∆n´2
p¨, t0q}γ (4.55)

ď
2|u|

γ
sup
u1Ďu

}Bu1a}0 sup
pĎu

}Bp∆
n´1
odd p¨, t0q}I2,γ (4.56)

`
2|u|`1

γ
sup
u1Ďu

}Bu1b}I2,0 sup
pĎu

}Bp∆
n´2
p¨, t0q}γ (4.57)

Similarly, we compute the operator norm:

sup
pĎu

}Bp∆
n
p¨, t0q}γ (4.58)

ď sup
tPrt0,t1s

e´γpt´t0q sup
pĎu

ÿ

wĎp

}pBpzwa Bw∆n´1
qpt, t0q} (4.59)

` sup
tPrt0,t1s

e´γpt´t0q sup
pĎu

ÿ

wĎp

}pBpzwb Bw∆n´2
qpt, t0q} (4.60)

ď sup
tPrt0,t1s

e´γpt´t0q sup
pĎu

ÿ

wĎp

ż t

t0

dt1}Bpzwapt, t
1
q Bw∆n´1

pt1, t0q} (4.61)

` sup
tPrt0,t1s

e´γpt´t0q sup
pĎu

ÿ

wĎu

ż t

t0

dt1}Bpzwbpt, t
1
q Bw∆n´2

pt1, t0q} (4.62)

ď sup
tPrt0,t1s

e´γpt´t0q sup
pĎu

ÿ

wĎp

ż t

t0

dt1}Bpzwapt, t
1
q}}Bw∆n´1

pt1, t0q} (4.63)

` sup
tPrt0,t1s

e´γpt´t0q sup
pĎu

ÿ

wĎp

ż t

t0

dt1}Bpzwbpt, t
1
q}}Bw∆n´2

pt1, t0q} (4.64)

ď sup
tPrt0,t1s

e´γt sup
pĎu

ÿ

wĎp

ż t

t0

dt1eγt
1

}Bpzwa}0}Bw∆n´1
p¨, t0q}γ (4.65)



4.1. REGULARITY OF THE ONE-PARTICLE SCATTERING
OPERATOR 205

` sup
tPrt0,t1s

e´γt sup
pĎu

ÿ

wĎp

ż t

t0

dt1eγt}Buzpb}0}Bw∆n´2
p¨, t0q}γ (4.66)

ď
1

γ
sup
pĎu

ÿ

wĎp

}Bpzwa}0}Bw∆n´1
p¨, t0q}γ (4.67)

`
1

γ
sup
pĎu

ÿ

wĎp

}Bpzwb}0}Bw∆n´2
p¨, t0q}γ (4.68)

ď
2|u|

γ
sup
u1Ďu

}Bu1a}0 sup
wĎu

}Bw∆n´1
p¨, t0q}γ (4.69)

`
2|u|

γ
sup
u1Ďu

}Bu1b}0 sup
wĎu

}Bw∆n´2
p¨, t0q}γ (4.70)

We can summarize the last calculations more briefly using the abbre-
viation

α “
2|u|`1

γ
sup
u1Ďu

t}Bu1a}0, }Bu1b}I2,8, }Bu1b}0u . (4.71)

Here α is finite. This can be seen as follows: firstly, Bub “ U0BuFBoddU
0FB

vanishes if |u| ě 7 because the factors Q1B, QB and ZB are all linear
in B and the longest product of such operators appearing in b has six
factors, analogously all derivatives Bua “ 0 for |u| ě 4. Secondly, each
of the operators Q1C , QC and ZC are bounded for every C P V , hence
the polynomials a and b of these operators are also bounded. This
shows finiteness of the two operator norms appearing in the expres-
sion for α. For the Hilbert-Schmidt norm we see that Bub is always a
sum of terms where each term has a factor U0BpF

B
oddU

0 with p Ď u.
This factor has finite Hilbert-Schmidt norm due to the I2 estimate
lemma 91.
We can thus summarize the last two calculations
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ˆ

suppĎu }Bp∆
n}op`I2,γ

suppĎu }Bp∆
n´1}op`I2,γ

˙

(4.72)

ď

ˆ

α α
1 0

˙ˆ

suppĎu }Bp∆
n´1}op`I2,γ

suppĎu }Bp∆
n´2}op`I2,γ

˙

(4.73)

ď

ˆ

α α
1 0

˙n´1 ˆ
suppĎu }Bp∆

1}op`I2,γ

suppĎu }Bp∆
0}op`I2,γ

˙

. (4.74)

This matrix can be diagonalized, its eigenvalues are

λ˘ “
α

2

˜

1˘

c

1`
4

α

¸

. (4.75)

The larger eigenvalue λ` is less than 1 if and only if 0 ă α ă 0.5 holds
true, as can be seen from a quick calculation:

α

2

˜

1`

c

1`
4

α

¸

ă 1 (4.76)

ðñ

c

1`
4

α
ă

2

α
´ 1. (4.77)

If α ě 1
2
or α ă 0 this inequality is not satisfied, otherwise we may

square both sides to find

1`
4

α
ă p2{α ´ 1q2 “ 4{α2

´ 4{α ` 1 (4.78)

ðñ α ă
1

2
. (4.79)

So we conclude that for γ large enough the right-hand side of (4.74)
tends to zero as cλn` for nÑ 8, with

c “
c

sup
pĎu

}Bp∆1}2op`I2,γ
` sup

pĎu
}Bp∆0}2op`I2,γ

. (4.80)
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Concerning the norms of Bp∆1 and Bp∆0: the operator norms of these
terms are finite, since they are polynomials of bounded operators linear
in the external potential. The Hilbert-Schmidt norm of the odd part
of these terms can be bounded using lemma 91.
That is, we have

sup
pĎu

}Bp∆
n
}op`I2,γ ď λn`c

nÑ8
ÝÝÝÑ 0. (4.81)

For 2 ď m ď n we obtain

sup
pĎu

}BpR
B
n ´ BpR

B
m}op`I2,γ ď

n´1
ÿ

k“m

sup
pĎu

}Bp∆
k
}op`I2,γ (4.82)

ď

8
ÿ

k“m

λk`c “
λm`

1´ λ`
c
mÑ8
ÝÝÝÑ 0 (4.83)

since the norms } ¨ }op`I2 and } ¨ }op`I2,γ are equivalent, we have just
proven that BrksRB

m is a Cauchy sequence with respect to the norm
} ¨ }op`I2 and hence convergence by lemma 89.

The following lemma is a necessary ingredient for theorem 90. Morally,
it has already been proven in [13, Lemma 3.7]; however, as that paper
was not concerned with multiple four-potentials the lemma was not
formulated general enough for our needs here. So we restate it and
show how to modify the original proof.

Lemma 91 (I2 estimates). Let k P N and A,Hb P V for b ď k.
Using the abbreviations introduced in (4.38) and (4.39) we have for
any u Ă rks the following bounds:

}BuU
0F

A`
řk
b“1Hb

odd U0
}I2,0 ă 8 (4.84)

}BuGA`
řk
b“1 Hb}I2,0 ă 8. (4.85)



208 CHAPTER 4. APPENDIX

Proof. For B P V recall

FBodd :“pp´Q1
B
` ZB

ev ´Q
BZB

qp1`QB
qqodd (4.86)

“´Q1
B
` ZB

evQ
B
´QBZB

ev ´Q
BZB

oddQ
B, (4.87)

GB :“´ U0QBQB (4.88)

`U0
p´Q1

B
` Zev ´Q

BZB
qQBQBUB

p1`QB
q. (4.89)

Pick k P N and A,B,Hb P V for b ď k.
According to [13, lemma 3.7] the operators U0ZB

evQ
BU0, U0QBZB

evU
0,

U0Q1BU0, QBQB, Q1BQB and QBZBQB are Hilbert-Schmidt opera-
tors. Additionally, their Hilbert-Schmidt norm is uniformly bounded
in time and F and G fulfil the following norm bound:

}U0FBoddU
0
}I2,0 ă 8 and }GB

}I2,0 ă 8. (4.90)

In fact, the proof given in [13] also works for non-identical four-potentials
A,B,C P V proving

}U0ZA
evQ

BU0
}I2,0 ă 8, (4.91)

}U0QAZB
evU

0
}I2,0 ă 8, (4.92)

}U0Q1
B
U0
}I2,0 ă 8, (4.93)

}QBQA
}I2,0 ă 8, (4.94)

}Q1
B
QA
}I2,0 ă 8, (4.95)

}QAZBQC
}I2,0 ă 8 (4.96)

and therefore also

}BuU
0F

A`
řk
b“0 Hb

odd U0
}I2,0 ă 8 and }BuGA`

řk
b“0 Hb}I2,0 ă 8 (4.97)

for any u Ď rks.
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For the benefit of the reader, we will reproduce the proof of the esti-
mate

}BuGA`
řk
b“0Hb}I2,0 ă 8, (4.98)

to make clear the structure of the entire proof.
The operator GA`

řk
b“0 Hb consists of two summands. Each summand

is a product of operators with operator norm uniformly bounded in
time and containing a factor of QA`

řk
b“0HbQA`

řk
b“0 Hb . All the other

factors contributing to G stay bounded when differentiated and the
map Q : V Ñ I2 is linear, so the bound

}QBQD
}I2,0 ă 8 (4.99)

for general B,D P V will suffice to prove (4.98).
Pick B,D P V , we estimate

sup
tPR
}QB

ptqQD
ptq}I2 (4.100)

ď

3
ÿ

µ,ν“0

`

sup
p,k,qPR3

|P`ppqγ
0γµP´pkqγ

0γνP`pqq| (4.101)

` sup
p,k,qPR3

|P´ppqγ
0γµP`pkqγ

0γνP´pqq|
˘

(4.102)

sup
tPR

›

›

›

›

›

ż

R3

dk
B̂µpt, p´ kqD̂νpt, k ´ qq|

pEppq ` EpkqqpEpkq ` Epqqq

›

›

›

›

›

I2,pp,qq

, (4.103)

where the index in the norm indicates with respect to which variables
the integral of the norm is to be performed. The prefactor is finite
since P˘ppq : C4 Ñ C4 is a projector for any p P R3. Abbreviating

c̃ :“
3
ÿ

µ,ν“0

p sup
p,k,qPR3

|P`ppqγ
0γµP´pkqγ

0γνP`pqq| (4.104)

` sup
p,k,qPR3

|P´ppqγ
0γµP`pkqγ

0γνP´pqq|q, (4.105)
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and using the integral estimate lemma [13, lemma 3.8 (iii)] we find

(4.100) ď c̃ C8,of r13s
3
ÿ

µ,ν“0

sup
tPR
}B̂µptq}I1}D̂νptq}I2 . (4.106)

Because of B,D P C8c pR4q, we have B̂ptq, D̂ptq are analytic functions
decaying faster than any negative power at infinity for any t, so (4.106)
is finite.
Also, in order to proof the first estimate in (4.84) the proof of [13,
lemma 3.7] can be followed almost verbatim. First one dissects Fodd

into the sum U0 (4.87)U0, next the summands have to be bounded
individually. This is achieved by repeating the proof of the partial
integration lemma [13, lemma 3.6], estimates of the form of (4.100)-
(4.103) and making use of the integral estimate lemma [13, lemma
3.8].

Theorem 92 (Properties of Derivatives of S). Let A,H P V, pick t1
after suppA Y suppH and t0 before suppA Y suppH, let T1 P I2pFq
then the following equalities are satisfied:

BH trpT1P
˘UA

pt0, t1qU
A`H

pt1, t0qP
¯
q

“ trpT1P
˘UA

pt0, t1qBHU
A`H

pt1, t0qP
¯
q (4.107)

Proof. Let A,H P V and t0, t1 P R and T1 be as in the theorem. The
proof of the two equalities is analogous, so we only explicitly prove the
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first one. The trace is linear, so we have

ˇ

ˇ

ˇ

ˇ

tr

ˆ

T1P
`UA

pt0, t1q
1

ε
pUA`εH

pt1, t0q ´ U
A
pt1, t0qqP

´

˙

´ trpT1P
`UA

pt0, t1qBHU
A`H

pt1, t0qP
´
q

ˇ

ˇ

ˇ

ˇ

(4.108)

ď }T1}I2

›

›

›

›

P`UA
pt0, t1q

1

ε

`

UA`εH
pt1, t0q ´ U

A
pt1, t0q

˘

P´

´ P`UA
pt0, t1qBHU

A`H
pt1, t0qP

´

›

›

›

›

I2

(4.109)

For the first summand we insert the identity in the form P``P´ and
obtain

P`UA
pt0, t1q

1

ε

`

UA`εH
pt1, t0q ´ U

A
pt1, t0q

˘

P´ (4.110)

“ P`UA
pt0, t1qP

`1

ε

`

UA`εH
pt1, t0q ´ U

A
pt1, t0q

˘

P´ (4.111)

`P`UA
pt0, t1qP

´1

ε

`

UA`εH
pt1, t0q ´ U

A
pt1, t0q

˘

P´. (4.112)

Analogously for the second summand. Now because of the Smoothness
of S theorem 90 we know that

P´
1

ε

`

UA`εH
pt1, t0q ´ U

A
pt1, t0q

˘

P´
εÑ0
ÝÝÑ
}¨}

P´BHU
A`H

pt1, t0qP
´

(4.113)

P`
1

ε

`

UA`εH
pt1, t0q ´ U

A
pt1, t0q

˘

P´
εÑ0
ÝÝÑ
}¨}I2

P`BHU
A`H

pt1, t0qP
´

(4.114)
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holds true. Hence, we find in total

(4.109)
}T1}I2

(4.115)

ď

›

›

›

›

P`UA
pt0, t1q

›

›

›

›

›

›

›

›

P`
1

ε

`

UA`εH
pt1, t0q ´ U

A
pt1, t0q

˘

P´

´ P`BHU
A`H

pt1, t0qP
´

›

›

›

›

I2

(4.116)

`

›

›

›

›

P`UA
pt0, t1qP

´

›

›

›

›

I2

›

›

›

›

1

ε

`

UA`εH
pt1, t0q ´ U

A
pt1, t0q

˘

P´

´ BHU
A`H

pt1, t0qP
´

›

›

›

›

εÑ0
ÝÝÑ 0. (4.117)

4.2 Lemma of Poincaré in infinite
dimensions

In this section we give prove of the Poincaré lemma in infinite dimen-
sions used in section 3.2. First recall the lemma itself.

Lemma 93 (Poincaré). Let ω P ΩppVq for p P N be closed, i.e. dω “ 0.
Then ω is also exact, more precisely we have

ω “ d

ż 1

0

ι˚t iXf
˚ωdt, (4.118)
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where X, ιt for t P R and f are given by

X : Rˆ V Ñ Rˆ V , (4.119)
pt, Bq ÞÑ p1, 0q (4.120)

@t P R : ιt : V Ñ Rˆ V , (4.121)
B ÞÑ pt, Bq (4.122)

f : Rˆ V ÞÑ V , (4.123)
pt, Bq ÞÑ tB (4.124)

iX : Ωp
pVq Ñ Ωp´1

pVq, (4.125)
ω ÞÑ ppA;Y1, . . . , Yp´1q ÞÑ ωApX, Y1, . . . , Yp´1qq (4.126)

Proof. Pick some ω P ΩppVq. We will first show the more general
formula

f˚b ω ´ f
˚
aω “ d

ż b

a

ι˚t iXf
˚ω dt`

ż b

a

ι˚t iXf
˚dωdt, (4.127)

where ft is defined as

@t P R : ft :“ fpt, ¨q. (4.128)

The lemma follows then by b “ 1, a “ 0, f˚1 ω “ ω, f˚0 ω “ 0 and dω “ 0
for a closed ω. We begin by rewriting the right-hand side of (4.127):

d

ż b

a

ι˚t iXf
˚ω dt`

ż b

a

ι˚t iXf
˚dωdt

“

ż b

a

pdι˚t iXf
˚ω ` ι˚t iXf

˚dωqdt. (4.129)

Next we look at both of these terms separately. Let therefore p P N,
t, sk P R and A,Bk P V for each N Q k ď p ` 1. First, we calculate
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dι˚t iXf
˚ω:

pf˚ωqpt,Aqpps1, B1q, . . . , psp, Bpqq (4.130)
“ ωtAps1A` tB1, . . . , spA` tBpq

ñ piXf
˚ωqpt,Aqpps1, B1q, . . . , psp´1, Bp´1qq (4.131)

“ ωtApA, s1A` tB1, . . . , sp´1A` tBp´1q

ñ pι˚t iXf
˚ωqApB1, . . . , Bp´1q “ tp´1ωtApA,B1, . . . , Bp´1q (4.132)

ñ pdι˚t iXf
˚ωqApB1, . . . , Bpq

“ Bε|ε“0

p
ÿ

k“1

p´1qk`1tp´1ωtA`εtBkpA,B1, . . . ,xBk, . . . , Bpq (4.133)

` Bε|ε“0

p
ÿ

k“1

p´1qk`1tp´1ωtApA` εBk, B1, . . . ,xBk, . . . , Bpq (4.134)

“ Bε|ε“0

p
ÿ

k“1

tpp´1qk`1ωtA`εBkpA,B1, . . . ,xBk, . . . , Bpq

` ptp´1ωtApB1, . . . , Bpq. (4.135)

Now, we calculate ι˚t iXf˚dω:

pdωqApB1, ¨ ¨ ¨ , Bp`1q

“ Bε|ε“0

p`1
ÿ

k“1

p´1qk`1ωA`εBkpB1, . . . ,xBk, . . . , Bp`1q

(4.136)

pf˚dωqpt, Aqpps1, B1q, . . . , psp`1, Bp`1qq (4.137)
“ pdωqtAps1A` tB1, . . . , sp`1A` tBp`1q

“ Bε|ε“0

p`1
ÿ

k“1

p´1qk`1 (4.138)
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ˆ ωtA`εpskA`tBkqps1A` tB1, . . . , {skA` tBk, . . . , spA` tBpq

piXf
˚dωqpt,Aqpps1, B1q, . . . , psp, Bpqq (4.139)
“ Bε|ε“0ωpt`εqAps1A` tB1, . . . , spA` tBpq

` Bε|ε“0

p
ÿ

k“1

p´1qk

ˆ ωtA`εpskA`tBkqpA, s1A` tB1, . . . , {skA` tBk, . . . , spA` tBpq

“ tpBε|ε“0ωpt`εqApB1, . . . , Bpqq (4.140)

`

p
ÿ

k“1

skt
p´1
p´1qk`1

Bε|ε“0ωpt`εqApA,B1, . . . ,xBk, . . . , Bpq (4.141)

` Bε|ε“0

p
ÿ

k“1

p´1qktp´1
pωpt`skεqApA,B1, . . . ,xBk, . . . , Bpq (4.142)

` ωtA`εtBkpA,B1, . . . ,xBk, . . . , Bpqq (4.143)

“ tpBε|ε“0

´

ωpt`εqApB1, . . . , Bpq (4.144)

`

p
ÿ

k“1

p´1qkωtA`εBkpA,B1, . . . ,xBk, . . . , Bpq

¯

pι˚t iXf
˚dωqApB1, . . . , Bpq “ tpBε|ε“0

´

ωpt`εqApB1, . . . , Bpq (4.145)

`

p
ÿ

k“1

p´1qkωtA`εBkpA,B1, . . . ,xBk, . . . , Bpq

¯

Adding (4.135) and (4.145) we find for (4.129):

ż b

a

pdι˚t iXf
˚ω ` ι˚t iXf

˚dωqdt “ (4.146)
ż b

a

´

tpBε|ε“0ωpt`εqApB1, . . . , Bpq ` pt
p´1ωtApB1, . . . , Bpq

¯

dt (4.147)
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“

ż b

a

d

dt
ptpωtApB1, . . . , Bpqqdt “

ż b

a

d

dt
pf˚t ωqApB1, . . . , Bpqdt (4.148)

“ pf˚b ωqApB1, . . . , Bpq ´ pf
˚
aωqApB1, . . . , Bpq. (4.149)

4.3 Heuristic Construction of S-Matrix
expression

This section is dedicated to the heuristic construction of the expression
for the scattering operator stated in theorem 84.
We start from the power series of the one-particle scattering operator
SA:

SA “
8
ÿ

k“0

1

k!
ZkpAq, (4.150)

where ZkpAq are bounded operators on H, which are homogeneous
of degree k in A. Our strategy in this section is to try an analogous
formal power series ansatz for the second quantized scattering operator
S̃A

S̃A “
8
ÿ

k“0

1

k!
TkpAq. (4.151)

Here Tk are assumed to be homogeneous of degree k in A; how-
ever, they will only turn out to be bounded on fixed particle num-
ber subspaces Fm,p of Fock space. We will identify operators Tk such
that (4.151) holds up to a global phase. In order to fully charac-
terize S̃A it is enough to characterize all of the Tk operators. Using
the (lift condition) one can derive commutation relations for the op-
erators Tk by plugging in (4.150) and (4.151) into the (lift condition)
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and its adjoint and collecting all terms with the same degree of homo-
geneity. They are given by

“

TmpAq, a
#
pφq

‰

“

m
ÿ

j“1

ˆ

m
j

˙

a#
pZjpAqφqTm´jpAq, (4.152)

where a# is either a or a˚. In the following we will derive a recursive
equation for the coefficients of the expansion of the second quantized
scattering operator. The starting point of this derivation is the com-
mutator of Tm, equation (4.152).

4.3.1 Guessing Equations

Looking at equation (4.152) for a while, one comes to the conclusion
that if one replaces Tm by

Tm ´
1

2

m´1
ÿ

k“1

ˆ

m
k

˙

TkTm´k, (4.153)

no Tk with k ą m´2 will occur on the right-hand side of the resulting
equation. So if one subtracts the right polynomial in Tk for suitable k
one might achieve a commutator which contains only the creation re-
spectively annihilation operator concatenated with some one-particle
operator.
So having this in mind we start with the ansatz

Ξm :“
m
ÿ

g“2

ÿ

bPNg
|b|“m

cb

g
ź

k“1

Tbk . (4.154)

Now in order to show that Tm and Ξm agree up to operators which have
a commutation relation of the form (3.444), we calculate

“

Tm ´ Ξm, a
#pϕq

‰

for arbitrary ϕ P H and try to choose the coefficients cb of (4.154) such
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that all contributions vanish which do not have the form a# p
ś

k Zαkϕq
for any suitable pαkqk Ă N. If one does so, one is led to a system of
equations of which the first few are written down to give an overview
of its structure. The objects αk, βl in the system of equations can be
any natural Number for any k, l P N.

0 “ cα1,β1 ` cβ1,α1 `

ˆ

α1 ` β1

α1

˙

0 “ cα1,α2,β1 ` cβ1,α1,α2 ` cα2,α1,β1 `

ˆ

α2 ` β1

α2

˙

cα1,α2`β1

`

ˆ

α1 ` β1

α1

˙

cα1`β1,α2

0 “ cα1,α2,α3,β1 ` cα1,α2,β1,α3 ` cα1,β1,α2,α3 ` cβ1,α1,α2,α3

`

ˆ

α1 ` β1

β1

˙

cα1`β1,α2,α3 `

ˆ

α2 ` β1

β1

˙

cα1,α2`β1,α3

`

ˆ

α3 ` β1

β1

˙

cα1,α2,α3`β1

0 “ cα1,α2,β1,β2 ` cα1,β1,α2,β2 ` cβ1,α1,α2,β2 ` cα1,β1,β2,α2

` cβ1,α1,β2,α2 ` cβ1,β2,α1,α2 `

ˆ

α1 ` β1

α1

˙

pcα1`β1,α2,β2

` cα1`β1,β2,α2q `

ˆ

α1 ` β2

c

˙

β1,α1`β2,α1

`

ˆ

α2 ` β1

α2

˙

cα1,α2`β1,β2 `

ˆ

α2 ` β2

α2

˙

pcα1,β1,α2`β2

` cβ1,α1,α2`β2q `

ˆ

α1 ` β1

α1

˙ˆ

α2 ` β2

α2

˙

cα1`β1,α2`β2

0 “ cα1,β1,β2,β3,β4 ` cβ1,α1,β2,β3,β4 ` cβ1,β2,α1,β3,β4

` cβ1,β2,β3,α1,β4 ` cβ1,β2,β3,β4,α1
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`

ˆ

α1 ` β1

α1

˙

cα1`β1,β2,β3,β4 `

ˆ

α1 ` β2

α1

˙

cβ1,α1`β2,β3,β4

`

ˆ

α1 ` β3

α1

˙

cβ1,β2,α1`β3,β4 `

ˆ

α1 ` β4

α1

˙

cβ1,β2,β3,α1`β4

0 “ cα1,α2,β1,β2,β3 ` cα1,β1,α2,β2,β3 ` cβ1,α1,α2,β2,β3

` cα1,β1,β2,α2,β3 ` cβ1,α1,β2,α2,β3 ` cβ1,β2,α1,α2,β3

` cα1,β1,β2,β3,α2 ` cβ1,α1,β2,β3,α2 ` cβ1,β2,α1,β3,α2

` cβ1,β2,β3,α1,α2 `

ˆ

α1 ` β1

β1

˙

pcα1`β1,α2,β2,β3

` cα1`β1,β2,α2,β3 ` cα1`β1,β2,β3,α2q

`

ˆ

α2 ` β1

β1

˙

cα1,α2`β1,β2,β3

`

ˆ

α2 ` β2

β2

˙

pcβ1,α1,α2`β2,β3 ` cα1,β1,α2`β2,β3q

`

ˆ

α1 ` β2

β2

˙

pcβ1,α1`β2,α2,β3 ` cβ1,α1`β2,β3,α2q

`

ˆ

α2 ` β3

β3

˙

pcα1,β1,β2,α2`β3 ` cβ1,α1,β2,α2`β3

` cβ1,β2,α1,α2`β3q `

ˆ

α1 ` β3

β3

˙

cβ1,β2,α1`β3,α2

`

ˆ

α1 ` β1

α1

˙ˆ

α2 ` β2

α2

˙

cα1`β1,α2`β2,β3

`

ˆ

α1 ` β2

α1

˙ˆ

α2 ` β3

α2

˙

cβ1,α1`β2,α2`β3

`

ˆ

α1 ` β1

α1

˙ˆ

α2 ` β3

α2

˙

cα1`β1,β2,α2`β3

...
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Solving the first few equations and plugging the solution into the con-
secutive equations one can see that at least the first few equations are
solved by

cα1,...,αk “
p´1qk

k

ˆ

řk
l“1 αl

α1 α2 ¨ ¨ ¨αk

˙

, (4.155)

where the last factor is the multinomial coefficient of the indices
α1, . . . , αk P N.

4.3.2 Recursive equation for Coefficients of the
second quantized scattering operator

We are going to use the following definition of binomial coefficients:

Definition 94. For a P C, b P Z we define

ˆ

a

b

˙

:“

"

śb´1
l“0

a´l
l`1

for b ě 0

0 otherwise.
(4.156)

Defining the binomial coefficient for negative lower index to be zero
has the merit, that one can extend the range of validity of many rules
and sums involving binomial coefficients, also one does not have to
worry about the range of summation in many cases.
The coefficients which we have already guessed result in the following

Conjecture 95. For any n P N the n-th expansion coefficient of the
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second quantized scattering operator Tn is given by

Tn “
n
ÿ

g“2

ÿ

~bPNg

|~b|“n

p´1qg

g

ˆ

n
~b

˙ g
ź

l“1

Tbl ` Cn1F

` dΓ

¨

˚

˚

˝

n
ÿ

g“1

ÿ

~bPNg

|~b|“n

p´1qg`1

g

ˆ

n
~b

˙ g
ź

l“1

Zbl

˛

‹

‹

‚

, (4.157)

for some Cn P C which depends on the external field A. The last
summand will henceforth be abbreviated by Γn.

Motivation: We compute the commutator of the difference between
Tn and the first summand of (4.157) with the creation and annihila-
tion operator of an element of the basis of H. This will turn out to
be exactly equal to the corresponding commutator of the second sum-
mand of (4.157), since two operators on Fock space only have the same
commutator with general creation and annihilation operators if they
agree up to multiples of the identity this will conclude the motivation
of this conjecture.
In order to simplify the notation as much as possible, we will denote
by a#z either apzpϕpqq or a˚pzpϕpqq for any one-particle operator z
and any element ϕp of the orthonormal basis pϕpqpPZzt0u of H. (We
need not decide between creation and annihilation operator, since the
expressions all agree)
In order to organize the bookkeeping of all the summands which arise
from iteratively making use of the commutation rule (4.152) we orga-
nize them by the looking at a spanning set of the possible terms that
arise our choice is
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#

a#
m1
ź

k“1

Zαk

m2
ź

k“1

Tβk

ˇ

ˇ

ˇ

ˇ

ˇ

m1 P N,m2 P N0, α P Nm1 , β P Nm2 , |α| ` |β| “ n

+

.
(4.158)

As a first step of computing the commutator in question we look at
the summand corresponding to a fixed value of the summation index
g of

´

n
ÿ

g“1

ÿ

~bPNg

|~b|“n

p´1qg

g

ˆ

n
~b

˙ g
ź

l“1

Tbl . (4.159)

We need to bring this object into the form of a sum of terms which
are multiples of elements of the set (4.158). This we will commit
ourselves to for the next few pages. First we apply the product rule
for the commutator:

»

—

—

–

ÿ

~lPNg

|~l|“n

p´1qg

g

ˆ

n
~l

˙ g
ź

k“1

Tlk , a
#

fi

ffi

ffi

fl

“
ÿ

~lPNg

|~l|“n

p´1qg

g

ˆ

n
~l

˙ g
ÿ

k̃“1

k̃´1
ź

j“1

Tlj
“

Tlk̃ , a
#
‰

g
ź

j“k̃`1

Tlj

“
ÿ

~lPNg

|~l|“n

p´1qg

g

ˆ

n
~l

˙ g
ÿ

k̃“1

k̃´1
ź

j“1

Tlj

lk̃
ÿ

σk̃“1

ˆ

lk̃
σk̃

˙

a#ZfTlk̃´σk̃

g
ź

j“k̃`1

Tlj ,

in the second step we used (4.152). Now we commute all the Tls to
the left of a# to its right:
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“
ÿ

~lPNg
|l|“n

p´1qg

g

ˆ

n
~l

˙ g
ÿ

k̃“1

ÿ

@1ďjăk̃

0ďσjďlj

lk̃
ÿ

σk̃“1

k̃
ź

j“1

ˆ

lj
σj

˙

a#
k̃
ź

j“1

Zσj

k̃
ź

j“1

Tlj´σj

g
ź

j“k̃`1

Tlj .

(4.160)
At this point we notice that the multinomial coefficient can be com-
bined with all the binomial coefficients to form a single multinomial
coefficient of degree g ` k̃. Incidentally this is also the amount of
Z operators plus the amount of T operators in each product. More-
over, the indices of the multinomial index agree with the indices of
the Z and T operators in the product. Because of this, we see that if
we fix an element of the spanning set (4.158) a#

śm1

k“1 Zαk
śm2

k“1 Tβk ,
each summand of (4.160) which contributes to this element, has the
prefactor

p´1qg

g

ˆ

n

α1 ¨ ¨ ¨αm1 β1 ¨ ¨ ¨ βm2

˙

(4.161)

no matter which summation index l P Ng it corresponds to. In order
to do the matching one may ignore the indices σj and lj ´ σj which
vanish, because the corresponding operators Z0 and T0 are equal to
the identity operator on H respectively Fock space.
Since we know that

»

—

—

–

dΓ

¨

˚

˚

˝

n
ÿ

g“1

ÿ

~bPNg

|~b|“n

p´1qg

g

ˆ

n
~b

˙ g
ź

l“1

Zbl

˛

‹

‹

‚

, a#

fi

ffi

ffi

fl

“ a#
n
ÿ

g“1

ÿ

~bPNg

|~b|“n

p´1qg

g

ˆ

n
~b

˙ g
ź

l“1

Zbl
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holds, all that is left to show is that
»

—

—

–

´

n
ÿ

g“1

ÿ

~bPNg

|~b|“n

p´1qg

g

ˆ

n
~b

˙ g
ź

l“1

Tbl , a
#

fi

ffi

ffi

fl

(4.162)

“ a#
n
ÿ

g“1

ÿ

~bPNg

|~b|“n

p´1qg`1

g

ˆ

n
~b

˙ g
ź

l“1

Zbl

also holds. For which we need to count the summands which are
multiples of each element of (4.158) corresponding to each g in (4.159).
So let us fix some elementKpm1,m2q of (4.158) corresponding to some
m1 P N,m2 P N0, α P Nm1 and β P Nm2 . Rephrasing this problem, we
can ask which products

g
ź

l“1

Tγl (4.163)

for suitable g and pγlql produces, when commuted with a creation
or annihilation operator, multiples of Kpm1,m2q? We will call this
number of total contributions weighted with the factor ´ p´1qg

g
bor-

rowed from (4.159) #Kpm1,m2q. Looking at the commutation rela-
tions (4.152) we split the set of indices tγ1 . . . γgu into three sets A,B
and C, where the commutation relation has to be used in such a way,
that

@k : γk P A ðñ Dj ď m1 : γk “ αj,

^@k : γk P B ðñ Dj ď m2 : γk “ βj

^@k : γk P C ðñ Dj ď m1, l ď m2 : γk “ αj ` βl

holds. Unfortunately not every splitting corresponds to a contribution
and not every order of multiplication of a legal splitting corresponds
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to a contribution either. However,
ś

j Tαj
ś

j Tβj gives a contribution,
and it is in fact the longest product that does. We may apply the com-
mutation relations backwards to obtain any shorter valid combination
and hence all combinations. Transforming the commutation rule for
Tk read from right to left into a game results in the following rules.
Starting from the string

A1A2 . . . Am1B1B2 . . . Bm2 , (4.164)

representing the longest product, where here and in the following A’s
represent operators Tk which will turn into Zk by the commutation
rule, B’s represent operators Tk which will stay Tk after commutation
and C’s represent operators Tk which will produce both a Zl in the
creation/annihilation operator and a Tk´l behind that operator. The
indices are merely there to keep track of which operator moved where.
So the game consists in the answering how many strings can we pro-
duce by applying the following rules to the initial string?

1. You may replace any occurrence of AkBj by BjAk for any j and
k.

2. You may replace any occurrence of AkBj by Ck,j for any j and
k.

Where we have to count the number of times we applied the second
rule, or equivalently the number #C of C’s in the resulting string,
because the summation index g in (4.159) corresponds to m1 `m2 ´

#C.
Fix #C P t0, . . . ,minpm1,m2qu. A valid string has m1 ` m2 ´ #C
characters, because the number of its Cs is #C, its number of As is
m1 ´#C and its number of Bs is m2 ´#C. Ignoring the labelling of
the As, Bs and Cs there are

`

m1`m2´#C
#C pm1´#Cq pm2´#Cq

˘

such strings. Now
if we consider one such string without labelling, e.g.
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CAABACCBBACBBABBBB, (4.165)

there is only one correct labelling to be restored, namely the one where
each A and the first index of any C receive increasing labels from left
to right and analogously for B and the second index of any C, resulting
for our example in

C1,1A2A3B2A4C5,3C6,4B5B6A7C8,7B8B9A9B10B11B12B13. (4.166)

So any unlabelled string corresponds to exactly one labelled string
which in turn corresponds to exactly one choice of operator product
ś

T . So returning to our Operators, we found the number #Kpm1,m2q

it is

#Kpm1,m2q “ ´

m1`m2
ÿ

g“maxpm1,m2q

p´1qg

g

ˆ

g

pm1 `m2 ´ gq pg ´m1q pg ´m2q

˙

,

(4.167)
where the total minus sign comes from the total minus sign in front
of (4.162) with respect to (4.157).
Now since we introduced the slightly non-standard definition of bino-
mial coefficients used in [41] we can make use of the rules for summing
binomial coefficients derived there. As a first step to evaluate (4.167)
we split the trinomial coefficient into binomial ones and make use of
the absorption identity

@a P C @b P Z : b

ˆ

a

b

˙

“ a

ˆ

a´ 1

b´ 1

˙

(absorption)

for m2,m1 ‰ 0 as follows
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#Kpm1,m2q

“ ´

m1`m2
ÿ

g“maxpm1,m2q

p´1qg

g

ˆ

g

pm1 `m2 ´ gq pg ´m1q pg ´m2q

˙

“ ´

m1`m2
ÿ

g“maxpm1,m2q

p´1qg

g

ˆ

g

m2

˙ˆ

m2

g ´m1

˙

(absorption)
“ ´

m1`m2
ÿ

g“maxpm1,m2q

p´1qg

m2

ˆ

g ´ 1

m2 ´ 1

˙ˆ

m2

g ´m1

˙

“
´1

m2

m1`m2
ÿ

g“maxpm1,m2q

p´1qg
ˆ

g ´ 1

m2 ´ 1

˙ˆ

m2

g ´m1

˙

m1ą0
“

´1

m2

ÿ

gPZ

p´1qg
ˆ

m2

g ´m1

˙ˆ

g ´ 1

m2 ´ 1

˙

˚
“
´1

m2

p´1qm2´m1

ˆ

m1 ´ 1

´1

˙

“ 0,

where for the second but last equality m1 ą 0 is needed for the g “
0 summand not to contribute and for the marked equality we used
summation rule (5.24) of [41]. So all the coefficients vanish that fulfil
m1,m2 ‰ 0. The sum for the remaining cases is readily computed,
since there is just one summand. Summarizing we find

#Kpm1,m2q “ δm2,0
p´1q1`m1

m1

` δm1,0
p´1q1`m2

m2

,

where the second summand can be ignored, since terms with m1 “ 0
are irrelevant for our considerations.
So the left-hand side of (4.162) can be evaluated
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»

—

—

–

´

n
ÿ

g“1

ÿ

~bPNg

|~b|“n

p´1qg

g

ˆ

n
~b

˙ g
ź

l“1

Tbl , a
#

fi

ffi

ffi

fl

“

n
ÿ

g“1

ÿ

~bPNg
|b|“n

p´1qg`1

g

ˆ

n
~b

˙

a#
g
ź

l“1

Zbl ,

which is exactly equal to the right-hand side of (4.162). This ends the
motivation of the conjecture.

4.3.3 Solution to Recursive Equation

So we found a recursive equation for the Tns, now we need to solve it.
In order to do so we need the following lemma about combinatorial
distributions

Lemma 96. For any g P N, k P N

ÿ

~gPNg
|~g|“k

ˆ

k

~g

˙

“

g
ÿ

l“0

p´1qlpg ´ lqk
ˆ

g

l

˙

(4.168)

holds. The reader interested in terminology may be eager to know,
that the right-hand side is equal to g! times the Stirling number of the

second kind
"

k
g

*

.

Proof: We would like to apply the multinomial theorem, but there
are all the summands missing where at least one of the entries of ~g
is zero, so we add an appropriate expression of zero. We also give
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the expression in question a name, since we will later on arrive at a
recursive expression.

F pg, kq :“
ÿ

~gPNg
|~g|“k

ˆ

k

~g

˙

“
ÿ

~gPNg0
|~g|“k

ˆ

k

~g

˙

´
ÿ

~gPNg0
|~g|“k

Dl:gl“0

ˆ

k

~g

˙

“ gk ´
ÿ

~gPNg0
|~g|“k

Dl:gl“0

ˆ

k

~g

˙

“ gk ´
g´1
ÿ

n“1

ÿ

~gPNg0
|~g|“k

ˆ

k

~g

˙

1D!i1...in:p@l‰b:il‰ibq^@l:gil“0

(4.169)

where in the last line the indicator function is to enforce there being
exactly n different indices il for which gil “ 0 holds. Now since it does
not matter which entries of the vector vanish because the multinomial
coefficient is symmetric and its value is identical to the corresponding
multinomial coefficient where the vanishing entries are omitted, we
can further simplify the sum:

F pg, kq “ gk ´
g´1
ÿ

n“1

ˆ

g

n

˙

ÿ

~gPNg´n
|~g|“k

ˆ

k

~g

˙

The inner sum turns out to be F pg ´ n, kq, so we found the recursive
relation for F :

F pg, kq “ gk ´
g´1
ÿ

n“1

ˆ

g

n

˙

F pg ´ n, kq “ gk ´
g´1
ÿ

n“1

ˆ

g

n

˙

F pn, kq, (4.170)

where for the last equality we used the symmetry of binomial coef-
ficients. By iteratively applying this equation, we find the following
formula, which we will now prove by induction
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@d P N0 : F pg, kq “
d
ÿ

l“0

p´1qlpg ´ lqk
ˆ

g

l

˙

` p´1qd`1
g´d´1
ÿ

n“1

ˆ

n` d´ 1

d

˙ˆ

g

n` d

˙

F pg ´ d´ n, kq. (4.171)

We already showed the start of the induction, so what’s left is the
induction step. Before we do so the following remark is in order: We
are only interested in the case d “ g and the formula seems meaningless
for d ą g; however, the additional summands in the left sum vanish,
whereas the right sum is empty for these values of d since the upper
bound of the summation index is lower than its lower bound.
For the induction step, pick d P N0, use (4.171) and pull the first sum-
mand out of the second sum, on this summand we apply the recursive
relation (4.170) resulting in

F pg, kq “
d
ÿ

l“0

p´1qlpg ´ lqk
ˆ

g

l

˙

` p´1qd`1
g´d´1
ÿ

n“2

ˆ

n` d´ 1

d

˙ˆ

g

n` d

˙

F pg ´ d´ n, kq

` p´1qd`1

ˆ

d

d

˙ˆ

g

d` 1

˙

F pg ´ d´ 1, kq

(4.170)
“

d`1
ÿ

l“0

p´1qlpg ´ lqk
ˆ

g

l

˙

` p´1qd`1
g´d´1
ÿ

n“2

ˆ

n` d´ 1

d

˙ˆ

g

n` d

˙

F pg ´ d´ n, kq
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´ p´1qd`1

ˆ

g

d` 1

˙ g´d´2
ÿ

n“1

ˆ

g ´ d´ 1

n

˙

F pg ´ d´ 1´ n, kq

“

d`1
ÿ

l“0

p´1qlpg ´ lqk
ˆ

g

l

˙

` p´1qd`1
g´d´2
ÿ

n“1

ˆ

n` d

d

˙ˆ

g

n` d` 1

˙

F pg ´ d´ 1´ n, kq

´ p´1qd`1

ˆ

g

d` 1

˙ g´d´2
ÿ

n“1

ˆ

g ´ d´ 1

n

˙

F pg ´ d´ 1´ n, kq. (4.172)

After the index shift we can combine the last two sums.

F pg, kq “
d`1
ÿ

l“0

p´1qlpg ´ lqk
ˆ

g

l

˙

`

g´d´2
ÿ

n“1

„ˆ

g

d` 1

˙ˆ

g ´ d´ 1

n

˙

´

ˆ

n` d

d

˙ˆ

g

n` d` 1

˙

p´1qd`2F pg ´ d´ 1´ n, kq. (4.173)

In order to combine the two binomials we reassemble
`

g
d`1

˘`

g´d´1
n

˘

into
`

g
n`d`1

˘`

n`d`1
d`1

˘

, which can be seen to be possible by representing
everything in terms of factorials. This results in

F pg, kq “
d`1
ÿ

l“0

p´1qlpg ´ lqk
ˆ

g

l

˙

`p´1qd`2
g´d´2
ÿ

n“1

„ˆ

n` d` 1

d` 1

˙

´

ˆ

n` d

d

˙ˆ

g

n` d` 1

˙

F pg´d´1´n, kq

“

d`1
ÿ

l“0

p´1qlpg ´ lqk
ˆ

g

l

˙
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` p´1qd`2
g´d´2
ÿ

n“1

ˆ

n` d

d` 1

˙ˆ

g

n` d` 1

˙

F pg ´ d´ 1´ n, kq, (4.174)

where we used the addition formula for binomials:

@n P C@k P Z :

ˆ

n

k

˙

“

ˆ

n´ 1

k

˙

`

ˆ

n´ 1

k ´ 1

˙

. (4.175)

This concludes the proof by induction. By setting d “ g in equa-
tion (4.171) we arrive at the desired result.
Using the previous lemma, we are able to show the next

Lemma 97. For any k P Nzt1u the following equation holds

k
ÿ

g“1

p´1qg

g

ÿ

~gPNg
|~g|“k

ˆ

k

~g

˙

“ 0. (4.176)

Proof: Let k P Nzt1u, as a first step we apply lemma 96. We change
the order of summation, use (absorption), extend the range of sum-
mation and shift summation index to arrive at

k
ÿ

g“1

p´1qg

g

g
ÿ

l“0

p´1qlpg ´ lqk
ˆ

g

l

˙

“

k
ÿ

g“1

1

g

g
ÿ

l“0

p´1qg´lpg ´ lqk
ˆ

g

g ´ l

˙

“

k
ÿ

g“1

g
ÿ

p“0

p´1qppk
1

g

ˆ

g

p

˙

“

k
ÿ

g“1

g
ÿ

p“0

p´1qppk
1

p

ˆ

g ´ 1

p´ 1

˙

“

k
ÿ

g“1

ÿ

pPZ

p´1qppk´1

ˆ

g ´ 1

p´ 1

˙

“
ÿ

pPZ

p´1qppk´1
k
ÿ

g“1

ˆ

g ´ 1

p´ 1

˙

“
ÿ

pPZ

p´1qppk´1
k´1
ÿ

g“0

ˆ

g

p´ 1

˙

. (4.177)
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Now we use equation (5.10) of [41]:

@m,n P N0 :
n
ÿ

k“0

ˆ

k

m

˙

“

ˆ

n` 1

m` 1

˙

, (upper summation)

which can for example be proven by induction on n.
We furthermore rewrite the power of the summation index p in terms
of the derivative of an exponential and change order summation and
differentiation. This results in

k
ÿ

g“1

p´1qg

g

g
ÿ

l“0

p´1qlpg ´ lqk
ˆ

g

l

˙

“
ÿ

pPZ

p´1qppk´1

ˆ

k

p

˙

“

k
ÿ

p“0

p´1qp
Bk´1

Bαk´1
eαp

ˇ

ˇ

ˇ

ˇ

α“0

ˆ

k

p

˙

“
Bk´1

Bαk´1

k
ÿ

p“0

p´1qpeαp
ˆ

k

p

˙

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

“
Bk´1

Bαk´1
p1´ eαpqk

ˇ

ˇ

ˇ

ˇ

α“0

“ p´1qk
Bk´1

Bαk´1

˜

8
ÿ

l“1

pαpql

l!

¸k
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

α“0

“ p´1qk
Bk´1

Bαk´1
ppαpqk `Oppαpqk`1

qq

ˇ

ˇ

ˇ

ˇ

α“0

“ 0.

We are now in a position to state the solution to the recursive equa-
tion (4.157) and motivate that it is in fact a solution.

Conjecture 98. For n P N the solution of the recursive equation (4.157)
solely in terms of Γa and Ca is given by

Tn “
n
ÿ

g“1

ÿ

~bPNg

|~b|“n

ÿ

~dPt0,1ug

1

g!

ˆ

n
~b

˙ g
ź

l“1

Fbl,dl , (4.178)
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where F is given by

Fa,b “

"

Γa for b “ 0
Ca for b “ 1

.

(4.179)

For the reader’s convenience we remind her, that Γa and the constants
Cn are defined in conjecture 95.

Motivation: The structure of this proof will be induction over n.
For n “ 1 the whole expression on the right-hand side collapses to
C1`Γ1, which we already know to be equal to T1. For arbitrary n P N
we apply for the induction step the recursive equation (4.157) once
and use the induction hypothesis for all k ď n and thereby arrive at
the rather convoluted expression

Tn`1
(4.157)
“ Γn`1 ` Cn`1 `

n`1
ÿ

g“2

ÿ

~bPNg

|~b|“n`1

p´1qg

g

ˆ

n` 1
~b

˙ g
ź

l“1

Tbl

induction hyp
“ Γn`1 ` Cn`1 `

n`1
ÿ

g“2

ÿ

~bPNg

|~b|“n`1

p´1qg

g

ˆ

n` 1
~b

˙ g
ź

l“1

bl
ÿ

gl“1

ÿ

~clPN
gl

|~cl|“bl

ÿ

~elPt0,1u
gl

1

gl!

ˆ

bl
~cl

˙ gl
ź

k“1

Fcl,k,el,k . (4.180)

If we were to count the contributions of this sum to a specific product
ś

Fcj ,ej for some choice of pcjqj, pejqj we would first recognize that
all the multinomial factors in (4.180) combine to a single one whose
indices are given by the first indices of all the F factors involved. Other
than this factor each contribution adds p´1qg

g

śg
l“1

1
gl!

to the sum. So
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we need to keep track of how many contributions there are and which
distributions of gl they belong to.
Fix some product

ś

F :“
śg̃

j“1 Fb̃j ,d̃j . In the sum (4.180) we pick
some initial short product of length g and split each factor into gl
pieces to arrive at one of length g̃ if the product is to contribute to
ś

F . So clearly
řg
l“1 gl “ g̃ holds for any contribution to

ś

F . The
reverse is also true, for any g and g1, . . . , gg P N such that

řg
l“1 gl “

g̃ holds the corresponding expression in (4.180) contributes to
ś

F .
Furthermore,

ś

F and g, g1, . . . gg is enough to uniquely determine the
summand of (4.180) the contribution belongs to. For an illustration
of this splitting see

F 1
3,1F

2
2,0F

3
7,1

looooomooooon

g1“3

F 4
5,0

loomoon

g2“1

F 5
4,1F

6
2,1

loomoon

w3“2

F 7
1,1F

8
3,0F

9
4,1

looooomooooon

g4“3

F 10
4,1F

11
1,0

loomoon

g5“2
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

g“5

g1 ` g2 ` g3 ` g4 ` g5 “ 11 “ g̃.

We recognize that the sum we are about to perform is by no means
unique for each order of n but only depends on the number of appear-
ing factors and the number of splittings performed on them. By the
preceding argument we need

g̃
ÿ

g“2

p´1qg

g

ÿ

~gPNg
|~g|“g̃

g
ź

l“1

1

gl!
“

1

g̃!
(4.181)

to hold for g̃ ą 1, in order to find agreement with the proposed so-
lution (4.179). Now proving (4.181) is done by realizing, that one
can include the right-hand side into the sum as the g “ 1 summand,
dividing the equation by g̃! and using lemma 97 with k “ g̃. The
remaining case, g̃ “ 1, can directly be read off of (4.180). This ends
the motivation of this conjecture.
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Conjecture 99. For n P N, Tn can be written as

1

n!
Tn “

ÿ

1ďc`gďn

c,gPN0

ÿ

~gPNg
~cPNc

|~c|`|~g|“n

1

c!g!

c
ź

l“1

1

cl!
Ccl

g
ź

l“1

1

gl!
Γgl . (4.182)

Please note that for ease of notation we defined N0 :“ t1u.

Motivation: By an argument completely analogous to the combina-
torial argument in the motivation of conjecture (95) we see that we
can disentangle the F s in (4.178) into Γs and Cs if we multiply by a
factor of

`

c`g
c

˘

where c is the number of Cs and g is the number of Γs
giving

Tn “
ÿ

1ďc`gďn

c,gPN0

ÿ

~gPNg
~cPNc

|~c|`|~g|“n

ˆ

c` g

c

˙

1

pc` gq!

ˆ

n

~g ‘ ~c

˙ c
ź

l“1

Ccl

g
ź

l“1

Γgl , (4.183)

which directly reduces to the equation we wanted to prove, by plugging
in the multinomials in terms of factorials.

Conjecture 100. As a formal power series, the second quantized scat-
tering operator can be written in the form

S “ e
ř

lPN
Cl
l! e

ř

lPN
Γl
l! . (4.184)

Motivation: We plug conjecture 99 into the defining Series for the
Tns giving
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S “
ÿ

nPN0

1

n!
Tn (4.185)

“ 1F `
ÿ

nPN

ÿ

1ďc`gďn

c,gPN0

ÿ

~gPNg
~cPNc

|~c|`|~g|“n

1

c!g!

c
ź

l“1

1

cl!
Ccl

g
ź

l“1

1

gl!
Γgl (4.186)

“ 1F `
ÿ

1ďc`g

c,gPN0

ÿ

~gPNg
~cPNc

1

c!g!

c
ź

l“1

1

cl!
Ccl

g
ź

l“1

1

gl!
Γgl (4.187)

“
ÿ

c,gPN0

ÿ

~gPNg
~cPNc

1

c!g!

c
ź

l“1

1

cl!
Ccl

g
ź

l“1

1

gl!
Γgl (4.188)

“
ÿ

cPN0

1

c!

ÿ

~cPNc

c
ź

l“1

1

cl!
Ccl

ÿ

gPN0

1

g!

ÿ

~gPNg

g
ź

l“1

1

gl!
Γgl (4.189)

“
ÿ

cPN0

1

c!

c
ź

l“1

ÿ

kPN

1

k!
Ck

ÿ

gPN0

1

g!

g
ź

l“1

ÿ

bPN

1

b!
Γb (4.190)

“
ÿ

cPN0

1

c!

˜

ÿ

kPN

1

k!
Ck

¸c
ÿ

gPN0

1

g!

˜

ÿ

bPN

1

b!
Γb

¸g

(4.191)

“ e
ř

lPN
1
l!
Cle

ř

lPN
1
l!

Γl . (4.192)

Conjecture 101. For A such that

}1´ UA
} ă 1. (4.193)

The second quantized scattering operator fulfils

S “ e
ř

nPN
Cn
n! edΓplnpUqq (4.194)

where Cn must be imaginary for any n P N in order to satisfy unitarity.
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Motivation: First the remark about Cn P iR for any n is a direct
consequence of the second factor of (4.194) begin unitary. This in turn
follows directly from dΓ˚pKq “ ´dΓpKq for any K in the domain of
dΓ. That lnU is in the domain of dΓ follows from plnUq˚ “ lnU˚ “
lnU´1 “ ´ lnU and }U ´ 1} ă 1.
We are going to change the sum in the second exponential of (4.184),
so let’s take a closer look at that: by exchanging summation we can
step by step simplify

ÿ

lPN

Γl
l!
“

ÿ

nPN

1

n!
dΓ

¨

˚

˚

˝

n
ÿ

g“1

ÿ

~bPNg

|~b|“n

p´1qg`1

g

ˆ

n
~b

˙ g
ź

l“1

Zbl

˛

‹

‹

‚

“ dΓ

¨

˚

˚

˝

ÿ

nPN

1

n!

n
ÿ

g“1

ÿ

~bPNg

|~b|“n

p´1qg`1

g

ˆ

n
~b

˙ g
ź

l“1

Zbl

˛

‹

‹

‚

“ dΓ

¨

˚

˚

˝

ÿ

nPN

n
ÿ

g“1

ÿ

~bPNg

|~b|“n

p´1qg`1

g

g
ź

l“1

Zbl
bl!

˛

‹

‹

‚

“ dΓ

¨

˝

ÿ

gPN

ÿ

~bPNg

p´1qg`1

g

g
ź

l“1

Zbl
bl!

˛

‚

“ dΓ

˜

ÿ

gPN

p´1qg`1

g

g
ź

l“1

˜

ÿ

blPN

Zbl
bl!

¸¸

“ dΓ

˜

ÿ

gPN
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“ dΓ pln p1´ p1´ Uqqq “ dΓ pln pUqq . (4.195)

The last conjecture is proven directly in subsection 3.3.2.
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