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Supervised by PD Dr. Dirk - André Deckert and Prof. Dr. Harmut Ruhl





Bachelorarbeit

Klassische Strahlungsrückwirkung und
Instabilität der Dynamik

Fakultät für Physik
Ludwig-Maximilians-Universität München

Thilo Wick

München, den 18. Juni 2024

Vorgelegt zur Erlangung des akademischen Grades Bachelor of Science
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Abstract

In this thesis, we investigate the consequences of the classical radiation reaction
for the stability of dynamics. We present different equations of motion for point
charges and extended charges and analyze the problems of runaway solutions and
preacceleration. For the semirelativistic Abraham model we review the proof of
Lyapunov-instability of the stationary solution by Bauer and Dürr. We close some
gaps by rigorously proving conservation of energy and explicitly showing that the
initial conditions are ϵ-close to the stationary solution. Considering the mass renor-
malization for extended charges, we will argue that there is a size limit for rigid
charges, below which the dynamics are unstable.
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1 Introduction

1 Introduction

Despite the development of quantum electroctrodynamics, the classical theory of charged
particles remains an interesting field of study. One reason is that we expect to obtain a
classical theory as a limit from the quantum theory of electrodynamics. Another motiva-
tion for studying classical electrodynamics is to better understand the quantum theory.

Over time, a central problem of classical electrodynamics has been the radiation re-
action. As described by the Larmor formula, an accelerated charge loses energy due to
its interaction with the electromagnetic fields it generates. In some cases, however, this
radiation reaction can cause unphysical solutions to the equations of motion, in which the
particle accelerates to the speed of light without an external force acting on it, so-called
runaway solutions. These were observed by Dirac [8] for point charges, but can also be
found for charges of finite size. In this thesis, we will investigate the problem of runaway
solutions for point charges as well as extended charges in an attempt to understand the
reasons for their occurrence.

This thesis will be structured as follows. In section 2, we will discuss the coupled
Maxwell-Lorentz equations for point charges. Then we will present the general solutions of
the Maxwell equations for point charges, which are given by the Liénard-Wiechert fields, as
well as their implications for the Lorentz force. Subsequently, we will present the Lorentz-
Abraham-Dirac equation of motion for point charges and illustrate how runaway solutions
occur. A condition on the solutions will be discussed, which eliminates runaway solutions
but turns out to introduce the problem of preacceleration. Finally, we will present the
Landau-Lifshitz approximation of the Lorentz-Abraham-Dirac equation, which attempts
to solve the problems of runaways and preacceleration.

In section 3, we will investigate the stability of the coupled dynamics for extended
charges. The first step will be to introduce the semirelativistic Abraham model of rigid
charges. We will review the results of Bauer and Dürr [4] for global existence and unique-
ness of solutions for the coupled Maxwell-Lorentz equations. We will prove conservation
of energy, even in the case of negative bare mass, which was omitted by Bauer and Dürr.
Next, we will examine the velocity-dependent inertial mass of charges in the Abraham
model and see that there is a size limit below which extended charges must have negative
bare mass. For a particle with negative bare mass, we expect the radiation damping
to switch signs and cause an accelerated particle to accelerate even further, causing a
runaway solution. We will attempt to substantiate this expectation by reviewing the
proof by Bauer and Dürr of Lyapunov-instability for the Abraham model in the case of
negative bare mass and a quadratic potential with positive curvature. In this proof, we
will close some gaps by showing that the initial conditions are ϵ-close to the stationary
solution and clarifying the runaway-argument. We will further support our expectation
of runaway solutions in the case of negative bare mass by briefly discussing the nonrel-
ativistic Sommerfeld-Page equation of motion for extended charges and its relativistic
generalization, the Caldirola equation.

We will use Heaviside-Lorentz units throughout this thesis and provide a useful
translation recipe in the appendix. We will use the metric tensor with the signature
(−,+,+,+).
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2 Electrodynamics of point charges

2 Electrodynamics of point charges

There are several reasons for wanting to derive an equation of motion for point charges.
Since the results would not depend on the choice of charge distribution, they would be
more fundamental than for a theory of extended charges [4]. Additionally, one does not
have to consider the cohesive forces which are required to hold an extended charge together
[11]. Lastly, a theory of point charges would be naturally relativistic invariant [4], since
there are no transformations of the charge distribution to consider.

When studying the dynamics of a charged particle, one conventionally sets out know-
ing either the world line of the particle or the electromagnetic fields. In the case of the
prescribed world line, the electromagnetic fields are determined through Maxwell’s equa-
tions; if the fields are given, the motion is governed by the Lorentz force. An intuitive
approach to studying the dynamics of point particle interacting with its own fields would
be to have the particle act as the source in Maxwell’s equations and insert the resulting
fields into the Lorentz equation, which governs the motion of the particle according to
the Newton force law. We set the particle’s charge to e and c = 1. If required, c can be
reintroduced later. This yields the following equations of motion [25, ch. 2.3]:

∂tB(t, x) = −∇× E(t, x) , (1)

∂tE(t, x) = ∇×B(t, x) − eδ(x− q(t))v(t) , (2)

∇ · E(t, x) = eδ(x− q(t)) , ∇ ·B(t, x) = 0 , (3)

d

dt
(mbγv(t)) = e (Ein(q(t)) + E(q(t), t) + v(t) × (Bin(q(t)) +B(q(t), t))) . (4)

Here, mb is the inertial mass of the particle without considering the interaction with its
fields, also called the bare mass, and γ = (1 − v2)−1/2. Ein and Bin are the incoming
external fields. The well-known solutions to Maxwell’s equations for a point charge in
motion are the Liénard-Wiechert fields [14, 25]:

ELW,v(t, x) =
e

4π

[
(1 − v2)(n̂− v)

(1 − v · n̂)3|x− q|2
+
n̂× [(n̂− v) × v̇]

(1 − v · n̂)3|x− q|

]
t=tr

,

BLW,v(t, x) = n̂× ELW,v(t, x) ,

n̂ =
x− q(t)

|x− q(t)|
,

tr = t− |x− q(tr)| .

(5)

We would now want to insert the Liénard-Wiechert fields into (4). However, they diverge
as |x− q(t)|−2 at x = q(t). Therefore, E and B are singular at the very point where they
are to be evaluated for the Lorentz force, meaning the Lorentz force is not well-defined
for a point charge [4].

Dirac, who wanted to obtain an equation of motion for the electron, argued that an
electron was too simple to have any structure [8]. In order to circumvent the singularity
of the fields of a point charge, he used conservation of energy and momentum for a finite
sized charge. By taking the limit in the size of the charge, Dirac obtained an equation of
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2 Electrodynamics of point charges

motion for point particles. The resulting equation [8, 18, 25]

(mb +mf)u̇
µ = mu̇µ = eF µν

in uν +
e2

6π
[üµ − u̇ν u̇νu

µ] (6)

is commonly known as the Lorentz-Dirac or Lorentz-Abraham-Dirac equation. Here F µν
in

describes the fields from external sources acting on the particle, which Dirac called the in-
cident field. We denote the four-velocity by uµ = q̇µ, where the dot denotes differentiation
by the proper time s. We will from now on refer to (6) as the LAD equation.

Since the Lorentz force is not used in the derivation of this equation, it is also valid
for non-electromagnetic external forces [20, ch. 4.3]. These can be taken into account by
adding the four-vector of the external force F µ

ext to the right-hand side [22, ch. 6.5]. Since
m is fixed to the experimentally determined inertial mass, the infinity of the field energy
mf for a point charge (cf. sec. 3.3.2) has to be compensated by the bare mass mb being
negative and infinite. This is known as the classical mass renormalization. Ignoring the
second term on the right hand side, (6) looks like a typical equation of motion of the form
F = ma. Since the second term is due to the particle’s interaction with its own fields [8],
it is often called the radiation reaction [18].

2.1 Runaway solutions

By not using the Lorentz force in its derivation, the LAD equation solves the problem
of evaluating the fields generated by a point charge at their singularity. We will see,
however, that (6) allows solutions for which the velocity of the particle approaches the
speed of light without an external force acting upon it. These clearly go against our
physical expectations.

We will illustrate this point by presenting the analysis for the case of one-dimensional
motion following the same procedure as Dirac [8]. In the absence of external fields, (6)
can be rewritten as

au̇µ − üµ + u̇ν u̇νu
µ = 0 , a =

6πm

e2
. (7)

We now write qµ in coordinates, qµ = (t, x, y, z), and choose initial conditions with the
initial velocity and acceleration four-vectors lying entirely in the x−t−plane of space-time.

uµ(0) = (ṫ0, ẋ0, 0, 0) (8)

u̇µ(0) = (ẗ0, ẍ0, 0, 0) (9)

Due to the symmetry of the problem, the motion remains entirely in the x − t − plane.
Therefore it suffices to consider the x and t components of (7),

aẍ− ...
x+ (−ẗ2 + ẍ2)ẋ = 0 , (10)

aẗ−
...
t+ (−ẗ2 + ẍ2)ṫ = 0 . (11)

Since ṫ = dt/ds = γ and q̇i = γvi, i = 1, 2, 3, we see that

uµuµ = −1 . (12)
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2 Electrodynamics of point charges

By derivating (12) twice, we obtain the following:

uµu̇µ = 0 , (13)

uµüµ + u̇µu̇µ = 0 . (14)

In our case of one-dimensional motion, these read

−ṫ2 + ẋ2 = −1 , (15)

−ṫẗ+ ẋẍ = 0 , (16)

−ṫ
...
t+ ẋ

...
x− ẗ2 + ẍ2 = 0 . (17)

By applying these properties, we can see that ẋ × (10) − ṫ × (11) vanishes identically.
Therefore equations (11) and (10) are equivalent and it is sufficient to consider (10) to
obtain the solutions. Solving (15) for ṫ yields

ṫ =
√

1 + ẋ2 , (18)

which we can insert into (16) to obtain

ẗ = ẍ
ẋ√

1 + ẋ2
. (19)

We now insert this into (10), which gives

aẍ− ...
x+

ẋẍ2

1 + ẋ2
= 0 . (20)

If ẍ ̸= 0, we can write (20) as

a−
...
x

ẍ
+

ẋẍ

1 + ẋ2
= 0 . (21)

Integration of (21) by proper time yields

as− ln(ẍ) +
1

2
ln(1 + ẋ2) = l , (22)

where l is a constant of integration. We choose the origin, from which the proper time s
is measured, such that l = − ln(a). Taking the exponential of (22) therefore gives

ẍ√
1 + ẋ2

= aeas , (23)

which we integrate once more to find

arcsinh (ẋ) = eas + b , (24)

with another constant of integration b. Solving this for ẋ and inserting into (18) now
yields the result

ẋ = sinh (eas + b) , (25)

ṫ = cosh (eas + b) . (26)

4



2 Electrodynamics of point charges

Let us now examine the asymptotic behaviour of this solution. For s→ −∞ the velocity
tends to a constant,

dx

dt
=

dx

ds

(
dt

ds

)−1

=
ẋ

ṫ
→ tanh(b) . (27)

However, as s increases from −∞, the velocity increases steadily. This goes so far that
as s→ +∞,

dx

dt
→ 1 . (28)

The velocity tends to the velocity of light for large proper times s. Since this result does
not agree with experimental observations or reasonable expectations, Dirac proposed to
eliminate these kinds of solutions by requiring that the velocity be constant after the
particle is left alone [8]. We will see however, that this condition leads to particles in a
way anticipating external forces, a phenomenon called preacceleration.

2.2 Preacceleration

By imposing the condition that the velocity of the particle has to be constant after the in-
teraction with external forces, we have eliminated runaway solutions to the LAD equation.
This additional condition, however, allows the particle to experience preacceleration. We
will demonstrate this following Dirac’s example of an electron at rest which encounters a
pulse of radiation [8],

E(t, x) = (Ex, Ey, Ez) = (kδ(t− y), 0, 0) . (29)

If magnetic effects, such as the magnetic field induced by the time-dependent electric field,
are neglected, the motion will remain entirely in the x − t − plane of space-time. After
inserting (29), (6) takes the form

aẍ− ...
x+ (−ẗ2 + ẍ2)ẋ = κδ(t)ṫ , (30)

with a as in (7) and κ defined by κ = 6πk/e. As before, the equations containing
...
x

and
...
t are equivalent and we will only have to consider one of the two. We will choose k

small enough for the particle’s velocity to be so small against the velocity of light that
relativistic effects can be neglected. In the nonrelativistic approximation (30) becomes

aẍ− ...
x = κδ(t) , (31)

where the dots now denote differentiation with respect to t. The nonrelativistic version
of the Lorentz-Abraham-Dirac equation is also known as the Abraham-Lorentz equation.
Integration of (31) gives

ẍ(t) = aẋ(t) − κθ(t) + b , (32)

where b is a constant of integration. From this we can deduce that at time t = 0, ẍ
increases discontinuously by −κ. Also, according to the condition stated at the end of
the previous section, ẋ must be constant as soon as there is no external force acting on
it, which is the case for t > 0. Therefore ẍ(t > 0) = 0 which implies ẍ(0) = κ. For times
t ̸= 0, (31) becomes

aẍ =
...
x , (33)

5



2 Electrodynamics of point charges

the general solution for which is

ẋ = l1e
at + l2 , (34)

l1 and l2 being constants of integration. To fix these constants, we take into account that
the particle is initially at rest, ẋ → 0 for t → −∞. Earlier, we also found that ẍ(0) = κ.
With these two conditions we determine l1 = κ/a and l2 = 0. Due to the form of ẍ, cf.
(32), we expect ẋ to be continuous at t = 0. This yields the equation of motion

ẋ =

{
κ
a
eat if t ≤ 0 ,

κ
a

if t > 0 .
(35)

From this it can be seen that the particle starts accelerating before it is acted upon
by an external force; it exhibits the so-called preacceleration. This disagrees with the
expectation that a particle should remain in uniform motion until acted upon by a force.
According to Dirac [8], this preacceleration is not problematic, since the timescales are
too short to be observed. A possible justification for the existence of preacceleration
would be that for an extended charge the force hits one end of the charge distribution
before it hits the center of mass [8]. However, the equation of motion from which Dirac
set out was obtained by taking the point particle limit. This would also enable faster-
than-light information transfer, since the particle accelerates and thus radiates before the
pulse reaches the center of the particle. Dirac therefore assumed that the interior of the
electron was “a region of failure [. . . ] of some of the elementary properties of space-time”
[8].

2.3 The Landau-Lifshitz approximation

In the course of deriving equation (6), Dirac [8] made some assumptions that should be
kept in mind. For one, the derivation involves integrating the electromagnetic energy-
momentum tensor over a three dimensional hypersurface in space-time. This tube is
obtained by taking a sphere around the position of the particle and moving it along in
time, thus creating a three-dimensional tube around the world line. The tube is usually
capped at the ends with spacelike hypersurfaces. The integral of the energy-momentum
tensor over these caps diverges, but this can be taken care of by absorbing the divergent
terms into the renormalized mass [20, ch. 4.3]. Also, the energy-momentum tensor is
valid only for continuous charge distributions, not for point charges [8]. Additionally,
the conservation of four-momentum is only guaranteed if q̈(−∞) = q̈(+∞) [20, ch. 5.5].
This condition is not satisfied by the types of runaway solutions discussed in section 2.1.
The external force is also required to be an analytic function of time [27, ch. 2.1], which
is not the case for the delta force considered in section 2.2. However, preacceleration is
not a result of fast-changing forces and also occurs for forces that are analytic functions
of time [15, 26]. Finally, it should be kept in mind that the bracketed term in (6) is
small compared to the external force [22, 25]. This is, of course, neglected by setting the
external force to zero.

Using this assumption of smallness of the radiation reaction, one can obtain the
Landau-Lifshitz approximation of the Lorentz-Abraham-Dirac equation, as described by

6



2 Electrodynamics of point charges

Rohrlich [22]. The first step is to rewrite (6) as

mu̇µ = F µ + P µντ0
d(mu̇ν)

ds
, (36)

where F µ is the total force acting on the particle, τ0 = e2

6πm
and P is defined by P µν =

gµν +uµuν with the metric tensor gµν . Since τ0 is small – the largest value for any particle
is τ0 = 0.62 × 10−23 s for the electron [22] – we view the second term in (36) as a small
perturbation and mu̇ν = Fν as the unperturbed equation. We therefore replace mu̇ν by
Fν to obtain

mu̇µ = F µ + τ0P
µν dFν

ds
= F µ + τ0

(
dF µ

ds
+ uµuα

dFα

ds

)
. (37)

This equation is valid as long as the assumption made in the derivation,∣∣∣∣τ0P µν dFν

ds

∣∣∣∣≪ |F µ| , (38)

is satisfied. This is not the same equation as given by Landau and Lifshitz [17, sec.
76]. However, it is significantly less complicated and both provide physically acceptable
dynamics [22].

It can be seen immediately that, unlike the LAD equation, (37) does not allow runaway
solutions for free particles. This is because for a force which vanishes during a finite time
interval, meaning that both the force and its derivative are zero, the acceleration also
vanishes. To examine the problem of preacceleration, we will introduce the convenient
coordinates uµ = (coshw, n̂ sinhw) with an arbitrary unit vector n̂ and fµ = m−1F µ.
Therefore, in the case of one-dimensional motion, (37) can be written as

ẇ = f + τ0ḟ , (39)

and the condition (38) becomes
|τ0ḟ | ≪ |f | . (40)

By this condition, delta forces like in section 2.2 are not allowed. Thus at least the most
obvious case of preacceleration is excluded from the domain of validity of the equation of
motion.

The Landau-Lifshitz equation is an approximation of the LAD equation, but Rohrlich
[22] argues that the equation is accurate within the bounds of classical physics since further
corrections would lead into the domain of quantum mechanics [22, ch. 9]. From a physical
standpoint, this is satisfying if one aims to obtain accurate dynamics reflecting the results
of real experiments. Considering the theory itself, however, it would be desirable to have
a way of obtaining stable dynamics without validity cutoffs like (38), even if the results
do not agree with empirical evidence.

7



3 Extended charges

3 Extended charges

To avoid the singularity of the fields generated by a point charge at its location, one can
consider an extended charge distribution [25, ch. 2.3]. There are two approaches that
have been investigated so far. The Abraham model assumes a charge distribution which
is fixed in the laboratory frame and independent of velocity, hence this model is also
called the nonrelativistically rigid model. One should keep in mind that this model is not
very realistic, since the particle’s length along its axis of movement in its proper frame
of reference would tend to infinity as the velocity relative to the laboratory frame tends
to the velocity of light [27, ch. 3]. A more realistic model would be relativistically rigid,
where the charge distribution is fixed in its proper frame of reference and thus appears
Lorentz contracted in the laboratory frame. This model is called the Lorentz model, for
an in-depth treatment of which we refer to Appel and Kiessling [2].

3.1 The semirelativistic Abraham model

Due to its greater simplicity, we will from now on focus on the Abraham model in the
setting of Bauer and Dürr [4]. The charge distribution is set to be eφ, where φ is smooth
and of compact support, φ ∈ C∞

0 (R3). We shall also require that
´

dxφ(x) = 1 [25, ch.
2.4], since this fixes the particles charge to e and will make notation a little simpler. Note
that this is not strictly necessary. The charge distribution is rigidly carried along with
a mass point for which the space coordinate q is located in its center, and the charge is
considered not to be rotating. Unlike in section 2.1, we will consider the case with an
external harmonic potential, V (q) = κq2/2. Finally, we will set the velocity of light c = 1
and the particle’s bare mass mb = α = ±1. The motion is then governed by the following
system of differential equations, which shall be called the Maxwell-Lorentz system of a
rigid charge [4, 25]:

q̇(t) =
αp(t)√
1 + p(t)2

, p(t) = αγq̇(t) ,

ṗ(t) = −κq(t) + e

(
Eφ(q(t), t) +

αp(t)√
1 + p(t)2

×Bφ(q(t), t)

)
,

Ė(t, x) = ∇×B(t, x) − αp(t)√
1 + p(t)2

eφ (x− q(t)) ,

Ḃ(t, x) = −∇× E(t, x) ,

∇ · E(t, x) = eφ (x− q(t)) ,

∇ ·B(t, x) = 0 .

(41)

For readability, we denote the convolution φ ∗E by Eφ and from now on use the notation
φq = φ(· − q) for q ∈ R3. Since point charges are not allowed by the conditions imposed
on the charge distribution eφ, the Lorentz force is well defined. The model is called
semirelativistic, because the relativistic momentum and kinetic energy are used but the
charge distribution is nonrelativistically rigid, as noted earlier.

8



3 Extended charges

In order to obtain the existence of solutions for the Maxwell-Lorentz system, it will
be advantageous to write (41) as an evolution equation. The first step is to set up the
Hilbert space,

H = R3 ⊕ R3 ⊕
(
L2
)3 ⊕ (L2

)3
. (42)

L2 := L2(R3) is the Hilbert space of real-valued, measurable and square-integrable func-
tions on R3, and (L2)

3
denotes the Hilbert space of 3-tuples from L2. An element of H

will be called a state vector ψ = (q, p, E,B). The canonical scalar product is denoted by
x · y for two vectors x, y ∈ R3 and by ⟨f, g⟩ for two functions f, g ∈ (L2)3. We will use | · |
for the norm on R3 and ∥ · ∥ for the norm on (L2)

3
. The norm ∥ · ∥H on H is induced by

the scalar product ⟨· , ·⟩H, which is defined as follows:

⟨ψ , ψ′⟩H = q · q′ + p · p′ + ⟨E,E ′⟩ + ⟨B ,B′⟩ . (43)

We can now rewrite the first four lines of (41) as an evolution equation for the H-
valued map on R, ψ(·) : t 7→ (q(t), p(t), E(t), B(t)), which represents the evolution of the
physical state ψ in time,

ψ̇(t) = Aψ(t) + J (ψ(t)) . (44)

The linear operator A in (44) is defined by

Aψ = (0, 0,∇×B,−∇× E) , (45)

and the nonlinear operator J by

J(ψ) =

(
αp√
1 + p2

,−κq + e

(
Eφ(q) +

αp√
1 + p2

×Bφ(q)

)
,

−αp√
1 + p2

eφq , 0

)
. (46)

The domain of A is defined by

D(A) = R3 ⊕ R3 ⊕W curl ⊕W curl , (47)

with
W curl =

{
E ∈

(
L2
)3 | ∇ × E ∈

(
L2
)3}

, (48)

where the partial derivatives in the curl are distributional derivatives. For n ∈ N, n ≥ 2
we define the domain of the n-th power An of A by

D(An) =
{
ψ ∈ D(A) | Ajψ ∈ D(A), j = 1, . . . , n− 1

}
. (49)

We will use the notation D(A1) = D(A). A strongly continuous one-parameter group is
defined as follows [24, ch. 12].

Definition 1 (Strongly continuous one-parameter group). A family {Ut}t∈R of operators
on H is called a strongly continuous one-parameter group of unitary operators if

1. Ut is unitary for any t ∈ R,

2. Ut+s = UtUs for all t, s ∈ R,

9



3 Extended charges

3. the map R ∋ t 7→ Utψ ∈ H is continuous for any ψ ∈ H.

We find that A generates a strongly continuous one-parameter group of unitary op-
erators on H.

Lemma 1. There is a strongly continuous family {Ut}t∈R of unitary operators Ut : H → H
such that

lim
h→0

Uhψ − ψ

h
= Aψ , Utψ ∈ D(A) , AUtψ = UtAψ (50)

for each ψ ∈ D(A) and t ∈ R.

Proof. Refer to Bauer and Dürr [4, lemma 1].

As for J , we may choose D(A) as a domain of J as defined in (46) [4, lemma 2],

J : D(A) →
∞⋂
n=0

D(An) . (51)

3.2 Existence of solutions

Bauer and Dürr [4] proved global existence of solutions for the Maxwell-Lorentz system
(41). It is important for our objective of investigating the stability of the dynamics to
have a rigorous proof of global solutions and the conditions under which they exist. Since
the details of this proof go beyond the scope of this thesis, we will present the results of
Bauer and Dürr and briefly sketch the ideas behind the proofs. For the full proofs, we
refer to [4].

To prove global existence and uniqueness of solutions to (44), the first step is to
prove local existence and uniqueness. The local existence will then be extended to global
existence by showing that the interval on which local solutions exist can be extended.

Theorem 1 (Local existence and uniqueness). For each ψ0 ∈ D(An), n ≥ 1, there is a
T > 0 and a map ψ(·) : [0, T ) → D(An) with the following properties:

1. ψ(·) is a n-times strongly continuously differentiable solution of (44) with initial
value ψ(0) = ψ0 and dj/dtjψ(t) ∈ D(An−j) for all t ∈ [0, T ) and j = 0, . . . , n.

2. If ψ̃(·) : [0, T̃ ) → D(A) is a strongly continuously differentiable solution of (44) with

initial value ψ̃(0) = ψ0, then ψ̃(t) = ψ(t) for t ∈ [0, T̃ ) ∩ [0, T ).

Proof. Refer to Bauer and Dürr [4, proposition 1].

The proof is conducted by using the contraction mapping principle to prove the exis-
tence and uniqueness of local solutions to the integral equation

ψ(t) = Utψ0 +

tˆ

0

Ut−sJ(ψ(s))ds , (52)

and showing that a unique solution to (52) is a unique solution to (44) with initial value
ψ(0) = ψ0 [4].

10
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The next step on the way to global existence is to consider the last two lines of (41),
which were disregarded up to now. To do this, we will impose the following constraint on
the initial conditions:

∇ · E0 = ρ(· − q0) , ∇ ·B0 = 0 . (53)

Theorem 2. Suppose ψ0 = (q0, p0, E0, B0) ∈ D(An), n ≥ 1. Suppose further that q0, E0

and B0 satisfy (53). Then the solution ψ(·) = (q(·), p(·), E(·), B(·)) : [0, T ) → D(An) of
(44) with initial value ψ(0) = ψ0, cf. theorem 1, has the following properties:

1. For all t ∈ [0, T ), the functions q(·), E(·) and B(·) satisfy

∇ · E(t) = ρ(· − q(t)) , ∇ ·B(t) = 0 , (54)

with distributional derivatives in the divergence.

2. If n ≥ 2λ + 2 for some λ ∈ N, then, for every t ∈ [0, T ), each of E(t) and B(t) is

equal almost everywhere in R3 to a function in C2λ(R3)
3
. If ψ0 ∈

∞⋂
n=0

D(An), then,

for every t ∈ [0, T ), each of E(t) and B(t) is equal almost everywhere in R3 to a
function in C∞(R3)

3
.

Proof. The proof can be found in [4, proposition 2].

In order to prove the first point, one can use the fact that t 7→ E(t) is continuously
differentiable from theorem 1 to write

E(t) = E0 +

tˆ

0

dsĖ(s)

and use (41) to calculate ∇ · E(t). The same procedure can be applied to B(t). For the
second point one uses the fact that

∇× (∇× E) = ∇ (∇ · E) − ∆E ,

where ∆ denotes the Laplacian, and ∆̂lE(k) = (−1)l|k|2lÊ(k). Using Plancherel’s theorem
[23], one obtains that ∂l/∂xljE(t) ∈ (L2)

3
for 0 ≤ l ≤ 2λ + 2 and the same property for

B(t). By these properties and Sobolev’s lemma [23], E(t) and B(t) are equal almost
everywhere in R3 to a function in C2λ(R3)

3
. Refer to Bauer and Dürr [4] for the full proof.

Now only global existence remains. We will define Mn as the subset of states in
D(An) satisfying (54),

Mn = {ψ ∈ D(An)|ψ satisfies (54)} . (55)

Theorem 3. Let ψ0 = (q0, p0, E0, B0) ∈ D(An), n ≥ 1. Suppose further that q0, E0 and
B0 satisfy (53). Then the following is true:

1. (Global existence) There is a function ψ(·) = (q(·), p(·), E(·), B(·)) : R → Mn

with the following properties: ψ(·) is a n times strongly continuously differentiable
solution of (44) with initial value ψ(0) = ψ0 and dj/dtjψ(t) ∈ D(An−j) for all t ∈ R
and j = 0, . . . , n. The functions q(·), E(·) and B(·) satisfy (54) for all t ∈ R. Thus,
ψ(·) is a global solution of the Maxwell-Lorentz system, with curl and divergence in
the distributional sense.

11



3 Extended charges

2. (Uniqueness) Suppose Λ ∈ R is an interval and T0 ∈ Λ. If ψ̃(·) : Λ → D(A) is a
continuously differentiable solution of (44) with initial value ψ̃(T0) = ψ(T0), then
ψ̃(t) = ψ(t) for all t ∈ Λ.

3. (Regularity) If n ≥ 2λ + 2 for some λ ∈ N, then for every t ∈ R each of E(t) and

B(t) is equal almost everywhere in R3 to a function in C2λ(R3)
3
. If ψ0 ∈

∞⋂
n=0

D(An),

then for every t ∈ R each of E(t) and B(t) is equal almost everywhere in R3 to a
function in C∞(R3)

3
.

Proof. Refer to the proof of theorem 1 in [4].

The proof of this theorem is approached as follows [4]. Assume T̄ is the supremum
of all T > 0 for which there exists a solution of (44) according to theorem 1. Global
existence is proven by showing that the map t 7→ ∥ψ(t)∥H is bounded in [0, T̄ ). The
solution can then be continued beyond T̄ , since the length of the interval over which the
contraction mapping principle can be used only depends on this bound. Therefore T̄
cannot be the supremum and there exists a global solution. Uniqueness and regularity
are already included in theorems 1 and 2 respectively, since their proofs do not exclude
global solutions.

It should be noted that this proof does not require energy conservation and therefore
includes the case of negative bare mass, for which the energy is no longer bounded from
below.

For the case of positive bare mass and an external potential which is bounded from
below, global existence was also proved by Komech and Spohn [16]. A summary can be
found in [25, ch. 2.4]. In this case, the velocity is bounded and under the additional
conditions of φ̂(k) ̸= 0 and smooth external potentials, even lim

t→∞
q̈(t) = 0 [16, 25].

Later we will require conservation of energy. Bauer and Dürr [4] claimed that the
energy of the Maxwell-Lorentz system in conserved, however they did not provide a proof.
To prove conservation of energy, we require the following result.

Lemma 2. Let E(t, x), B(t, x) be a solution to the Maxwell equations with the sources ρ
and j given by

ρ(t, x) = ρ(x− q(t)) , j(t, x) = ρ(x− q(t))q̇(t) , (56)

where ρ(x) is smooth and of compact support, supp ρ ⊂ BR(0) for some R > 0 and q(t) is
a strictly time-like trajectory. Let the initial fields at t0 = 0 be given by E0, B0 ∈ C∞(R3)

3

satisfying (53) as well as

|E0(x)| + |B0(x)| + |x|
3∑

i=1

(|∂xi
E0(x)| + |∂xi

B0(x)|) = O
|x|→∞

(
|x|−(1+ϵ)

)
(57)

for some ϵ > 0. Then the fields at time t are of order |x|−(1+ϵ),

|E(t, x)| + |B(t, x)| = O
|x|→∞

(
|x|−(1+ϵ)

)
(58)

12
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Proof. The solution to the Maxwell equation with sources ρ(t, x), j(t, x) and initial con-
ditions E0, B0 is given by [6, 25]

(
E(t, x)
B(t, x)

)
=

(
−∂t ∇×
−∇× ∂t

)
Kt ∗

(
E0(x)
B0(x)

)
+

tˆ

0

ds

(
−∇ ∂s

0 ∇×

)
Kt−s ∗

(
ρ(s, x)
j(s, x)

)
, (59)

where Kt = K−
t −K+

t and

K±
t (x) =

δ(|x| ± t)

4π|x|
. (60)

For any smooth function f ∈ C∞, the convolution with Kt is given by

Kt ∗ f(x) = t

 

∂B|t|(0)

dσ(y)f(x− y) := t

ˆ

∂B|t|(0)

dσ(y)
f(x− y)

4πt2
. (61)

First, we will examine the asymptotic behavior of the second term in (59). Let t ∈ R.
By (61),

Kt−s ∗ ρ(s, x) = (t− s)

 

∂B|t−s|(0)

dσ(y)ρ(x− y − q(s)) . (62)

By the properties of the support of ρ, this term vanishes if ∂B|t−s|(0)∩BR(x− q(s)) = ∅.
Since j(t, x) = ρ(t, x)q̇(t), the same holds for the convolution Kt−s ∗ j(s, x). Now, R is
fixed, q(s) is strictly time-like and |t− s| ∈ [0, t] with t ∈ R. Therefore, there is an x′ ∈ R
with 0 < x′ <∞, such that the second term in (59) vanishes for |x| > x′.

Let us now consider the first term in (59). The condition (57) ensures that there is a
constant 1 ≤ C <∞ such that for |x| large enough,(

|E0(x)| + |B0(x)| + |x|
3∑

i=1

(|∂xi
E0(x)| + |∂xi

B0(x)|)

)
|x|1+ϵ ≤ C . (63)

Using this and (61), for t ∈ R and |x| large enough, we find the estimates [6, proof of
theorem 4.18]

|∂xi
Kt ∗ E0(x)| ≤ |t|

 

∂B|t|(0)

dσ(y)
|∂xi

E0(x− y)||x− y|1+ϵ

|x− y|1+ϵ

≤ |t|
 

∂B|t|(0)

dσ(y)
C

(|x| − |y|)1+ϵ

≤ C|t|
(|x| − |t|)1+ϵ = O

|x|→∞

(
|x|−(1+ϵ)

)
,

(64)
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and

|∂tKt ∗ E0(x)| ≤
 

∂B|t|(0)

dσ(y)|E0(x− y)| + |t|
 

∂B1(0)

dσ(y)|(y · ∇)E0(x− |t|y)|

≤
 

∂B|t|(0)

dσ(y)
|E0(x− y)||x− y|1+ϵ

|x− y|1+ϵ

+ |t|
 

∂B1(0)

dσ(y)

3∑
i=1

|∂xi
E0(x− |t|y)||x− |t|y|2+ϵ

|x− |t|y|2+ϵ

≤ C

(|x| − |t|)1+ϵ +
C|t|

(|x| − |t|)2+ϵ

= O
|x|→∞

(
|x|−(1+ϵ)

)
,

(65)

where we used that |x− y|1+ϵ ≥ (|x|− |y|)1+ϵ. Since we required that |x| be large enough,
we can choose |x| > |t| in which case the denominator does not vanish. We obtain the
same estimates for B(t, x) by replacing E0 with B0. Therefore, by (59), the fields at time
t meet the decay condition |E(t, x)| + |B(t, x)| = O

|x|→∞
(|x|−(1+ϵ)).

Lemma 3 (Conservation of energy). Let ψ(·) = (q(·), p(·), E(·), B(·)) : R → Mn, n ≥ 1,
be a solution of (41) where the initial fields at time t0 = 0 satisfy the decay condition (57)
for some ϵ > 0 and E0, B0 ∈ C∞(R3)

3
. Then the quantity H,

H = α
√

1 + p(t)2 +
1

2
κq(t)2 +

1

2

ˆ
dx
(
E(t, x)2 +B(t, x)2

)
(66)

is independent of t. We call H the total energy of the Maxwell-Lorentz system.

Proof. By theorem 3, ψ(·) is n-times strongly continuously differentiable. Therefore, we
calculate the time derivative of H. We find

dH

dt
=

αp(t)√
1 + p(t)2

[
−κq(t) + e

(
Eφ(q(t), t) +

αp(t)√
1 + p(t)2

×Bφ(q(t), t)

)]

+ κq(t)
αp(t)√
1 + p(t)2

+

ˆ

R3

dx
[
E(t, x) (∇×B(t, x)) −B(t, x) (∇× E(t, x))

]
− αp(t)√

1 + p(t)2
eEφ(q(t))

= −
ˆ

R3

dx∇ · (E(t, x) ×B(t, x))

= − lim
R→∞

ˆ

∂BR(0)

dσ(x) · (E(t, x) ×B(t, x))

= − lim
R→∞

 

∂BR(0)

dσ(x) · 4π|x|2 (E(t, x) ×B(t, x)) ,

(67)
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where dσ is the orientated surface element and we used the divergence theorem in the last
step.

By theorem 3, ρ = eφ ∈ C∞
0 (R3). Also, ψ(t) is continuous and therefore is bounded

on any compact real interval [T1, T2]. Therefore, since v(t) < 1, there exists a vmax < 1
such that v(t) ≤ vmax ∀t ∈ [T1, T2]. The trajectory is strictly time-like on any compact
interval [T1, T2] ⊂ R. Due to this and the condition on E0 and B0, we may apply lemma
2. Therefore, for t ∈ R, E(t, x) and B(t, x) drop of sufficiently,

|E(t, x)| + |B(t, x)| = O
|x|→∞

(
|x|−(1+ϵ)

)
, (68)

and the surface term vanishes and dH
dt

= 0.

It is justified to call H the total energy of the Maxwell-Lorentz system, since it can be
obtained from the Abraham model’s Lagrangian [cf. 25, ch. 2.4]. To prove conservation
of energy we imposed strong conditions on the initial fields, namely E0, B0 ∈ C∞. This
might not be strictly necessary for the proof, but it is sufficient for our purposes.

3.3 Renormalization

3.3.1 The velocity-dependent mass

From Newtonian mechanics, we know the inertial mass as the proportionality constant
connecting the force and the acceleration or equivalently as the result of derivating a
particle’s momentum with respect to its velocity. Akin to the mass renormalization in
(6), we will see that a particle’s inertial mass is made up of two terms, one of which is due
to the particle’s interaction with its fields. This term is often called the electromagnetic or
electrodynamic mass. In his book, Abraham [1, ch. 20] argued that for charged particles,
one can only expect the acceleration to be proportional to the applied force if the motion
is rectilinear in the absence of external forces. Abraham also stated that the concept of
electromagnetic mass is only justified for quasistatic motion, where the velocity changes
little in the amount of times it takes for light to traverse the particle. Since this applies
to any observable motion of electrons [1, ch. 24], we will assume quasistatic motion for
the purpose of obtaining the velocity-dependent mass. In this case, we can assume that
the fields of the particle in motion are the fields obtained for rectilinear motion at the
same velocity [1].

A solution to (44) moving at constant velocity v is called a soliton, and the state
vector is given by ψ(t) = Sq+vt,v [25, ch. 4.1] with

Sq,v =

(
q,

αv√
1 − v2

, Ev(x− q), Bv(x− q)

)
. (69)

The fields Ev and Bv are given by their Fourier transforms [25]

Êv(k) = i
[
k2 − (v · k)2

]−1
eφ̂(k) (−k + v(v · k)) ,

B̂v(k) = −i
[
k2 − (v · k)2

]−1
eφ̂(k) (v × k) ,

(70)
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where v ∈ V = {v| |v| < 1} and

f̂(k) = (2π)−n/2

ˆ

Rn

dxe−ik·xf(x) ,

f(x) = (2π)−n/2

ˆ

Rn

dxeik·xf̂(k) .

We can now obtain the velocity-dependent mass from the energy-momentum relation as
described by Spohn [25, ch. 4.1]. It is assumed throughout that there are no external
potentials. The total momentum of the particle is given by

P = mbγv +

ˆ
d3x (E(x) ×B(x)) , (71)

which is conserved by the coupled Maxwell-Lorentz equations. P corresponds physically
to the total momentum since it is the conserved quantity linked by Noether’s theorem to
the Lagrangian of the Abraham model. By inserting (70), we find the momentum of a
soliton,

Ps(v) = mbγv + e2
ˆ

d3k|φ̂(k|2
( [
k2 − (v · k)2

]−1
v

− γ−2
[
k2 − (v · k)2

]−2
(v · k)k

)
= v

(
mbγ +mf |v|−3

[
−|v| + (1 + v2) arctanh(|v|)

])
,

(72)

where we used Plancherel’s theorem [23] to replace
´

d3x (E(x) ×B(x)) =
´

d3k(Ê(k) ×
B̂(k)). By mf we denote the electrostatic energy of the charge distribution eφ,

mf =
1

2
e2
ˆ

d3xd3x′
φ(x)φ(x′)

4π|x− x′|
=

1

2

ˆ
d3k|Ê(k)|2 , (73)

where we integrated by parts and used Plancherel’s theorem [23] in the second step. In
order to calculate the energy of a soliton, we insert (70) into (66) and set κ = 0,

Hs(v) = mbγ +
1

2
e2
ˆ

d3k|φ̂(k)|2 (1 + v2)k2 − (3 − v2)(v · k)2

(k2 − (v · k)2)2

= mbγ +mf |v|−1 [−|v| + 2 arctanh(|v|)] .
(74)

The map V ∋ v 7→ Ps(v) ∈ R3 is bijective and therefore invertible. We will write the
velocity as a function of total momentum v(Ps), which is the inverse to Ps(v). This way
we obtain the energy-momentum relation,

Heff(p) = Hs(v(p)) , (75)

which depends on the charge distribution only through its electrostatic energy mf . We
see that

Hs(v) = Ps(v) · v − T (v) , (76)
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with
T (v) = −mbγ

−1 −mf |v|−1(1 − |v|2) arctanh(|v|) . (77)

Remembering that the Hamiltonian of a system can be obtained from the Lagrangian by
H(p, q) = p · q̇−L(q, q̇), this suggests that Hs will play the role of an effective Hamiltonian
and T the role of the inertial term in an effective Lagrangian. Note that we are considering
the case without an external potential. Hamilton’s equations are given by

q̇ = ∇pH , (78)

ṗ = −∇qH , (79)

where p = ∇vH is equivalent to (78). By using Ps(v) = ∇vT (v), we can calculate ∇vHs(v),

dPs(v)

dv
v = ∇vHs(v) . (80)

This suggests that the 3 × 3 matrix dPs(v)/dv, the components of which are given by
(dPs(v)/dv)ij = dPs(v)j/dvi, is to be considered as the velocity-dependent mass. We can
immediately see that this mass will be made up of two components, one containing the
bare mass mb and one containing the electrostatic energy mf . We will write the field
contribution to the velocity dependent mass as mf(v) and split it up into a longitudinal
and a transversal component,

mf(v) =
d (Ps(v) −mbγv)

dv
= ml(|v|)v̂ ⊗ v̂ +mt(|v|)(1− v̂ ⊗ v̂) . (81)

Here, v̂ is a unit vector in the direction of v and v̂ ⊗ v̂ is given by (v̂ ⊗ v̂)ij = v̂iv̂j. By
inserting (72) we calculate

dPs(v)j/dvi = mf

(
vivj
|v|2

|v|−3

)(
2|v|

1 − |v|2
− 2 arctanh (|v|)

)
+mf

(
δij −

vivj
|v|2

)
|v|−3

(
−|v| + (1 + |v|2) arctanh (|v|)

)
, (82)

from which we can ascertain

ml(|v|) = mf |v|−3
(
2|v|(1 − |v|2)−1 − 2 arctanh(|v|)

)
, (83)

mt(|v|) = mf |v|−3
(
−|v| + (1 + |v|2) arctanh(|v|)

)
, (84)

for the longitudinal and transversal components. We can expand these in |v|, which gives

ml(v) =
4

3
mf

(
1 +

6

5
|v|2 + · · ·

)
, (85)

mt(v) =
4

3
mf

(
1 +

2

5
|v|2 + · · ·

)
. (86)

We also expand Es(v) in v, using

γ = 1 +
1

2
v2 + · · · , |v|−1 (−|v| + 2 arctanh(|v|)) = 1 +

2

3
v2 + · · · . (87)
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Therefore, in the nonrelativistic approximation, we have

Hs(v) −Hs(0) ≈ 1

2

(
mb +

4

3
mf

)
v2 , Ps(v) ≈

(
mb +

4

3
mf

)
v . (88)

The effective mass is given by

meff = mb +
4

3
mf . (89)

This effective mass is the inertial mass that can actually be determined experimentally.
The name renormalization comes from the process of adjusting mb to the calculated
electrostatic energy mf , so that meff matches the empirical rest mass.

For a more geometric approach to calculating the velocity-dependent mass, refer to
Abraham [1, ch. 20].

3.3.2 The charged spherical shell

To illustrate the implications of this renormalization, we will calculate mf for the easiest
possible charge distribution, a homogeneously charged spherical shell. This model is
commonly used for the electron. The charge distribution eφ is defined by

φ(x) =
1

4πR2
δ(|x| −R) . (90)

We determine the electric field by applying Gauss’s law, according to which the field inside
of the charged surface vanishes.

|E(x)| =

{
0 if |x| < R ,

e
4π|x|2 if |x| ≥ R .

(91)

We will calculate the electrostatic energy as follows:

mf =
1

2

ˆ
d3x|E(x)|2 . (92)

This is equivalent to (73) by Plancherel’s theorem [23]. Inserting (91) we obtain the
electrostatic energy

mf =
e2

8πR
, (93)

which varies with the radius R of the charged sphere like 1/R. Since the effective mass
meff = mb + 4

3
mf is fixed to the experimentally determined inertial mass, the bare mass

must be negative for charges whose radius is smaller than

R′ =
e2

6πmexp

. (94)

Reintroducing c, this is 2/3 times the classical electron radius [9],

rcl =
e2

4πmexpc2
≈ 2.82 × 10−13 cm . (95)

For a charged ball, the prefactor would be 4/5. The consequences of having a negative
bare mass will be investigated in the next section.
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3.4 Runaway solutions

3.4.1 The full nonlinear problem

For φ spherically symmetric, the evolution equation (44) has a stationary solution ψs [4],

ψs = (0, 0, EC, 0) , (96)

EC(x) =
e

4π

ˆ
dx′φ(x′)

x− x′

|x− x′|3
. (97)

Let us first check that this is indeed a stationary solution of the Maxwell-Lorentz system
(41). It is obvious that ∇·B = 0. To calculate ∇·EC(x), we use the well-known solution
of Poisson’s equation

∆
1

|x− x′|
= −4πδ(x− x′) (98)

and find that ∇ · EC(x) = eφ(x). Therefore, by theorem 3 there exists a solution ψ(t)
of (41) with initial value ψ(0) = ψs. Since φ(x) is spherically symmetric, it is an even
function of x, while EC(x) is an odd function of x. Therefore ṗ(0) = 0. Also, since
p(0) = 0, q̇(0) = 0. Define

C(x) =
e

4π

x

|x|3
= − e

4π
∇ 1

|x|
. (99)

We observe that EC(x) = φ ∗ C(x) and therefore ∇ × EC(x) = 0 since ∂i(f ∗ g)(x) =
(f ∗∂ig)(x) and any gradient field is free of rotation. This means that Ḃ(0, x) = 0. Finally,
since p(0) = 0 and B(0, x) = 0, Ė(0, x) = 0. We conclude that ψ̇(0) = 0 and therefore
ψ(t) = ψs ∀t > 0.

Bauer and Dürr [4] proved that ψs is Lyapunov-unstable in the case of negative bare
mass (α = −1) and an attractive potential (κ > 0). That proof has some gaps which we
will attempt to fill in the following.

Theorem 4. Let α = −1, κ > 0 and let ρ = eφ be spherically symmetric. Then the
stationary solution ψs of the Maxwell-Lorentz system (41) is unstable in the sense of
Lyapunov: For each ϵ > 0 there is a solution t 7→ ψ(t) = (q(t), p(t), E(t), B(t)) of (41)
with ∥ψs − ψ(0)∥H < ϵ and

lim
t→∞

|q(t)| = ∞ , lim
t→∞

|p(t)| = ∞ , i.e. lim
t→∞

∥ψs − ψ(t)∥H = ∞

Proof. Let u be some unit vector, u ∈ R3 and |u| = 1. We choose the following initial
data:

q0 = x0u , x0 > 0 ,

q̇0 =
−p0√
1 + p20

= v0u , v0 > 0 ,

E0(x) =
e

4π

ˆ
dx′φ(x′)

x− q0 − x′

|x− q0 − x′|3
= EC(x− q0) ,

B0(x) = 0 ,

19



3 Extended charges

where we will require

v0 >

√
1 −

(
1 +

1

2
κx20

)−2

. (100)

These initial data satisfy (53) and can be written in the form of a state-vector as follows:

ψ0 = (q0, p0, E0, B0) =

(
q0,

−q̇0√
1 − q̇20

, EC(· − q0), 0

)
.

Notice that ψ0 ∈
∞⋂
n=0

D(An), since EC ∈ C∞(R3)
3
, so by theorem 3 there is a global solution

t 7→ ψ(t) = (q(t), p(t), E(t), B(t)) of the Maxwell-Lorentz system (41) with ψ(0) = ψ0.
We still have to check that the initial data satisfy ∥ψs −ψ0∥H < ϵ. It will be easier to use
the square of the norm,

∥ψs − ψ0∥2H = x20 +
v20

1 − v20
+

ˆ
dx |EC(x) − EC(x− q0)|2 . (101)

Let us first check the first two terms. We set

v20 = 1 −
(

1 +
1

2
κx20

)−2

+ ∆ =

(
1
2
κx20
)2

+ 2
(
1
2
κx20
)(

1 +
(
1
2
κx20
))2 + ∆ , (102)

for some ∆ > 0. Since the first term is a quotient of polynomials in x20 and the denominator
is never zero, v20 depends continuously on x20. We also notice that the first term vanishes
in the case x20 = 0. Likewise, the second term in (101) depends continuously on v20 and is
zero for v20 = 0. Therefore, we can make the first two terms arbitrarily small by choosing
x0 and ∆ small enough.

The behaviour of the third term remains to be established. We will define the auxillary
function L : R3 → R,

L(x) =

ˆ
dy|EC(y) − EC(y − x)|2 .

Since EC ∈ C∞(R3)
3
, L(x) is at least once continuously differentiable, L(x) ∈ C1(R3).

Therefore L is locally Lipschitz-continuous [10, ch. 12]. Since L is locally Lipschitz, there
exists a neighbourhood U of 0 ∈ R3, such that ∀x ∈ U ∃M ∈ R+

0 : |L(x) − L(0)| ≤M |x|.
Noticing that L(0) = 0 we can therefore find a q0 and M , for which |L(q0)| ≤ M |q0| =
Mx0. This means that ∥ψs − ψ0∥H < ϵ is indeed satisfied by choosing x0, v0 sufficiently
small.

Without proof we make the same assumption as Bauer and Dürr, which is that, due
to q0, p0 ∥ u and the rotational symmetry of E0, B0 around the axis through u, the motion
of q will remain one-dimensional,

q(t) = x(t)u (t ∈ R) , (103)

with a real-valued function t 7→ x(t) satisfying x(0) = x0 and ẋ(0) = v0. Since the initial
fields satisfy the decay condition (57), we can now make use of energy conservation, cf.
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lemma 3,

H =
−1√

1 − ẋ(t)2
+

1

2
κx(t)2 +

1

2

ˆ
dx
(
E(t, x)2 +B(t, x)2

)
=

−1√
1 − v20

+
1

2
κx20 +

1

2

ˆ
dxEC(x)2

(104)

for all t ∈ R. We decompose the electric field into a longitudinal and a transversal part
[cf. 3, ch. 1.16], E = E∥ + E⊥, where ∇ · E⊥ = 0 and ∇ × E∥ = 0. The Fourier modes

of the longitudinal and transversal components are given by Ê∥(k) = k̂(k̂ · Ê(k)) and

Ê⊥ = Ê − Ê∥ [cf. 25, ch. 6.3], where k̂ denotes the unit vector in direction of k, and Ê

denotes the Fourier mode of E. By theorem 3, E ∈ (L2)
3

and we can apply Parseval’s
formula [23, thm. 7.9],

´
dxE∥ · E⊥ =

´
dkÊ∥ · Ê⊥. The longitudinal and transversal

components are orthogonal in Fourier space,

Ê∥ · Ê⊥ = Ê∥ · (Ê − Ê∥) = k̂(k̂ · Ê) · Ê − (k̂ · Ê)2 = 0 ,

so
´

dxEC · Et = 0. We also notice that

∇ · E∥(t, x) = ∇ · E(t, x) = eφ(x− q(t)) . (105)

Taking into account that ∇ × E∥ = 0 ,we can solve (105) using a Green’s function to
obtain E∥(t, x) = EC(x− q(t)) [3, ch. 9.7]. Therefore

ˆ
dx
(
E2 +B2

)
≥
ˆ

dxE2 =

ˆ
dx
(
E2

C + 2EC · E⊥ + E2
⊥
)
≥
ˆ

dxE2
C . (106)

From (104) we thus obtain

1√
1 − ẋ(t)2

≥ 1

2
κ
(
x(t)2 − x20

)
+

1√
1 − v20

> 1 (107)

for all t ∈ R, where we used the condition (100) in the second step. Therefore, and since
x0, v0 > 0, there exists a constant b > 0 such that ∀t ≥ 0 : ẋ(t) > b. By integration we
find that ∀t ≥ 0 : x(t) ≥ bt + a, where a is another constant. Again using the condition
(100), we find

1√
1 − ẋ(t)2

≥ 1

2
κ (bt+ a)2 (108)

for all t ≥ 0 and therefore

lim
t→∞

|x(t)| = ∞ , lim
t→∞

|ẋ(t)| = 1 . (109)

Because of (103) this is what we had to show.

We slightly improved on the proof by Bauer and Dürr [4] by explicitly showing that
the initial data are ϵ-close to ψs and clarifying the final argument in (108).

This proof does not remain without some weak spots. While the assumption of one-
dimensional motion (103) seems reasonable, it still has to be proven rigorously. Another
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point of concern is the attractive potential. Setting κ > 0 is required to make the con-
servation of energy argument work without allowing solutions with constant velocity. In
combination with the negative bare mass this means, however, that even a particle with
zero charge would run away, according to Newton’s law mq̈(t) = F = −κq(t).

The mechanism described in theorem 4 cannot be understood as the particle’s energy
loss to radiation causing it to accelerate despite a binding potential. Rather it is to be
understood as an acceleration caused by external forces which is not being impeded by
the particle’s interaction with its own fields.

While the result of theorem 4 is certainly a much less powerful statement, we still
expect runaways to occur even without an external potential as long as the bare mass is
negative. To substantiate this claim, we will conduct a brief thought experiment. The fact
that an accelerated particle loses energy, as described phenomenologically by the Larmor
formula [12], suggests that the interaction of the particle with its own radiation acts as a
damping force countering the acceleration caused by external forces. By setting the bare
mass negative, the sign of the acceleration caused by this force would change as well and
start acting in the same direction as the particle’s existing acceleration, thus causing the
particle to accelerate indefinitely. We will pursue this thought in the next section.

3.4.2 The Sommerfeld-Page equation

To support our expectation of runaway solutions in the absence of an external potential,
we will briefly discuss the Sommerfeld-Page equation, which is a linearized nonrelativistic
equation of motion for extended charges. It is derived under the assumptions that the
particle is instantaneously at rest and that the charge distribution is rigid and spherically
symmetric, thus agreeing with the Abraham model used in the previous section. One
sets out from the Lorentz force and expresses the electric field using the four-potential.
In the four-potential, the four-current is evaluated at the retarded time. Expanding the
four-current at the time t, one obtains the expression [14, 19]

mbq̈(t) = Fext(t) −
1

6π

∞∑
n=0

1

n!
(−1)n

dn+2q(t)

dtn+2
γn , (110)

where we reintroduced the bare mass mb and the coefficients γn are defined through the
charge distribution ρ = eφ,

γn = e2
ˆ

dx

ˆ
dx′φ(t, x)φ(t, x′)|x− x′|n−1 . (111)

The detailed derivation of (110) can be found in [14, ch. 16.3]. For a charged sphere with
a charge distribution as defined in (90), the coefficients can be calculated explicitly,

γn =
2e2(2R)n−1

n+ 1
, (112)

and the series in (110) converges, yielding

mbq̈(t) = Fext +
e2

12πR2

(
exp

(
−2R

d

dt

)
− 1

)
q̇(t) . (113)
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Here, exp
(
−2R d

dt

)
is a time delay operator. Thus, if mb ̸= 0, we obtain [15, 19]

q̈(t) =
Fext(t)

mb

+
e2

12πmbR2
[q̇(t− 2R) − q̇(t)] , (114)

which is the Sommerfeld-Page equation.
We will now again consider the case without external forces. The general solution to

(114) with Fext = 0 is given by
q(t) = aeωt , (115)

with a constant vector a. For a runaway solution in the sense of section 3.4.1 it is required
for the real part of ω to be positive. Inserting (115) into (114) it can be seen that, aside
from the trivial solution ω = 0, ω is given by

ω =
e2

12πmbR2

(
e−2ωR − 1

)
. (116)

Therefore the real part of ω can only be positive if mb < 0. By writing (114) as an integral
equation with a Green’s function, one can also see that preacceleration occurs only in the
case of negative bare mass [15, 19].

The nonrelativistic approximation seems suboptimal for the purpose of investigating
runaway solutions, in which the velocity will quickly approach the speed of light. The
relativistic generalization of the Sommerfeld-Page equation is the Caldirola equation [5,
13, 15, 21, 27],

mb
duµ

ds
= F µ

ext +
e2

12πR2
[uµ(s− 2R) − uµ(s)uν(s)uν(s− 2R)] . (117)

Like the Sommerfeld-Page equation, the Caldirola equation does not allow runaway solu-
tions or preacceleration in the case of positive bare mass [21]. It is however not obvious
that there should not be any runaway solutions in the case of negative bare mass. In the
limit R → 0, the Caldirola equation reduces to the LAD equation [13, 21], which exhibits
runaway solutions and preacceleration as discussed in sections 2.1 and 2.2. Remembering
the relationship between a particle’s size and its bare mass, as discussed in section 3.3.2,
this further suggests that the classical dynamics of charged particles are only stable for
particles larger than some finite size.
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4 Conclusion and outlook

4.1 Conclusion

We discussed the coupled Maxwell-Lorentz dynamics for point charges and found that the
solutions of the Maxwell equations for a point charge in motion cause the Lorentz force
to be ill-defined. We analyzed the Lorentz-Abraham-Dirac equation of motion for point
charges, which circumvents this problem by using conservation of energy and momentum
instead of the Lorentz force in its derivation, and found that it allows runaway solutions.
We also found that by imposing an additional condition on the acceleration, which elim-
inates runaway solutions, one causes the solutions to exhibit preacceleration, where the
particle starts to accelerate even before being acted upon by an external force. Lastly
for point charges, we presented the Landau-Lifshitz approximation of the LAD equation,
which eliminates runaway solutions in the case of a free particle and does not allow a delta
force for which we demonstrated the problem of preacceleration with the LAD equation.

We also examined the alternative approach to the problem of the divergent fields of
a point charge, which is to introduce an extended charge distribution. We introduced
the semirelativistic Abraham model of a rigid charge and set up the dynamics as an
evolution equation. We recounted the results of Bauer and Dürr [4] for global existence
of solutions to this evolution equation and explicitly proved conservation of energy. By
explicitly calculating the velocity-dependent mass of a charged particle, we showed that for
particles below a certain size, the bare mass has to be negative if their inertia is to match
the empirically determined value. We closed some gaps in the proof by Bauer and Dürr [4],
which showed Lyapunov-instability of the stationary solution to the dynamics in the case
of negative bare mass, by explicitly checking that the initial conditions are ϵ-close to the
stationary solution and slightly modifying them in order to make the runaway argument
clearer. Thus we proved the existence of runaway solutions in the case of negative bare
mass and a quadratic potential with positive curvature. However, it turned out that
this mechanism is not the same we would expect physically, which is that the damping
force caused by the radiation reaction causes the particle to accelerate further due to its
negative bare mass, regardless of an external potential. To support this expectation, we
discussed the Sommerfeld-Page and Caldirola equations of motion for extended charges,
which are only free of runaway solutions in the case of positive bare mass.

In conclusion, we found that the classical dynamics of a nonrelativistically rigid
charged particle interacting with its own fields seem to be accurate only for particles
with non-negative bare mass. This turned out to be the case for charge distributions
larger than a certain size, depending on their shape. This matches our physical intu-
ition, as we would expect a particle with negative inertia to react to a damping force by
accelerating further.

4.2 Outlook

For further investigations, it would be interesting to find out more about the mechanism
behind runaway solutions. It still remains to be shown rigorously that the motion remains
one-dimensional for the initial conditions given in the proof of theorem 4. A next step
would be to improve on the initial conditions used in the proof of theorem 4. We used a
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translated Coulomb field in the initial conditions and while this worked out to give us a
global solution according to theorem 3, it is not what we would expect from a physical
standpoint. In the following, we will present two ideas for incorporating the physically
expected fields of a charge in rectilinear motion into the initial conditions in the proof of
theorem 4 as a starting point for further investigations.

For an extended charge in motion, we would expect the fields to be the Liénard-
Wiechert fields of a point charge convoluted with the charge distribution,

Ev
φ(t, x) = φ ∗ ELW,v(t, x− q0) ,

Bv
φ(t, x) = φ ∗BLW,v(t, x− q0) = n̂× Ev

φ(t, x) ,
(118)

with ELW,v, BLW,v defined in (5). We will assume that q0 and v point along the x1-
axis. Let us first gain an overview over the frames of reference involved in our problem.
The coordinates of the laboratory frame L shall be denoted by xµ = (t, x1, x2, x3). For
simplicity we will introduce another frame L′, which is related to L by translation, x′µ =
(t′, x′1, x

′
2, x

′
3) = (t, x1 − x0, x2, x3). Therefore Ev

φ(t, x) = φ ∗ ELW,v(t, x′). We will denote
by x̃µ the coordinates in the momentary rest frame of the particle (RF ), which is related
to L and L′ by a Lorentz transformation,

x̃i = Λ(v)iν x̃
′ν =

γ(x′1 − vt)
x′2
x′3

 =

γ(x1 − x0 − vt)
x2
x3

 =

γR1

R2

R3

 . (119)

In the case of rectilinear motion, q(t) = q0 + vt, R is the vector pointing from the mo-
mentary location q(t) of the particle to the location x of the observer in the laboratory
frame.

We will now examine the transformation of the fields. If RF is moving at velocity v
relative to L′, the transformation of the fields is given by (133),

E(t, x′) =

 Ẽ1(t̃, x̃)

γ(Ẽ2(t̃, x̃) + vB̃3(t̃, x̃))

γ(Ẽ3(t̃, x̃) − vB̃2(
˜,̃ x̃))

 , B(t, x′) =

 B̃1(t̃, x̃)

γ(B̃2(t̃, x̃) − vẼ3(t̃, x̃))

γ(B̃3(t̃, x̃) + vẼ2(t̃, x̃))

 . (120)

In the rest frame, we assume that the electric field is given by a Coulomb field and the
magnetic field vanishes,

Ẽ(x̃) = φ̃ ∗ C(x̃) , B̃(x̃) = 0 , (121)

with C(x) defined in (99) and φ̃ an unknown charge distribution.
The next step will be to determine the relationship between φ and φ̃. For rectilinear

motion the Liénard-Wiechert electric field can be expressed as [12, ch. 12.3.2]

ELW,v(t, x′) =
e

4π

γR

((γR1)2 +R2
2 +R2

3)
3/2

. (122)

According to (120) and (121), the electric field transforms like

Ev
φ(t, x) = φ ∗ ELW,v(t, x′) = diag (1, γ, γ)φ̃ ∗ EC(x̃) . (123)
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Using (122) and (123) and setting ỹ = (γy1, y2, y3), we obtain

Ev
φ(t, x) = diag (1, γ, γ)

ˆ
dỹφ̃(ỹ)

e

4π

x̃− ỹ

|x̃− ỹ|3

= γ
e

4π

ˆ
dyφ̃(ỹ)

γ(R− y)

((γ(R1 − y1))2 + (R2 − y2)2 + (R3 − y3)2)3/2

= φ̃′ ∗ ELW,v(t, x′)

(124)

This implies
φ(y) = φ̃′(y) = γφ̃(γy1, y2, y3) . (125)

We will also check Gauss’ law for our initial field Ev
φ(t, x). To do this, we first establish

∇′ =

(
∂

∂x′1
,
∂

∂x′2
,
∂

∂x′3

)
=

(
γ
∂

∂x̃1
,
∂

∂x̃2
,
∂

∂x̃3

)
, (126)

with ∂/∂xi = ∂/∂x′i and use the notation ∇̃ = (∂x1 , ∂x2 , ∂x3). Using this and (126) we
can calculate

∇ · Ev
φ(t, x) = diag (1, γ, γ)∇′ · (φ̃ ∗ C)(x̃)

= γ
e

4π

ˆ
dỹφ̃(ỹ)∇̃ · x̃− ỹ

|x̃− ỹ|3

= eγφ̃(x̃)

= eφ(x− q(t)) .

(127)

Thus Gauss’ law as stated in (41) is satisfied.
One could now attempt to find a similar estimate as in (106) but using the Liénard-

Wiechert fields instead. For that, it would be advantageous to have the field part of the
energy in the form ˆ

dx
(
Ev

φ(t, x)2 +Bv
φ(t, x)2

)
= a(v)

ˆ
dxF (t, x)2 , (128)

where F (t, x) is some expression that does not depend on the velocity. Using (120), we
can writeˆ

dx
(
Ev

φ(t, x)2 +Bv
φ(t, x)2

)
=

ˆ
dx
(
(φ̃ ∗ C(x̃))2 + 2v2γ2

[
(φ̃ ∗ C(x̃))22 + (φ̃ ∗ C(x̃))23

])
.

(129)
Since we know from (125) that φ̃(x) is symmetric with regard to rotations along the x1-
axis, the two terms in the square brackets are equal to each other. However, to obtain an
expression of the type (128), we would need to know the relationship between the terms´

dx(φ̃ ∗ C(x̃))21 and
´

dx(φ̃ ∗ C(x̃))22,3.
An alternative approach would be to write the fields at time t as the sum of the

velocity and acceleration terms of the Liénard-Wiechert fields, Ev + Ea, Bv + Ba. The
field part of the energy corresponding to Ev, Bv was calculated in (74) and is strictly
increasing with |v|. To carry out the proof by the same method as in section 4, it would
remain to be shown that

´
dxEv · Ea = 0 so that

´
dx(E2 + B2) ≥

´
dx((Ev)2 + (Bv)2).

For rectilinear motion this follows immediately from (5) in the case of a point charge, but
for an extended charge it is not obvious.

In both cases it would have to be shown that the initial conditions containing the
Liénard-Wiechert fields are also ϵ-close to the stationary solution (96) in the H-norm.
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A.1 Heaviside-Lorentz units

Any expressions given in Heaviside-Lorentz units can easily be translated to Gaussian-cgs
or SI units. To do this, replace the quantities in column 1 of table 1 by the the quantities
in column 2 or 3 respectively [7, 14]. For an exhaustive list of relations refer to [7].

Heaviside-Lorentz Gaussian-cgs SI

(EHL, ϕHL) 1√
4π

(EG, ϕG)
√
ε0(E

SI , ϕSI)

(eHL, ρHL, jHL)
√

4π(eG, ρG, jG) 1√
ε0

(eSI , ρSI , jSI)

(BHL, AHL) 1√
4π

(BG, AG) 1√
µ0

(BSI , ASI)

Table 1: Translation between H.-L., Gaussian-cgs and SI units of measurement

A.2 Lorentz boost

Recall the four-potential Aµ = (−ϕ,A). The field strength tensor is defined as Fµν =
∂µAν − ∂νAµ. We will use the metric tensor with the signature (−,+,+,+).

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 . (130)

The indices can be raised by employing the metric tensor g, F µν = gµαgνβFαβ. F µν is an
order two tensor and thus transforms like

F µν(x) = Λµ
αΛν

βF̃
αβ(x̃) (131)

using xµ = Λµ
ν x̃ν for the transformation of the position four-vector x = (ct, x). Now, if

the frame described by x is moving at velocity v in the x1 direction relative to the frame
described by x̃, we set Λ = Λ(v), 

γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1

 (132)

with β = v/c and γ = (1 − β2)−1/2, and obtain the transformed fields

E(t, x) =

 Ẽ1(t̃, x̃)

γ(Ẽ2(t̃, x̃) − βB̃3(t̃, x̃)

γ(Ẽ3(t̃, x̃) + βB̃2(t̃, x̃)

 , B(t, x) =

 B̃1(t̃, x̃)

γ(B̃2(t̃, x̃) + βẼ3(t̃, x̃))

γ(B̃3(t̃, x̃) − βẼ2(t̃, x̃)

 . (133)
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