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1 Introduction

The theories of relativity and quantum mechanics are among the most successful in
physics. While a full unification of general relativity and quantum mechanics has yet
to be achieved, such a unification has been partially accomplished for special relativity. A
key step in this direction is the Dirac equation, the relativistic extension of the Schrödinger
equation. This equation describes particles with spin 1

2
, such as electrons, in a way that

is consistent with the principles of special relativity.

In this thesis, we will approach the Dirac equation from a mathematical perspective.
Beginning with the symmetries of spacetime, we will explore which equations are appro-
priate for formulating a quantum theory that is relativistically admissible. This leads to
the Klein-Gordon equation and the Dirac equation as natural candidates.

During the early development of quantum mechanics, it was recognized that the math-
ematical structures employed in this theory are intimately related to those studied in
representation theory in mathematics. From this perspective, the framework of quantum
mechanics appears to align naturally with the mathematical language of representation
theory.

Although there are many excellent books on the Dirac equation and representation theory,
the language used is often abbreviated and not always rigorously presented. As a result,
significant time is required to become familiar with the subject matter. The goal of this
thesis is to describe the mathematical framework in a consistent and precise terminol-
ogy, drawn from mathematical representation theory, which will be introduced gradually
alongside the necessary mathematical definitions.

In Chapter 2, we focus on the physical space of special relativity, the Minkowski space,
and investigate its symmetries. This leads us to the Lorentz transformations, which form
a Lie group, a differentiable manifold endowed with a group structure. In discussing
its group properties, we encounter the mathematical concept of group representations,
which is closely tied to the description of the spin of a particle. We will show that the
connected component of the Lorentz group with the neutral element can be decomposed
into rotations and Lorentz boosts. Since the manifold of rotations is not simply connected,
we are led to the mathematical concept of the universal covering group.

In Chapter 3, we determine the universal covering groups. We find that the rotation
group is covered by SU(2), and for the Lorentz group, the universal covering group is
SL(2,C). The latter proves to be a suitable foundation for constructing further repre-
sentations. Through this approach, we can systematically derive relativistically invariant
field equations, including the covariant Dirac equation.

In Chapter 4, we take a different perspective by delving into the fact that the Lorentz
group forms a Lie group. This leads to a specific structure known as the Lie algebra. We
begin with a general introduction to the Lie algebra of matrix Lie groups, and then apply
these concepts to the Lorentz group, yielding the Lorentz algebra. The basis elements of
this algebra, which are the infinitesimal generators of the Lorentz group, are closely related
to the symmetries of spacetime. In particular, the generators of rotations correspond to
the components of angular momentum, while the generators of boosts are associated with
transformations between different inertial frames, linking time and space coordinates.
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1 INTRODUCTION

To conclude the discussion, we will provide an outlook on further extensions of this theory
by considering the Poincaré group, which includes both spatial and temporal translations.
This allows for a more complete description of the system’s dynamics, including its time
evolution.
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2 Lorentz Group

2.1 Minkowski Space

Events in spacetime are described with respect to a reference frame by coordinates x =
(x0, x⃗)T ∈ R4, where x⃗ = (x1, x2, x3)T ∈ R3 represents the spatial coordinates, and x0 = ct
is the temporal coordinate. A transformation of the reference frame is described by the
affine transformation

x 7→ x′ = Λ · x+ a (1)

where Λ ∈ R4×4 is a matrix representing the linear part of the transformation and a ∈ R4

is a vector representing the translations. · is the standard matrix multiplication.

The aim is to determine which of these transformations are consistent with the principles
of special relativity and, therefore, represent transformations between all possible inertial
frames.

The principles of relativity can be stated as follows:

• All inertial frames are equivalent for the description of physical laws.

• The speed of light c is constant in all inertial frames.

Light rays originating from the origin propagate along the light cone described by

c2t2 − |x⃗|2 = 0 (2)

where | · | denotes the Euclidean norm. It consists of the past light cone (t < 0) and the
future light cone (t > 0). Translations in space and time a can be disregarded.

Given this, the above principles can be rewritten as

(x0)2 − x⃗2 = 0 ⇐⇒ (x′0)2 − x⃗′
2
= 0 (3)

where we use the notation |x⃗|2 = x⃗2.

It is useful to introduce the following quadratic forms:

Q(x) := xTgx (4)

Q′(x) := Q(x′) = xTΛTgΛx (5)

where

g = (gµν) = (gµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (6)

is the metric tensor, for which we chosen a signature (1,−1,−1,−1). We use the stan-
dard index notation with covariant and contravariant indices along with the Einstein
summation convention as explained in (Thaller, 1992, Chapter 2.1)
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2 LORENTZ GROUP

For a fixed x⃗, the quadratic form (4) vanishes when x0 = ±|x⃗|. From the condition in
(3), it follows that the quadratic form in (5) must also vanish. Thus, it can be generally
expressed as

Q′(x) = λ(x0 − |x⃗|)(x0 + |x⃗|) = λ
(
(x0)2 − x⃗2

)
= λQ(x) (7)

The case λ ̸= 1 corresponds to a change of units and is not considered further. Conse-
quently, we obtain Q′(x) = Q(x), implying ∀x ∈ R4 : xTΛTgΛx = xTgx. This condition
is equivalent to

ΛTgΛ = g or Λµ
ρgµνΛ

ν
τ = gρτ (8)

This leads to the introduction of the bilinear form

⟨x, y⟩ = xTgy (9)

which can be shown to be a indefinite scalar product (Scharf, 2014, Chapter 0.1), and
remains invariant under the aforementioned transformations:

⟨Λx,Λy⟩ = (Λx)Tg(Λy) = xTΛTgΛy = xTgy = ⟨x, y⟩ (10)

This is how constancy of the speed of light in all inertial frames, disregarding changes of
units, is mathematically reflected as the relativistic invariance of the scalar product. The
space (R4, ⟨·, ·⟩) is referred to as Minkowski space M.

2.2 Lorentz Transformations

Definition 2.1 (Lorentz transformation). A Lorentz transformation is a linear map Λ :
R4 → R4 such that ∀x, y ∈ R4 : ⟨Λx,Λy⟩ = ⟨x, y⟩.

As demonstrated, Lorentz transformations can also be characterized by Equation (8). We
now proceed to show that the set of Lorentz transformations forms a group.

Definition 2.2 (Group). A group is a pair (G, ∗), consisting of a set G and a binary
operation ∗ : G×G→ G, (a, b) 7→ a ∗ b, which satisfies the following conditions:

1. Associativity: ∀a, b, c ∈ G : (a ∗ b) ∗ c = a ∗ (b ∗ c)

2. Existence of identity element: ∃e ∈ G ∀g ∈ G : g ∗ e = g = e ∗ g

3. Existence of inverse element: ∀g ∈ G ∃g−1 ∈ G : g ∗ g−1 = e = g−1 ∗ g

In this context, the group operation is the standard matrix multiplication. First, we
demonstrate that the composition of two Lorentz transformations results in another
Lorentz transformation:

(Λ1Λ2)
TgΛ1Λ2 = ΛT

2Λ
T
1 gΛ1Λ2 = ΛT

2 gΛ2 = g (11)

Conditions 1 and 2 follow directly from the properties of matrix multiplication. It remains
to verify condition 3:

1 = − det(g) = − det(ΛTgΛ) = − det(ΛT )︸ ︷︷ ︸
=det(Λ)

det(g)︸ ︷︷ ︸
=−1

det(Λ) = det(Λ)2 =⇒ det(Λ) = ±1 ̸= 0

(12)
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2.2 Lorentz Transformations

This implies that Λ is invertible and Λ−1 is itself a Lorentz transformation:

(Λ−1)TgΛ−1 = (Λ−1)T (ΛTgΛ)Λ−1 = ((Λ−1)TΛT )g(ΛΛ−1) = g (13)

Consequently, it has been established that the Lorentz transformations indeed form a
group, which shall be denoted by L = O(1, 3) from now on.

Next, we explore how a group acts on a set, which will lead us to the concept of group
representations. We define:

Definition 2.3 (Group Action). A group action of a group G on a set M is a map

α : G×M →M, (g, x) 7→ g · x (14)

that assigns to each pair (g, x) of a group element g ∈ G and an element x ∈ M another
element g · x ∈M , such that

∀g1, g2 ∈ G ∀x ∈M : g1 · (g2 · x) = (g1 ∗ g2) · x (15)

It follows that

∀x ∈M with e the identity element of G : e · x = x (16)

since
∀g ∈ G ∀x ∈M : g · (e · x) = (g ∗ e) · x = g · x (17)

In general, M can be an arbitrary set with a complex structure.
To simplify the problem, we consider the linearization of the set M . Let W be a vector
space over a field K. Define F (M) = {f | f : M → W} ⊆ WM as the set of functions on
the set M . This approach linearizes the problem, as F (M) forms a vector space:

∀x ∈M ∀f1, f2 ∈ F (M) : (f1 + f2)(x) := f1(x) + f2(x) (18)

∀λ ∈ K ∀x ∈M ∀f ∈ F (M) : (λf)(x) := λf(x) (19)

Given a group action α of G on M , one can then define an ”action of G on F (M)”.

Definition 2.4 (Group Representation). A representation of a group G is a pair (V, π),
consisting of a vector space V and a group homomorphism

π : G→ GL(V ), g 7→ π(g) (20)

where GL(V ) denotes the group of invertible linear maps V → V .

The group homomorphism property of π requires that ∀g1, g2 ∈ G:

π(g1)π(g2) = π(g1 ∗ g2) (21)

It ensures that a ”group action on F (M)” is well-defined. From here on, we will just
use the term ”homomorphism”, always referring to group homomorphisms unless stated
otherwise. The general idea is to linearize the group action by linearizing both the set M
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2 LORENTZ GROUP

and the group G.

If V is a finite-dimensional vector space, it is well-known (see Axler (2024)) that there
exists an isomorphism GL(V ) ∼= GL(n,C) between the group of invertible linear maps on
V and the group of invertible n × n matrices with complex entries, where n denotes the
dimension of V .

The above definition of a Lorentz transformation is based on the standard representation
of the Lorentz group, which corresponds to the 4× 4 matrices with matrix multiplication
as group action. This representation is also known as the defining representation. Other
representations can also be chosen, and we will explore them later. However, the next
chapters will work within the standard representation.

A 4 × 4 matrix is characterized by 4 · 4 = 16 parameters. Due to the symmetry of
Equation (8) in the indices ρ and τ , there are

∑4
i=1 i = 10 constraints. Hence, a Lorentz

transformation has 16− 10 = 6 degrees of freedom.
In addition to its group structure, the set of Lorentz transformations possesses a rich
geometric structure, forming a six-dimensional manifold. Moreover, it can be shown that
these structures are compatible, and the Lorentz transformations constitute a Lie group.
In the following, these concepts will first be defined, and the corresponding statements
will then be proven.

Definition 2.5 (Topological Manifold). A topological manifold M is a topological space
(M, τ), which satisfies the following conditions:

1. Locally Euclidean: Each point of M has a neighborhood that is homeomorphic to an
open subset of Rn.

2. Hausdorff: For every pair of distinct points p, q ∈M , there are disjoint open subsets
U, V ⊆M such that p ∈ U and q ∈ V .

3. Second Countable: There exists a countable basis for the topology of M .

With the introduction of charts, atlases, and transition maps on the manifold (Lee, 2012,
Chapters 1 and 2), we are able define the concept of smoothness for manifolds:

Definition 2.6 (Smooth Manifold). A smooth manifold is a topological manifold equipped
with an atlas A such that all transition maps are smooth.

Definition 2.7 (Smooth Map). Let M and N be smooth manifolds. A map f : M → N
is smooth if for every point p ∈ M , there exists a chart (U, ϕ) with p ∈ U and a chart
(V, ψ) for N with f(p) ∈ V , such that the composition ψ ◦ f ◦ ϕ−1 is smooth.

Definition 2.8 (Lie Group). A Lie group G is a smooth manifold with a group structure

m : G×G→ G, (g1, g2) 7→ g1 ∗ g2 (22)

such that both the multiplication map m and the inversion map i : G → G, g 7→ g−1, are
smooth.
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2.3 Components of the Lorentz Group

We now aim to prove that the set of Lorentz transformations indeed forms a Lie group.
The strategy involves using the fact that the general linear group over the real numbers
GL(n,R), which is the group of all invertible n × n matrices with real entries, is a Lie
group (Lee, 2012, Chapter 7), and then applying the closed subgroup theorem (Lee, 2012,
Chapter 20).

Theorem 2.1 (Closed Subgroup Theorem). Any closed subgroup H of a Lie group G is
a Lie subgroup (and thus a submanifold) of G.

We have already established that L forms a matrix group and thus is a subgroup of
GL(4,R). It is also a closed subset of GL(4,R) ∼= R16, as can be seen from the following
considerations:

• The condition (8) yields a set of polynomial equations in the entries of Λ.

• These equations can be rewritten in the form P (Λµ
ν) = 0, where P (Λµ

ν) are poly-
nomials and thus continuous functions of Λµ

ν .

• Since 0 is a closed subset of R16, it follows from the continuity of P (Λµ
ν) that the

preimage Λµ
ν is also closed in R16.

By applying the theorem, we conclude that the Lorentz transformations form a Lie group.

2.3 Components of the Lorentz Group

Next, we will examine the connectedness of the set of Lorentz transformations. This
concept will become important later when we study the Lie algebra of the Lorentz group,
which can be seen as a kind of ”derivative” of the Lie group. To transition from the
algebra back to the group, integration along a path is required. Thus, the notion of
path-connectedness is particularly relevant.
We consider the case where ρ = τ = 0 in Equation (8):

(Λ0
0)

2 − (Λ1
0)

2 − (Λ2
0)

2 − (Λ3
0)

2 = 1 (23)

It follows that (Λ0
0)

2 ≥ 1, which implies

Λ0
0 ≥ 1 or Λ0

0 ≤ −1 (24)

where we use the notation ≥ for ”greater than or equal to” and ≤ for ”less than or equal
to”. From Equation (12), we already know that

det(Λ) = 1 or det(Λ) = −1 (25)

As a result, there are four components of the Lorentz group:

L↑
+ ≡ {Λ ∈ L : Λ0

0 ≥ +1, det(Λ) = +1} (26)

L↑
− ≡ {Λ ∈ L : Λ0

0 ≥ +1, det(Λ) = −1} (27)

L↓
+ ≡ {Λ ∈ L : Λ0

0 ≤ −1, det(Λ) = +1} (28)

L↓
− ≡ {Λ ∈ L : Λ0

0 ≤ −1, det(Λ) = −1} (29)
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2 LORENTZ GROUP

As we will see later, all four components are path-connected, meaning all components
have been identified.

Of particular interest is the proper orthochronous Lorentz group L↑
+ = SO(1, 3)+, which

is the only one that forms a subgroup, as we will demonstrate.
First, we show that L↑ = L↑

+ ∪ L↑
− = O(1, 3)+ is a subgroup. To prove closure under

composition, we need to show that (Λ̃Λ)00 ≥ 1 for Λ0
0 ≥ 1, Λ̃0

0 ≥ 1.

(Λ̃Λ)00 = Λ̃0
0Λ

0
0 +

3∑
i=1

Λ̃0
iΛ

i
0 = Λ̃0

0Λ
0
0 −

3∑
i=1

Λ̃i
0Λ

i
0 (30)

Using the 00-component of Equation (8)

(Λ0
0)

2 − (Λ1
0)

2 − (Λ2
0)

2 − (Λ3
0)

2 = 1 (31)

we obtain for the 3-norm

∥(Λ1
0,Λ

2
0,Λ

3
0)

T∥ =
√
(Λ0

0)
2 − 1 (32)

Using the Cauchy-Schwarz inequality

|⟨(Λ̃1
0, Λ̃

2
0, Λ̃

3
0)

T , (Λ1
0,Λ

2
0,Λ

3
0)

T ⟩| ≤ ∥(Λ̃1
0, Λ̃

2
0, Λ̃

3
0)

T∥∥(Λ1
0,Λ

2
0,Λ

3
0)

T∥ (33)
3∑

i=1

Λ̃i
0Λ

i
0 ≤

√
(Λ̃0

0)
2 − 1

√
(Λ0

0)
2 − 1 (34)

where ⟨·, ·⟩ here is the Euclidean scalar product, we get

(Λ̃Λ)00 ≥ Λ̃0
0Λ

0
0 −

√
(Λ̃0

0)
2 − 1

√
(Λ0

0)
2 − 1, (35)

= Λ̃0
0Λ

0
0 −

√
(Λ̃0

0Λ
0
0)

2 − (Λ̃0
0)

2︸ ︷︷ ︸
≥1

− (Λ0
0)

2︸ ︷︷ ︸
≥1

+1, (36)

≥ Λ̃0
0Λ

0
0 −

√
(Λ̃0

0Λ
0
0)

2 − 1 (37)

Next, we use the following norm property:

∀a, b ∈ R, a > b : ∥a∥ − ∥b∥ ≤ ∥a− b∥ (38)

⇐⇒
√
a2 −

√
b2 ≤

√
a2 − b2 (39)

and finally arrive at

(Λ̃Λ)00 ≥ Λ̃0
0Λ

0
0 −

(√
(Λ̃0

0Λ
0
0)

2 −
√
12
)

= 1 (40)

The identity element is contained in L↑ because it is in L↑
+. The same is true for the

inverse:

ΛTgΛ = g ⇐⇒ ΛTg = gΛ−1 ⇐⇒ Λ−1 = gΛTg (41)

=⇒ (Λ−1)00 = Λ0
0 ≥ 1 (42)
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2.4 Rotations and Boosts

This completes the proof.

In a similar manner, it can be shown that L+ = L↑
+∪L

↓
+ = SO(1, 3) also forms a subgroup:

• Closure: For det(Λ) = 1 and det(Λ̃) = 1, we have det(Λ̃Λ) = det(Λ̃) det(Λ) = 1.

• Neutral element: The identity element is contained in L↑
+.

• Inverse element: From det(Λ) = 1, it follows that det(Λ−1) = 1
det(Λ)

= 1.

The proofs for L↑ and L+ are independent of each other and can be performed simulta-
neously. Thus, we find that L↑

+ is indeed a subgroup of L.
The other connected components can be obtained through discrete transformations of the
proper orthochronous Lorentz group:

L↑
− = PL↑

+, L↓
+ = TL↑

+, L↓
− = PTL↑

+ (43)

with

• the parity transformation P =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 : (x0, x⃗)
T 7→ (x0,−x⃗)T

• the time-reversal transformation T =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 : (x0, x⃗)
T 7→ (−x0, x⃗)T

• the space-time-inversion PT =

−1 0 0 0
0 −1 0 0
0 0 −1 0

 : (x0, x⃗)
T 7→ (−x0,−x⃗)T

In short, we can express this as

L/L↑
+ = {14, P, T, PT} (44)

where L/L↑
+ denotes the factor set (Thaller, 1992, Chapter 3.1).

2.4 Rotations and Boosts

The next goal is to find the general form of the proper orthochronous Lorentz group and
to decompose it into its components.
We start with the following ansatz:

Λ =

(
a1×1 bT1×3

c3×1 D3×3

)
(45)

ΛTgΛ =

(
a cT

b D

)(
1 0T

0 −13

)(
a bT

c D

)
=

(
a2 − cT c abT − (Dc)T

ab−Dc bbT −DDT

)
!
=

(
1 0T

0 −13

)
= g

(46)
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2 LORENTZ GROUP

This leads to the conditions

a2 − cT c = 1, ab = Dc, bbT −DDT = −13 (47)

First, we consider transformations that leave the x0 component, i.e., the time component,
unchanged. To achieve this, we set a = 1. The first condition then gives c = 0, and
the second condition implies b = 0. From the third condition, we obtain DDT = 13,
meaning that D belongs to the special orthogonal group SO(3), which is the group of
all orthogonal 3× 3 matrices with determinant 1, and corresponds to a rotation. In four
dimensions, this results in

Λ(φ⃗) =

(
1 0T

0 R

)
(48)

where R ∈ SO(3). R is characterized by the rotation vector φ⃗ = φn⃗, which specifies the
rotation axis n⃗ and the rotation angle φ ∈ [0, π).
If we choose the rotation axis to be the e⃗3 axis, the familiar formula is given by

R(e⃗3, φ) =

cosφ − sinφ 0
sinφ cosφ 0
0 0 1

 (49)

and

Λ(e⃗3, φ) =


1 0 0 0
0 cosφ − sinφ 0
0 sinφ cosφ 0
0 0 0 1

 (50)

The notation is intended to show that Λ(φ⃗) represents a rotation about an arbitrary axis,
while Λ(e⃗3) denotes a rotation specifically about the e⃗3-axis. To describe a rotation about
an arbitrary axis, we can decompose the vector x⃗ to be transformed into a component
parallel and a component perpendicular to the rotation axis:

x⃗∥ =
φ⃗ · x⃗
φ2

φ⃗, x⃗⊥ = x⃗− x⃗∥ (51)

The parallel and perpendicular components of the rotated vector are given by

x⃗′∥ = x⃗∥, x⃗′⊥ = cosφx⃗⊥ + sinφ
φ⃗

φ
× x⃗⊥ (52)

Thus, for the rotated vector we get

x⃗′ = x⃗′∥ + x⃗′⊥ = x⃗∥ + cosφx⃗⊥ + sinφ
φ⃗

φ
× x⃗⊥ = x⃗∥ + cosφ(x⃗− x⃗∥) + sinφ

φ⃗

φ
× (x⃗− x⃗∥)

= cosφx⃗+ (1− cosφ)x⃗∥ + sinφ
φ⃗

φ
× x⃗ = cosφx⃗+ (1− cosφ)

φ⃗ · x⃗
φ2

φ⃗+ sinφ
φ⃗

φ
× x⃗

(53)
In component form, this reads as

x′i = cosφxi+(1−cosφ)
φiφj

φ2
xj+sinφϵi jk

φj

φ
xk = cosφxi+(1−cosφ)

φiφj

φ2
xj−sinφϵi jk

φk

φ
xj

(54)
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2.4 Rotations and Boosts

which gives

Λi
j = cosφδij + (1− cosφ)

φiφj

φ2
− sinφϵi jk

φk

φ
(55)

In a similar manner to (50), a boost in the direction of e⃗3 can be defined as

Λ(e⃗3, χ) :=


coshχ 0 0 sinhχ

0 1 0 0
0 0 1 0

sinhχ 0 0 coshχ

 (56)

where χ ∈ [0,∞) is the rapidity. It can be shown that Λ(e⃗3, χ) ∈ L↑
+. For brevity, we will

write Λ(χ).

Λ(χ)TgΛ(χ) =


cosh2 χ− sinh2 χ 0 0 coshχ sinhχ− sinhχ coshχ

0 −1 0 0
0 0 −1 0

sinhχ coshχ− coshχ sinhχ 0 0 sinh2 χ− cosh2 χ



=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = g

(57)
and det(Λ(χ)) = cosh2 χ− sinh2 χ = 1, (Λ(χ))00 = coshχ ≥ 1.

Λ(χ) even forms a one-parameter subgroup of L↑
+:

Λ(χ1)Λ(χ2) =


coshχ1 coshχ2 + sinhχ1 sinhχ2 0 0 coshχ1 sinhχ2 + sinhχ1 coshχ2

0 −1 0 0
0 0 −1 0

sinhχ1 coshχ2 + coshχ1 sinhχ2 0 0 sinhχ1 sinhχ2 + coshχ1 coshχ2



=


cosh(χ1 + χ2) 0 0 sinh(χ1 + χ2)

0 1 0 0
0 0 1 0

sinh(χ1 + χ2) 0 0 cosh(χ1 + χ2)

 = Λ(χ1 + χ2)

(58)
which demonstrates closure. The identity element is obtained for χ = 0 and the inverse
is given by

Λ−1(χ) =


coshχ 0 0 − sinhχ

0 1 0 0
0 0 1 0

− sinhχ 0 0 coshχ

 (59)

Next, we will demonstrate that this Lorentz transformation can indeed be interpreted as
a boost. Consider a free, classical particle that is at rest in the inertial frame I. At two
time points t1 and t2, it is described by the coordinates (ct1, x⃗)

T and (ct2, x⃗)
T . When

11



2 LORENTZ GROUP

transformed into another inertial frame I ′, the coordinates are given by (ct′1, x⃗
′
1)

T and

(ct′2, x⃗
′
2)

T .

Λ(χ)(ct1, x⃗)
T =


cosh(χ)ct1 + sinh(χ)x3

x1

x2

cosh(χ)ct1 + sinh(χ)x3

 = (t′1, x⃗
′
1)

T (60)

Λ(χ)(ct2, x⃗)
T =


cosh(χ)ct2 + sinh(χ)x3

x1

x2

cosh(χ)ct2 + sinh(χ)x3

 = (t′2, x⃗
′
2)

T (61)

The relative velocity of I ′ with respect to I is given by

β =
v

c
=

∥x⃗′2 − x⃗′1∥
t′2 − t′1

=
sinh(χ)ct2 + cosh(χ)x3 − (sinh(χ)ct1 + cosh(χ)x3)

cosh(χ)ct2 + sinh(χ)x3 − (cosh(χ)ct1 + sinh(χ)x3)

=
sinh(χ)(ct2 − ct1)

cosh(χ)(ct2 − ct1)
= tanhχ

(62)

With coshχ = 1√
1−tanh2 χ

, coshχ = tanhχ√
1−tanh2 χ

, and γ := 1√
1−β⃗2

, the boost can be ex-

pressed in terms of β⃗:

Λ(χ) =


γ 0 0 β
0 1 0 0
0 0 1 0
β 0 0 γ

 (63)

Using these components, it can be demonstrated that any proper orthochronous Lorentz
transformation can be decomposed into a rotation, a boost in a coordinate direction, and
another rotation:

Theorem 2.2. Every proper orthochronous Lorentz transformation Λ ∈ L↑
+ can be ex-

pressed in the form Λ = Λ(φ⃗1)Λ(χ)Λ(φ⃗2).

Proof. Construct the three-vector Λ⃗0 = (Λ1
0,Λ

2
0,Λ

3
0)

T ̸= 0 from the matrix Λµ
ν and

normalize it:
c⃗ = λΛ⃗0 = (c1, c2, c3)

T , (c1)
2 + (c2)

2 + (c3)
2 = 1 (64)

Choose two normalized three-vectors a⃗ = (a1, a2, a3)
T and b⃗ = (b1, b2, b3)

T such that a⃗, b⃗,
and c⃗ form a positively oriented basis of the three-space.
Then the matrix

Λ−1(φ⃗1) =


1 0 0 0
0 a1 a2 a3
0 b1 b2 b3
0 c1 c2 c3

 (65)

is a rotation ∈ SO(3). The positive orientation ensures that det(Λ−1(φ⃗1)) = +1.
Therefore,

Λ−1(φ⃗1)Λ =


Λ0

0 Λ0
1 Λ0

2 Λ0
3

0 d11 d12 d13
0 d21 d22 d23
d30 d31 d32 d33

 (66)

12



2.4 Rotations and Boosts

is in L↑
+ because both Λ and Λ−1(φ⃗1) belong to L↑

+, so their composition does as well.

The two zeros in the first column arise from the fact that a⃗, b⃗, and c⃗ form an orthonormal
basis.
Now, consider the two three-vectors d⃗1 = (d11, d12, d13)

T and d⃗2 = (d21, d22, d23)
T , which

are orthonormal. This follows from a transformation of (8):

ΛTgΛ = g ⇐⇒ ΛTg = gΛ−1 ⇐⇒ ΛT = gΛ−1g ⇐⇒ gΛT = Λ−1g ⇐⇒ ΛgΛT = g
(67)

Λµ
ρg

ρτΛν
τ = gµν (68)

Λµ
0Λ

ν
0 −

3∑
i=1

Λµ
iΛ

ν
i =


0 for µ ̸= ν

1 for µ = ν = 0

−1 for µ = ν ̸= 0

(69)

Add a third three-vector e⃗ = (e1, e2, e3)
T to again form an orthonormal basis with positive

orientation.
The matrix

Λ−1(φ⃗2) =


1 0 0 0
0 d11 d21 e1
0 d12 d22 e2
0 d13 d23 e3

 (70)

is again a rotation ∈ SO(3), and the product

Λ−1(φ⃗1)ΛΛ
−1(φ⃗2) =


Λ0

0 0 0 f03
0 1 0 0
0 0 1 0
f30 0 0 f33

 (71)

is once again a Lorentz transformation. The entries in the second and third columns, as
well as the two zeros in the fourth column, result from the fact that the rows of Λ−1(φ⃗1)
are orthonormal (see Equation (69)) and that the multiplication by Λ−1(φ⃗2) corresponds
to multiplication by the corresponding rows. We now show that the matrix corresponds
to a boost in the e⃗3 direction. To do this, we consider the conditions in (47):

(Λ0
0)

2 − (f30)
2 = 1, Λ0

0f03 = f33f30, (f03)
2 − (f33)

2 = −1 (72)

This system of equations is solved by

Λ0
0 = coshχ, f03 = sinhχ, f30 = sinhχ, f33 = coshχ (73)

and we obtain Λ−1(φ⃗1)ΛΛ
−1(φ⃗2) = Λ(χ), which implies Λ(φ⃗1)Λ(χ)Λ(φ⃗2) = Λ.

It remains to consider the case where (Λ1
0,Λ

2
0,Λ

3
0)

T = 0. In this case, the first con-
dition in (47) gives Λ0

0 = 1, and the second condition yields (Λ0
1,Λ

0
2,Λ

0
3)

T = 0. Thus,
Λ is a rotation, and the theorem is trivially satisfied.

13



2 LORENTZ GROUP

The decomposition in the theorem is not unique, which can be seen from the construction
in the proof.
For the rotation matrix Λ−1(φ⃗1), the first normalized vector was given. The other two
vectors can be chosen orthonormally with positive orientation in the plane orthogonal to
it. This ultimately corresponds to an arbitrary rotation of the two new vectors around
the axis of the given vector.
In Equation (66), one could have swapped the order of Λ−1(φ⃗1) and Λ. The proof would
then proceed almost identically, but the freedom of choice would apply to the other rota-
tion.
This raises the question of how to interpret this freedom of choice. For a boost in the
coordinate direction, the orientation perpendicular to the boost axis does not matter.
Therefore, one can perform rotations before and after the boost which cancel each other
out.

Theorem 2.2 can be used to show that L↑
+ is path-connected, a mathematical concept,

which we introduce next:

Definition 2.9 (Path-connectedness). A subset A of a topological space M is called path-
connected if, for any two points x, y ∈ A, there exists a path with initial point x and
terminal point y that lies entirely within A. That is, for a, b ∈ R, there exists a continuous
map

γ : [a, b] → A with γ(a) = x, γ(b) = y (74)

We recall the fact that for a metric space X a map f : X → Rn×n is continuous if and
only if all components fµ

ν , µ, ν = 1, . . . , n are continuous.

Lemma 2.3. L↑
+ is path-connected.

Proof. Let Λ1 and Λ2 be two arbitrary elements of L↑
+, and let id denote the identity

element of L↑
+. It suffices to show that there exists a path with initial point Λ1 and

terminal point id, and a path with initial point id and terminal point Λ2, i.e., continuous
maps

γ1 : [t1, 0] → L↑
+ with γ1(t1) = Λ1 and γ1(0) = id (75)

γ2 : [0, t2] → L↑
+ with γ2(0) = id and γ2(t2) = Λ2 (76)

Λ(φ⃗1), Λ(φ⃗2), and Λ(χ) are continuous maps and approach the identity as φ⃗1, φ⃗2, χ→ 0.
Since the composition of continuous maps is again continuous, it follows from the above
theorem 2.2 that Λ = Λ(φ⃗1)Λ(χ)Λ(φ⃗2) can be continuously deformed into the identity.

Due to Equation (43), the other three components L↑
−, L↓

+, and L↓
− are also path-

connected.

With Λ = Λ(φ⃗1)Λ(χ)Λ(φ⃗2) and definition of the new rotation Λ( ⃗̃φ) := Λ(φ⃗1)Λ(φ⃗2), we
obtain

Λ = Λ(φ⃗1)Λ(χ)Λ
−1(φ⃗1)Λ( ⃗̃φ) = Λ(χ⃗1)Λ( ⃗̃φ) (77)

14



2.4 Rotations and Boosts

where Λ(χ⃗1) = Λ(φ⃗1)Λ(χ)Λ
−1(φ⃗1) is a boost in an arbitrary direction. Similarly, we also

obtain
Λ = Λ( ⃗̃φ)Λ−1(φ⃗2)Λ(χ)Λ(φ⃗2) = Λ( ⃗̃φ)Λ(χ⃗2) (78)

where Λ(χ⃗2) = Λ−1(φ⃗2)Λ(χ)Λ(φ⃗2).

Here, χ⃗ = χn⃗ is the boost vector, where χ ∈ [0,∞) is the rapidity, and n⃗ is the boost axis.

The ambiguity in the decomposition from the above theorem disappears in Equations
(77) and (78). The part that could be chosen arbitrarily was precisely the one perpendic-
ular to the boost axis, and it is not affected by Λ(χ). Therefore, this part of the rotation
commutes with Λ(χ) and cancels out with the inverse rotation.

Next, we want to take a closer look at boosts in an arbitrary direction. Instead of ex-
plicitly calculating Λ(χ⃗) = Λ(φ⃗)Λ(χ)Λ−1(φ⃗), we can avoid this lengthy computation by
taking a similar approach to the one used at the beginning of the chapter for rotations.
The vector to be transformed is decomposed into components parallel and perpendicular
to the boost axis:

x⃗∥ =
χ⃗ · x⃗
χ2

χ⃗, x⃗⊥ = x⃗− x⃗∥ (79)

Using Equation (56), the components of the boosted vector are obtained as

x′0 = coshχx0 + sinhχ
χ⃗

χ
· x⃗, x⃗′∥ = coshχx⃗∥ + sinhχ

χ⃗

χ
x0, x⃗′⊥ = x⃗⊥ (80)

The boosted vector is then given by

x⃗′ = x⃗′∥ + x⃗′⊥ = coshχx⃗∥ + sinhχ
χ⃗

χ
x0 + x⃗⊥ = coshχ

χ⃗ · x⃗
χ2

χ⃗+ sinhχ
χ⃗

χ
x0 + x⃗− χ⃗ · x⃗

χ2
χ⃗

= x⃗+ (coshχ− 1)
χ⃗ · x⃗
χ2

χ⃗+ sinhχ
χ⃗

χ
x0

(81)
In component form, this reads as

x′i = (δij + (coshχ− 1)
χiχj

χ2
)xj + sinhχ

χi

χ
x0, x′0 = coshχx0 + sinhχ

χi

χ
xi (82)

and we obtain

Λ0
0 = coshχ, Λ0

i = sinhχ
χi

χ
, Λi

0 = sinhχ
χi

χ
, Λi

j = δij + (coshχ− 1)
χiχj

χ2
(83)

Λ(χ⃗) =

(
coshχ sinhχn⃗T

sinhχn⃗ 13 + (coshχ− 1)n⃗n⃗T

)
(84)

Using the relation from Equation (62), this can also be written as

Λ(β⃗) =

(
γ γβn⃗T

γβn⃗ 13 + (γ − 1)n⃗n⃗T

)
(85)
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2 LORENTZ GROUP

2.5 Composition of Boosts

We want to examine the composition of two arbitrary boosts. To enhance clarity, we
use the following notation in this chapter: B denotes a boost in an arbitrary direction,
R represents an arbitrary 4-dimensional rotation matrix, and R signifies an arbitrary 3-
dimensional rotation matrix. In general, boosts do not form a subgroup of the Lorentz
group, meaning the composition of two boosts does not necessarily result in another boost.
As a counterexample, consider:

Bx =


γ1 γ1β1 0 0
γ1β1 γ1 0 0
0 0 1 0
0 0 0 1

 (86)

By =


γ2 0 γ2β2 0
0 1 0 0

γ2β2 0 γ2 0
0 0 0 1

 (87)

BxBy =


γ1 γ1β1 0 0
γ1β1 γ1 0 0
0 0 1 0
0 0 0 1




γ2 0 γ2β2 0
0 1 0 0

γ2β2 0 γ2 0
0 0 0 1

 =


γ1γ2 γ1β1 γ1γ2β2 0
γ1β1γ2 γ1 γ1β1γ2β2 0
γ2β2 0 γ2 0
0 0 0 1


(88)

Clearly, this result only assumes the form (85) when γ1 = γ2 = 1 and β1 = β2 = 0.
In general, B2B1 is not a boost, but B2B1 ∈ L↑

+. Therefore, by Theorem 2.2 we can
express it as B2B1 = RB21, where B21 is a boost and R ∈ SO(3).

B2B1 =

(
γ2 γ2β⃗2

T

γ2β⃗2 13 + (γ2 − 1)n⃗2n⃗2
T

)(
γ1 γ1β⃗1

T

γ1β⃗1 13 + (γ1 − 1)n⃗1n⃗1
T

)

=

(
γ2γ1(1 + β⃗2 · β⃗1) γ2γ1β⃗1

T
+ γ2β⃗2

T
(13 + (γ1 − 1)n⃗1n⃗1

T )

γ2γ1β⃗2 + γ1(13 + (γ2 − 1)n⃗2n⃗2
T )β⃗1 γ2γ1β⃗2β⃗1

T
+ (13 + (γ2 − 1)n⃗2n⃗2

T )(13 + (γ1 − 1)n⃗1n⃗1
T )

)
(89)

RB21 =

(
1 0T

0 R

)(
γ21 γ21β⃗21

T

γ21β⃗21 13 + (γ21 − 1)n⃗21n⃗21
T

)
=

(
γ21 γ21β⃗21

T

γ21Rβ⃗21 R(13 + (γ21 − 1)n⃗21n⃗21
T )

)
(90)

By comparing the first row and column, we obtain:

• γ21 = γ2γ1(1 + β⃗2 · β⃗1)

• γ21β⃗21
T
= γ2γ1β⃗1

T
+ γ2β⃗2

T
(13 + (γ1 − 1)n⃗1n⃗1

T )

• γ21Rβ⃗21 = γ2γ1β⃗2 + γ1(13 + (γ2 − 1)n⃗2n⃗2
T )β⃗1
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The second bullet point yields the relativistic addition of velocities:

β⃗21 =
β⃗1 + γ−1

1 (13 + (γ1 − 1)n⃗1n⃗1
T )β⃗2

1 + β⃗2 · β⃗1
=
β⃗1 + γ−1

1 β⃗2⊥1 − β⃗2∥1

1 + β⃗2 · β⃗1
(91)

Now consider the effect of switching the order of B1 and B2. We know that B2B1 = RB21,
RT = R−1, and from (85) BT = B:

B1B2 = (BT
2 B

T
1 )

T = (B2B1)
T = (RB21)

T = BT
21R

T = B21R
−1 (92)

To express this in the form ”first boost, then rotation”, we proceed as follows:

B1B2 = R−1(RB21R
−1) (93)

(RB21R
−1)T = (R−1)TBT

21R
T = RB21R

−1 (94)

Thus, RB21R
−1 is a pure boost, and we define B12 := RB21R

−1, leading to

B1B2 = R−1B12 (95)

When the boosts are swapped, the inertial frame is rotated in the opposite direction after
the boost.

The relationship between B21 and B12 can be determined by performing an analogous
calculation for B1B2 as for B2B1:

• γ12 = γ1γ2(1 + β⃗1 · β⃗2)

• γ12β⃗12
T
= γ1γ2β⃗2

T
+ γ1β⃗1

T
(13 + (γ2 − 1)n⃗2n⃗2

T )

• γ12Rβ⃗12 = γ1γ2β⃗1 + γ2(13 + (γ1 − 1)n⃗1n⃗1
T )β⃗2

A comparison of the third bullet point from B2B1 and the second bullet point from B1B2

transposed gives

γ21Rβ⃗21 = γ12β⃗12
γ21=γ12⇐⇒ Rβ⃗21 = β⃗12 (96)

Thus, the boost vectors are rotated by the same angle as the inertial frames after the boost.

Inverting B2B1 results in

(B2B1)
−1 = (RB21)

−1 = B−1
21 R

−1 = (R−1B12R)
−1R−1 = R−1B−1

12 (97)

This implies a boost in the −β⃗12 direction.
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2 LORENTZ GROUP

2.6 Rotation and Boost Manifold

In the previous sections, we examined the group structure of rotations and boosts. Now,
we turn to their topological structure.

Boosts:
Boosts are parameterized by the boost vector χ⃗ = χn⃗, χ ∈ [0,∞). This shows that the
set of all boosts is diffeomorphic to R3. As a result, the manifold is simply connected and
non-compact.

We can define the so-called mass-shell

Mpos ≡ {p ∈ R4 | ⟨p, p⟩ = m2, p0 > 0} = {(
√
p⃗2 +m2, p⃗)T ∈ R4 | p⃗ ∈ R3}, m > 0 (98)

and show that the boost manifold is diffeomorphic to it. Mpos contains the point q =
(m, 0, 0, 0)T and for any p ∈Mpos, there exists exactly one boost Λp such that Λpq = p as
the following calculation shows:

Λpq =

(
γm

γβ⃗m

)
!
=

(√
p⃗2 +m2

p⃗

)
= p (99)

We choose β⃗ = p⃗√
p⃗2+m2

and verify

γm =
m√
1− β⃗2

=
m√

1− p⃗2

p⃗2+m2

=
m√
m2

p⃗2+m2

=
√
p⃗2 +m2 ✓ (100)

γβ⃗m =
√
p⃗2 +m2

p⃗√
p⃗2 +m2

= p⃗ ✓ (101)

The map is also differeantiable, which concludes the proof of the claim.

Rotations:
Rotations preserve the origin, Euclidean distance, and orientation. They satisfy ⟨Rx,Ry⟩ =
⟨x,RTRy⟩ !

= ⟨x, y⟩ and det(R) = 1, implying RRT = 1 and det(R) = 1. This shows that
rotations are isomorphic to the special orthogonal group SO(3).

Rotations are parameterized by the rotation vector φ⃗ = φn⃗, φ ∈ [0, π). Thus, the set of
all rotations is diffeomorphic to the ball B with radius π in R3, where we must identify
antipodal points on the surface of B because a rotation of π in n⃗-direction is the same as
a rotation of π in −n⃗-direction. The manifold has no boundary.
A rotation about a fixed axis can be visualized by moving radially outward from the ori-
gin. Upon reaching the boundary of the sphere (corresponding to a half-turn of π), the
motion continues inward from the opposite side of the sphere, representing a full rotation
of 2π.

The manifold is also diffeomorphic to the 3-dimensional real projective space RP3, which is
formed by identifying antipodal points of the 3-sphere. This diffeomorphism corresponds
to the parametrization of the rotation group by Euler angles.
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As a consequence, the rotation manifold is compact and path-connected, but it is not
simply connected, a mathematical concept, which we introduce next:

Definition 2.10 (Free Homotopy of Paths). Let X be a topological space. Two closed
paths γ0, γ1 : [a, b] → X are called freely homotopic in X if there exists a continuous map
H : [a, b]× [0, 1] → X such that

1. H(t, 0) = γ0(t), H(t, 1) = γ1(t) for all t ∈ [a, b]

2. H(a, s) = H(b, s) for all s ∈ [0, 1]

Definition 2.11 (Null-homotopic Path). A continuous closed path γ : [0, 1] → X with
base point x = γ(0) = γ(1) in a topological space X is called null-homotopic if it is
homotopic to the constant path at x.

Definition 2.12 (Simply Connected Space). A topological space X is called simply con-
nected if it is path-connected and if every continuous closed path in X is null-homotopic.

For example, the diameter through two antipodal points is a closed path, but it cannot
be continuously shrunk to a point. This shows that the rotation manifold is not simply
connected.

However, it would be desirable to have a simply connected Lie group to work with. We
will briefly justify this here. In a quantum theory, due to the axioms taken, projective
representations are of importance (see A). However, working with these representations is
more difficult, which is why we prefer to switch to (regular) representations. Under cer-
tain conditions, all projective representations of a connected Lie group are ”covered” by
the unitary representations of the universal covering group (see Thaller (1992) Theorems
2.18, 2.21, 2.22, 2.23).

The universal covering group can be understood as the ”smallest” Lie group that covers
G and is simply connected (Thaller, 1992, Chapter 2.3).

Definition 2.13. Let X be a topological space. A covering of X is a topological space X̃
and a continuous map

Φ : X̃ → X (102)

such that for every x ∈ X there exists an open neighborhood Ux of x, a discrete space Dx

and for every d ∈ Dx an open set Vd such that

Φ−1(Ux) =
⊔

d∈Dx

Vd (103)

and
Φ|Vd

: Vd → Ux (104)

is a homeomorphism for every d ∈ Dx.

Definition 2.14. A covering group of a topological group G is a covering space G̃ of G
such that G̃ is a topological group and the covering map Φ : G̃→ G is a continuous group
homomorphism, i.e.

Φ(g̃)Φ(h̃) = Φ(g̃h̃) (105)
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2 LORENTZ GROUP

One can now consider what the covering group of the rotation group might look like. The
manifold is simply connected and locally resembles the rotation manifold (e.g., it has no
boundary).

As previously described, the rotation manifold is isomorphic to the ball B in R3 with
radius π and identified antipodal points. When transitioning to a simply connected set
without boundary, we obtain two balls, B1 and B2, in R3 with radius π and mutually
identified points.

Similarly, one could start from the 3-sphere S3 with identified antipodal points, or equiv-
alently RP3, which is also isomorphic to the rotation manifold. The simply connected
covering without boundary in this case is the 3-sphere S3.

These two perspectives are connected as follows: the 3-sphere can be projected onto two
balls in R3 with identified boundary points.

Thus, topologically, the covering appears like the 3-sphere. To obtain the universal cov-
ering group, the covering map must be chosen as a continuous group homomorphism.
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3 Representations

3.1 Double Cover of the Rotation and the Lorentz Group

We aim to find the universal covering group of SO(3). We propose that SU(2), the group
of all 2× 2 unitary matrices with complex entries and determinant 1, is isomorphic to the
universal covering group of SO(3).

It has the correct topology:

U ∈ SU(2) =⇒ U =

(
a b

−b a

)
, |a|2 + |b|2 = 1, a, b ∈ C

=

(
x1 + ix2 x3 + ix4
−x3 + ix4 x1 − ix2

)
, x21 + x22 + x23 + x24 = 1, x1, x2, x3, x4 ∈ R

(106)
This shows that SU(2) is isomorphic to the 3-sphere, and thus it is a covering of SO(3).

Next, we need to find a continuous group homomorphism.
The Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(107)

These form a basis of the 3-dimensional real vector space of complex, traceless, Hermitian
2× 2 matrices, denoted TH(2). Their properties are given by

{σi, σj} = 2δij12, [σi, σj] = 2i
3∑

k=1

ϵijkσk, tr(σi) = 0 (108)

An element x̂ in this vector space is defined as

x̂ =
3∑

i=1

xiσi =

(
x3 x1 − ix2

x1 + ix2 −x3
)
, x⃗ ∈ R3 (109)

This defines an isomorphism between R3 and TH(2). This is useful because SO(3) matrices
act on 3-dimensional objects, while SU(2) matrices act on 2-dimensional objects.
Moreover, we have

det(x̂) = −(x3)2 − (x1)2 − (x2)2 = −⟨x⃗, x⃗⟩ (110)

Next, we investigate how x̂ could transform. The most general transformation that pre-
serves hermiticity is

(x̂′)† = (Ax̂B)† = B†x̂†A† = B†x̂A† !
= Ax̂B = x̂′ =⇒ A† = B (111)

The most general transformation that preserves the trace is

tr(x̂′) = tr(Ax̂B)
tr(ABC)=tr(BCA)=tr(CAB)

= tr(x̂BA)
!
= tr(x̂) =⇒ A−1 = B (112)
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3 REPRESENTATIONS

Thus, we require A† = A−1, which holds for SU(2) matrices.

This transformation also preserves the scalar product:

⟨x⃗′, x⃗′⟩ = − det(x̂′) = − det(Ux̂U †) = − det(Ux̂U−1)

= − det(U) det(x̂) det(U−1) = − det(U) det(x̂)
1

det(U)
= − det(x̂) = ⟨x⃗, x⃗⟩

(113)

Therefore, x̂′ = Ux̂U † seems like a plausible candidate for the transformation.

Let us verify this. We need some additional properties:

σiσj =
1

2
({σi, σj}+ [σi, σj]) =

1

2
(2δij12 + 2iϵijkσk) = δij12 + iϵijkσk (114)

x̂ŷ = (x⃗ · σ⃗)(y⃗ · σ⃗) =

(
3∑

i=1

xiσi

)(
3∑

j=1

yjσj

)
=

3∑
i=1

3∑
j=1

xiσiy
jσj

=
3∑

i=1

3∑
j=1

xiyj(δij + i
3∑

k=1

ϵijkσk) =
3∑

i=1

xiyi +
3∑

k=1

(
3∑

i=1

3∑
j=1

ϵijkx
iyj

)
σk

= x⃗ · y⃗ + iσ⃗ · (x⃗ ∧ y⃗)

(115)

Lemma 3.1. For two n × n matrices U,H over the complex numbers with U := eitH =∑
n∈N0

(itH)n

n!
, the following holds: U is unitary if and only if H is Hermitian.

Proof. Let U,H be n×n matrices over the complex numbers. The expression U := eitH =∑
n∈N0

(itH)n

n!
is well-defiend since it converges for any H (Hall, 2015, Chapter 2.1).

U unitary ⇐⇒ U †U = 1 ⇐⇒ e−itH†
eitH = 1 | d

dt |t=0

=⇒ −iH† + iH = 0

⇐⇒ H† = H ⇐⇒ H Hermitian

(116)

H Hermitian =⇒ U †U = e−itH†
eitH = e−itHeitH = 1 ⇐⇒ U unitary (117)

Lemma 3.2. For any n× n complex matrix A, it holds that det(eA) = etr(A).

Proof. Let A be a complex n× n matrix.
For any square n × n matrix A over the complex numbers C, there exists a Jordan
decomposition

A = PJP−1 (118)

where P is an invertible matrix, and

J =

J1 0
. . .

0 Jk

 with Ji =


λj 1 0

λj 1 0
. . . . . .

λj 1
0 λj

 , λj ∈ C (119)
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3.1 Double Cover of the Rotation and the Lorentz Group

det(exp(A)) = det(exp(PJP−1)) = det(P exp(J)P−1) = det(P ) det(exp(J)) det(P−1)

= det(exp(J)) =
n∏

i=1

exp(λi) = exp(
n∑

i=1

λi) = exp(tr(J))

= exp(tr(PJP−1)) = exp(tr(A))
(120)

The general form of an element U(φ⃗) ∈ SU(2) can be expressed as

U(φ⃗) = exp

(
− i

2
φ⃗ · σ⃗

)
= cos

(φ
2

)
12 − i sin

(φ
2

)
n⃗ · σ⃗

=

(
cos
(
φ
2

)
− i sin

(
φ
2

)
n3 i sin

(
φ
2

)
(−n1 + in2)

i sin
(
φ
2

)
(−n1 − in2) cos

(
φ
2

)
+ i sin

(
φ
2

)
n3

) (121)

The first expression shows that U(φ⃗) is unitary (117) and that det(U(φ⃗)) = 1 (120), since
tr(σi) = 0.
The factor 1

2
is deliberately chosen so that it cancels out in the subsequent calculation

using addition theorems.

U †(φ⃗) = exp

(
i

2
φ⃗ · σ⃗

)
= cos

(φ
2

)
12 + i sin

(φ
2

)
n⃗ · σ⃗ (122)

U(φ⃗) x̂ U †(φ⃗) = U(φ⃗) x⃗ · σ⃗ U †(φ⃗)

= cos2
(φ
2

)
x⃗ · σ⃗ + cos

(φ
2

)
x⃗ · σ⃗ i sin

(φ
2

)
n⃗ · σ⃗ − i sin

(φ
2

)
n⃗ · σ⃗ x⃗ · σ⃗ cos

(φ
2

)
+ sin2

(φ
2

)
n⃗ · σ⃗ x⃗ · σ⃗ n⃗ · σ⃗

(115)
= cos2

(φ
2

)
x⃗ · σ⃗ − 2 cos

(φ
2

)
sin
(φ
2

)
σ⃗ · (x⃗ ∧ n⃗)

+ sin2
(φ
2

)
(n⃗ · σ⃗(x⃗ · n⃗+ iσ⃗ · (x⃗ ∧ n⃗))

(115)
= cos2

(φ
2

)
x⃗ · σ⃗ − 2 cos

(φ
2

)
sin
(φ
2

)
σ⃗ · (x⃗ ∧ n⃗)

+ sin2
(φ
2

)
(n⃗ · x⃗ n⃗ · σ⃗ + in⃗ · (x⃗ ∧ n⃗)︸ ︷︷ ︸

=0

−σ⃗ · (n⃗ ∧ (x⃗ ∧ n⃗))︸ ︷︷ ︸
=(n⃗·n⃗)x⃗−(n⃗·x⃗)n⃗

)

=

cos2
(φ
2

)
x⃗− 2 cos

(φ
2

)
sin
(φ
2

)
︸ ︷︷ ︸

= 1
2
sinφ

x⃗ ∧ n⃗+ sin2
(φ
2

)
((n⃗ · x⃗)n⃗− x⃗+ (n⃗ · x⃗)n⃗)

 · σ⃗

=

(
1

2
(1 + cos(φ))x⃗− sin(φ)x⃗ ∧ n⃗+

1

2
(1− cos(φ))(2(n⃗ · x⃗)n⃗− x⃗)

)
· σ⃗

= (cos(φ)x⃗+ sin(φ)n⃗ ∧ x⃗+ (1− cos(φ))(n⃗ · x⃗)n⃗) · σ⃗
(55)
= (R(φ⃗)x⃗) · σ⃗ = ˆR(φ⃗)x⃗

(123)
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3 REPRESENTATIONS

In the sixth step, we used the identities cos2(φ
2
) = 1

2
(1 + cos(φ)) and sin2(φ

2
) = 1

2
(1 −

cos(φ)).

This equation establishes a relationship between U ∈ SU(2) and R ∈ SO(3):

(R(U)x⃗) · σ⃗ = U x⃗ · σ⃗ U † (124)

(R(U1U2)x⃗) · σ⃗ = U1U2 x⃗ · σ⃗ U †
2U

†
1 = U1 (R(U2)x⃗) · σ⃗ U †

1 = (R(U1)R(U2)x⃗) · σ⃗ (125)

=⇒ R(U1U2) = R(U1)R(U2) (126)

Thus, we have indeed found a group homomorphism. This homomorphism is also contin-
uous, since all operations in R(φ⃗) and U(φ⃗) are continuous.
Since SU(2) is isomorphic to the 3-sphere, it is also simply connected. This confirms that
SU(2) is the universal covering group of SO(3).

It is evident that U(φ⃗) and −U(φ⃗) ∈ SU(2) correspond to the same rotation R(φ⃗) ∈
SO(3), as the two negative signs cancel each other out in Equation (123). Therefore,
SU(2) is a double cover of SO(3).

We now transition from the case of rotations that preserve the scalar product and ori-
entation in 3-dimensional Euclidean space to proper orthochronous Lorentz transforma-
tions, which preserve the scalar product, orientation, and time direction in 4-dimensional
Minkowski space.
Therefore, we add the identity matrix to the Pauli matrices:

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(127)

These matrices form a basis of the 4-dimensional real vector space of complex, Hermitian
2× 2 matrices H(2), which do not have to be traceless.
An element x̂ in this space is given by

x̂ =
3∑

µ=0

xµσµ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, x ∈ R4 (128)

This defines an isomorphism between R4 and H(2).
It holds that

det(x̂) = (x0)2 − (x1)2 − (x2)2 − (x3)2 = ⟨x, x⟩ (129)

The most general transformation that preserves Hermiticity is given by

x̂′ = Ax̂A† (130)

To preserve the scalar product, we require det(A) = 1:

⟨x′, x′⟩ = det(x̂′) = det(Ax̂A†) = det(A) det(x̂) det(A†) = det(x̂) = ⟨x, x⟩ (131)

Thus, SL(2,C), the group of 2× 2 complex matrices with determinant 1, with x̂′ = Ax̂A†

could be a good candidate for the universal covering group of the proper orthochronous
Lorentz group L↑

+.

To verify this, we require the following theorem (Hall, 2015, Chapter 2.5):
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3.1 Double Cover of the Rotation and the Lorentz Group

Theorem 3.3 (Polar Decomposition). Any invertible matrix A ∈ Cn×n can be uniquely
written as

A = UeH (132)

where U ∈ Cn×n is unitary and H ∈ Cn×n is Hermitian.

We decompose A ∈ SL(2,C) as A = UeH with U ∈ SU(2) and H ∈ SH(2) = {X ∈
C2×2 | X = X†, det(X) = 1}.

eH(χ⃗) x̂ (eH(χ⃗))† = eH(χ⃗) x · σ (eH
†(χ⃗)) = e

1
2
χ⃗·σ⃗ (x0σ0 + x⃗ · σ⃗) e

1
2
χ⃗·σ⃗

=
(
cosh

(χ
2

)
σ0 + sinh

(χ
2

)
n⃗ · σ⃗

)
(x0σ0 + x⃗ · σ⃗)

(
cosh

(χ
2

)
σ0 + sinh

(χ
2

)
n⃗ · σ⃗

)
= x0

(
cosh2

(χ
2

)
σ0 + 2 cosh

(χ
2

)
sinh

(χ
2

)
n⃗ · σ⃗ + sinh2

(χ
2

)
n⃗ · σ⃗ n⃗ · σ⃗

)
+ cosh2

(χ
2

)
x⃗ · σ⃗ + cosh

(χ
2

)
x⃗ · σ⃗ sinh

(χ
2

)
n⃗ · σ⃗ + sinh

(χ
2

)
n⃗ · σ⃗ x⃗ · σ⃗ cosh

(φ
2

)
+ sinh2

(χ
2

)
n⃗ · σ⃗ x⃗ · σ⃗ n⃗ · σ⃗

(115)
= x0

(
cosh2

(χ
2

)
σ0 + 2 cosh

(χ
2

)
sinh

(χ
2

)
n⃗ · σ⃗ + sinh2

(χ
2

)
σ0

)
+ cosh2

(χ
2

)
x⃗ · σ⃗ + 2 cosh

(χ
2

)
sinh

(χ
2

)
n⃗ · x⃗ σ0

+ sinh2
(χ
2

)
(n⃗ · σ⃗(x⃗ · n⃗+ iσ⃗ · (x⃗ ∧ n⃗))

(115)
= x0

(
cosh2

(χ
2

)
σ0 + 2 cosh

(χ
2

)
sinh

(χ
2

)
n⃗ · σ⃗ + sinh2

(χ
2

)
σ0

)
+ cosh2

(φ
2

)
x⃗ · σ⃗ + 2 cosh

(φ
2

)
sinh

(φ
2

)
n⃗ · x⃗ σ0

+ sinh2
(χ
2

)
(n⃗ · x⃗ n⃗ · σ⃗ + in⃗ · (x⃗ ∧ n⃗)︸ ︷︷ ︸

=0

−σ⃗ · (n⃗ ∧ (x⃗ ∧ n⃗))︸ ︷︷ ︸
=(n⃗·n⃗)x⃗−(n⃗·x⃗)n⃗

)

=
(
cosh2

(χ
2

)
x0 + sinh2

(χ
2

)
x0 + 2 cosh

(χ
2

)
sinh

(χ
2

)
n⃗ · x⃗

)
σ0

+ (2 cosh
(χ
2

)
sinh

(χ
2

)
x0n⃗+ cosh2

(χ
2

)
x⃗

+ sinh2
(χ
2

)
((n⃗ · x⃗)n⃗− x⃗+ (n⃗ · x⃗)n⃗)) · σ⃗

=

(
1

2
(cosh(χ) + 1)x0 +

1

2
(cosh(χ)− 1)x0 + sinh(χ)n⃗ · x⃗

)
σ0

+

(
sinh(χ)x0n⃗+

1

2
(cosh(χ) + 1)x⃗+

1

2
(cosh(χ)− 1)((n⃗ · x⃗)n⃗− x⃗+ (n⃗ · x⃗)n⃗)

)
· σ⃗

=
(
cosh(χ)x0 + sinh(χ)n⃗ · x⃗

)
σ0

+
(
sinh(χ)x0n⃗+ x⃗+ (cosh(χ)− 1)(n⃗ · x⃗)n⃗

)
· σ⃗

(83)
= (B(χ⃗)x) · σ = B̂(χ⃗)x

(133)
For U ∈ SU(2), we have essentially performed the calculation in the previous section on
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rotations:
U(φ⃗) x̂ U †(φ⃗) = U(φ⃗) (x0σ0 + x⃗ · σ⃗) U †(φ⃗)

= x0U(φ⃗)U †(φ⃗) + U(φ⃗) x⃗ · σ⃗ U †(φ⃗)

(123)
= x0 + (R(φ⃗)x⃗) · σ⃗
= (R(φ⃗)x) · σ = R̂(φ⃗)x

(134)

Using Theorem 2.2 and Theorem 3.3, we have thus found the following relationship be-
tween A ∈ SL(2,C) and Λ ∈ L↑

+:

(Λ(A)x) · σ = A x · σ A† (135)

We can show that the mapping defined above is a group homomorphism:

(Λ(A1A2)x) · σ = A1A2 x · σ A†
2A

†
1 = A1 (Λ(A2)x) · σ A†

1 = (Λ(A1)Λ(A2)x) · σ (136)

=⇒ Λ(A1A2) = Λ(A1)Λ(A2) (137)

Next, we want to explicitly specify the group homomorphism.
Define

σµ = (σ0,−σi), σµ = (σ0, σi)

σ̃µ = (σ0, σi), σ̃µ = (σ0,−σi)
(138)

From Equation (114), we have

σiσj = δijσ0 + iϵijkσk =⇒ tr(σiσj) = δij tr(σ0) + iϵijk tr(σk) = 2δij (139)

σ0σµ = σµσ0 = σµ =⇒ tr(σ0σµ) = tr(σµσ0) = tr(σµ) = 2δ0µ (140)

=⇒ tr(σµσν) = 2δµν (141)

The inverse mapping of the isomorphism (128) is given by

1

2
tr(x̂σ̃µ) =

1

2
tr(xνσν σ̃

µ) =
1

2
xν tr(σν σ̃

µ) =
1

2
xν2δ µ

ν = xµ (142)

For the transformation properties of x and x̂, we have

(x′)µ =
1

2
tr(x̂′σ̃µ) =

1

2
tr(Ax̂A†σ̃µ) =

1

2
tr(AxνσνA

†σ̃µ) =
1

2
tr(AσνA

†σ̃µ)xν
!
= Λµ

νx
ν

(143)

=⇒ Λµ
ν =

1

2
tr(AσνA

†σ̃µ)
tr(XY )=tr(Y X)

=
1

2
tr(A†σ̃µAσν) (144)

Here again, we see that A and −A ∈ SL(2,C) correspond to the same Lorentz transfor-
mation Λ ∈ L↑

+.

Theorem 3.4. The kernel Z = Φ−1({14}) of Φ : A → Λ(A) is given by {12,−12}, and
L↑

+ = SL(2,C)/{12,−12}.

Proof.
Z = Φ−1({14}) = {A ∈ SL(2,C) | AσµA† = σµ} (145)

Taking σµ = σ0, we find that A ∈ Z is unitary. It follows that Aσµ = σµA for A ∈ Z,
meaning A must be a multiple of 12. Since A must also be unitary, we obtain A = +12

or A = −12.
Therefore, A = ±B if and only if Λ(A) = Λ(B).
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Thus, we have proven the following theorem:

Theorem 3.5. SL(2,C) is the double cover of L↑
+, and the covering map

Φ : SL(2,C) → L↑
+, A 7→ Λ(A) =

1

2
tr(A†σ̃µAσν) (146)

is a group homomorphism.

This homomorphism is also continuous.

Because of Theorem 2.2 and Theorem 3.3, we can decompose A ∈ SL(2,C) into U ∈
SU(2) and eH with H ∈ SH(2), which correspond to a rotation and a boost. Therefore,
SL(2,C) is diffeomorphic to S3×R3, both of which are simply connected. Hence, SL(2,C)
is simply connected.

In conclusion, this shows that SL(2,C) is isomorphic to the universal covering group of
L↑

+.

3.2 Spinor Representation of the Lorentz Group

Equation (135) shows that the tuple (H(2),A), with

A : L↑
+ −→ SL(H(2))

Λ 7−→ (x̂ 7→ AΛx̂A
†
Λ), AΛ ∈ SL(2,C)

(147)

is a representation of L↑
+:

AΛ x · σ A†
Λ = (Λx) · σ (148)

AΛ1Λ2 x · σ A
†
Λ1Λ2

= (Λ1Λ2x) · σ = AΛ1 (Λ2x) · σ A†
Λ1

= AΛ1AΛ2 x · σ A
†
Λ2
A†

Λ1

(149)

A is also well-defined because x̂ 7→ AΛx̂A
†
Λ is linear and invertible.

x x′

x̂ =
3∑

µ=0

xµσµ x̂′ =
3∑

µ=0

x′µσµ

Λ ∈ L↑
+

A · A† ∈ SL(2,C)

ˆ ˆ

The diagram illustrates the representation (H(2),A).
ˆ: R4 → H(2) denotes the isomorphism defined in (128) and the symbol · in A · A† serves
as a placeholder.
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3 REPRESENTATIONS

As a next step one might try to define a representation (C2, D̃( 1
2
,0)), with

D̃( 1
2
,0) : L↑

+ −→ SL(2,C)

Λ 7−→ (u 7→ AΛu)
(150)

However, this representation would not be well-defined, as it is 1 : 2. An element Λ ∈ L↑
+

could be mapped to both AΛ ∈ SL(2,C) and −AΛ ∈ SL(2,C).
This issue does not arise with (H(2),A), because the sign of AΛ cancels out in this case.

We can instead use SL(2,C) rather than L↑
+ and define a representation (C2, D( 1

2
,0)),

with
D( 1

2
,0) : SL(2,C) −→ SL(2,C)

Λ 7−→ (u 7→ AΛu)
(151)

It follows from Equation (149) that D( 1
2
,0) is a homomorphism: AΛ1Λ2 = AΛ1AΛ2 .

Therefore, we are working with representations of the universal covering group. This is
done here to obtain a well-defined mapping. But it fits perfectly with our discussion at
the end of Chapter 2, where we mentioned that it makes sense to use representations of
the universal covering group.
The vectors u ∈ C2, which the representation map acts on, are called spinors.

AΛ acts in a natural way in both cases (H(2),A) and (C2, D( 1
2
,0)):

On H(2), AΛ acts, as is usual for matrices, from both the left and the right:

A(Λ) : H(2) → H(2), x̂ 7→ x̂′ = AΛx̂A
†
Λ (152)

On C2, AΛ acts on the vector from the left:

D( 1
2
,0)(Λ) : C2 → C2, u 7→ u′ = AΛu (153)

Inspired by Equation (129), we define the symplectic bilinear form

⟨·, ·⟩ : C2 × C2 → C, u× v 7→ ⟨u, v⟩ = u1v2 − u2v1 = det(u, v) (154)

which is invariant under SL(2,C):

⟨u′, v′⟩ = det((Au,Av)) = det

(
A1

1u
1 + A1

2u
2 A1

1v
1 + A1

2v
2

A2
1u

1 + A2
2u

2 A2
1v

1 + A2
2v

2

)
= det(A(u, v))

= det(A)︸ ︷︷ ︸
=1

det((u, v)) = det((u, v)) = ⟨u, v⟩
(155)

We now introduce a suitable index notation:

C2 ∋ u =

(
u1
u2

)
= (uα) (156)

D( 1
2
,0)(Λ) : C2 → C2, uβ 7→ u′α = A β

α uβ (157)

28



3.2 Spinor Representation of the Lorentz Group

With the definition ϵ = (ϵαβ) :=

(
0 1
−1 0

)
, we can write

⟨u, v⟩ = uα ϵ
αβ vβ (158)

We can define uα := ϵαβuβ, and consequently uα = ϵαβu
β with (ϵαβ) = ϵ−1 = ϵT . Thus,

we obtain
⟨u, v⟩ = uαv

α (159)

This shows that a summation over an upper and lower index is invariant under SL(2,C).
ϵ can be understood as the metric tensor for spinors.

For the representation of SL(2,C) we can introduce a second representation space C
2
.

The complex conjugated vector space (C,+, ·) has the same elements and additive group
structure as (C,+, ·) but the scalar multiplication involves complex conjugation of the
scalars

· : C × C → C, (λ, u) 7→ λ·u = λ · u (160)

This gives a representation (C
2
, D(0, 1

2
)) with

D(0, 1
2
) : SL(2,C) −→ SL(2,C)

Λ 7−→ (u 7→ AΛu)
(161)

where AΛ is the complex conjugate matrix.
That this is a representation follows from Equation (149):

AΛ1Λ2 = AΛ1AΛ2 = AΛ1AΛ2 (162)

The two representations (C2, D( 1
2
,0)) and (C

2
, D(0, 1

2
)) are not equivalent in the following

sense:

Definition 3.1 (Equivalent Representations). Two representations (V1, π1) and (V2, π2)
with π1 : G → GL(V1) and π2 : G → GL(V2) are called equivalent if there is an isomor-
phism T : V1 → V2 such that ∀g ∈ G:

Tπ1(g)T
−1 = π2(g) (163)

This definition is meaningful, as demonstrated by the following heuristic:

v′ = π2(g)v = Tπ1(g)T
−1Tu = Tπ1(g)u = Tu′ = v′ (164)

Now, we show that the representations are not equivalent:
For equivalent representations π1(g) and π2(g) = Tπ1(g)T

−1, it holds that ∀g ∈ G:

tr(π2(g)) = tr(Tπ1(g)T
−1) = tr(π1(g)T

−1T ) = tr(π1(g)) (165)
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3 REPRESENTATIONS

However, for π1(Λ) = D( 1
2
,0)(Λ) = AΛ and π2(Λ) = D(0, 1

2
)(Λ) = AΛ, this condition is not

satisfied for

AΛ =

(
2i 0
0 − i

2

)
∈ SL(2,C) (166)

because tr(A) = 3
2
i and tr(A) =

(
−2i 0
0 i

2

)
= −3

2
i.

It follows that (C2, D( 1
2
,0)) and (C

2
, D(0, 1

2
)) are two non-equivalent representations of L↑

+.

We can explore more deeply what the representation (C
2
, D(0, 1

2
)) means: We propose that

it has something to do with the parity transformation. To realize a parity transformation,
we define in contrast to ((128)):

˜̂x =
3∑

µ=0

xµσ̃µ = x0σ0 −
3∑

i=1

xiσi (167)

We have

ϵAϵ−1 =

(
A2

2 −A2
1

−A1
2 A1

1

)
(168)

It follows

ϵσ0ϵ
−1 = σ0, ϵσiϵ

−1 = −σi =⇒ ϵσµϵ
−1 = σ̃µ (169)

and we obtain
˜̂x = ϵx̂ϵ−1 (170)

Thus, for the transformation in the reflected space one gets

˜̂x′ = ϵx̂′ϵ−1 = ϵAx̂A†ϵ−1 = ϵA(ϵ−1 ˜̂xϵ)A†ϵ−1 = (ϵAϵ−1)˜̂x(ϵA†ϵ−1) = (A†)−1 ˜̂xA−1 (171)

The last equality follows from

AϵAT =

(
−A1

2 A1
1

−A2
2 A2

1

)(
A1

1 A2
1

A1
2 A2

2

)
det(A)=1

= ϵ ⇐⇒ ϵAT ϵ−1 = A−1

⇐⇒ (ϵ−1)†(AT )†ϵ† = (A−1)† ⇐⇒ ϵAϵ−1 = (A†)−1 (172)

The transformation law
˜̂x′ = (ϵAϵ−1)˜̂x(ϵA†ϵ−1) (173)

defines a representation, which with the isomorphism ϵ : C
2 → C

2
is equivalent to

(C
2
, D(0, 1

2
)).

Thus, (C
2
, D(0, 1

2
)) is required to realise equalities which consider parity transformations.

As mentioned, one obtains equivalent representations by choosing an isomorphic vector
space and appropriately adjusting the homomorphism of the representation. Since these
representations do not add anything new, it makes sense to group all equivalent represen-
tations together:
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3.3 Invariant Field Equations

(1
2
, 0) are the equivalent representations of (C2, D( 1

2
,0)) and (0, 1

2
) are the equivalent rep-

resentations of (C
2
, D(0, 1

2
)).

(1
2
, 0) and (0, 1

2
) are called spinor representations and are, in a sense, the fundamental

representations of L↑
+. All other representations can be constructed from these two fun-

damental representations using spinor calculus (van der Waerden (1974)). The fact that
these two representations are so fundamental is related to the fact that SL(2,C) is the
universal covering group of L↑

+.

3.3 Invariant Field Equations

So far, we have only considered finite-dimensional representations, where the vector space
is finite-dimensional. In quantum mechanics, however, we deal with functions defined on
Minkowski space

ψ : M → Cd, x 7→ ⟨x|ψ⟩ (174)

ψ ∈ H = L2(R3)d (175)

This setting fits well with our introduction of representations, where we linearized M by
taking the space of functions F (M) = {f | f : M → W} ⊆ WM as the vector space of
the representation. This vector space is infinite-dimensional ifM contains infinitely many
elements. This is the case for Minkowski space, and thus we obtain infinite-dimensional
representations (see also Maciejko (2020)).

So, we consider the space of functions as the vector space of the representation. The set
M mentioned above in our case is Minkowski space M, which corresponds to the vector
space R4. We want to examine the general transformation behavior in this context:
Let G be a group and V,W be vector spaces.
We have representation mappings

Λ : G→ GL(V ), S : G→ GL(W ) (176)

and we are interested in a function

ψ : V → W (177)

i.e. representations on the vector space W V . That means we consider the representation
mapping

T : G −→ GL(W V )

A 7−→ (TA : ψ 7→ SA ◦ ψ ◦ Λ−1
A )

(178)

This mapping is chosen such that ∀g, h ∈ G:

Tg∗h = Tg ◦ Th (179)

as shown by the following calculation:

Tg◦Th◦ψ = Sg◦Sh◦ψ◦Λ−1
h ◦Λ−1

g = Sg◦Sh◦ψ◦(Λg◦Λh)
−1 = Sg∗h◦ψ◦Λ−1

g∗h = Tg∗h◦ψ (180)
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3 REPRESENTATIONS

In the third step, we used the fact that S and Λ are representation mappings, and thus
group homomorphisms.
Therefore, we generally obtain

ψ(x)
A7−→ ψ′(x′) = (TAψ)(x

′) = SAψ(Λ
−1
A · x′) = SAψ(x) (181)

As Equations (174) and (175) already suggest, the wave function ψ can have a d-dimensional
range. At this point, the Dirac theory differs from the Schrödinger theory, where the wave
function is one-dimensional. The dimension of the wave function ψ characterizes differ-
ent representations, which, as we will see later, correspond to a particular property of a
particle: the spin.

Representations with the lowest dimension of the wave function’s range:
(0, 0): For a scalar field ψ : M → C, x 7→ ⟨x|ψ⟩, D(0,0)(Λ) is a one-valued map, and the
requirement that D(0,0) is a group homomorphism gives us

λ = D(0,0)(Λ1Λ2) = D(0,0)(Λ1)D
(0,0)(Λ2) = λ2 =⇒ λ = 1 =⇒ D(0,0)(Λ) = 1 (182)

From Equation (181), it follows

ψ′(x′)
(181)
= D(0,0)(Λ)ψ(x) = ψ(Λ−1 · x′) (183)

(1
2
, 0): This spinor representation transforms the two-valued field ψα : M → C2, x 7→ ⟨x|ψα⟩

in the following way:

ψ′
α(x

′)
(181)
= A β

α ψβ(x) = A β
α ψβ(Λ

−1 · x′) (184)

(0, 1
2
): This spinor representation transforms the two-valued field ψα : M → C

2
, x 7→ ⟨x|ψα⟩

as follows:

ψ′
α(x

′)
(181)
= A

β

α ψβ(x) = A
β

α ψβ(Λ
−1 · x′) (185)

Now, the goal is to find invariant differential equations for various fields. Here, we closely
follow Scharf (2014). We need a representation of the differential operator ∂µ = ∂

∂xµ .
Therefore, we must have a 4-dimensional irreducible representation.

Definition 3.2 (Irreducible Representation). A representation (V, π) of a group G with
representation map

π : G→ GL(V ), g 7→ π(g) (186)

is called irreducible if there are no non-trivial G-invariant subspaces, i.e., W1 = {0} and
W2 = V are the only G-invariant subspaces.
A subspace W ⊆ V is called G-invariant if for all w ∈ W and all g ∈ G: π(g)w ∈ W .

The irreducibility of the representation is crucial because such representations cannot be
decomposed further, and as a consequence they describe fundamental properties of the
one-particle quantum system of interest.
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3.3 Invariant Field Equations

All finite-dimensional irreducible representations of L↑
+ can be obtained in the following

way (Scharf, 2014, Chapter 1.1):
We consider the vector space

sym(C2)⊗n × sym(C
2
)⊗m ∋ uα1...αnβ1...βm

(187)

where sym(C2)⊗n is the symmetric part of the n-fold tensor product of C2. For a detailed
definition see (Lee, 2012, Chapter 12). Then we get the following irreducible representa-
tion:

D(n
2
,m
2
) : SL(2,C) → SL(sym(C2)⊗n × sym(C

2
)⊗m),Λ 7→ D(n

2
,m
2
)(Λ) (188)

with

D(n
2
,m
2
)(Λ) : sym(C2)⊗n × sym(C

2
)⊗m → sym(C2)⊗n × sym(C

2
)⊗m,

uγ1...γnδ1...δm 7→ u′
α1...αnβ1...βm

= A γ1
α1
. . . A γn

αn
A

δ1
β1
. . . A

δm
βm

uγ1...γnδ1...δm (189)

To determine the dimension of sym(C2)⊗n, we start by considering the basis of C2, denoted
as e1, e2. The basis of sym(C2)⊗n is then given by:

• e1 ⊗ e1 ⊗ . . .⊗ e1 (n times e1)

• e2 ⊗ e1 ⊗ . . .⊗ e1 + e1 ⊗ e2 ⊗ . . .⊗ e1 + . . .+ e1 ⊗ e1 ⊗ . . .⊗ e2 ((n− 1) times e1)

• . . .

• e1 ⊗ e2 ⊗ . . .⊗ e2 + e2 ⊗ e1 ⊗ . . .⊗ e2 + . . .+ e2 ⊗ e2 ⊗ . . .⊗ e1 ((n− 1) times e2)

• e2 ⊗ e2 ⊗ . . .⊗ e2 (n times e2)

Thus, the number of basis elements is n+ 1 and we have dim(sym(C2)⊗n) = n+ 1.

It follows that dim(sym(C2)⊗n × sym(C
2
)⊗m) = (n+ 1)(m+ 1).

The desired 4-dimensional representation is therefore obtained for n = 1 and m = 1, i.e.,
(1
2
, 1
2
):

D( 1
2
, 1
2
) : SL(2,C) → SL(sym(C2)× sym(C

2
)),Λ 7→ D( 1

2
, 1
2
)(Λ) (190)

with

D( 1
2
, 1
2
)(Λ) : sym(C2)× sym(C

2
) → sym(C2)× sym(C

2
), uγδ 7→ u′

αβ
= A γ

α A
δ

β uγδ (191)

The matrices σ0, σ1, σ2, σ3 form a basis not only for the real vector space of Hermitian
2× 2 matrices but also for the complex vector space of 2× 2 matrices.
Define the isomorphism

ψ̂αβ =
3∑

µ=0

ψµ(σµ)αβ (192)
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3 REPRESENTATIONS

which links the spinor ψ̂αβ and the four-vector ψµ, analogous to Equation (128). We
obtain the correct transformation behavior, as shown by Equation (149):

ψ̂′
αβ = A γ

α ψ̂γδA
δ

β = (Aψ̂A†)αβ
(149)
= (Λ̂ψ)αβ (193)

Equation (149) was demonstrated for x ∈ R4, but the calculation is entirely analogous for
C4.

For ∂µ and ∂µ = gµν∂ν , we have

∂̂ = (∂αβ) = σµ∂
µ = σ0∂0 − σ⃗ · ∇⃗ (194)

and
∂αβ = ϵαγϵβδ∂γδ = (ϵ∂̂ϵT )αβ (195)

From Equation (168) and ϵ−1 = ϵT , we obtain

ϵσ0ϵ
T = σ0, ϵσiϵ

T = −σT
i (196)

Thus, it follows

∂αβ = (σ0∂0 + σ⃗T · ∇⃗)αβ (197)

Now, we can write down differential equations for various fields.
Scalar field:
A scalar differential operator has no free indices, implying ∂αβ∂

αβ. This leads to the
equation

∂αβ∂
αβψ(x) + aψ(x) = 0 (198)

where a ∈ C is a constant. The second-order differential operator ∂αβ∂
αβ can be expressed

as follows:

∂αβ∂
γβ = (σ0∂0 − σ⃗ · ∇⃗)αβ(σ0∂0 + σ⃗T · ∇⃗)γβ = (σ0∂0 − σ⃗ · ∇⃗)αβ(σ0∂0 + σ⃗ · ∇⃗)βγ

= (σ0σ0∂
2
0 − σ⃗ · σ⃗∇⃗2) γ

α

(114)
= (12∂

2
0 − 12∇⃗2) γ

α = (∂20 − ∇⃗2)δ γ
α

(199)

This implies that

∂αβ∂
αβ = ∂20 − ∇⃗2 = □ (200)

where □ is the wave operator. Consequently, we obtain for the invariant scalar field
equation

(□+ a)ψ(x) = 0 (201)

Here, the constant a has the dimension 1
length2

. To determine the physical meaning of a,

we construct it using the mass of the particle and fundamental constants from relativity
and quantum mechanics. This leads to the Compton wavelength: λ = ℏ

mc
. Thus, we

arrive at the Klein-Gordon equation

□ψ(x) +
(mc

ℏ

)2
ψ(x) = 0 (202)
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3.3 Invariant Field Equations

For the massless case m = 0, the equation reduces to the wave equation

□ψ(x) = 0 (203)

Spinor field:
For a spinor field with one free index, we have the following building blocks available:

∂αβφα ⇐⇒ (σ0∂0 + σ⃗T · ∇⃗)Tφ = (σ0∂0 + σ⃗ · ∇⃗)φ (204)

∂αβφ
α ⇐⇒ (σ0∂0 − σ⃗ · ∇⃗)Tφ = (σ0∂0 − σ⃗T · ∇⃗)φ (205)

∂αβχβ ⇐⇒ (σ0∂0 + σ⃗T · ∇⃗)χ (206)

∂αβχ
β ⇐⇒ (σ0∂0 − σ⃗ · ∇⃗)χ (207)

Here, φ ∈ C2 is called a right-handed Weyl spinor, and χ ∈ C
2
is called a left-handed Weyl

spinor. The first two and the last two terms can be transformed into one another using
the spinor metric. While φ and χ do not represent the rotation angle or rapidity, this
notation is commonly used. These expressions lead to first-order differential equations,
with the simplest ones being:
the right-handed Weyl equation

∂αβφα(x) = 0 ⇐⇒ (σ0∂0 + σ⃗ · ∇⃗)φ(x) = 0 (208)

and the left-handed Weyl equation

∂αβχ
β(x) = 0 ⇐⇒ (σ0∂0 − σ⃗ · ∇⃗)χ(x) = 0 (209)

It is not possible to add mass terms like aφα or bχβ to these equations because the indices
do not match. Therefore, these equations describe massless particles. Another important
point is that the equations are not invariant under parity transformations P : x⃗ 7→ −x⃗.
For the right-handed Weyl equation, the transformed equation is

φ̃(x) = φ(x0,−x⃗) (σ0∂0 − σ⃗ · ∇⃗)φ̃(x) = 0 (210)

For the left-handed Weyl equation, the transformed equation is

χ̃(x) = χ(x0,−x⃗) (σ0∂0 + σ⃗ · ∇⃗)χ̃(x) = 0 (211)

Equations (208) and (210) and Equations (209) and (211) would only be equivalent if
there existed a linear transformation T such that

T (σ0∂0 − σ⃗ · ∇⃗)T−1φ̃(x) = (σ0∂0 + σ⃗ · ∇⃗)φ̃(x) (212)

and similarly
T (σ0∂0 + σ⃗ · ∇⃗)T−1χ̃(x) = (σ0∂0 − σ⃗ · ∇⃗)χ̃(x) (213)

which implies Tσi = −σiT . Explicit calculation shows that this is only valid for T = 0.
Therefore, the Weyl equations are not invariant under spatial reflection.
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We now seek a parity-invariant equation that allows for a mass term. Observing that
the right-handed Weyl equation is equivalent to the transformed left-handed Weyl equa-
tion and vice versa, we can construct coupled equations

∂αβφα(x) = aχβ(x) ⇐⇒ (σ0∂0 + σ⃗ · ∇⃗)φ(x) = aχ(x) (214)

∂αβχ
β(x) = bφα(x) ⇐⇒ (σ0∂0 − σ⃗ · ∇⃗)χ(x) = bφ(x) (215)

The transformed equations

∂αβφ̃α(x) = aχ̃β(x) ⇐⇒ (σ0∂0 + σ⃗ · ∇⃗)φ̃(x) = aχ̃(x) (216)

∂αβχ̃
β(x) = bφ̃α(x) ⇐⇒ (σ0∂0 − σ⃗ · ∇⃗)χ̃(x) = bφ̃(x) (217)

are identical to the original equations if one sets

a = b, φ̃(x) = kχ(x), χ̃(x) = kφ(x) (218)

where k ∈ C is a constant. Additionally, we have

φ(x) = ˜̃φ(x) = kχ̃(x) = k2φ(x) =⇒ |k| = 1 (219)

By choosing k = 1 and a = −imc
ℏ , we obtain the Dirac equation for a particle with mass

m:

iℏ(σ0∂0 + σ⃗ · ∇⃗)φ(x) = mcχ(x) (220)

iℏ(σ0∂0 − σ⃗ · ∇⃗)χ(x) = mcφ(x) (221)

The factor of i is introduced to ensure unitary time evolution.
The two coupled two-component equations can be written as a single four-component
equation by introducing a Dirac spinor

ψ =

(
φ
χ

)
(222)

and the gamma matrices

γµ =

(
0 σµ

σ̃µ 0

)
⇐⇒ γ0 =

(
0 σ0
σ0 0

)
, γi =

(
0 −σi
σi 0

)
(223)

Equation (223) represents the Weyl representation of the gamma matrices. Using these,
we arrive at the Dirac equation in its standard covariant form:

iℏγµ∂µψ(x) = mcψ(x) (224)

From our previous construction, we already know how ψ(x) transforms under a Lorentz
transformation:

ψ(x) =

(
φα(x)

χβ(x)

)
7−→ ψ′(x′) = SΛψ(x) (225)
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3.3 Invariant Field Equations

where

SΛ =

(
AΛ 0
0 ϵ−1AΛϵ

)
similar to (172)

=

(
AΛ 0

0 (A†
Λ)

−1

)
, AΛ ∈ SL(2,C) (226)

The two ϵ factors in SΛ arise because the index β in χβ is an upper index. It must first be
lowered so that the known transformation behavior holds and then raised again afterward.

We can now explicitly check whether the Dirac equation is invariant under Lorentz trans-
formations:

iℏγµ∂′µψ′(x′) = mcψ′(x′) (227)

iℏγµ∂′µSΛψ(x) = mcSΛψ(x) (228)

iℏγµΛ ν
µ ∂νSΛψ(x) = mcSΛψ(x) (229)

iℏS−1
Λ γµΛ ν

µ ∂νSΛψ(x) = mcψ(x) (230)

iℏS−1
Λ γµSΛΛ

ν
µ ∂νψ(x) = mcψ(x) (231)

Therefore, it must hold that

S−1
Λ γµSΛΛ

ν
µ = γν (232)

S−1
Λ γµSΛΛ

ν
µ Λα

ν = Λα
νγ

ν (233)

S−1
Λ γµSΛΛ

µνΛα
ν = Λα

νγ
ν (234)

S−1
Λ γµSΛgµρΛ

ρ
τg

τνΛα
ν = Λα

νγ
ν (235)

Using the condition from (8):

gµνΛ
µ
ρΛ

ν
τ = gρτ ⇐⇒ gµνgµνΛ

µ
ρΛ

ν
τg

ρτ = gµνgρτg
ρτ ⇐⇒ Λµ

ρΛ
ν
τg

ρτ = gµν (236)

we get

S−1
Λ γµSΛgµρ Λ

ρ
τg

τνΛα
ν︸ ︷︷ ︸

gρα

= Λα
νγ

ν (237)

S−1
Λ γµSΛgµρg

ρα = Λα
νγ

ν (238)

S−1
Λ γµSΛδ

α
µ = Λα

νγ
ν (239)

S−1
Λ γαSΛ = Λα

νγ
ν (240)

S−1
Λ γµSΛ = Λµ

νγ
ν (241)

This is the invariance condition for the Dirac equation. We can observe that the matrices
S−1
Λ γµSΛ transform like a 4-vector.

Following this condition, we would recover the transformation matrix SΛ as described
earlier in (226).

Next, let us examine what kind of particles are described by the Dirac equation. For
this, we analyze the behavior of the Dirac spinor under rotations Λ = R(φ⃗). Since the
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elements of the covering group AR(φ⃗) = U(φ⃗) ∈ SU(2) are unitary, the transformation
behavior is given by

ψ′(x′) =

(
U(φ⃗) 0
0 U(φ⃗)

)
ψ(x) =

(
U(φ⃗) 0
0 U(φ⃗)

)
ψ(R(φ⃗)−1x′) (242)

This corresponds to the spinor representation D
1
2 ⊕ D

1
2 of the rotation group SO(3),

where the underlying vector space is C2 ⊕ C2. Therefore, the Dirac equation describes
particles with spin 1

2
.

We also observe that for rotations, a two-dimensional spinor is sufficient to obtain a
parity-invariant equation, as the transformation matrix for both the right-handed and
left-handed Weyl spinors is the same. However, the inclusion of time and the resulting
boosts make a four-dimensional Dirac spinor necessary. This is because the Hermitian
boost matrices satisfy (A†

λ(χ⃗))
−1 = A−1

λ(χ⃗) ̸= Aλ(χ⃗).
This can be understood by noting that for rotations, a spatial reflection does not make a
difference. However, for boosts, a parity transformation leads to a boost in the opposite
direction, which corresponds to the inverse boost.
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4 Lie Algebra

4.1 Introduction to Lie Algebra

We now place our previous discussions in a broader context. As mentioned earlier, the
Lorentz group is a Lie group, which gives it a special structure. Specifically, it is a differ-
entiable manifold that is compatible with its group structure.
This manifold structure allows us to introduce local coordinates. Due to its differentiable
nature, we can differentiate a group element with respect to a coordinate and obtain an
infinitesimal generator of the group. For general Lie groups, this process provides the tan-
gent space of the Lie group at the identity element. This vector space inherits a special
structure from the group itself. Together with this structure the vector space is known as
the Lie algebra.

However, we will not explore the topic in full generality here. Instead, we take advantage
of the fact that the Lorentz group is a matrix group, i.e., G ⊂ GL(n,C). Thus, we define
the Lie algebra as follows:

Definition 4.1 (Lie Algebra). For G a Lie group of n × n invertible matrices, the Lie
algebra g of G is the space of n× n matrices X such that etX ∈ G for all t ∈ R.

The exponential of a matrix is given by the usual series

eA =
∞∑
k=0

1

k!
Ak = 1 + A+

1

2
A2 + · · ·+ 1

n!
An + . . . (243)

which converges, e.g., for any finite dimensional matrix A (Hall, 2015, Chapter 2.1).

This more concrete approach simplifies the discussion but comes at the cost of losing
some important properties of the Lie algebra. For example, we do not immediately see
that the Lie algebra is the tangent space at the identity element of the group. However,
we do have the following:

d

dt
etX = XetX (244)

which implies that

X =

(
d

dt
etX
)

t=0

(245)

While the map

exp : R ×Mat(n,C) → GL(n,C), (t,X) 7→ etX (246)

where Mat(n,C) is the space of n×n matrices over the complex numbers, is not surjective
in general, meaning not every group element can be written as etX , it is surjective near
the identity element. Therefore, the calculation above gives us the Lie algebra as the
tangent space at the identity element.

For now, we aim to establish a weaker result, namely, that the Lie algebra is at least
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4 LIE ALGEBRA

a vector space for G = GL(n,C). Let X ∈ Mat(n,C). The exponential etX is an invert-
ible matrix for all t ∈ R, with inverse e−tX , so etX ∈ GL(n,C). Thus, we conclude that
Mat(n,C) is the Lie algebra of GL(n,C), and Mat(n,C) is a vector space.

The same can be shown for any subgroup G ⊂ GL(n,C).

The special structure inherited by the Lie algebra from the group structure is the Lie
bracket:

Definition 4.2 (Lie Bracket). The Lie bracket operation on g is a bilinear, anti-symmetric
map given by the commutator of matrices

[·, ·] : g× g → g, (X, Y ) 7→ [X, Y ] = XY − Y X (247)

We must still show that this is well-defined, meaning that X, Y ∈ g implies [X, Y ] =
XY − Y X ∈ g. For a detailed proof, see (Woit, 2024, Chapter 5.1).

Since the Lie algebra, unlike the Lie group, is a vector space, we can introduce a ba-
sis X1, . . . , Xn. The Lie bracket can then be written as

[Xi, Xj] =
n∑

k=1

cijkXk (248)

where cijk are the structure constants.

For the Lie algebra so(3) of the group SO(3), we obtain

J1 = i
d

dφ1

R1(φ1)|φ1=0 = −i d
dφ1

1 0 0
0 cosφ1 − sinφ1

0 sinφ1 cosφ1

 = i

0 0 0
0 0 −1
0 1 0

 (249)

J2 = i
d

dφ2

R1(φ2)|φ2=0 = −i d
dφ0

 cosφ2 0 sinφ2

0 1 0
− sinφ2 0 cosφ2

 = i

 0 0 1
0 0 0
−1 0 0

 (250)

J3 = i
d

dφ3

R1(φ3)|φ3=0 = −i d
dφ0

cosφ3 − sinφ3 0
sinφ3 cosφ3 0
0 0 1

 = i

0 −1 0
1 0 0
0 0 0

 (251)

i.e., by explicit calculation

[Ji, Jk] = iϵijkJk (252)

In physics, based on Noether’s theorem, the group elements are identified as symmetry
transformations, and the elements of the Lie algebra, which generate these transforma-
tions, are interpreted as observables. Therefore, it is customary to introduce a factor of i
to the generators J so that they become Hermitian.
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4.1 Introduction to Lie Algebra

For su(2), we obtain

J1 = i
d

dφ1

U1(φ1)
∣∣
φ1=0

= i
d

dφ1

e−
i
2
σ1 =

1

2
σ1 (253)

J2 = i
d

dφ2

U2(φ2)
∣∣
φ2=0

= i
d

dφ2

e−
i
2
σ2 =

1

2
σ2 (254)

J3 = i
d

dφ3

U3(φ3)
∣∣
φ3=0

= i
d

dφ3

e−
i
2
σ3 =

1

2
σ3 (255)

Thus, using the commutator for Pauli matrices, we also find

[Ji, Jk] = iϵijkJk (256)

We observe that different groups can share the same Lie algebra. While the Lie alge-
bra of a group can be uniquely determined by differentiation, the reverse is not true.
According to a theorem by Lie, commonly referred to as ”Lie’s Third Theorem”, every
finite-dimensional Lie algebra corresponds to a unique simply connected Lie group (Hall,
2015, Chapter 5.10).
In our example, the Lie algebra with the commutator [Ji, Jk] = iϵijkJk generates the group
SU(2).

The central idea behind Lie algebras is to linearize the Lie group at the identity ele-
ment, allowing for easier calculations due to the vector space structure. This corresponds
to breaking down a group element into many small linear transformations that are ap-
plied consecutively. For infinitesimal transformations, this leads to the exponential map,
exp(x) = limn→∞

(
1 + x

n

)n
. This justifies the initial definition of the Lie algebra.

Similar to groups, one can also define a representation for Lie algebras:

Definition 4.3 (Lie Algebra Representation). A Lie algebra representation (V, ϕ) of a
Lie algebra g on an n-dimensional complex vector space V is given by a linear map

ϕ : g → gl(n,C) = Mat(n,C), X 7→ ϕ(X) (257)

satisfying
ϕ([X, Y ]) = [ϕ(X), ϕ(Y )] (258)

Implicitly, we have already chosen a representation when defining the generators of SO(3)
and SU(2), specifically the defining representation.

Next, we want to connect this with a Lie group and its representation. As mentioned
earlier, an element of the Lie group can be described by its behavior near the identity ele-
ment. When this is applied to the group representation and the Lie algebra representation
by the homomorphism property, we find that the group representation π : G→ GL(n,C)
is largely determined by its behavior at the identity element and, thus, by its derivative
π′.
This result is captured in the following theorem:
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4 LIE ALGEBRA

Theorem 4.1. If π : G→ GL(n,C) is a group representation, then

π′ : g → gl(n,C) = Mat(n,C), X 7→ π′(X) =
d

dt
(π(etX))

∣∣
t=0

(259)

satisfies the following properties:

1. π(etX) = etπ
′(X)

2. π′([X, Y ]) = [π′(X), π′(Y )]

For the proof, see (Woit, 2024, Chapter 5.4).

This theorem shows that we can study Lie group representations (V, π) by analyzing
the corresponding Lie algebra representation (V, π′). This is generally much easier since
π′ is a linear map.

4.2 Lorentz Algebra

Now, we wish to apply this to the Lorentz group, which, as previously mentioned, is
a Lie group. We follow the discussion in Pelster (2021). Near the identity, a Lorentz
transformation can be written as

Λµ
ν = δµν + ωµ

ν (260)

where ω is infinitesimal. Using Equation (8), we obtain for the infinitesimal Lorentz
transformation

gµν(δ
µ
ρ + ωµ

ρ)(δ
ν
τ + ων

τ ) = gρτ + ωρτ + ωτρ +O(ω2)
!
= gρτ (261)

From this, it follows that
ωρτ = −ωτρ (262)

This implies that ωαβ is antisymmetric, reducing the 16 components to 6 independent
parameters. An element of the Lorentz algebra can be written as

ωµ
ν = gαµδβνωαβ (263)

Due to the antisymmetry of ωαβ, we also have

ωµ
ν =

1

2
(gαµδβν − gβµδαν)ωαβ (264)

Thus, we have made the expression inside the brackets antisymmetric as well. We can
now define the basis elements of the Lorentz algebra as

(Mαβ)µν = i(gαµδβν − gβµδαν) (265)

and express the Lie algebra in terms of this basis:

ωµ
ν = − i

2
(Mαβ)µνωαβ (266)
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4.2 Lorentz Algebra

Here, we have used the standard representation (the 4× 4 representation) of the Lorentz
algebra.
Next, we can calculate the Lie bracket, which will allow us to determine a representation-
independent property of the Lie algebra:

[Mαβ,Mγδ]µν = (Mαβ)µρ(M
γδ)ρν − (Mγδ)µρ(M

αβ)ρν

= i2
(
gαµδβρ − gβµδαρ

) (
gγρδδν − gδρδγν

)
− i2

(
gγµδδρ − gδµδγρ

) (
gαρδβν − gβρδαν

)
= −

(
gαµδβρg

γρδδν − gαµδβρg
δρδγν − gβµδαρg

γρδδν + gβµδαρg
δρδγν

)
+
(
gγµδδρg

αρδβν − gγµδδρg
βρδαν − gδµδγρg

αρδβν + gδµδγρg
βρδαν

)
= −

(
gαµgβγδδν − gαµgβδδγν − gβµgαγδδν + gβµgαδδγν

)
+
(
gγµgαδδβν − gγµgβδδαν − gδµgαγδβν + gδµgβγδαν

)
= −gβγ(gαµδδν − gδµδαν) + gβδ(gαµδγν − gγµδαν)

+ gαγ(gβµδδν − gδµδβν)− gαδ(gβµδγν − gγµδβν)

= igβγ(Mαδ)µν − igβδ(Mαγ)µν − igαγ(Mβδ)µν + igαδ(Mβγ)µν
(267)

This leads to the following relation:

i[Mαβ,Mγδ] = gαγMβδ + gβδMαγ − gαδMβγ − gβγMαδ (268)

To simplify this expression, we analyze the cases for temporal and spatial indices sepa-
rately:

[M0i,M0j], [M0i,M jk], [M ij,Mkl] (269)

We now define the rotation generators Ji and the boost generators Ki as follows:

Ji =
1

2
ϵijkM

jk ⇐⇒ M ij = ϵijkJk, Ki =M0i (270)

The ”if and only if”-symbol is justified by the following calculation:

Ji =
1

2
ϵijkM

jk =
1

2
ϵijkϵjklJl =

1

2
· 2δilJl = Ji (271)

Thus, we obtain

[Ki, Kj] = [M0i,M0j] = i(−M ij − (−M00))
M antisym.

= −iM ij = −iϵijkJk (272)

[Ji, Kj] =
1

2
ϵikl[M

kl,M0j] =
1

2
ϵikli(−M l0 − (−Mk0))

M antisym.
=

1

2
iϵikl(M

0l −M0k)

= iϵiklM
0l = iϵiklKl

(273)
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[Ji, Jj] =
1

4
ϵiklϵjmn[M

kl,Mmn]

=
1

4
i(δijδkmδln + δimδknδjl + δinδjkδlm − δimδjkδln − δijδknδlm − δinδkmδjl)

(−δknM lm − δlmMkn − (−δkmM ln)− (−δlnMkm))

=
1

4
i(−δijδlmM lm − 3δimδjlM

lm − δijδlmM
lm + δimδjlM

lm + 3δijδlmM
lm + δimδjlM

lm

− δijδknM
kn − δijδknM

kn − 3δinδjkM
kn + δinδjkM

kn + 3δijδknM
kn + δinδjkM

kn

+ 3δijδlnM
ln + δinδjlM

ln + δinδjlM
ln − δijδlnM

ln − δijδlnM
ln − 3δinδjlM

ln

+ 3δijδkmM
km + δimδjkM

km + δimδjkM
km − 3δimδjkM

km − δijδkmM
km − δijδkmM

km)

M antisym.
=

1

4
i(−3δimδjlM

lm + δimδjlM
lm + δimδjlM

lm

− 3δinδjkM
kn + δinδjkM

kn + δinδjkM
kn

+ δinδjlM
ln + δinδjlM

ln − 3δinδjlM
ln

+ δimδjkM
km + δimδjkM

km − 3δimδjkM
km)

=
1

4
i(−δimδjlM lm − δinδjkM

kn − δinδjlM
ln − δimδjkM

km) = −1

4
iδimδjlM

lm

M antisym.
= −1

2
iδimδjl(M

lm −Mml) =
1

2
i(δilδjm − δimδjl)M

lm =
1

2
iϵijkϵklmM

lm

= iϵijkJk
(274)

In summary, we have
[Ji, Jj] = iϵijkJk

[Ji, Kj] = iϵiklKl

[Ki, Kj] = −iϵijkJk
(275)

To move towards the simply connected covering group of the Lorentz group, we use the
exponential map. From Equation (266), we obtain

Λ = e−
i
2
Mαβωαβ (276)

We define, analogous to Equation (270):

Φi =
1

2
ϵijkωjk ⇐⇒ ωij = ϵijkΦ

k, Xi = ω0i (277)

and thus find
Λ = e−iΦ⃗·J⃗−iX⃗·K⃗ (278)

Here, Φ⃗ and X⃗ should not be mixed up with the rotation vector φ⃗ and the boost vector
χ⃗, since in general e−iΦ⃗·J⃗−iX⃗·K⃗ ̸= e−iΦ⃗·J⃗e−iX⃗·K⃗ . However, Φ⃗ and X⃗ are linear combinations
of φ⃗ and χ⃗.

Here, Ji and Ki are general basis elements of the Lorentz algebra. By choosing a repre-
sentation of the Lorentz algebra and using the first statement of Theorem 4.1, we obtain a
representation of the simply connected covering group of the Lorentz group. For example,
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4.2 Lorentz Algebra

the Lie brackets (275) can be solved by π′(Ji) = 1
2
σi and π′(Ki) = i

2
σi. This provides

a representation of SL(2,C), which is expected since SL(2,C) is the universal covering
group of L↑

+.

Next, we move on to the generators of Lorentz transformations acting on spacetime-
dependent objects, specifically fields, drawing inspiration from Eichmann (2020). We
start with the simplest case: a scalar field. We have

ψ(Λ−1x)
(183)
= ψ′(x) = e−

i
2
ωµνM

µν
L ψ(x)

=

(
1− i

2
ωµνM

µν
L

)
ψ(x)

(279)

where we consider the transformation near the identity and have linearized the exponential
map. Rearranging the terms, we get

ψ(x)− ψ(Λ−1x) =
i

2
ωµνM

µν
L ψ(x) (280)

To find Mµν , we must rewrite the left-hand side in the appropriate form:

ψ(x)− ψ(Λ−1x) = δxµ︸︷︷︸
ωµνxν

∂µψ(x) (281)

where δxµ is an infinitesimal Lorentz transformation, and by Equation (260), we have
δxµ = ωµνx

ν . Thus, we obtain

ψ(x)− ψ(Λ−1x) = ωµνx
ν∂µψ(x)

ω antisym.
=

1

2
(ωµν − ωνµ)x

ν∂µψ(x)

=
1

2
ωµν(x

ν∂µ − xµ∂ν)ψ(x)
(282)

Therefore, one gets

Mµν
L = i(xµ∂ν − xν∂µ) (283)

To distinguish these generators from the previous ones, we denote them with the subscript
L and refer to the earlier generators with the subscript S.

We can now decompose this generator into rotation and boost generators using Equa-
tion (270):

(JL)i =
1

2
ϵijkM

jk
L =

1

2
iϵijk(x

j∂k − xk∂j) = iϵijkx
j∂k

Pµ=i∂µ

= ϵijkx
jP k = x⃗× P⃗ (284)

(KL)i =M0i
L = i(x0∂i − xi∂0)

Pµ=i∂µ

= x0P i − xiP 0 (285)

JL represents the classical orbital angular momentum of the system, while KL is its coun-
terpart for boosts. This generator connects the time coordinate with the momentum
(position generator) and the spatial coordinate with the energy (time generator).
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For a general field, the generator of Lorentz transformations is given by

Mµν =Mµν
S +Mµν

L (286)

The generator consists of an intrinsic part and an orbital part, both for rotations and
boosts. The orbital part was already known, while the intrinsic part arises from the
higher-dimensional spinor representation.
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Until now, we have focused exclusively on Lorentz transformations, which preserve the
scalar product. However, our initial requirement was the constancy of the speed of light.
It can be shown that this condition also holds when spacetime translations are included.
In fact, this is the most general transformation that satisfies the principles of relativity.
This broader set of transformations is known as the Poincaré transformations.

Definition 5.1 (Poincaré Transformation). A Poincaré transformation Π = (Λ, a), where
Λ ∈ L and a ∈ R4 is a mapping from R4 to R4 which is defiend as

Π(x) = Λx+ a (287)

The set of all Poincaré transformations forms a group, known as the Poincaré group,
denoted by P .

• Closure:
Let (Λ1, a1), (Λ2, a2) ∈ P .

x′′µ = (Λ2)
µ
ρx

′ρ + aµ2 = (Λ2)
µ
ρ((Λ1)

ρ
νx

ν + aρ1) + aµ2 = (Λ2)
µ
ρ(Λ1)

ρ
νx

ν + (Λ2)
µ
ρa

ρ
1 + aµ2
(288)

=⇒ Λµ
ν = (Λ2)

µ
ρ(Λ1)

ρ
ν , aµ = (Λ2)

µ
νa

ν
1 + aµ2 (289)

Therefore:
(Λ2, a2)(Λ1, a1) = (Λ2Λ1,Λ2a1 + a2) (290)

Since Λ2Λ1 ∈ L and Λ2a1 + a2 ∈ R4, it follows that (Λ2, a2)(Λ1, a1) ∈ P .

• Associativity:
Let (Λ1, a1), (Λ2, a2), (Λ3, a3) ∈ P .

(Λ1, a1)((Λ2, a2)(Λ3, a3)) = (Λ1, a1)(Λ2Λ3,Λ2a3 + a2) = (Λ1Λ2Λ3,Λ1Λ2a3 + Λ1a2 + a1)
(291)

((Λ1, a1)(Λ2, a2))(Λ3, a3) = (Λ1Λ2,Λ1a2 + a1)(Λ3, a3) = (Λ1Λ2Λ3,Λ1Λ2a3 + Λ1a2 + a1)
(292)

Thus:
(Λ1, a1)((Λ2, a2)(Λ3, a3)) = ((Λ1, a1)(Λ2, a2))(Λ3, a3) (293)

• Identity Element:
(1, 0) ∈ P since 1 ∈ P and 0 ∈ L

(1, 0)(Λ, a) = (Λ, a) = (Λ, a)(1, 0) (294)

• Inverse Element:
(Λ, a)−1 = (Λ−1,−Λ−1a) ∈ P since Λ−1 ∈ P and −Λ−1a ∈ L

(Λ, a)−1(Λ, a) = (Λ−1,−Λ−1a)(Λ, a) = (Λ−1Λ,Λ−1a+ (−Λ−1a)) = (1, 0) (295)

(Λ, a)(Λ−1,−Λ−1a) = (ΛΛ−1,Λ(−Λ−1a) + a) = (1, 0) (296)
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5 OUTLOOK

It can be shown that the Poincaré group is also a Lie group.
In the previous chapter, we established the connection between rotations and boosts and
their corresponding generators, starting from the Lorentz algebra. Now, by considering
the Poincaré group, one can construct its associated Lie algebra, known as the Poincaré
algebra. This allows to find the generators also for time and space translations, which
turn out to be the Dirac Hamiltonian

H = −iα⃗ · ∇⃗+ βm where β = γ0 and αi = γ0γi =

(
σi 0
0 −σi

)
(297)

and the momentum operator
P⃗ = −i∇⃗ (298)

In this way, one would obtain a direct connection between the space-time symmetries and
the time evolution of corresponding spinor fields, among the Dirac evolution, on the Dirac
evolution, on the basis of a mathematical represantation theoretic discussion only.
Because of the appearance of derivatives in the generators, e.g. (283), (297) or (298), a
mathematical rigorous discussion requires functional analysis and is beyond the scope of
this thesis.
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A Appendix

For the axioms and principles of quantum mechanics, we follow (Woit, 2024, Chapter 1.2):

Axiom A.1 (States). The state of a quantum mechanical system is given by a non-zero
vector in a complex vector space H with Hermitian inner product ⟨·, ·⟩.

Axiom A.2 (Quantum Observable). The observables of a quantum mechanical system
are given by self-adjoint linear operators on H.

Axiom A.3 (Dynamics). There is a distinguished quantum observable, the Hamiltonian
H. Time evolution of states |ψ(t)⟩ ∈ H is given by the Schrödinger equation

iℏ
d

dt
|ψ(t)⟩ = H|ψ(t)⟩ (299)

The operator H has eigenvalues that are bounded below.

Principle A.4. States for which the value of an observable can be characterized by a
well-defined number are the states that are eigenvectors for the corresponding self-adjoint
operator. The value of the observable in such a state will be a real number, the eigenvalue
of the operator.

Principle A.5. Given an observable O and two unit-norm states |ψ1⟩ and |ψ2⟩ that are
eigenvectors of O with distinct eigenvalues λ1 and λ2

O|ψ1⟩ = λ1|ψ1⟩, O|ψ2⟩ = λ2|ψ2⟩ (300)

the complex linear combination state

c1|ψ1⟩+ c2|ψ2⟩ (301)

will not have a well-defined value for the observable O. If one attempts to measure this
observable, one will get either λ1 or λ2, with probabilities

|c21|
|c21|+ |c22|

(302)

and
|c22|

|c21|+ |c22|
(303)

respectively.

One sees that all vectors

|ψ̂⟩ = {λ|ψ⟩ | λ ∈ C, ψ ∈ H} (304)

correspond to the same state of the physical system because they lead to the same observ-
able predictions. ψ̂ is called a ray. The set of all rays forms a projective space, denoted
by Ĥ.
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A APPENDIX

Definition A.1 (Projective Group Representation). A projective representation of a
group G is a pair (V, ρ) of a vector space V and a homomorphism

ρ : G→ PGL(V ), g 7→ ρ(g) (305)

where PGL is the projective general linear group.

A projective representation can be understood as a set of maps π(g) ∈ GL(V ) such that
∀g, h ∈ G:

ρ(g)ρ(h) = c(g, h)ρ(g ∗ h) (306)

with some phase factor c(g, h) ∈ {eiθ | θ ∈ R}.

VI
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