
LUDWIG-
MAXIMILIANS-
UNIVERSITÄT
MÜNCHEN

INSTITUT FÜR INFORMATIK

LEHRSTUHL FÜR MOBILE UND VERTEILTE SYSTEME

BACHELORARBEIT

A Path Towards Quantum Advantage for the
Unit Commitment Problem

David Fischer

LUDWIG-
MAXIMILIANS-
UNIVERSITÄT
MÜNCHEN

INSTITUT FÜR INFORMATIK

LEHRSTUHL FÜR MOBILE UND VERTEILTE SYSTEME

BACHELORARBEIT

A Path Towards Quantum Advantage for the
Unit Commitment Problem

David Fischer

Aufgabensteller: Prof. Dr. Claudia Linnho�-Popien

Priv.-Doz. Dr. Dirk André Deckert

Betreuer: Jonas Stein

Jago Silberbauer

Philipp Altmann

Abgabetermin: 27. August 2024

Hiermit versichere ich, dass ich die vorliegende Bachelorarbeit selbständig verfasst

und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

München, den 27. August 2024

. .

(Unterschrift des Kandidaten)

V

Abstract

Diese Arbeit stellt eine Lösung für das Unit-Commitment-Problem (UCP) im Bereich
des Energienetzmanagements vor. Dabei handelt es sich um ein Optimierungsproblem,
bei dem ein Gleichungssystem gelöst wird, um die Kosten für eine gegebene Lösung zu
berechnen. Wir charakterisieren das UCP als ein Mixed-Integer Nonlinear Program-
ming (MINLP)-Problem und lösen es mit Hilfe eines Quantensimulations-basierten Opti-
mierungsansatzes (QuSO), wobei dieser eine Klasse von äquivalenten Problemen definiert,
die mit dem vorgeschlagenen Algorithmus lösbar sind. Durch die Modellierung des En-
ergienetzes in einem speziellen Graph erhalten wir hilfreiche Erkenntnisse über die Struk-
tur und die Eigenschaften der Suszeptanzmatrix. Wir nutzen approximative Randbedin-
gungen für den Gleichstrom (DC) in diesem Modell. Die vorgeschlagene Quantenroutine
beginnt mit der Invertierung der reduzierten Suszeptanzmatrix mittels Quantum Singular
Value Transformation (QSVT) unter Verwendung eines speziellen Matrixinversionspoly-
noms. Eine Quantum Phase Estimation Routine wird zusammen mit einem zusätzlichen
QSVT Verfahren verwendet, um die Kostenfunktion zu konstruieren, die dann mit dem
Quantum Approximate Optimization Algorithm (QAOA) optimiert wird. Dieser hybride
quantenklassische Ansatz nutzt das Potenzial quantenmechanischer Verfahren, um die
E�zienz bei der Lösung komplexer Optimierungsprobleme erheblich zu verbessern. Im
Rahmen unserer Analyse bewerten wir die algorithmische Komplexität und demonstrieren
das beachtliche Potenzial dieses Ansatzes zur Lösung von QuSO-Problemen. Besonders
hervorzuheben ist, dass die QSVT-basierte Matrixinversion die Zeitkomplexität in Fällen
exponentiell verringern kann, in denen klassische Methoden schlecht mit der Größe des
Problems skalieren. Diese Reduktion der Komplexität könnte die Echtzeitoptimierung
großer Energienetze ermöglichen und dadurch sowohl die betriebliche E�zienz als auch
die Zuverlässigkeit signifikant steigern.

Abstract

This work presents a solution to the unit commitment problem (UCP) in energy grid
management, an optimization problem that involves solving a system of equations to
calculate costs for a given solution. We characterize the UCP as a Mixed-Integer Non-
linear Programming (MINLP) problem and solve it using a quantum simulation-based
optimization (QuSO) approach, defining a class of equivalent problems solvable with the
proposed algorithm. By modeling the energy grid as a specific graph, we gain valuable
insights into the structure and characteristics of the susceptance matrix. We also incor-
porate approximate Direct Current (DC) power flow constraints into the model. The
proposed quantum routine begins by inverting the reduced susceptance matrix via Quan-
tum Singular Value Transformation (QSVT) using a specific matrix inversion polynomial.
A quantum phase estimation routine, along with an additional QSVT procedure, is used
to construct the cost function, which is then optimized using the Quantum Approximate
Optimization Algorithm (QAOA). This hybrid quantum-classical approach leverages the
computational power of quantum algorithms to enhance e�ciency in solving such opti-
mization problems. Our results evaluate the algorithm’s complexity and demonstrate its
significant potential for QuSO problems. Specifically, the QSVT matrix inversion can
reduce time complexity exponentially in scenarios where classical methods scale poorly
with problem size. This reduction in complexity could enable real-time optimization of
large-scale energy grids, thereby improving operational e�ciency and reliability.

Contents

1 Introduction 1
1.1 Optimizing Electricity Systems . 2

1.1.1 Introduction to Economic Dispatch 2
1.1.2 Overview of Optimal Power Flow 3
1.1.3 Introduction to the Unit Commitment Problem 5

2 Background 7
2.1 Mixed-Integer Nonlinear Programming . 7
2.2 Graph-Theoretical Modeling of Energy Grids 8

2.2.1 Condition Number Analysis for Laplacians 13
2.2.1.1 Lower Bound for the Second Smallest Eigenvalue 15
2.2.1.2 Upper Bound for the Greatest Eigenvalue 21

2.2.2 Summary of Graph Theory Model to Energy Grids 25
2.3 Integrating Power Flow into the Model . 27

2.3.1 The DC Power Flow Approximation 33
2.3.2 Invertibility of the Susceptance Matrix 37

2.4 Introducing Quantum Algorithms . 40
2.4.1 Basic Notation for Quantum-Gate-Algorithms 40

2.4.1.1 Operators on Finite-Dimensional Hilbert Spaces 40
2.4.1.2 Qubits and Quantum Information 46
2.4.1.3 From Unitary Operators to Quantum Gates 50

2.4.2 Quantum Signal Processing . 54
2.4.2.1 Chebychev Polynomials and QSP 59
2.4.2.2 Determining the QSP Phase Factors 64

2.4.3 Quantum Singular Value Transformation 67
2.4.3.1 Block Encoding and Linear Combination of Unitaries . . 67
2.4.3.2 The QSVT Theorem . 68
2.4.3.3 Using QSVT for Matrix Inversion 74

2.4.4 Quantum Approximate Optimization Algorithm 75
2.5 Approximation Methods for Polynomial Construction 75

3 Related work 77

4 Methodology 79
4.1 Formulation of the Unit Commitment Optimization Problem 79
4.2 Polynomial Approximation for QSVT . 86

4.2.1 Overview of the Polynomial Approximations 86
4.2.2 The Matrix Inversion Polynomial 87

4.2.2.1 Approximation of the Step Function 87
4.2.2.2 Construction of the Inversion Polynomial 98

i

Contents

4.2.2.3 Construction of the Matrix Inversion Polynomial 102
4.2.3 The Absolute Value Approximation Polynomial 106

4.3 Overview of the Quantum Algorithm . 111
4.4 The QSVT Matrix Inversion Procedure 114

4.4.1 Quantum State Preparation . 114
4.4.2 LCU Block Encoding of the Reduced Block Susceptance Matrix . . 119
4.4.3 QSVT-Based Inversion of the Reduced Block Susceptance Matrix . 122

4.5 Block Encoding of the Load Power Vector 123
4.6 Applying QSVT for Absolute Value Computation 126
4.7 Applying the Quantum Amplitude Estimation 127
4.8 Applying the Quantum Approximate Optimization Algorithm 130

4.8.1 Constructing the Cost Hamiltonian 130
4.8.1.1 QAOA Representation of the Generator States 130
4.8.1.2 QAOA Representation of the Power Outputs 132
4.8.1.3 Power Balance Constraint 135
4.8.1.4 Generator Output Limits 135
4.8.1.5 Transmission Cost . 136
4.8.1.6 Combined Cost Hamiltonian 137

4.8.2 Obtaining the Optimized Decision Variables and Cost 138

5 Results 141
5.1 Complexity Analysis of Individual Components 141

5.1.1 Complexity Analysis of the State Preparation 141
5.1.2 Complexity Analysis of the LCU Block Encoding 143
5.1.3 Complexity Analysis of QSVT for Matrix Inversion 144
5.1.4 Complexity Analysis of QSVT for Absolute Value Calculation . . . 145
5.1.5 Complexity Analysis of the Quantum Amplitude Estimation . . . 146
5.1.6 Complexity Analysis of the QAOA Application 147

5.2 Combined Complexity Analysis of the Quantum Algorithm 148

6 Discussion 151

7 Conclusion 153

List of Algorithms 155

List of Figures 157

List of Tables 159

Bibliography 161

ii

1 Introduction

In recent years, the global energy landscape has undergone significant transformations,
driven by the increasing demand for electricity, the integration of renewable energy
sources, and the growing complexity of energy grids [Int23]. As countries work to achieve
ambitious climate goals, upgrading and expanding energy grids has become increasingly
important. These grids are not only getting larger but are also becoming more intercon-
nected and reliant on diverse energy sources. The challenge of managing such complex
systems has led to a critical examination of existing optimization techniques, particularly
in addressing the Unit Commitment Problem (UCP), which lies at the heart of e�cient
energy grid management.

The UCP is a fundamental problem in the operation of power systems, where the ob-
jective is to determine the optimal operational state of power generation units to meet
predicted energy demand while minimizing operational costs. This problem is inherently
combinatorial and NP-hard [KM78], especially when accounting for the transmission costs
involved in energy distribution. As a result, the computational challenge increases signif-
icantly with the size and complexity of modern energy grids. Generally, this problem is
approached using Mixed-Integer Nonlinear Programming (MINLP), which, although ef-
fective in certain scenarios, struggles to scale e�ciently [Urb18]. Moreover, these classical
approaches often stumble when confronted with the nonlinear, high-dimensional nature
of the UCP, especially under the constraints imposed by the integration of renewable en-
ergy sources, whose variability and unpredictability further complicate the optimization
process [MER21]. An additional challenge in solving the UCP lies in the requirement to
solve large-dimensional systems of linear equations (SLEs), which adds another layer of
complexity. Classical methods, while robust, have shown limitations in handling these
SLEs e�ciently, particularly as grid sizes expand [HZZG22]. This challenge underscores
the need for novel computational techniques that can manage such high-dimensional prob-
lems more e�ectively [SR+22].

The growing energy crisis, characterized by the volatility of fossil fuel prices, geopolitical
tensions, and the increasing demands on energy systems, has exposed the limitations of
conventional optimization strategies based on classical computing methods. These tradi-
tional approaches are increasingly inadequate for addressing the UCP, as they struggle
to keep pace with the complexity of recent energy grids and the intricate requirements of
modern power systems [P+21].

In response, quantum computing emerges as a promising alternative, o�ering the po-
tential for significant speedup in solving certain classes of problems, including the UCP.
By leveraging principles such as superposition, entanglement, and quantum interference,
quantum algorithms can explore vast solution spaces more e�ciently than classical al-
gorithms [NC10]. This is particularly relevant for solving high-dimensional SLEs, which

1

1 Introduction

are central to the UCP. The potential of quantum algorithms, such as the Quantum Ap-
proximate Optimization Algorithm (QAOA) [FGG14, FH19], to address these challenges
presents a transformative approach to energy grid optimization. Moreover, these tech-
niques could be extended to other optimization problems involving SLEs, broadening the
impact of quantum computing in energy management.

1.1 Optimizing Electricity Systems

Given the critical role of optimization in managing modern energy grids, it is essential to
understand the foundational problems that must be addressed. The following provides
an explanation of the Unit Commitment Problem (UCP), alongside Economic Dispatch
(ED) and Optimal Power Flow (OPF)—two closely related challenges that are integral
to understanding the complexities of UCP. By understanding these problems and their
complexities, we can better appreciate the significance of the proposed quantum approach
in tackling these issues. We will provide a brief introduction, the mathematical definition
of the UCP we are using is given in Section 4.1.

1.1.1 Introduction to Economic Dispatch

Economic Dispatch (ED) focuses on allocating generation resources to meet electricity
demand at the lowest possible operational cost. It calculates the optimal power output
PGi œ R from each generator Gi, assuming the cost of operation ci > 0 as the primary
objective. However, this model considers only the generation side and does not account
for physical constraints of the power transmission network, such as line capacities and
voltage levels, which are important limiting factors in reality. This simplification allows
for rapid decision-making in real-time operations. ED also does not consider the unit
start-up or shut-down processes and treats power generation capacity as a continuous
variable [GSO17]. Assuming an energy grid with a set of n œ N connected generators
G1, G2, . . . , Gn, we can express an ED problem as follows:

min
PGi

n
ÿ

i=1
ciPGi (1.1)

subject to: (1.2)
P min

Gi
Æ PGi Æ P max

Gi
’ 1 Æ i Æ n (1.3)

n
ÿ

i=1
PGi = PD (1.4)

where ci > 0 is the cost per unit of power injected (usually in MWh) and PGi œ R is
the power produced by generator Gi. The constraints include the equality constraint
(Eq. 1.4) that ensures power and load balance, with PD > 0 expressing the predicted
power demand. The inequality constraint (Eq. 1.3) bounds the generated power by its
minimum P min

Gi
> 0 and maximum P max

Gi
> P min

Gi
capacity for a given generator Gi.

2

1.1 Optimizing Electricity Systems

We can express an ED in its linear form using:

max
x

cT x

s.t. Ax Æ b

x Ø 0

where we can use the matrix A œ R(2n+2)◊n and vectors b œ R2n+2, x œ Rn as follows:

A =

Q

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

a

≠1 0 · · · 0
0 ≠1 · · · 0
...

...
0 0 · · · ≠1
1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1
1 1 · · · 1

≠1 ≠1 · · · ≠1

R

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

b

, b =

Q

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

a

≠P min
G1

≠P min
G2...

≠P min
Gn

P max
G1

P max
G2...

P max
Gn

PD

≠PD

R

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

b

, x =

Q

c

c

c

c

a

PG1
PG2

...
PGn

R

d

d

d

d

b

We will later further characterize these sets of feasible decision variables. Since this
problem possesses all characteristics of a linear problem, it can be solved by the simplex
algorithm. Conventionally, ED has been evaluated using methods including Lagrangian
relaxation and gradient-based methods [CR90]. Newer, more enhanced methods include
evolutionary algorithms, with particle swarm optimization proposed by [Gai03]. More
sophisticated models, such as the following, incorporate some aspects of ED but take
power flow into consideration instead of only economic dispatch.

1.1.2 Overview of Optimal Power Flow

Optimal Power Flow (OPF) represents a more sophisticated and comprehensive model for
optimizing power system operations by incorporating the physical and engineering con-
straints of the power transmission network into the optimization process. OPF extends
beyond simpler models, such as Economic Dispatch, by not only focusing on the alloca-
tion of generation resources but also accounting for the complex interrelationships within
the power grid. This includes variables such as generator outputs, transmission line flows,
and voltage levels across the network. OPF aims to balance economic e�ciency with the
reliable supply of electricity, ensuring that generation meets demand while adhering to
the physical limitations of the power grid. It also accounts for temporal variations in
demand, generation costs, and network transmission constraints, making it a more dy-
namic and realistic approach to power system optimization. By combining the principles
of economic dispatch with power flow calculations, OPF optimizes the generation and
distribution of electricity without exceeding the loadability limits of transmission lines.
This approach ensures that power systems operate e�ciently, even under varying condi-
tions and constraints [GSO17].

The foundational work by Carpentier (1962) [Car62] laid the groundwork for OPF, with

3

1 Introduction

additional developments by Huneault and Galiana (1991) [HG91]. The OPF problem can
be further separated into two classes di�erentiating between an AC-OPF, which uses the
full and untransformed AC power flow equations, and a DC-OPF, which uses a linear
approximation of the AC power flow equations. Some microgrids, particularly those uti-
lizing renewable energy sources like solar panels that generate DC power, may employ
DC for local distribution [PPC23, AI21]. Consequently, the DC-OPF model can operate
without relying on approximations, providing precise and e�ective optimization for power
distribution. For our purposes, we will make use of the DC-OPF with the approximated
AC power flow.

We can transform the Economic Dispatch problem into Optimal Power Flow by adding
more constraints. Consider a n-bus system. To limit flow, the DC power flow approxi-
mations can be employed, expressed as Eq. 1.8 (see Section 2.3.1). This flow constraint
ensures load balance at each bus through the inclusion of Eq. 1.9, where B œ Rn◊n rep-
resents the susceptance matrix (see Section 2.3). This equality constraint establishes the
relationship between power and flow. The DC-OPF can then be formulated as follows:

min
PGi

,◊

n
ÿ

i=1
ciPGi (1.5)

subject to: (1.6)
P min

Gi
Æ PGi Æ P max

Gi
’ 1 Æ i Æ n (1.7)

-

-

-

-

-

(◊i ≠ ◊j)
xij

-

-

-

-

-

Æ Pij,max ’ 1 Æ i, j Æ n (1.8)

B · ◊ = PG ≠ PD (1.9)

where the values are given with:

• ◊i œ R: Phase angle at bus i. The vector ◊ œ Rn includes ◊i for all 1 Æ i Æ n.
• xij œ R: Reactance of the transmission line between bus i and bus j.
• Pij,max > 0: Maximum permissible power flow through the transmission line con-

necting bus i to bus j.
• PG œ Rn: Vector of generated power at all buses, where PGi œ R is the generated

power at bus i.
• P max

Gi
> P min

Gi
> 0: Minimum and maximum power generation limits at bus i.

• PD œ Rn: Vector of power demand at all buses, where PDi œ R is the power demand
at bus i.

• ci > 0: Cost coe�cient for power generation at bus i.
• B œ Rn◊n: Susceptance matrix, which represents the susceptance values between

buses in the network.

Note that this is just an overview; a rigorous definition of all the values is given in Sec-
tion 2.3. The constraint Eq. 1.8 ensures that the power flow on each transmission line
does not exceed its maximum capacity, Pij,max. All other constraints and the objective
function remain consistent with those defined in the Economic Dispatch (ED) problem.

4

1.1 Optimizing Electricity Systems

1.1.3 Introduction to the Unit Commitment Problem
The Unit Commitment Problem (UCP) builds upon the ideas of ED and introduces the
decision-making process regarding the on/o� operational status of generating units over a
specific discrete timeframe to meet predicted demand. UCP addresses the binary nature
of a unit’s operational status and incorporates additional information such as the costs
associated with starting up and shutting down generating units. This added layer of
decision-making complexity tries to identify the optimal subset of generators that should
be operational to achieve minimum operating costs. UCP therefore aims to close the
gap between the binary decision-making of unit statuses and the continuous optimiza-
tion of power generation levels [WWS13]. Incorporating UCP into OPF models enables
a detailed and dynamic approach to power system optimization. It considers temporal
variations in demand and generation costs, ensuring an economically e�cient and reliable
electricity supply. This integration highlights the progression from simple ED models to
complex OPF formulations, marking significant advancements in optimization techniques
to meet the evolving demands of electricity systems.

In this work, we propose a quantum simulation-based optimization (QuSO) approach to
tackle the UCP within energy grid management. Our method characterizes the UCP
as a Mixed-Integer Nonlinear Programming (MINLP) problem and employs Quantum
Singular Value Transformation (QSVT) to invert the reduced susceptance matrix, a key
component in our quantum routine. By integrating quantum algorithms into the op-
timization process, we aim to significantly reduce the time complexity associated with
solving the UCP, particularly in scenarios where classical methods scale poorly with prob-
lem size. Our approach not only addresses the specific challenges of the UCP but also
suggests broader applications for quantum computing in tackling other complex opti-
mization problems across various domains. The structure of this work is as follows:

• Background: We begin by providing a comprehensive overview of the foundational
concepts, including Mixed-Integer Nonlinear Programming, spectral graph theory,
and the mathematical modeling of energy grids. This section also introduces the
basics of quantum computing, particularly the algorithms relevant to our approach.

• Related Work: Here, we review existing literature on UCP and its various solu-
tions, including classical and quantum approaches.

• Methodology: This section details our proposed QuSO approach, including the
formulation of the UCP as an optimization problem, the detailed construction of
the quantum algorithm, and the integration of quantum and classical components.

• Results: We present the results of our approach, including a complexity analy-
sis. Our findings demonstrate the potential of quantum computing to enhance the
e�ciency and scalability of solving the UCP.

• Discussion: We critically analyze the components of our algorithm and the im-
plications of our results, particularly discussing the potential impact of quantum
computing on energy grid management and the broader field of optimization.

• Conclusion: The work concludes with a summary of our contributions and a
discussion of future research directions.

5

2 Background

2.1 Mixed-Integer Nonlinear Programming
Traditionally, the Unit Commitment Problem (UCP) has been addressed using linear
programming techniques that approximate the operational characteristics of power plants
[WWS13]. However, the increasing complexity of modern energy systems necessitates a
more advanced approach, specifically the use of Mixed-Integer Nonlinear Programming
(MINLP). Solving MINLP problems is classified as NP-hard, meaning that there is no
algorithm that can optimize every possible MINLP problem within polynomial time con-
straints [KM78]. The complete formulation of the UCP as an MINLP problem can be
found in Section 4.1.

Definition 2.1. For A œ Rm◊n and b œ Rm, a polyhedral set P is defined as:

P = {x œ Rn : Ax Æ b}.

Such a polyhedral set can be described as the intersection of a finite number of half-spaces
H = {x œ Rn : aTx Æ b}. Each half-space can be defined by a linear inequality of the
form:

a1x1 + a2x2 + · · · + anxn Æ b,

where x1, x2, . . . , xn are unknown variables with coe�cients a1, a2, . . . , an œ R and a
bound b œ R that defines the o�set of the half-space from the origin.

Definition 2.2. An optimization problem is called a Mixed-Integer Nonlinear Pro-
gramming (MINLP) problem if it can be expressed in the following form:

min
x

f(x) (2.1a)

s.t. g(x) Æ 0 (2.1b)
x œ P (2.1c)
xi œ Z ’i œ I (2.1d)

where f : Rn æ R and g : Rn æ Rm are algebraic functions. P µ Rn is a polyhedral set
and I is a finite set of indices.

The goal is to determine an input x œ Rn that achieves the minimization of f(x), while
concurrently satisfying the specified constraints of the polyhedral set. Component (2.1b)
characterizes the constraints of the problem, involving various elements of the input
vector x, which must satisfy all of these constraints. Subsequently, the polyhedral set
(2.1c) adds bounds on the individual elements xi within the vector x. Component (2.1d)
clarifies that certain elements xi must be integer values, di�ering from rational numbers
as seen in a more general approach by [BKL+13].

7

2 Background

2.2 Graph-Theoretical Modeling of Energy Grids
Definition 2.3. A pair G = (V, E, w) is called a finite undirected weighted graph,
where V is a set of vertices such that |V | = n œ N,

E ™ {(u, v) œ V ◊ V | u ”= v · ((u, v) œ E =∆ (v, u) œ E)}

is the set of edges, and w : E æ R \ {0} is a weight function.

Remark 2.1. Note that with this definition, the graph is undirected, meaning that if
(u, v) œ E, then (v, u) œ E. This implies that each edge (u, v) œ E is bidirectional.
Therefore, E can be considered a set of unordered pairs of vertices, i.e., {{u, v} | (u, v) œ
E}. The weight function w is symmetric, implying that for any (u, v) œ E, w(u, v) =
w(v, u). The graph does not contain self-loops, meaning that (v, v) /œ E for any v œ V .

While our definition focuses on real weights, which is su�cient since the only purpose will
be to investigate the susceptance matrix in our context, this definition can be extended to
include complex weights as shown in [BP24]. This extension complicates the estimation
of Laplacian properties. For a detailed discussion on the estimation of complex-valued
Laplacian matrices, see [HRP24]. To describe a graph in its structure e�ciently, we use
multiple matrices that describe connectivity between edges.

Definition 2.4. Let G = (V, E, w) with |V | = n be a finite undirected weighted graph.
The matrix AG œ Rn◊n used to represent a finite graph is called the adjacency matrix.

Aij =
I

w(i, j) if (i, j) œ E

0 otherwise

Definition 2.5. Let G = (V, E, w) with |V | = n be a finite undirected weighted graph.
The graph G is said to be connected if for any two vertices u, v œ V , there exists a
sequence of vertices (v0 = u, v1, v2, . . . , vk = v) such that each pair (vi, vi+1) œ E.

Definition 2.6 (Degree and Volume). Let G = (V, E, w) be a finite undirected weighted
graph with |V | = n.

• The degree d(v) of a vertex v œ V is defined as the sum of the weights of the edges
incident to v:

d(v) =
ÿ

uœV,(v,u)œE

w(v, u).

• The volume vol(S) of a set S ™ V is the sum of the degrees of the vertices in S:

vol(S) =
ÿ

wœS

d(w).

Definition 2.7. Let G = (V, E, w) be a finite undirected weighted graph with |V | = n.
The degree matrix DG œ Rn◊n represents the weighted degrees of the vertices in G.
The degree matrix DG is given by:

(DG)ij =
I

d(vi) if i = j

0 otherwise
,

8

2.2 Graph-Theoretical Modeling of Energy Grids

where d(vi) is the weighted degree of vertex vi œ V .

Note that the definition above is the most commonly used one and often found in the
literature, as in [Die17]. However, in many practical use cases, it can be highly dependent
on the specific scenario in which the graph and especially its weights are being used, and
therefore can be defined di�erently as used later on (see Remark 2.11). We can now
combine the degree and adjacency matrix and express all our information through just
one single matrix which is defined as follows:

Definition 2.8. Let G = (V, E, w) with |V | = n be a finite undirected weighted graph,
and AG œ Rn◊n the adjacency matrix and DG œ Rn◊n the degree matrix. The matrix
LG œ Rn◊n is called the Laplacian matrix:

LG = DG ≠ AG

Remark 2.2 (Symmetry of Laplacian). The Laplacian matrix LG of a finite undirected
weighted graph G = (V, E, w) with |V | = n is symmetric. This is because LG = DG ≠AG,
where DG is a diagonal matrix, hence symmetric. The adjacency matrix AG is symmetric
due to the undirected nature of the graph. Therefore, for all i, j œ {1, . . . , n}, Aij = Aji.
Hence, Lij = Dij ≠ Aij = Lji = Dji ≠ Aji for all i, j œ {1, . . . , n}.

Remark 2.3 (Reality of Eigenvalues). The eigenvalues of the Laplacian matrix LG of a
finite undirected weighted graph G = (V, E, w) are real. This follows from the fact that
LG is a symmetric matrix, and symmetric matrices have real eigenvalues.

Lemma 2.1. Let G = (V, E, w) with |V | = n be a finite undirected weighted graph. If
w : E æ R \ (≠Œ, 0], then the Laplacian matrix LG œ Rn◊n of G is positive semidefinite.

Proof. Let G = (V, E, w) with |V | = n be a finite undirected weighted graph with weight
function w : E æ R \ (≠Œ, 0], i.e., w(e) > 0 for all e œ E and LG, DG, AG œ Rn◊n the
Laplacian, degree, and adjacency matrices of G. We consider the quadratic form of each
matrix for x œ Rn:

xT LGx = xT (DG ≠ AG)x = xT DGx ≠ xT AGx

From the definition of DG with the diagonal (DG)ii = d(vi) =
q

(i,j)œE
w(i, j) it is:

xT DGx =
n

ÿ

i=1
(DG)iix

2
i =

n
ÿ

i=1
d(vi)x2

i =
ÿ

(i,j)œE

w(i, j)(x2
i + x2

j)

Since in an undirected graph, every edge (i, j) is bidirectional, meaning if (i, j) œ E, then
(j, i) œ E with the same weight w(i, j) = w(j, i), for AG we have:

xT AGx =
n

ÿ

i=1

n
ÿ

j=1
Aijxixj =

ÿ

(i,j)œE

w(i, j)xixj +
ÿ

(j,i)œE

w(j, i)xjxi

=
ÿ

(i,j)œE

w(i, j)xixj +
ÿ

(i,j)œE

w(i, j)xjxi

=
ÿ

(i,j)œE

2w(i, j)xixj

9

2 Background

Thus, we can rewrite the complete Laplacian LG as follows:

xT LGx =
ÿ

(i,j)œE

w(i, j)(x2
i + x2

j) +
ÿ

(i,j)œE

2w(i, j)xixj =
ÿ

(i,j)œE

w(i, j)(x2
i + 2xixj + x2

j)

Since w(i, j) > 0 and (xi ≠ xj)2 Ø 0 for all (i, j) œ E, we have:

xT LGx = xT (DG ≠ AG)x =
ÿ

(i,j)œE

w(i, j)(xi ≠ xj)2 Ø 0.

Corollary 2.1. Let G = (V, E, w) with |V | = n be a finite undirected weighted graph.
If w : E æ R \ (≠Œ, 0], then the Laplacian matrix LG œ Rn◊n of G has non-negative
eigenvalues.

Remark 2.4. Note that we will be formulating our results for positive weights since, in the
context of electrical networks, these weights, given as susceptances, are usually positive. In
practical power grids, capacitive elements are more common for improving power quality
and managing voltage stability, leading to positive susceptance values being typical in
these systems [CSSDS+15, CK24]. However, the above result can be extended to graphs
with negative weights under certain conditions, as detailed in [CKG16]. Specifically, for a
connected graph G = (V, E, W), the Laplacian matrix is positive semidefinite if and only
if the following conditions are satisfied:

• The absolute values of the negative edge weights |W (i, j)| are less than or equal to
the reciprocals of the corresponding e�ective resistances Wij(G+) for all (i, j) œ E≠.

• There must be no cycle in G containing two or more edges with negative weights.

In their paper, W denotes a diagonal matrix from Rm◊m, where m is the number of
edges in the graph, and each diagonal entry wkk represents the weight of the edge ‘k.
The positive and negative edges are separated into E+, E≠ ™ E; thus, E+ fi E≠ = E and
G+ = (V, E+, W+) and G≠ = (V, E≠, W≠) are considered.
Formally, these conditions are stated in Theorem 3.2 and Lemma 3.3 of [CKG16].

The following theorem is supported by Lemma 3.1.1 and the discussions in Chapter 3
of [Spi19], where it is established that the Laplacian matrix of a connected graph has a
unique zero eigenvalue with the eigenvector being the all-ones vector.

Theorem 2.1. Let G = (V, E, w) with |V | = n be a finite undirected weighted graph. If
w : E æ R \ (≠Œ, 0] and G is connected, then the Laplacian matrix LG œ Rn◊n of G has
exactly one zero eigenvalue, and the corresponding eigenvector is 1 := (1, 1, . . . , 1)T œ Rn.

Proof. Let G = (V, E, w) with |V | = n be a finite undirected weighted connected graph
with weight function w : E æ R\(≠Œ, 0] and LG, DG, AG œ Rn◊n the Laplacian, degree,
and adjacency matrices of G. Let 0 := (0, 0, . . . , 0)T œ Rn and 1 := (1, 1, . . . , 1)T œ Rn.
We need to show that LG1 = 0. Consider the i-th entry of the product LG1:

(LG1)i =
n

ÿ

j=1
(LG)ij · 1j =

n
ÿ

j=1
(DG ≠ AG)ij · 1j =

n
ÿ

j=1
Dij · 1j ≠

n
ÿ

j=1
Aij · 1j .

10

2.2 Graph-Theoretical Modeling of Energy Grids

Since DG is a diagonal matrix, Dij = d(vi) if i = j and 0 otherwise:

(LG1)i = Dii · 1i ≠
n

ÿ

j=1
Aij · 1j = d(vi) ≠

n
ÿ

j=1
Aij .

Since the sum of the weights of the edges incident to vi is given by d(vi):

(LG1)i = d(vi) ≠
n

ÿ

j=1
Aij = d(vi) ≠

ÿ

vjœV,(vi,vj)œE

w(vi, vj) = d(vi) ≠ d(vi) = 0.

Hence, LG1 = 0 and therefore we have that 0 is an eigenvalue of LG and 1 is a corre-
sponding eigenvector. We now conclude that this is the only zero eigenvalue. For any
vector x œ Rn with x ”= 0 such that x

T
1 = 0, we show that x

T LGx > 0.
By definition, G is connected if for any two vertices u, v œ V , there exists a sequence of
vertices (v0 = u, v1, v2, . . . , vk = v) such that each pair (vi, vi+1) œ E.
Consider the quadratic form x

T LGx for any vector x œ Rn:

x
T LGx =

ÿ

(u,v)œE

w(u, v)(xu ≠ xv)2.

Since w(u, v) > 0, (xu ≠ xv)2 Ø 0, and equality holds if and only if xu = xv for all edges
(u, v) œ E. Therefore,

x
T LGx = 0 if and only if xu = xv ’u, v œ V.

This implies that if x
T LGx = 0, then xu = xv for all vertices u and v in the same

connected component. Since G is connected, this means xu = xv for all u, v œ V ,
implying that x is a scalar multiple of 1. Thus, x

T LGx > 0 for any vector x œ Rn with
x ”= 0 orthogonal to the one vector x

T
1 = 0. Hence, LG has exactly one zero eigenvalue

with 1 as its eigenvector.

Corollary 2.2. Let G = (V, E, w) with |V | = n be a finite undirected weighted connected
graph with w : E æ R\(≠Œ, 0]. By excluding the row and column from LG corresponding
to the zero eigenvalue, the resulting matrix LÕ

G
is positive definite. Hence, all eigenvalues

of LÕ

G
are strictly positive, making LÕ

G
invertible. This property is used to construct the

invertible susceptance matrix.

Proof. We assume that the zero eigenvalue corresponds to the first row and column of
LG without loss of generality. The matrix LÕ

G
is obtained by removing the first row and

column of LG. Let 0 ”= y = (y1, y2, . . . , yn≠1) œ Rn≠1. We extend y to a vector x œ Rn

by setting x1 = ≠
q

n≠1
i=1 yi and xi+1 = yi for i = 1, 2, . . . , n ≠ 1. Thus, x is constructed

such that:

1
T

x = x1 +
n≠1
ÿ

i=1
xi+1 = ≠

n≠1
ÿ

i=1
yi +

n≠1
ÿ

i=1
yi = 0,

meaning x is orthogonal to 1. Since x is orthogonal to 1, and by Theorem 2.1, we have:

x
T LGx > 0.

11

2 Background

The quadratic form x
T LGx can be written in terms of the submatrix LÕ

G
:

x
T LGx = y

T LÕ

Gy.

Therefore, since y is any non-zero vector in Rn≠1 and x
T LGx > 0 for all non-zero x

orthogonal to 1, it follows that:

y
T LÕ

Gy > 0 for all non-zero y œ Rn≠1.

This implies that LÕ

G
is positive definite and therefore invertible.

To solve the Unit Commitment Problem (UCP) with a DC power flow constraint, we
utilize a technique involving the reduced susceptance matrix (see Section 2.3.2). We
then invert this matrix using Quantum Singular Value Transformation (QSVT). For a
finite, undirected, weighted, and connected graph, the second smallest eigenvalue of its
Laplacian LG is the smallest non-zero eigenvalue. This property also applies to the
reduced Laplacian LÕ

G
, as demonstrated in Corollary 2.2, and consequently to the reduced

susceptance matrix, which is crucial for our quantum inversion method. The second
smallest eigenvalue of the Laplacian LG is particularly important because it influences
the condition number of the reduced susceptance matrix, thereby a�ecting the complexity
of our quantum algorithm. Therefore, understanding this eigenvalue is essential for our
approach. The second smallest eigenvalue ⁄2 of the Laplacian matrix LG is known as the
algebraic connectivity or Fiedler value [Fie73].

Definition 2.9 (Algebraic connectivity). Let G = (V, E, w) with |V | = n be a finite
undirected weighted connected graph with w : E æ R\ (≠Œ, 0] and ⁄1 Æ ⁄2 Æ . . . Æ ⁄n be
the eigenvalues of the Laplacian LG, then ⁄2 is called the algebraic connectivity of G.

Remark 2.5. The requirement for the graph G to be connected is crucial in defining
algebraic connectivity, as the second smallest eigenvalue ⁄2 of the Laplacian matrix LG

is positive only if the graph is connected. This follows from Theorem 2.1. If G is not
connected, ⁄2 would be zero, rendering the concept of algebraic connectivity meaningless.

12

2.2 Graph-Theoretical Modeling of Energy Grids

2.2.1 Condition Number Analysis for Laplacians

Definition 2.10. Let A œ Rn◊n be an invertible matrix. The condition number Ÿ(A)
of A with respect to a given matrix norm Î · Î is defined as:

Ÿ(A) = ÎAÎÎA≠1Î,

where ÎAÎ denotes the induced norm of the matrix A, and ÎA≠1Î denotes the induced
norm of the inverse of A. For a given vector norm Î ·Îv, the induced norm ÎAÎ is defined
by:

ÎAÎ = sup
x ”=0

ÎAxÎv

ÎxÎv

.

Definition 2.11 (Normal Matrix). A matrix A œ Cn◊n is called a normal matrix if

AúA = AAú,

where Aú denotes the conjugate transpose of A.

With the Spectral Theorem (Theorem 2.5.3 from [HJ13]), a matrix A œ Cn◊n can be
characterized as normal if it is unitarily diagonalizable, so there exists a unitary matrix
U œ Cn◊n such that

A = U�Uú,

where � œ Cn◊n is a diagonal matrix with the eigenvalues of A on the diagonal, and
UúU = UUú = I, where I œ Rn◊n is the identity matrix. For normal matrices, the
spectral norm, induced by the Euclidean vector norm, is commonly used, which simplifies
the computation. The spectral norm of A, denoted ÎAÎ2, is given by the largest singular
value of A. For a normal matrix, this is the largest absolute value of its eigenvalues.
Similarly, the spectral norm of A≠1, ÎA≠1Î2, is the reciprocal of the smallest absolute
value of its eigenvalues. Therefore, the condition number of a normal matrix A can be
formulated with respect to the spectral norm.

Definition 2.12 (Condition Number of a Normal Matrix). Let A œ Rn◊n be an invertible
normal matrix. The condition number of A with respect to the spectral norm is defined
as:

Ÿ(A) = max{|⁄i| | ⁄i œ ‡(A)}
min{|⁄i| | ⁄i œ ‡(A)} ,

where ‡(A) denotes the spectrum of A, i.e., the set of eigenvalues of A.

Note that the above condition number Ÿ(A) is well defined since A is invertible, which
ensures that 0 < min{|⁄i|}.

Lemma 2.1. Let G = (V, E, w) with |V | = n be a finite undirected weighted connected
graph with w : E æ R \ (≠Œ, 0]. The Laplacian matrix LG is normal.

Proof. Let G = (V, E, w) with |V | = n be a finite undirected weighted connected graph
with w : E æ R \ (≠Œ, 0]. We already know that LG is symmetric from Remark 2.2.
Thus, it is LT

G
= LG. Note that LGLT

G
= LGLG = L2

G
and LT

G
LG = LGLG = L2

G
.

Therefore, it follows that LGLT

G
= LT

G
LG = L2

G
. Hence, LG is normal.

13

2 Background

Remark 2.6. Although the Laplacian LG of a finite undirected weighted connected graph
with positive weights satisfies most prerequisites, it is not invertible. However, we use
the reduced Laplacian for our analysis (see Corollary 2.2). The condition number for the
reduced Laplacian is then given as:

Ÿ(LÕ

G) = ⁄n

⁄2
,

where we assume the eigenvalues ⁄1 Æ ⁄2 Æ · · · Æ ⁄n are ordered, with ⁄2 being the
second smallest and ⁄n the largest eigenvalue. This relates directly to the eigenvalues
of the reduced susceptance matrix and thus the complexity of our quantum algorithm.
Therefore, it is crucial to find bounds for the largest eigenvalue ⁄n and the smallest non-
zero eigenvalue ⁄2.

Remark 2.7. If it is clear from the context which matrix is being referred to, we will
denote the condition number simply as Ÿ instead of Ÿ(A).

14

2.2 Graph-Theoretical Modeling of Energy Grids

2.2.1.1 Lower Bound for the Second Smallest Eigenvalue

To ensure the condition number Ÿ of the reduced susceptance matrix remains manageable,
it is crucial to investigate the second smallest eigenvalue ⁄2 of the Laplacian matrix, as
this will be the smallest eigenvalue for the matrix we aim to invert. A higher algebraic
connectivity ⁄2 implies a lower condition number Ÿ, since Ÿ = ⁄n/⁄2 (see Remark 2.6).
Therefore, we need to establish a lower bound for ⁄2 that is greater than or equal to one.
We follow the formulation given in [Spi19, Chu97].

Definition 2.13. Let A œ Rn◊n be a symmetric matrix and let x œ Rn be a non-zero
vector. The Rayleigh quotient R(A, x) is defined as:

R(A, x) = xT Ax

xT x
.

Lemma 2.2 (Rayleigh Quotient Lemma for Laplacians). Let G = (V, E, w) with |V | = n
be a finite undirected weighted connected graph with w : E æ R \ (≠Œ, 0]. The algebraic
connectivity ⁄2 of LG can be characterized using the Rayleigh quotient as follows:

⁄2 = min
xœRn

x‹1
R(LG, x).

Proof. Let G = (V, E, w) with |V | = n be a finite undirected weighted connected graph
with w : E æ R\(≠Œ, 0] and LG be the Laplacian of G. Since LG is symmetric (Remark
2.2), it has a complete set of orthonormal eigenvectors v1, v2, . . . , vn corresponding to
real eigenvalues ⁄1 Æ ⁄2 Æ · · · Æ ⁄n. The eigenvectors form an orthonormal basis for Rn,
meaning a vector 0 ”= x œ Rn can be expressed as a linear combination of the eigenvectors:

x =
n

ÿ

i=1
–ivi where –i = vT

i x.

Therefore, we can construct the Rayleigh quotient R(LG, x) as follows:

xT LGx =
A

n
ÿ

i=1
–ivi

B

T

LG

A

n
ÿ

i=1
–ivi

B

=
n

ÿ

i=1
–2

i vT

i LGvi =
n

ÿ

i=1
–2

i ⁄i,

xT x =
A

n
ÿ

i=1
–ivi

B

T
A

n
ÿ

i=1
–ivi

B

=
n

ÿ

i=1
–2

i vT

i vi =
n

ÿ

i=1
–2

i .

Thus, the Rayleigh quotient becomes:

R(LG, x) = xT LGx

xT x
=

q

n

i=1 –2
i
⁄i

q

n

i=1 –2
i

.

To find ⁄2, we include the condition that x ‹ 1, which means x is orthogonal to the
eigenvector corresponding to the smallest eigenvalue ⁄1 = 0, since the eigenvector for ⁄1
is 1 (see Theorem 2.1). This ensures that x is in the subspace orthogonal to the eigenspace
associated with ⁄1. That means that –1 = vT

1 x = 0. Therefore, x œ span{v2, v3, . . . , vn}.

15

2 Background

To minimize R(LG, x), note that ⁄i Ø ⁄2 for i Ø 2. Therefore:

R(LG, x) Ø ⁄2,

where equality holds when x is an eigenvector corresponding to ⁄2. Thus, the minimum
value of the Rayleigh quotient for x ‹ 1 is ⁄2, and it is achieved when x is the eigenvector
associated with ⁄2. Hence,

⁄2 = min
xœRn

x‹1
R(LG, x).

Note that the above Lemma also follows as a special case from the more well-known
Courant-Fischer Theorem (see Theorem 2.0.1 from [Spi19]).

Definition 2.14 (Weighted Shortest-Path Distance). Let G = (V, E, w) with |V | = n be
a finite undirected weighted connected graph. Let dist : V ◊ V æ R be a metric function
on V . We can explicitly define the distance function dist : V ◊ V æ R as the shortest
path distance between two vertices:

dist(i, j) = min
P œP(i,j)

ÿ

(u,v)œP

w(u, v),

where:
P(i, j) = {(i = v0, v1, v2, . . . , vk = j) | (vl≠1, vl) œ E ’ 1 Æ l Æ k}

is the set of all paths from vertex i to vertex j.

Note that dist defines a metric function on V . Therefore, the pair (V, dist) forms a metric
space. In fact, any well-defined metric function defined on the set of vertices together
with the set forms a metric space as long as the graph is connected (see [Alo22, Chu97]).

Definition 2.15 (Diameter). The diameter of a finite undirected weighted connected
graph G = (V, E, w) is defined as:

diam(G) = max
u,vœV

dist(u, v)

where dist(u, v) is the weighted shortest-path distance between vertices u and v.

The following relationship, well known in spectral graph theory, connects the algebraic
connectivity ⁄2 with the diameter diam(G) of the graph. We can extend Theorem 4.2
from [Moh91] to our graph definition as follows:

Theorem 2.2. Let G = (V, E, w) be a finite undirected weighted connected graph with
|V | = n, edge weights w : E æ R \ (≠Œ, 0], and LG the Laplacian matrix of G. Let
diam(G) be the diameter of G. Then the following holds:

⁄2 Ø 4
n diam(G) .

Proof. Let G = (V, E, w) be a finite undirected weighted connected graph with |V | = n,
edge weights w : E æ R \ (≠Œ, 0], and LG the Laplacian matrix of G. Let diam(G) be

16

2.2 Graph-Theoretical Modeling of Energy Grids

the diameter of G. Consider a vector x œ Rn such that xi = 1
Ô

n
for one subset of vertices

and xj = ≠ 1
Ô

n
for another subset of vertices, ensuring x ‹ 1 and ÎxÎ = 1.

The Rayleigh quotient for this vector is given through the quadratic form:

xT LGx =
ÿ

(i,j)œE

wij(xi ≠ xj)2 =
ÿ

(i,j)œE

wij

3 1Ô
n

≠
3

≠ 1Ô
n

442
=

ÿ

(i,j)œE

wij

4
n

.

Since the sum of the weights wij for any path between the two farthest vertices (which
defines the diameter) cannot exceed diam(G), we can bound the sum of the weights with
the diameter:

xT LGx =
ÿ

(i,j)œE

wij

4
n

Æ 4
n

· n diam(G) = 4 diam(G).

Hence,

⁄2 Ø xT LGx

xT x
Ø 4

n diam(G) .

Corollary 2.3. The algebraic connectivity ⁄2 can be bound by:

⁄2 Ø 1 … n diam(G) Æ 4.

Remark 2.8. In the context of a large power grid, the characterization of the bound for
the value of ⁄2 provided by the inequality above is not that strong. As the number of
vertices n corresponding to the buses in the power grid increases, the product n diam(G)
tends to grow.

The following inequality links the algebraic connectivity ⁄2 to a combinatorial measure
of connectivity. A higher ⁄2 implies a higher Cheeger constant, suggesting better con-
nectivity and a more robust network structure. Note that for a subset S ™ E of edges,
we denote w(S) as the sum of the weights of these edges:

w(S) =
ÿ

(u,v)œS

w(u, v).

With that, the following definition generalizes the concept of the Cheeger constant (see
[Chu97]) to weighted graphs by incorporating the edge weights into the boundary size.

Definition 2.16. For a finite undirected weighted graph G = (V, E, w), the Cheeger
constant h(G) is defined as:

h(G) = min
SµV

0<|S|Æ
|V |

2

w(ˆS)
vol(S) ,

where S ”= ? and ˆS is the edge boundary of S, defined as the set of edges in E that have
exactly one endpoint in S and the other endpoint in V \ S:

ˆS = {(u, v) œ E | (u œ S · v œ V \ S) ‚ (v œ S · u œ V \ S)}.

17

2 Background

Theorem 2.3 (Cheeger’s Inequality). Let G = (V, E, w) with |V | = n be a finite undi-
rected weighted connected graph with w : E æ R \ (≠Œ, 0] and LG be the Laplacian of G.
The Cheeger constant h(G) estimates ⁄2 as follows:

h(G)2

2 Æ ⁄2 Æ 2h(G).

Proof. We use the proof idea proposed by [Chu07] using eigenvectors.
Therefore, let G = (V, E, w) with |V | = n be a finite undirected weighted connected
graph with w : E æ R \ (≠Œ, 0] and LG be the Laplacian of G.
We first prove the upper bound. Let S µ V be the set achieving the minimum of the
Cheeger constant, satisfying 0 < |S| Æ |V |

2 . Thus h(G) = w(ˆS)/vol(S), where w(ˆS) is
the total weight of edges leaving S, and vol(S) is the sum of the degrees of the vertices
in S as given in Definition 2.16 of the Cheeger constant. We define g œ Rn as:

g := ‰S ≠ vol(S)
vol(G)1,

where ‰S is the characteristic function of S and 1 := (1, 1, . . . , 1)T œ Rn is the vector of
all ones. The Rayleigh quotient R(LG, g) is given by:

R(LG, g) = gT LGg

gT g
=

q

(u,v)œE
wuv(g(u) ≠ g(v))2

q

vœV
g(v)2dv

.

For u, v œ S or u, v /œ S, g(u) ≠ g(v) = 0. When u œ S and v /œ S, we get:

g(u) ≠ g(v) = 1 ≠
3

≠ vol(S)
vol(G)

4

= 1 + vol(S)
vol(G) .

Hence, we can explicitly calculate the numerator of the quotient as follows:

ÿ

(u,v)œˆS

wuv(g(u) ≠ g(v))2 =
ÿ

(u,v)œˆS

wuv

3

1 + vol(S)
vol(G)

42
=

3

1 + vol(S)
vol(G)

42
· w(ˆS).

For a vertex v œ S, we have g(v) = 1 ≠ vol(S)/vol(G) and for a vertex v /œ S, we have
that g(v) = ≠vol(S)/vol(G). Thus, we can explicitly calculate the denominator of the
quotient:

ÿ

vœV

g(v)2dv =
ÿ

vœS

3

1 ≠ vol(S)
vol(G)

42
dv +

ÿ

v /œS

3

≠ vol(S)
vol(G)

42
dv

=
3

1 ≠ vol(S)
vol(G)

42
· vol(S) +

3 vol(S)
vol(G)

42
· (vol(G) ≠ vol(S)).

Therefore, from the above calculations, we can conclude that:

R(LG, g) Æ 2h(G).

By definition of ⁄2, it is ⁄2 Æ R(LG, g) Æ 2h(G).
We now prove the lower bound. Let g denote an eigenvector associated with ⁄2, the

18

2.2 Graph-Theoretical Modeling of Energy Grids

second smallest eigenvalue of the Laplacian LG. We use the notation where g(v) refers
to the component of the eigenvector g at the vertex v. Therefore, LGg = ⁄2g and
q

vœV
g(v)d(v) = 0, where d(v) is the degree of vertex v. We order the vertices such that:

g(v1) Ø g(v2) Ø . . . Ø g(vn).

Let Si = {v1, v2, . . . , vi} µ V and define hi = w(ˆSi)
vol(Si) , where vol(Si) =

q

vœSi
d(v) for

1 Æ i Æ n. Define r œ {1, 2, . . . , n} such that vol(Sr) Æ vol(G)/2. With the orthogonality
of g, we have:

ÿ

vœV

g(v)d(v) = 0.

Thus,
ÿ

vœV

g(v)2d(v) = min
cœR

ÿ

vœV

(g(v) ≠ c)2d(v) Æ
ÿ

vœV

(g(v) ≠ g(vr))2d(v).

We define the positive and negative parts of g ≠ g(vr) as follows:

g+(v) =
I

g(v) ≠ g(vr) if g(v) Ø g(vr)
0 otherwise

.

g≠(v) =
I

|g(v) ≠ g(vr)| if g(v) Æ g(vr)
0 otherwise

.

Without loss of generality, assume R(g+) Æ R(g≠). Then, ⁄2 Ø R(g+), where

R(g+) =
q

(u,v)œE
w(u, v)(g+(u) ≠ g+(v))2

q

uœV
g+(u)2d(u) .

Using the Cheeger constant h(G) and the Cheeger ratio for subsets Si, we have:

|ˆ(Si)| Ø h(G) min(vol(Si), vol(V) ≠ vol(Si)).

For the positive part g+, this can be bounded as follows:

⁄2 Ø R(g+) Ø

1

q

n≠1
i=1 (g+(vi)2 ≠ g+(vi+1)2)h(G) min(vol(Si), vol(V) ≠ vol(Si))

22

2 (
q

uœV
g+(u)2d(u))2 .

Since vol(Si) Æ vol(V)
2 for the optimal subset Si,

⁄2 Ø h(G)2

2 .

Corollary 2.4. The algebraic connectivity ⁄2 can be bound by:

h(G) Ø
Ô

2 =∆ ⁄2 Ø 1.

We can extend the above corollary to formulate an even stronger bound:

19

2 Background

Corollary 2.5. The algebraic connectivity ⁄2 can be bound by:

h(G) Ø
Ô

2� · � Ø 1 =∆ ⁄2 Ø 1,

where � = maxi d(vi) is the maximum degree of the graph G.

Proof. By substituting h(G) Ø
Ô

2� into the lower bound of Cheeger’s inequality, we get:

⁄2 Ø h(G)2

2 … ⁄2 Ø (
Ô

2�)2

2 … ⁄2 Ø � Ø 1.

Remark 2.9. Note that we need to assume � Ø 1. In large power systems, this can be
assumed implicitly, as described below. Recall that � represents the following sum over
the weighted edges:

� = max
i

d(vi) = max
i

ÿ

uœV,(vi,u)œE

w(vi, u).

The susceptance (inverse of reactance) values in power systems are typically designed to
ensure e�cient power flow and stability. Even though individual susceptance values might
be less than one, their cumulative sum for each node usually leads to a weighted degree
greater than one, contributing to the overall robustness of the power grid [WKKVM15].
Additionally, large power systems are designed with multiple connections to ensure redun-
dancy and reliability. This means that each node (or bus) is usually connected to several
other nodes, resulting in higher weighted degrees. This can be observed in the IEEE 118-
bus system (see Figure 2.1), which is a standard test case for power grid analysis. Note
that the IEEE 118-bus test case is a specific power system model used for research and
educational purposes, representing a simplified version of the American Electric Power
system. This test case includes detailed information about buses, generators, loads, and
other components necessary for power flow analysis [Uni, Chr].

20

2.2 Graph-Theoretical Modeling of Energy Grids

2.2.1.2 Upper Bound for the Greatest Eigenvalue

To find a bound for the largest eigenvalue ⁄n (see Remark 2.6) of the Laplacian matrix
LG, we can utilize several properties and known results about Laplacian eigenvalues. The
Gershgorin Circle Theorem provides a way to bound eigenvalues based on the entries of
the matrix. By adapting Theorem 6.1.1 from [HJ13], we can apply it specifically to
Laplacian matrices associated with our graphs.

Definition 2.17. Let G = (V, E, w) be a finite undirected weighted graph with |V | = n
and w : E æ R>0 is a weight function. For each i œ {1, 2, . . . , n}, the Gershgorin disc
Di is defined for i œ {1, 2, . . . , n} as:

Di = {z œ C | |z ≠ d(vi)| Æ d(vi)},

where d(vi) is the degree of vi œ V from Definition 2.7.

Note that this definition is consistent with the usual definition of Gershgorin circles,
where the i-th Gershgorin disc is centered at (LG)ii = d(vi) with radius Ri, where:

Ri =
ÿ

j ”=i

w(vi, vj) = d(vi).

Theorem 2.4 (Gershgorin Circle Theorem for Laplacian Matrices). Let G = (V, E, w)
be a finite undirected weighted graph with |V | = n and w : E æ R>0 is a weight function.
For the Laplacian matrix LG of the graph G, every eigenvalue ⁄ of LG lies within at least
one of the Gershgorin discs:

⁄ œ
n

€

i=1
Di,

where each Gershgorin disc Di for i œ {1, 2, . . . , n}.

Proof. Let ⁄ be an eigenvalue of LG and x = (x1, x2, . . . , xn)T œ Cn with x ”= 0 be the
corresponding eigenvector. Therefore, LGx = ⁄x. Given that, we can write the i-th entry
as:

n
ÿ

j=1
(LG)ijxj = d(vi)xi ≠

ÿ

(vi,vj)œE

w(vi, vj)xj = ⁄xi. (2.2)

The abov Eq. 2.2 can be rearranged as follows:

… (d(vi) ≠ ⁄)xi =
ÿ

(vi,vj)œE

w(vi, vj)xj … |d(vi) ≠ ⁄||xi| =

-

-

-

-

-

-

ÿ

(vi,vj)œE

w(vi, vj)xj

-

-

-

-

-

-

(2.3)

… |d(vi) ≠ ⁄||xi| Æ
ÿ

(vi,vj)œE

w(vi, vj)|xj | … |d(vi) ≠ ⁄||xi| Æ d(vi) max
(vi,vj)œE

|xj | (2.4)

Since xi ”= 0, we can divide the result from Eq. 2.4 by |xi|, which leaves us with:

|d(vi) ≠ ⁄| Æ d(vi)
max(vi,vj)œE |xj |

|xi|
. (2.5)

Since ⁄ must satisfy Eq. 2.5 for some i œ {1, 2, . . . , n} and considering maxi |xj |/|xi|, it

21

2 Background

follows that:
|d(vi) ≠ ⁄| Æ d(vi).

Therefore, every eigenvalue ⁄ of the Laplacian matrix LG lies within at least one of the
Gershgorin discs Di = {z œ C | |z ≠ d(vi)| Æ d(vi)}.

Corollary 2.6. From the above theorem, it follows that all eigenvalues ⁄i for 1 Æ i Æ n
of the Laplacian matrix LG lie within the interval:

⁄i œ [0, 2�],

where � = maxi d(vi) is the maximum degree of the graph G.

Proof. According to the Gershgorin Circle Theorem, each eigenvalue of LG lies within
at least one of the Gershgorin discs centered at d(vi) with radius d(vi), meaning the
eigenvalues are within the interval:

0 Æ ⁄ Æ 2 max
1ÆiÆn

d(vi).

For a connected graph, the Perron-Frobenius theorem provides insights into the largest
eigenvalue of the adjacency matrix AG. Although this is not directly for the Laplacian,
it can be related as follows:

Lemma 2.1. Let G = (V, E, w) with |V | = n be a finite undirected weighted connected
graph with w : E æ R \ (≠Œ, 0] and AG be the adjacency matrix, DG the degree matrix,
and LG be the Laplacian matrix of G. Then, the eigenvalues ⁄i of LG are related to the
eigenvalues µi of AG by:

⁄i = d(vi) ≠ µi.

Proof. Let G = (V, E, w) with |V | = n be a finite undirected weighted connected graph
with w : E æ R \ (≠Œ, 0] and AG, DG, LG the matrices as defined. Let v œ Rn be an
eigenvector of AG with eigenvalue µ œ R, therefore AGv = µv. Note that the Laplacian
is given by definition as LG = DG ≠ AG, thus:

LGv = (DG ≠ AG)v = DGv ≠ AGv = DGv ≠ µv.

For each vertex vi œ V , the i-th component of the vector DGv is d(vi)vi, where d(vi) is
the degree of vertex vi. Thus:

(LGv)i = d(vi)vi ≠ µvi = (d(vi) ≠ µ)vi.

Hence, v is also an eigenvector of LG with the eigenvalue ⁄ = d(vi) ≠ µ. Therefore, the
eigenvalues ⁄i of LG are related to the eigenvalues µi of AG by:

⁄i = d(vi) ≠ µi.

We can formulate Theorem 4.5.1 from [Spi19] for the adjacency matrix in our case as:

22

2.2 Graph-Theoretical Modeling of Energy Grids

Theorem 2.5 (Perron-Frobenius). Let G = (V, E, w) with |V | = n be a finite undirected
weighted connected graph with w : E æ R \ (≠Œ, 0] and AG be the adjacency matrix of
G. Let µ1 Æ µ2 Æ . . . Æ µn be the eigenvalues of AG. Then:

1. The eigenvalue µn has a strictly positive eigenvector.
2. µn Ø ≠µ1.
3. µn > µn≠1.

Proof. Let G = (V, E, w) be a finite undirected weighted connected graph with |V | = n,
w : E æ R \ (≠Œ, 0], and AG be the adjacency matrix of G. Let µ1 Æ µ2 Æ . . . Æ µn

be the eigenvalues and x1, x2, . . . , xn the corresponding orthonormal eigenvectors of AG.
We again use the notation where xi(k) refers to the component of the eigenvector xi at
the index k.
1. Since µn is the largest eigenvalue of AG, we need to show that there exists an eigenvec-
tor xn with xn(i) > 0 for all i. Note that since AG is symmetric, we can use the Rayleigh
coe�cient for the largest eigenvalue µn of AG to express:

µn = max
xœRn

R(AG, x) = xT

n AGxn =
n

ÿ

i=1

n
ÿ

j=1
aijxn(i)xn(j).

Consider a vector y œ Rn with y(i) := |xn(i)| for all 1 Æ i Æ n. Then the vector y has unit
norm, ÎyÎ = yT y = xT

n xn = 1. We need to show y is also an eigenvector corresponding
to µn. To see this, we have:

µn = xT

n AGxn =
n

ÿ

i=1

n
ÿ

j=1
aijxn(i)xn(j).

Since aij Ø 0 (given w : E æ R \ (≠Œ, 0]), replacing xn(i) with |xn(i)| does not decrease
the value of the sum and might increase it. Thus, we can formulate the inequality:

n
ÿ

i=1

n
ÿ

j=1
aijxn(i)xn(j) Æ

n
ÿ

i=1

n
ÿ

j=1
aij |xn(i)||xn(j)| =

n
ÿ

i=1

n
ÿ

j=1
aijy(i)y(j) = yT AGy.

Since µn is the maximum value of xT AGx over all unit vectors x:

yT AGy Æ µn.

Therefore, we can assemble the inequalities and formulate:

µn = xT

n AGxn Æ yT AGy = µn … µn = µn,

which implies that y is an eigenvector corresponding to µn. Because y consists of the
absolute values of the components of xn, and y(i) are all positive, this proves that µn

has a positive eigenvector. We discuss why none of the entries of y can be zero. Suppose
for contradiction that y(i) = 0 for some 1 Æ i Æ n. Since G is connected, if y(i) = 0 for
some 1 Æ i Æ n, there must be at least one neighboring vertex k connected by an edge
(i, k) œ E. Given that y has entries derived from the absolute values of xn, and since
xn has no zero entries for a connected graph, y must have all strictly positive entries.

23

2 Background

Therefore, the neighboring vertex k must have y(k) > 0. This implies:

(AGy)i =
n

ÿ

j=1
(i,j)œE

y(j) Ø y(k) > 0.

However, since y is an eigenvector corresponding to µn,

(AGy)i = µny(i) = µn · 0 = 0,

which leads to a contradiction. Therefore, y(i) > 0 for all i, showing that µn has a strictly
positive eigenvector.
2. We again define a vector y œ Rn with y(i) := |x1(i)| for all 1 Æ i Æ n. We again use
the Rayleigh coe�cient for the smallest eigenvalue µ1 of AG to express:

|µ1| =
-

-

-

-

min
xœRn

R(AG, x)
-

-

-

-

= |xT

1 AGx1| Æ
n

ÿ

i=1

n
ÿ

j=1
aij |x1(i)||x1(j)| = yT AGy.

We know yT AGy Æ µn because µn is the largest eigenvalue of AG. Therefore:

|µ1| Æ µn … µn Ø ≠µ1.

3. We follow the procedure from the previous steps and define y œ Rn such that y(i) =
|xn≠1(i)| for all 1 Æ i Æ n. Then again, we receive the inequality:

µn≠1 = xT

n≠1AGxn≠1 Æ yT AGy Æ µn.

By the first part of the theorem, we can take xn to be strictly positive. Since eigenvec-
tors associated with distinct eigenvalues are orthogonal, we have Èxn, xn≠1Í = 0. This
orthogonality implies that both xn and xn≠1 are non-zero vectors, and xn≠1 must have
both positive and negative components. We consider two scenarios:
Scenario 1 : Suppose all components of xn≠1 are non-zero. Given that G is connected,
there exists an edge (i, j) œ E where xn≠1(i) < 0 and xn≠1(j) > 0. Consequently, we
have xn≠1(i)xn≠1(j) < |xn≠1(i)||xn≠1(j)|, leading to the desired strict inequality, thereby
showing that µn≠1 < µn.
Scenario 2 : Assume xn≠1(i) = 0 for some 1 Æ i Æ n. If all the inequalities we considered
earlier are equalities, then y would be an eigenvector for µn with y Ø 0. From our earlier
argument, if y Ø 0 and is an eigenvector corresponding to µn in a connected graph G,
then none of the entries of y can be zero. Since this leads to y(i) = xn≠1(i) = 0 for some
i, we reach a contradiction.

Corollary 2.7. Let G = (V, E, w) be defined as in the theorem. Let � be the maximum
degree of the graph G. The largest eigenvalue ⁄n of the Laplacian matrix LG for a graph
G with maximum degree � is bounded by:

⁄n Æ 2�.

Proof. Let � be the maximum degree of the graph G. This means that for some vertex
vmax, d(vmax) = �. The Perron-Frobenius theorem tells us that the largest eigenvalue

24

2.2 Graph-Theoretical Modeling of Energy Grids

µ1 of AG is positive and the smallest eigenvalue µn satisfies µn Ø ≠µ1. The largest
eigenvalue ⁄n of LG corresponds to the smallest eigenvalue µn of AG since ⁄i = d(vi)≠µi

and subtracting a smaller µi gives a larger ⁄i. Thus, it is ⁄n = d(vmax) ≠ µn. From the
Perron-Frobenius theorem, we have that µn Ø ≠µ1, therefore:

⁄n Æ � ≠ (≠µ1) = � + µ1.

Since µ1 (the largest eigenvalue of AG) is at most the maximum degree �, we have:

⁄n Æ � + � = 2�.

2.2.2 Summary of Graph Theory Model to Energy Grids
Before moving on to integrating power flow into the model, it is important to revisit the
components of an energy grid, which can be represented as a graph. This graph-based
representation enables the application of graph theory concepts to e�ectively analyze and
optimize the power grid. The primary components are buses and transmission lines.

Remark 2.10 (Energy Grid as a Graph). As we saw, an energy grid can be modeled as
a finite undirected weighted graph G = (V, E, w) (see Definition 2.3), where:

• V is the set of buses (nodes) representing various components in the grid (see
[NS14]):

– Generation buses: Buses where electricity is generated and injected into the
grid. Therefore, a generator is connected to this bus.

– Load buses: Buses where electricity is consumed.
– Reference bus: A special bus that serves as the reference point for voltage

magnitude and phase angle in the network.
– Transmission buses: Buses that primarily function as connection points

between transmission lines and other buses.
• E ™ {(u, v) œ V ◊ V | u ”= v · (u, v) œ E =∆ (v, u) œ E} is the set of

transmission lines (edges) connecting the buses, ensuring the graph is undirected.
• Each edge (u, v) œ E is associated with a weight w(u, v) œ R>0, representing a value

related to the transmission line between these buses. Typically, this weight is the
susceptance of the transmission line between buses u and v.

An energy grid modeled as a graph G must satisfy the following conditions:

1. Connectedness: The graph G is connected, ensuring that there is a path between
any pair of buses. This implies the potential for power flow throughout the grid. If
any bus is isolated, it is considered part of a separate sub-grid, which can then be
modeled as an independent graph.

2. Non-negative Weights: The weights w(u, v) are positive, as susceptance and
admittance are typically positive in practical power systems (see Remark 2.4).

25

2 Background

Figure 2.1: IEEE 118-bus system diagram as a reference for a weighted graph model.
This test case represents a simplified version of the American Electric Power
system in the Midwestern US as of December 1962. [Chr]

26

2.3 Integrating Power Flow into the Model

2.3 Integrating Power Flow into the Model

The power flowing between any transmission line is an important and limiting factor in
describing the Optimal Power Flow (OPF). To include this element of power flow into our
optimization problem, we first need to examine some concepts that describe such power
in an energy grid. A fundamental part involves distinguishing between Direct Current
(DC) and Alternating Current (AC) systems.

In contrast to DC, where the flow of electric charge is in a single direction, alternating
current circuits use voltages and currents that are time-varying signals, which can be
imagined as sine waves. These waves oscillate with a certain frequency (typically 50 Hz).
The sine wave nature of AC allows for e�cient transmission of energy over long distances,
a crucial property that has shaped the modern electricity grid [GSO17].
To integrate these dynamics into OPF, we use the power flow equations, which are derived
from Kirchho�’s laws but expressed in terms of phasors for AC systems (see Theorem 2.8).
These equations take into account the complex relationship between voltages, currents,
impedances of components, and loads. By solving the power flow equations, we can
determine the distribution of voltages across the network and the flow of power between
nodes, which is essential for optimizing the operation of the power system under various
constraints, such as minimizing losses, maintaining voltage levels within acceptable limits,
and ensuring the system operates within its thermal and stability bounds.

Definition 2.18. The Impedance Z œ C is a measure of the total opposition that a
circuit presents to the flow of alternating current:

Z := R + iX = |Z|ei◊Z

where R > 0 is called the resistance, X œ R is called the reactance, and ◊Z œ (≠fi, fi]
is the phase angle of the impedance.

Impedance is a central value in any circuit. Every device found in an electric power
system has an impedance [vM06]. Unlike in DC circuits, where resistance is the only
factor a�ecting the flow of electric current, AC circuits contain additional characteristics
due to the presence of capacitance and inductance. These elements introduce phase
shifts between voltage and current, making the concept of resistance inadequate for fully
describing the opposition to current flow in AC circuits. Therefore, impedance can be
viewed as an expanded version of resistance, encompassing its e�ects in alternating current
scenarios [Gri12b].

Definition 2.19. The Admittance Y œ C is a measure of how easily a circuit will allow
current to flow.

Y := 1
Z

= G + iB = |Y |ei◊Y

where G œ R is called the conductance, B œ R is called the susceptance, and ◊Y œ
(≠fi, fi] is the phase angle of the admittance.

Admittance, as the inverse of impedance, represents the ease with which current flows
through a component. It includes the conductance, which denotes the direct path for

27

2 Background

current, and the susceptance, indicating the e�ect of capacitance and inductance. There-
fore, admittance quantifies how readily an electrical circuit conducts current, where higher
admittance suggests less opposition to current flow.
Since admittances or impedances, and thus conductance, susceptance, resistance, and
reactance, are all defined through their relation between two given buses, an AC system
consisting of multiple connected buses can be described as a matrix or vector. This allows
for a representation of these values in the context of the entire power system, which makes
it easier to analyze the flow of current and the distribution of voltages throughout the
system. For example, the current [I] œ Cn◊1 and voltage [V] œ Cn◊1 can be expressed
as vectors, and admittance as a matrix Y œ Cn◊n. The elements of this matrix, Yij ,
represent the admittance between nodes i and j for 1 Æ i, j Æ n in an n-bus system.

Definition 2.20. Consider an AC system consisting of n buses. Let N (i) represent the
set of buses connected to bus i and yij the admittance of the line between buses i and j.
The matrix [Y] œ Cn◊n is called the Admittance matrix, where:

Yij =
I

q

kœN (i) yik if i = j

≠yij otherwise

Let bij be the susceptance of the line between buses i and j. The matrix [B] œ Rn◊n is
called the Susceptance Matrix, where:

Bij =
I

q

kœN (i) bik if i = j

≠bij otherwise

Note that in our case, the shunt admittance can usually be ignored because, for a high-
voltage transmission line spanning less than 50 miles, the shunt capacitance of the line
can be ignored. However, it should be modeled for lightly loaded distribution lines, such
as underground lines [Gri12b]. For purposes of better readability, the susceptance matrix
[B] œ Rn◊n is sometimes denoted by B.

Remark 2.11 (Susceptance matrix as a graph Laplacian). With this definition, the sus-
ceptance matrix B (as well as the admittance matrix) can be viewed as the Laplacian
matrix LG of a finite undirected weighted connected graph (see Definition 2.3 from Sec-
tion 2.2), where the weights correspond to the susceptances of the transmission lines.
Hence, all the results from Section 2.2 for a finite undirected weighted connected graph
can be applied if we identify the weights with the susceptance. This works as follows for
a connected n-bus AC system:
We assume that the line susceptance Bij between any two given buses i and j is positive
(Bij > 0). This assumption is reasonable, as described in Remark 2.4 from Section 2.2,
since susceptance is usually positive under normal conditions. Let G = (V, E, b) be a
finite undirected weighted connected graph with n = |V |. Define the weight function by

b : E æ R>0, (i, j) ‘æ Bij ,

which maps each edge (i, j) œ E to the positive susceptance Bij between buses i and j.

Theorem 2.6 (Ohm’s Law). V = I · Z where V œ C is the voltage across the resistor,
I œ C is the current through the resistor, and Z œ C is the impedance.

28

2.3 Integrating Power Flow into the Model

Proof. A complete derivation of this law can be found in [LSM17].

Note that Ohm’s Law formulated above is a generalized form for AC circuits. It im-
plies the common formulation of V/R = I for DC circuits when the imaginary part of
impedance vanishes.
The power in AC systems can be more complex to analyze than DC power because of
these time-varying and thus complex characteristics. The concept of phasors becomes
relevant in this context. In power system analysis, a phasor is the polar form of any
complex value associated with a component. Through Euler’s formula, we visualize a
sine wave. In AC circuits, both voltage and current can be represented as phasors. The
magnitude of a phasor reflects the amplitude of this wave, while the phase angle represents
the time shift between the wave and a reference point in time, typically another wave.
As already described with impedance and admittance, voltage V and current I can also
be represented as phasors:

Remark 2.12 (Phasor Representation of Voltage and Current).

V = |V |ei◊V I = |I|ei◊I

where V œ C is the voltage and ◊V œ (≠fi, fi] is the voltage angle and I œ C is the current
and ◊I œ (≠fi, fi] is the current angle.

The following Kirchho�’s Laws will serve as a base for deriving the AC power flow equa-
tions. These laws provide a framework for analyzing the flow of electric current and the
distribution of voltages in electrical circuits. Kirchho�’s Current Law ensures that all
currents flowing into and out of any node are balanced, and Kirchho�’s Voltage Law
focuses on the conservation of energy around circuit loops, asserting that the sum of all
voltage changes around a loop equals zero.

Theorem 2.7 (Kirchho�’s Laws). For any closed n-bus AC system, let the voltages at
the buses be V1, . . . , Vn œ C and the currents through the elements connected to a bus
i œ {1, 2, . . . , n} be I1, . . . , Im œ C. Then the system satisfies:

• Kirchho�’s Current Law (KCL): At any bus i,

m
ÿ

k=1
Ik = 0,

where the summation is over all currents flowing into and out of bus i.
• Kirchho�’s Voltage Law (KVL):

n
ÿ

k=1
Vk = 0,

where the summation is over all voltages around the system.

Proof. A complete derivation of these laws can be found in [Wad06].

Note that KVL applies to any closed loop in the system as well. These laws apply both
to AC and DC systems. In DC systems, the voltages and currents are real numbers. The

29

2 Background

total power in AC circuits is described by a complex value S, which is composed of real
power P and reactive power Q as follows:
Definition 2.21. The Complex Power S œ C is defined as the product of the voltage
V œ C and the complex conjugate of the current I œ C:

S := V · Ī = P + iQ

where P œ R is called the real power and Q œ R is the reactive power.
Real Power is the average power actually consumed or produced by a circuit. It is the
component of power that does work. Reactive Power Q is the power that oscillates back
and forth between the reactive components and the power source. It does not do any net
work but is necessary for the use of AC power systems [vM06].
Remark 2.13. The notation Vk\„k is commonly used in the context of AC circuit anal-
ysis. This notation denotes a voltage (or current) at a given bus k, that has a magnitude
of Vk and a phase of „k. Note that in this notation the magnitude is expressed as Vk and
not |Vk| like in the mentioned phasor notation. The angle „k represents the phase of the
voltage relative to some reference, often taken as the current or another voltage in the
circuit. In terms of the given definitions, this means:

• When describing Complex Power S œ C, if there is a voltage source at bus 1 defined
as V1\„1, this means that the voltage source has a phase angle of „1 œ (≠fi, fi]
radians with respect to the reference. If the current flowing through a circuit from
bus 1 to bus 2 has a phasor representation I1\◊1, with ◊1 œ (≠fi, fi], the complex
power delivered to the circuit can be calculated as:

S = V1 · Ī1 = |V1|ei„1 · |I1|e≠i◊1 = |V1||I1|ei(„1≠◊1)

• From V1\„1, the Real Power P œ R and Reactive Power Q œ R in the circuit can
then be computed as:

P = |V1||I1| cos(„1 ≠ ◊1)

Q = |V1||I1| sin(„1 ≠ ◊1)

This means that the real power is the component of the complex power that aligns
with the voltage phasor, and the reactive power is the component that is perpendic-
ular to it. This aligns with the common perception of AC, where voltages rise and
fall periodically over time.

Now we can formulate the power flowing at a given bus by the AC Power Flow Equations.
We use the most commonly used Voltage-Based Formulations from [MH19]. The following
equations then express the power balance at each bus in a given system:
Theorem 2.8 (AC Power Flow Equations). For an n-bus AC system, the power balance
at any given bus k œ {1, ..., n} is described by:

P G

k ≠ P L

k =
n

ÿ

l=1
|Vk||Vl| (Gkl cos(◊k ≠ ◊l) + Bkl sin(◊k ≠ ◊l)) (2.6)

QG

k ≠ QL

k =
n

ÿ

l=1
|Vk||Vl| (Gkl sin(◊k ≠ ◊l) + Bkl cos(◊k ≠ ◊l)) (2.7)

30

2.3 Integrating Power Flow into the Model

where P G

k
œ R and QG

k
œ R denote the generated active and reactive power, and P L

k
œ R

and QL

k
œ R the active and reactive load at a given bus k. The voltage at bus s is given

by Vs\◊s with angle ◊s œ (≠fi, fi]. The conductance between the line between k and l is
described as Gkl œ R and susceptance as Bkl œ R. Note that if there is no line between k
and l, then Gkl = Bkl = 0 does not interfere with the given definition.

Proof. Note that this is more of a derivation than a formal proof, as a mathematical proof
in the traditional sense does not apply here. We first consider a simple two-bus system
and then generalize it to arbitrary buses and lines. Assume a system with two buses,
bus 1 and bus 2, and a transmission line between them. To model this line, we need to
consider some kind of impedance Z12 = R12 + iX12 with a resistive R12 and reactive X12
component in it (see Figure 2.2).
Thus the admittance Y12 = 1

Z12
is given as the inverse of the impedance. We assume

there is some kind of voltage V1\„1 and V2\„2 with corresponding phase angles „1 and
„2 being injected at the buses. To model the current I12 flowing from bus 1 to bus 2, we
can use I12 = V1\„1≠V2\„2

Z
= V12

Z
= V12 · Y .

To further abstract these current formulas to an arbitrary bus k, we can state that

Ik =
n

ÿ

l=1
Ykl · Vl

Now we can introduce a form of power to our model using Ohm’s law from Theorem 2.6.
Sk = Vk · Īk describes the complex power at any bus k:

Sk = Vk ·
n

ÿ

l=1
Ȳkl · V̄l

This is because Ohm’s Law states that 1
Z

· V = V

Z
= I. Since the admittance Ykl =

Gkl + iBkl is described through its conductance component G and susceptance B:

Sk = Vk

n
ÿ

l=1
(Gkl ≠ iBkl)V̄l =

n
ÿ

l=1
VkV̄l(Gkl ≠ iBkl)

We can further express S as its real and reactive power component using Sk = Pk + iQk

and extend the voltages Vk = |Vk|ei◊k and Vl = |Vl|ei◊l in their exponential representa-
tions:

Pk = Re(Sk) =
n

ÿ

l=1
Re

1

VkV̄l(Gkl ≠ iBkl)
2

=
n

ÿ

l=1
Re

1

|Vk|ei◊k |Vl|e≠i◊l(Gkl ≠ iBkl)
2

=
n

ÿ

l=1
Re

1

|Vk||Vl|ei(◊k≠i◊l)(Gkl ≠ iBkl)
2

Qk = Im(Sk) =
n

ÿ

l=1
Im

1

|Vk||Vl|ei(◊k≠i◊l)(Gkl ≠ iBkl)
2

31

2 Background

With the identity i = ei
fi
2 , linearity of Re(x + y) = Re(x) + Re(y) for x, y œ C, and the

fact that cos
!

x + fi

2
"

= ≠ sin(x) for any given x œ R, we get the following result:

Pk =
n

ÿ

l=1
Re

1

|Vk||Vl|ei(◊k≠◊l)(Gkl ≠ iBkl)
2

=
n

ÿ

l=1
|Vk||Vl|Re

1

Gkle
i(◊k≠◊l) ≠ iBkle

i(◊k≠◊l)
2

=
n

ÿ

l=1
|Vk||Vl|Re

1

Gkle
i(◊k≠◊l) ≠ Bkle

i
fi
2 ei(◊k≠◊l)

2

=
n

ÿ

l=1
|Vk||Vl|Re

1

Gkle
i(◊k≠◊l) ≠ Bkle

i(◊k≠◊l)+ fi
2

2

=
n

ÿ

l=1
|Vk||Vl|

3

Gkl cos(◊k ≠ ◊l) ≠ Bkl cos
3

◊k ≠ ◊l + fi

2

44

=
n

ÿ

l=1
|Vk||Vl|(Gkl cos(◊k ≠ ◊l) + Bkl sin(◊k ≠ ◊l))

Formulation of the reactive power Qk follows respectively with the same concept:

Qk =
n

ÿ

l=1
Im

1

|Vk||Vl|ei(◊k≠◊l)(Gkl ≠ iBkl)
2

=
n

ÿ

l=1
|Vk||Vl|Im

1

Gkle
i(◊k≠◊l) ≠ Bkle

i
fi
2 ei(◊k≠◊l)

2

=
n

ÿ

l=1
|Vk||Vl|

3

Gkl sin(◊k ≠ ◊l) ≠ Bkl sin
3

◊k ≠ ◊l + fi

2

44

=
n

ÿ

l=1
|Vk||Vl| (Gkl sin(◊k ≠ ◊l) + Bkl cos(◊k ≠ ◊l))

If we consider P G

k
as the power that is generated and P L

k
the load at bus k, the total

power is given by Pk = P G

k
≠ P L

k
. For the reactive power, Qk = QG

k
≠ QL

k
respectively.

Thus, we now receive the full equations:

P G

k ≠ P L

k =
n

ÿ

l=1
|Vk||Vl|(Gkl cos(◊k ≠ ◊l) + Bkl sin(◊k ≠ ◊l))

QG

k ≠ QL

k =
n

ÿ

l=1
|Vk||Vl|(Gkl sin(◊k ≠ ◊l) + Bkl cos(◊k ≠ ◊l))

The AC Power Flow Equations can thus be characterized as a set of complex non-linear
simultaneous equations designed to model the distribution of electrical power through
a network as in [MKT+19]. However, for quick and intuitive analysis, a simpler linear
relationship is often needed. This is where DC power flow analysis comes into play. DC
power flow provides a simplified linear approximation of the AC power flow equations,

32

2.3 Integrating Power Flow into the Model

making it easier to analyze and solve. This simplification comes with a number of ap-
proximations, such as neglecting the reactive power component and assuming a uniform
voltage magnitude across the network. Additionally, according to Kirchho�’s Current
Law, for any bus in an electrical circuit, the sum of currents flowing into the node must
be equal to the sum of currents flowing out of the node. In the context of power flow
analysis, this principle translates to ensuring that the power injected into the system at
any given bus must balance with the total power flowing in and out of all lines connected
to that bus. This balance is crucial for the stability and e�cient operation of the power
system and will become an equality constraint in our overall optimization problem.

V1\„1 V2\„2

Bus 1 Bus 2

R12 + iX12

I12

Figure 2.2: A simple two-bus model, showing an impedance R12 + iX12 acting on the
transmission line between bus 1 and bus 2 with current I12 flowing through
it. Voltages V1\„1 and V2\„2 are injected at the given bus.

2.3.1 The DC Power Flow Approximation
In the following approximation, we need to make some assumptions and further inves-
tigate their behavior on the Power flow equations. The DC power flow approximation
simplifies this by relating it to a DC circuit. Reactance Xkl in the AC system corresponds
to resistance Rkl in a DC circuit. The di�erence in voltage angles (◊k ≠◊l) corresponds to
the voltage di�erence (Vk ≠ Vl) in a DC circuit, and the real power Pkl in the AC system
corresponds to the current Ikl in the DC circuit. [WWS13]
In a DC circuit, the flow of current between two buses k and l can be expressed as:

Ikl = (Vk ≠ Vl)
Rkl

Note that in this special DC case, Ikl should not be confused with the current in an AC
circuit, which is complex. In the following, we show that under special circumstances
(following Assumptions 1, 2, 3 and 4), one can simplify and express the AC power flow:

Pkl ¥ (◊k ≠ ◊l)
xkl

This equation is then linear and much easier to solve than the full AC power flow equa-
tions. It provides a good approximation for the real power flow in systems, as we see
in the following paragraph. This approximation also significantly reduces the computa-
tional complexity compared to solving the full set of AC power flow equations, making it
particularly useful for planning and real-time operations in power systems where detailed
accuracy is not the primary concern and thus used in many operation models [DKS22].
We now can introduce the assumptions that let us linearize the AC power flow equations.
Therefore consider an n-bus AC system and the set of AC power flow equations with its

33

2 Background

parameters given as in Theorem 2.8:

Assumption 1: The total load in the AC system is low.
In an AC system operating under light load conditions, the total power consumed or
transferred within the system is relatively low. This scenario directly impacts the reactive
power Qk at any given bus k œ {1, ..., n}, making it negligible in the overall power balance
of the system.

Lemma 2.1. For any Á > 0, if |Sk| < Á, then |Qk| < Á.

Proof. Assume there is an Á > 0 such that |Sk| < Á. Since with Definition 2.21 Sk can be
expressed as Sk = Pk + iQk, it follows that

|Sk| = |Pk + iQk| =
Ò

P 2
k

+ Q2
k

< Á.

Because P 2
k

Ø 0 and
Ô

x is monotonic for all x œ R, we get

|Qk| =
Ò

Q2
k

Æ
Ò

P 2
k

+ Q2
k

< Á.

Assumption 2: Resistances in transmission lines are negligible.
In AC transmission circuits, the reactance typically exceeds the resistance R << X, which
means that the X/R ratio may surpass 10, as pointed out by [AC22]. This situation results
in a very low line resistance, and consequently, the conductance Gkl between some buses
k, l œ {1, ..., n} is almost negligible. Under these circumstances, conductance is considered
to be very small, often approximated as zero. Therefore, the admittance becomes mostly
imaginary, characterized by a susceptance B = ≠1/X.

Lemma 2.2. For any Á > 0, if Rkl < Á and Rkl << Xkl, then |Gkl| < Á.

Proof. Let Zkl = Rkl ≠ iXkl denote the impedance. Assume there is an Á > 0 such that
Rkl < Á. Since the admittance Ykl is defined as Ykl = 1

Zkl
(see Def. 2.20), it follows that:

Ykl = 1
Zkl

= 1
Rkl ≠ iXkl

· Rkl + iXkl

Rkl + iXkl

= Rkl + iXkl

R2
kl

+ X2
kl

= Rkl

R2
kl

+ X2
kl

¸ ˚˙ ˝

= Gkl

+i
Xkl

R2
kl

+ X2
kl

We can extract Gkl because Ykl = Gkl + iBkl with Definition 2.20. This can be further
simplified, noting that R2

kl
+ X2

kl
Ø X2

kl
since R2

kl
is non-negative:

|Gkl| =
-

-

-

-

-

Rkl

R2
kl

+ X2
kl

-

-

-

-

-

Æ |Rkl|
X2

kl

Given that Rkl < Á and assuming Xkl is significantly larger than Rkl, we can approximate:

|Gkl| <
Á

X2
kl

34

2.3 Integrating Power Flow into the Model

Since Xkl is significantly larger than Rkl, Á

X
2
kl

becomes very small. Thus, we have:

|Gkl| < Á

Assumption 3: All voltage magnitudes are close to nominal
In high-voltage transmission networks, the voltage magnitudes are generally regulated
and maintained close to their nominal values, typically around one per unit, despite the
e�ects of demand evolution and any unpredictable event [ZSMRZP21].

Assumption 4: The di�erence in voltage angles is small
Under typical operating scenarios, the voltage phasors’ angular discrepancy at two inter-
connected buses k and j, denoted as ◊k ≠ ◊j , is low. It usually stays below 10-15 degrees
and rarely surpasses a 30-degree di�erence [Aly21]. Therefore, in this case, the angular
gap across transmission circuits can be considered negligible.

Lemma 2.3 (Small-angle approximation). For small angles ◊ œ [0, 2fi], the following
approximations hold: sin(◊) ¥ ◊ and cos(◊) ¥ 1 ≠ ◊2/2.

Proof. Since the functions sin, cos œ CŒ(R) are continuous and di�erentiable, we can
consider the Taylor series expansion of sin(◊) and cos(◊) around ◊ = 0:

sin(◊) = ◊ + O(◊3) , cos(◊) = 1 ≠ ◊2

2! + O(◊4)

For very small ◊, the terms ◊3 and beyond become negligible, thus the approximation
sin(◊) ¥ ◊ holds. For cosine, the terms ◊4 and beyond become negligible, leading to the
approximation cos(◊) ¥ 1 ≠ ◊2/2.

Under the condition that we are considering purely reactive components, where the re-
sistive part R of the impedance Z = R + iX is negligible or zero, the relation between
susceptance and reactance further simplifies. In this case, the admittance Y = G + iB of
a purely reactive component can be expressed in terms of its susceptance B by:

Lemma 2.4. For any Á > 0, if Rkl < Á, then Bkl ¥ X≠1
kl

.

Proof. Let Á > 0 and assume Rkl < Á. For an admittance Ykl = 1/Zkl, the following
equation holds:

Ykl = 1
Zkl

= 1
Zkl

· Zkl

Zkl

= Zkl

|Zkl|2
= Rkl + iXkl

R2
kl

+ X2
kl

Because Ykl = Gkl + iBkl, the susceptance Bkl for Rkl < Á small can be described as:

Bkl = Xkl

R2
kl

+ X2 ¥ Xkl

X2
kl

= X≠1
kl

We can now formulate the DC Power Flow Approximation Theorem, incorporating all
the mentioned assumptions to approximate the real power of an AC circuit as follows:

35

2 Background

Theorem 2.9 (DC Power Flow Approximation). Consider an AC system with n œ N
buses, where Assumptions 1, 2, 3, and 4 are all fulfilled:

Pkl ¥ ◊k ≠ ◊l

Xkl

(2.8)

Proof. Consider all parameters given according to Theorem 2.8. Assume that |Skl| ¥ 0,
(◊k ≠ ◊l) ¥ 0, and |Rkl| ¥ 0 are all small, and |Vs| = 1. We start the approximation with
the definition of the AC Power Flow Equations mentioned in Theorem 2.8. Therefore,
the power balance at any bus k is given by:

P G

k ≠ P L

k =
n

ÿ

l=1
|Vk||Vl| (Gkl cos(◊k ≠ ◊l) + Bkl sin(◊k ≠ ◊l)) (2.9)

QG

k ≠ QL

k =
n

ÿ

l=1
|Vk||Vl| (Gkl sin(◊k ≠ ◊l) + Bkl cos(◊k ≠ ◊l)) (2.10)

where |Vs| is the magnitude of a voltage with angle ◊s at bus 1 Æ s Æ n, and Ykl =
Gkl + iBkl is the admittance between k and l. Since |Skl| ¥ 0 with Assumption 1 and
Lemma 2.1, Qk and therefore Eq. 2.10 become negligible, and we end up with:

P G

k ≠ P L

k ¥
n

ÿ

l=1
|Vk||Vl| (Gkl cos(◊k ≠ ◊l) + Bkl sin(◊k ≠ ◊l)) (2.11)

Applying Assumption 2, we conclude that Gkl ¥ 0. Since |Rkl| ¥ 0 and all voltage
magnitudes |Vs| are around one with Assumption 3, Eq. 2.11 for the real power transforms
to:

P G

k ≠ P L

k ¥
n

ÿ

l=1
|Vk||Vl|Bkl sin(◊k ≠ ◊l) ¥

n
ÿ

l=1
Bkl sin(◊k ≠ ◊l) (2.12)

Because (◊k ≠ ◊l) ¥ 0, phasor angles ◊k and ◊l can be approximated with the small-angle
approximation sin(◊k ≠ ◊l) ¥ (◊k ≠ ◊l) from Lemma 2.3, and Eq. 2.12 can be further
reduced to:

n
ÿ

l=1
Bkl(◊k ≠ ◊l) (2.13)

Using Assumption 4 with Lemma 2.4, we can express Bkl = 1/Xkl as the inverse of Xkl,
the reactance of the line between bus k and bus l. We can simplify Eq. 2.13 as follows:

P G

k ≠ P L

k ¥
n

ÿ

l=1

◊k ≠ ◊l

Xkl

(2.14)

Since we have the sum over all the power at a given bus k flowing, we can introduce a
value Pkl œ R that describes this power flow between bus k and bus l and end up with a
reduced form of Eq. 2.14:

P G

k ≠ P L

k ¥
n

ÿ

l=1
Pkl (2.15)

36

2.3 Integrating Power Flow into the Model

where Pkl is expressed as in Eq. 2.8 from the Theorem:

Pkl ¥ ◊k ≠ ◊l

Xkl

(2.16)

Note that after all assumptions are met, the character of the power flow problem can be
simplified to a System of Linear Equations (SLE). We receive a matrix B œ Rn◊n from
Theorem 2.8 and P := P G

k
≠ P L

k
œ Rn:

P G

k ≠ P L

k =
n

ÿ

l=1
Bkl(◊k ≠ ◊l) ≈∆ B ◊ = P

to be solved for ◊ by calculating B≠1 if B is invertible.

2.3.2 Invertibility of the Susceptance Matrix
We now construct the invertible reduced susceptance matrix, which can be related to the
graph Laplacian as described in Remark 2.11 from Section 2.3. The DC power flow equa-
tions in matrix form, P = B◊, can lead to a singular matrix B under certain conditions.
To ensure the invertibility of the matrix B, the following invertibility conditions must be
met:

1. Positive Susceptance: The susceptance values in the matrix B must be non-zero
for all transmission lines connecting buses.

2. Connected Network: The power system network graph must be connected.
3. Reference Bus Definition: A reference bus must be properly defined and ex-

cluded from the reduced matrix B.

Since we are considering a real AC power network, the susceptance is non-zero by Defini-
tion 2.19 from Section 2.3 and can be assumed positive as described in Remark 2.4 from
Section 2.2. The connectedness is ensured by the construction of the power grid from
Section 2.2. Therefore, the primary concern regarding the invertibility of B lies in the
proper definition of the reference bus, as illustrated in the following remark.

Remark 2.14. Assume B œ Rn◊n is the susceptance matrix. By construction, B is the
Laplacian matrix of the graph representing the power network. Let N (i) represent the set
of buses connected to bus i and bij the susceptance of the line between buses i and j, then
B is given by:

• For i ”= j: Bij = ≠bij

• For i = j: Bii =
q

jœN (i) bij

The construction implies that the row sums of B are all zero by Thm. 2.7 from Section
2.3 (Kirchho�’s Law):

n
ÿ

j=1
Bij = Bii +

ÿ

j ”=i

Bij =
ÿ

jœN (i)
bij +

ÿ

jœN (i)
(≠bij) = 0.

37

2 Background

As a result, the rows of B are linearly dependent, making rank(B) = n ≠ 1. Therefore, B
is singular and not invertible.

To avoid that singularity, one bus is chosen as the reference bus (see Remark 2.10), and its
voltage angle is fixed (typically to zero). This removal of one degree of freedom makes the
reduced bus susceptance matrix BÕ non-singular, allowing for the solution of the power
flow equations.

Lemma 2.1. The bus susceptance matrix B œ Rn◊n of an n-bus DC system is invertible
if there exists a reference bus k œ {1, 2, . . . , n} with a fixed voltage angle ◊k := 0.

Proof. Let B œ Rn◊n be the susceptance matrix of an n-bus DC power flow system. Let
bus k œ {1, 2, . . . , n} be the reference bus with a fixed voltage angle ◊k := 0. We reduce
the system by one equation and one variable, resulting in a reduced bus susceptance
matrix BÕ œ R(n≠1)◊(n≠1).
Define BÕ by removing the k-th row and k-th column from B:

BÕ = B({1, . . . , n} \ {k}, {1, . . . , n} \ {k})

where B(S, T) denotes the submatrix of B formed by taking the rows indexed by the set
S = {1, . . . , n} \ {k} and columns indexed by the set T = {1, . . . , n} \ {k}.
To show BÕ is invertible, consider the properties of the Laplacian matrix. The original
matrix B is a Laplacian matrix representing a connected graph with n nodes (see Sec-
tion 2.1). The Laplacian matrix of a connected graph has exactly one zero eigenvalue,
corresponding to the eigenvector 1 according to Thm. 2.1 from Section 2.2. When one
node is removed (by fixing the reference bus), the remaining submatrix BÕ has full rank,
n ≠ 1, ensuring invertibility. More concretely, the determinant of the Laplacian matrix
of a connected graph with one node removed is non-zero, which guarantees that BÕ is
non-singular:

rank(BÕ) = n ≠ 1

Thus, the reduced matrix BÕ is invertible. Therefore, the bus susceptance matrix B of
the n-bus DC power flow system is invertible if a reference bus is defined. This completes
the proof.

Remark 2.15. The removal of the columns and rows corresponding to the reference bus
is essential to ensure the non-singularity of the reduced susceptance matrix. Attempting
to use the original matrix with just zero entries for the reference bus will still result in a
singular matrix:
Let B œ Rn◊n be the original susceptance matrix of an n-bus system. Setting the entries
corresponding to the reference bus (bus 1) to zero, the modified matrix B̃ would have the
form:

B̃ =

Q

c

c

c

c

a

0 0 · · · 0
0 B22 · · · B2n

...
...

0 Bn2 · · · Bnn

R

d

d

d

d

b

While this adjustment seems to eliminate the dependency on the reference bus, it does not
resolve the singularity issue. Since the first row and first column are all zeros, it is clear
that rank(B̃) = n ≠ 1 < n, indicating that B̃ is still singular.

38

2.3 Integrating Power Flow into the Model

The only correct approach is to form the reduced susceptance matrix BÕ by removing the
row and column corresponding to the reference bus. For example, if bus 1 is the reference
bus, the reduced matrix BÕ œ R(n≠1)◊(n≠1) is obtained by removing the first row and first
column of B:

BÕ =

Q

c

a

B22 · · · B2n

...
Bn2 · · · Bnn

R

d

b

By removing the reference bus, the matrix BÕ corresponds to the Laplacian matrix of
the remaining connected graph. Since the original graph is connected, the reduced graph
remains connected, ensuring that BÕ has full rank:

rank(BÕ) = n ≠ 1

Thus, BÕ is non-singular and invertible. Consequently, the system of power flow equations
can be solved without encountering singularities:

P Õ = BÕ◊Õ

where P Õ œ Rn≠1 is the vector of net power injections excluding the reference bus, and
◊Õ œ Rn≠1 is the vector of voltage angles excluding the reference bus.

From the proof of Lemma 2.1 we also receive a way of making the susceptance matrix
invertible by leaving out the rows and columns connected to the reference bus.

Definition 2.22. Let B œ Rn◊n be the susceptance matrix of an n-bus DC power flow
system, and let bus k œ {1, 2, . . . , n} be chosen as the reference bus with ◊k := 0. Define
the reduced susceptance matrix BÕ œ R(n≠1)◊(n≠1) as follows:

BÕ = B({1, . . . , n} \ {k}, {1, . . . , n} \ {k})

where B(S, T) with S = T = {1, . . . , n}\{k} denotes the submatrix of B formed by taking
the rows indexed by the set S and columns indexed by the set T . In other words, BÕ is
obtained by removing the k-th row and k-th column from B.

Remark 2.16. By Lemma 2.1, BÕ is invertible. The reduced system of equations can be
written as:

P Õ = BÕ◊Õ

where P Õ œ Rn≠1 is the vector of net power injections excluding the reference bus, and
◊Õ œ Rn≠1 is the vector of voltage angles excluding the reference bus.

39

2 Background

2.4 Introducing Quantum Algorithms
2.4.1 Basic Notation for Quantum-Gate-Algorithms
To use quantum algorithms, we need a system that can handle quantum information.
Unlike traditional computers, which use bits that are either “on” or “o�” (binary), quan-
tum computers use qubits. Qubits can represent both |0Í and |1Í simultaneously through
a concept called superposition. This allows quantum computers to explore many possi-
bilities at once. Therefore, we will introduce formalism from quantum mechanics tailored
to our purposes. We will loosely follow the notation of [NC10, ST94].

2.4.1.1 Operators on Finite-Dimensional Hilbert Spaces

Definition 2.23 (Hilbert Space). A Hilbert Space H ™ Cn is a finite-dimensional
vector space over C with an inner product È·, ·Í : H ◊ H æ C, which is complete with
respect to the induced norm ||v|| =

Èv, vÍ for every v œ H.

Note that for our purposes it is su�cient to consider finite-dimensional Hilbert spaces
as arbitrary subsets of Cn. A more general definition that includes infinite dimensions
and di�erent fields can be found in [SS05]. If we do not specify the product for a given
Hilbert space explicitly, we assume the standard scalar product as given.

Example 2.1 (State Space). The set Cn equipped with the standard scalar product:

Èu, vÍ =
n

ÿ

k=1
ūkvk

where u, v œ Cn, is a Hilbert space. Because a quantum state will be an element of a
space of this form.

Definition 2.24. Let H1, H2 be Hilbert spaces with inner products. The map � : H1 æ
H2 is called a (Linear) Operator if for all u, v œ H1 and a, b œ C the following holds:

�(a · u + b · v) = a · �(u) + b · �(v).

The notation + and · denotes vector addition and scalar multiplication in the respective
Hilbert spaces. These operations are well-defined because Hilbert spaces are, by defini-
tion, vector spaces over the field of complex numbers C. Consequently, linear combina-
tions of elements within these spaces follow the usual rules of vector addition and scalar
multiplication. Additionally, since the Hilbert spaces H1 and H2 are finite-dimensional,
any linear operator defined on them is necessarily bounded. This follows from the fact that
in finite-dimensional spaces, all linear operators are continuous and therefore bounded.

Lemma 2.2. Let H1 and H2 be Hilbert spaces. Then every linear operator � : H1 æ H2
is bounded. This means there exists a constant C Ø 0 such that for all u œ H1,

Î�(u)ÎH2 Æ CÎuÎH1 .

Proof. Let H1 ™ Cn and H2 ™ Cm be Hilbert spaces. Thus, we can identify � with a
matrix A œ Cm◊n that acts on vectors in Cn. For any vector u œ H1, we have �(u) = Au.

40

2.4 Introducing Quantum Algorithms

The norm of �(u) in H2 corresponds to the Euclidean norm of Au in Cm, and the norm
of u in H1 corresponds to the Euclidean norm of u in Cn. Thus, we need to show that
there exists a constant C Ø 0 such that:

ÎAuÎCm Æ CÎuÎCn for all u œ Cn.

In finite dimensions, all norms are equivalent, so there exists a constant C Õ such that
ÎAÎ Æ C Õ, where ÎAÎ denotes the operator norm of the matrix A, which is given by:

ÎAÎ = sup
ÎuÎCn =1

ÎAuÎCm .

Thus, using the properties of the operator norm, for any u œ H1 ≥= Cn, we have:

Î�(u)ÎH2 = ÎAuÎCm Æ ÎAÎÎuÎCn Æ C ÕÎuÎH1 .

Therefore, � is bounded, with C = C Õ.

Definition 2.25 (Set of Linear Operators). Let H be a Hilbert space. The set L(H)
denotes the set of all linear operators on H:

L(H) = {� : H æ H | �is a linear operator}.

Lemma 2.3. Let H be a Hilbert space. The set L(H) forms a vector space over C.

Proof. Let H be an n-dimensional Hilbert space. The set of all n ◊ n matrices over C
forms a vector space. Every bounded linear operator on the finite-dimensional Hilbert
space H can be represented as an n ◊ n matrix. Therefore, with Lemma 2.2, the vector
space structure of L(H) is inherited from the space of n ◊ n matrices.

Corollary 2.8. Let H be an n-dimensional Hilbert space. The space of n ◊ n matrices
with complex entries, M(n,C), is isomorphic to the space of linear operators on H:

L(H) ≥= M(n,C).

Therefore, in the context of finite-dimensional Hilbert spaces, we can interpret any linear
operator as a matrix with respect to a chosen basis. Moving forward, we will implicitly
represent operators as matrices with respect to the standard basis. This approach facil-
itates the application of matrix operations, such as the conjugate transpose, simplifying
our computations and discussions.

Definition 2.26. Let H be a Hilbert Space and � : H æ H be an Operator. The operator
� is called a Projection if for all u œ H following holds:

(� ¶ �)(u) = �(u),

Definition 2.27. Let H be a Hilbert Space with a scalar product È·, ·Í and its induced
norm. A surjective operator U : H æ H is called unitary if:

||U(x)|| = ||x||

41

2 Background

This property characterizes a unitary operator as an isometry. For simplicity and to
ensure we deal with square matrices, we will consider unitary operators U : H æ H. A
more general definition can be found in [ST94].

Remark 2.17 (Tensor Product of Hilbert Spaces). Let H1 and H2 be Hilbert spaces.
The tensor product H1 ¢ H2 is given as the Hilbert space constructed from the vector
space tensor product of H1 and H2 with an inner product defined as follows: for any
Â1, „1 œ H1 and Â2, „2 œ H2,

ÈÂ1 ¢ Â2, „1 ¢ „2Í = ÈÂ1, „1ÍH1 · ÈÂ2, „2ÍH2 ,

and extended linearly to the entire space H1¢H2. The resulting space H1¢H2 is complete
with respect to the norm induced by this inner product, making it a Hilbert space.

Remark 2.18 (Dirac Notation). Dirac notation, also known as bra-ket notation, is a
standard mathematical notation used in quantum mechanics to represent quantum states
and their inner products. In this notation:

• A state vector |uÍ œ H is a vector that represents the state of a quantum system
within a Hilbert space H. These vectors encapsulate all the information about the
quantum state (see [Gri12a]). It is denoted by |uÍ and called a “ket”

• The dual vector (or conjugate transpose) of |uÍ is denoted by Èu|, called a “bra”.
• The inner product of two state vectors |uÍ and |vÍ is written as Èu|vÍ, which is

equivalent to the standard inner product Èu, vÍ in the Hilbert space H.

Also, Dirac notation is particularly useful when dealing with tensor products of Hilbert
spaces. If |xÍ œ H1 and |yÍ œ H2, the tensor product of these states is denoted by |xÍ¢ |yÍ,
which can also be written as |xyÍ or |xÍ |yÍ.
A detailed explanation of this notation can be found in [Gri12a, NC10].

Example 2.2. Let H := (C2)¢n be a Hilbert space, which is the tensor product of n
copies of C2. This space is equipped with the standard scalar product (see Example 2.1).
Explicitly, the tensor product space (C2)¢n is constructed as follows:

(C2)¢n := C2 ¢ C2 ¢ · · · ¢ C2
¸ ˚˙ ˝

n times
:=

n
p

i=1
C2

The set of all binary strings of length n, denoted by {0, 1}n, can be associated with the or-
thonormal basis vectors in this space. These binary strings are in the classical set {0, 1}n,
which can be mapped to the quantum states in the Hilbert space (C2)¢n.

Specifically, each binary string b = b1b2 . . . bn œ {0, 1}n corresponds to a basis vector
|b1Í¢ |b2Í¢ · · ·¢ |bnÍ œ H, which we can write more compactly as |b1b2 . . . bnÍ. Here, each
|biÍ is an element of the standard basis for C2, typically denoted as |0Í and |1Í.

Explicitly, this mapping f : {0, 1}n æ (C2)¢n can be defined by:

f(b) = |b1Í ¢ |b2Í ¢ · · · ¢ |bnÍ

where b = b1b2 . . . bn œ {0, 1}n and each |biÍ œ C2 is either |0Í or |1Í depending on whether
bi = 0 or bi = 1 for i œ {1, . . . , n}. This mapping is bijective, meaning each binary string

42

2.4 Introducing Quantum Algorithms

uniquely corresponds to a distinct quantum state, and vice versa.

For example, the binary string 00 . . . 0 corresponds to the basis vector |0Í¢ |0Í¢ · · ·¢ |0Í =
|00 . . . 0Í. Similarly, the binary string 00 . . . 1 corresponds to |0Í¢|0Í¢· · ·¢|1Í = |00 . . . 1Í,
and so on, up to |1Í ¢ |1Í ¢ · · · ¢ |1Í = |11 . . . 1Í. These vectors form an orthonormal
basis known as the computational basis (see [NC10]). The computational basis is
fundamental in quantum computing as it allows us to represent and manipulate quantum
states using classical binary strings, making the connection between quantum algorithms
and classical computation.

Theorem 2.10 (Properties of Unitary Operators). Let H ™ Cn be a Hilbert space with the
standard scalar product. Let U : H æ H be an operator. Then the following statements
are equivalent:

(i) U is a unitary operator.

(ii) UúU = UUú = I.

(iii) For all x, y œ H: ÈUx, UyÍ = Èx, yÍ.

(iv) U maps an orthonormal basis for H onto an orthonormal basis.

Proof. (i) ∆ (ii) Assume U is a unitary operator. By the Definition 2.27 of a unitarity
operator, U is surjective and preserves the norm. We know that ||Ux||2 = ÈUx, UxÍ for
any x, and by unitarity, this equals ||x||2 = Èx, xÍ. Therefore, ÈUx, UxÍ = Èx, xÍ. From
the property of the adjoint, we have ÈUx, yÍ = Èx, UúyÍ for all x, y. By setting y = Ux, we
get ÈUx, UxÍ = Èx, UúUxÍ. Given ÈUx, UxÍ = Èx, xÍ, it follows that Èx, UúUxÍ = Èx, xÍ,
implying UúU = I. A similar argument shows UUú = I.

(ii) ∆ (iii) Given UúU = UUú = I, for any x, y œ H, we have:

ÈUx, UyÍ = Èx, UúUyÍ = Èx, yÍ.

This uses the property of the adjoint and the given condition UúU = I.

(iii) ∆ (i) Assume for all x, y œ H, ÈUx, UyÍ = Èx, yÍ. Taking y = x, we get ||Ux||2 =
||x||2, which means ||Ux|| = ||x||. This directly implies U is a unitary operator by the
given definition.

(iii) ∆ (iv) Given ÈUx, UyÍ = Èx, yÍ for all x, y œ H, let {e1, . . . , en} be an orthonormal
basis for H. Then for any ei, ej in the basis, ÈUei, UejÍ = Èei, ejÍ = ”ij , where ”ij is the
Kronecker delta. This shows U maps orthonormal bases to orthonormal bases.

(iv) ∆ (iii) Assume U maps an orthonormal basis {e1, . . . , en} for H onto another or-
thonormal basis {Ue1, . . . , Uen}. For any x, y œ H, they can be written as x =

q

i
–iei

43

2 Background

and y =
q

j
—jej , where –i, —j œ C. Then:

ÈUx, UyÍ =
K

U

A

ÿ

i

–iei

B

, U

Q

a

ÿ

j

—jej

R

b

L

=
K

ÿ

i

–iUei,
ÿ

j

—jUej

L

=
ÿ

i,j

–i—jÈUei, UejÍ.

Given ÈUei, UejÍ = ”ij , this simplifies to
q

i
–i—i, which is exactly Èx, yÍ.

The following features will be important to characterize quantum gates later on.

Definition 2.28. Let U(n) denote the set of all unitary matrices in Cn◊n, defined by:

U(n) := {U œ Cn◊n | UúU = UUú = I},

where Uú is the conjugate transpose of U , and I is the identity matrix.

Lemma 2.1 (Unitary Group). U(n) forms a group under matrix multiplication.

Proof. Let U and V be unitary operators, then their product UV is a unitary operator:

(UV)ú(UV) = V úUúUV = V ú(UúU)V = V úIV = V úV = I,

where I is the identity matrix. Hence, the operation of multiplication is closed for unitary
operators and associative by definition. The identity matrix I is a unitary operator and
therefore denotes the identity element. Since it is UúU = UUú = I, the inverse of a
unitary operator U is its conjugate transpose Uú, which is also unitary.

Note that even U(n) forms a group under matrix multiplication, it does not form a
subvector space for the vector space of matrices: Multiplying a unitary matrix by a
scalar typically results in a matrix that is not unitary. The sum of two unitary matrices
is not necessarily unitary.

Definition 2.29 (Special Unitary Group). The special unitary group SU(n) is defined
as:

SU(n) := {U œ U(n) | det(U) = 1}.

Lemma 2.2. SU(n) is a subgroup of the unitary group U(n).

Proof. To show that SU(n) is a subgroup of U(n), we need to verify that it satisfies the
subgroup criteria: Let U, V œ SU(n). Then U and V are unitary, so UV is unitary with
Lemma 2.1, and we have

det(UV) = det(U) det(V) = 1 · 1 = 1.

44

2.4 Introducing Quantum Algorithms

Hence, UV œ SU(n). The identity matrix I is unitary and det(I) = 1, so I œ SU(n). If
U œ SU(n), then U is unitary, so Uú is its inverse in U(n). Also,

det(Uú) = det(U) = 1 = 1.

Therefore, Uú œ SU(n). Since SU(n) satisfies closure, contains the identity element, and
is closed under inverses, it is a subgroup of U(n).

Remark 2.19. The special unitary group SU(n) is particularly relevant in quantum me-
chanics and quantum computing because it describes unitary transformations that preserve
not only the norm (as with U(n)) but also the global phase. Since global phase factors
do not a�ect physical measurements, quantum gates are often modeled within SU(n) to
exclude these irrelevant phases. Moreover, SU(n) plays a central role in the description
of symmetries in quantum field theory and the Standard Model of particle physics. [NC10]

45

2 Background

2.4.1.2 Qubits and Quantum Information

In quantum computing, the fundamental unit of information is the qubit. The mathe-
matical representation of a qubit’s state space (see Example 2.1) is the Hilbert space H2.
We use notation and formalism from [NC10, FGG14].

Definition 2.30 (Single-Qubit Hilbert Space). The Hilbert space H2 of a single qubit is
a two-dimensional complex vector space, equipped with the standard scalar product:

H2 = C2 = span{|0Í, |1Í},

where |0Í and |1Í are the standard basis vectors given as:

|0Í =
A

1
0

B

, |1Í =
A

0
1

B

.

The state of a single qubit |ÂÍ œ H2 can be expressed as a linear combination of these
basis vectors:

Definition 2.31 (Qubit). Let H2 be the Hilbert space of a qubit. The state |ÂÍ œ H2 is
called a qubit:

|ÂÍ = –0|0Í + –1|1Í,

where –0, –1 œ C are called amplitudes. The state vector |ÂÍ satisfies the normalization
condition ÈÂ|ÂÍ = 1, where È·|·Í denotes the standard scalar product in H2. This ensures
that the total probability of measuring the state equals one, implying |–0|2 + |–1|2 = 1.

Remark 2.20. Note that the normalization condition ÈÂ|ÂÍ = 1 follows from the State
Postulate (see [NC10]).

In a quantum system consisting of multiple qubits, the overall state space is constructed
by taking the tensor product of the individual qubit spaces, which naturally inherits the
standard scalar product.

Definition 2.32 (Multi-Qubit Hilbert Space). For an n-qubit system, the Hilbert space
H¢n

2 is given by the tensor product:

H¢n

2 = (C2)¢n,

where each H2 is the two-dimensional Hilbert space associated with a single qubit. The
tensor product space H¢n

2 is a 2n-dimensional complex vector space, equipped with the
standard scalar product inherited from H2 (see Definition 2.30).

Note that in some contexts, the Hilbert space H¢n

2 is equivalently denoted as (C2)¢n.
Both notations represent the same 2n-dimensional complex vector space, which is the
tensor product of n individual qubit Hilbert spaces.

Remark 2.21 (Relation Between H2 and H¢n

2). The multi-qubit Hilbert space H¢n

2 is
constructed by taking the tensor product of n individual qubit spaces H2, each with its
standard scalar product. This results in a combined space where the scalar product of two
states |�Í, |�Í œ H¢n

2 is naturally defined as the product of the scalar products on each

46

2.4 Introducing Quantum Algorithms

factor of the tensor product. An arbitrary n-qubit state |�Í œ H¢n

2 can be expressed in
the computational basis (see Definition 2.33) as:

|�Í =
ÿ

xœ{0,1}n

–x|xÍ,

where –x œ C represents the amplitude associated with the basis state |xÍ, and |xÍ is a
computational basis vector formed by the tensor product of individual qubit states |0Í and
|1Í as described in Definition 2.30.

The computational basis for an n-qubit system is defined as follows:

Definition 2.33 (Computational Basis). Let H¢n

2 be the Hilbert space of an n-qubit
quantum system. The computational basis Bn

c of H¢n

2 is the set of basis vectors:

Bn

c :=
I

n
p

i=1
|biÍ | bi œ {0, 1} for i = 1, 2, . . . , n

J

,

where each |biÍ œ H2 for i œ {1, 2, . . . , n} is one of the standard basis vectors:

|0Í =
A

1
0

B

, |1Í =
A

0
1

B

.

The scalar product between any two states in H¢n

2 is the standard scalar product inherited
from the individual qubit spaces H2 as described in Remark 2.17.

Lemma 2.3. The computational basis Bn
c defined for the n-qubit Hilbert space H¢n

2 forms
a basis for H¢n

2 .

Proof. Let Bn
c be the computational basis defined for the n-qubit Hilbert space H¢n

2 .
Consider the following linear combination of the basis vectors in Bn

c :
ÿ

xœ{0,1}n

–x |xÍ = 0,

where |xÍ =
o

n

i=1 |biÍ œ Bn
c with x = (b1, b2, . . . , bn), and –x œ C are coe�cients. Since

the vectors |xÍ are distinct and represent di�erent binary combinations of the states |0Í
and |1Í, the only solution to this equation (by the property of linear independence of
vectors in C2) is –x = 0 for all x. Therefore, the vectors in Bn

c are linearly independent.
The dimension of the Hilbert space H¢n

2 is 2n, because H¢n

2 is the tensor product of
n 2-dimensional spaces (each corresponding to a qubit). The computational basis Bn

c

contains exactly 2n vectors, as there are 2n distinct binary strings of length n. Since
Bn

c contains 2n linearly independent vectors in a 2n-dimensional space, it must span the
entire space.

Since a qubit state |ÂÍ belongs to the Hilbert space H2, it can be expressed as a linear
combination of the computational basis states |0Í and |1Í, with two complex coe�cients.
This representation allows the qubit to be mapped onto the surface of a sphere known
as the Bloch Sphere. On the Bloch Sphere, the poles correspond to the basis states
|0Í and |1Í, while any superposition of these states can be visualized as a point on the
sphere, uniquely determined by the angles ◊ and „.

47

2 Background

Remark 2.22 (The Bloch Sphere). Consider the Hilbert space H2 for a single qubit.
Given the computational basis (see Definition 2.33), a single qubit state |ÂÍ œ H2 can be
expressed as a linear combination of the basis states |0Í and |1Í with complex coe�cients
–0, –1 œ C, as described in Definition 2.31. Introducing ◊ and „ as the polar and azimuthal
angles in spherical coordinates, these angles determine the qubit’s state on the surface of
the Bloch sphere, where ◊ œ [0, fi] and „ œ [0, 2fi). Under the normalization condition
ÈÂ|ÂÍ = 1, the coe�cients are given by:

–0 = cos
3

◊

2

4

, –1 = ei„ sin
3

◊

2

4

.

Here, ◊ controls the relative contribution of |0Í and |1Í in the superposition, e�ectively
determining the latitude on the Bloch sphere (see Figure 2.3). The angle „ introduces a
relative phase between the basis states, corresponding to a rotation around the z-axis of
the sphere.

48

2.4 Introducing Quantum Algorithms

|ÂÍ�|0Í |ÂÍ

|iÍ

|+Í

|0Í

|1Í

x

y

z

„

◊

Figure 2.3: Visualization of an arbitrary single qubit state |ÂÍ as described in Remark
2.22 on the surface of the Bloch sphere, with corresponding angles ◊ and „.
The |+Í and |iÍ states (see [NC10]) are on the x-axis and y-axis and the
projection �|0Í |ÂÍ of |ÂÍ onto |0Í on the z-axis. The poles of |1Í and |0Í on
the z-axis represent the standard basis states. [RB20]

49

2 Background

2.4.1.3 From Unitary Operators to Quantum Gates

In the domain of quantum computing, the fundamental operations on quantum data are
represented by quantum gates, which form the structure of a quantum circuit. Qubits are
manipulated and transformed by these gates to perform quantum computations, which
are then measured at the end. Gates are expressed as linear operators acting on qubit
states.

Definition 2.34 (Pauli Operators). The set of unitary operators {I, X, Y, Z}, where I
is the identity and X, Y, Z are the three Pauli matrices, are called Pauli Operators or
Pauli Basis:

I :=
A

1 0
0 1

B

, X :=
A

0 1
1 0

B

, Y :=
A

0 ≠i
i 0

B

, Z :=
A

1 0
0 ≠1

B

.

Remark 2.23. Among the Pauli operators {I, X, Y, Z}, only the identity matrix I and
the Pauli-Y matrix Y are elements of the special unitary group SU(2) (see Definition
2.29), as they are unitary with a determinant of 1. The Pauli-X and Pauli-Z matrices,
while unitary, have a determinant of ≠1 and therefore belong to the larger group U(2)
(see Definition 2.28).

Note that the Pauli operators are sometimes denoted as ‡Z for the Pauli Z-operator,
‡X for the Pauli X-operator, and ‡Y for the Pauli Y -operator. With Lemma 2.3, we
have already shown that the set of linear operators form a vector space, therefore we can
further investigate some basis properties:

Lemma 2.4. Let H be a 2-dimensional Hilbert space. The Pauli operators {I, X, Y, Z}
form a basis for the 4-dimensional space of linear operators L(H) on H.

Proof. Let H be a 2-dimensional Hilbert space, and let A œ L(H) be a linear operator
on H. We identify A as a 2 ◊ 2 matrix. Therefore it can be written as:

A =
A

a b
c d

B

, (2.17)

where a, b, c, d œ C. We want to express A as a linear combination of the Pauli operators:

A = –I + —X + “Y + ”Z,

where –, —, “, ” œ C are complex coe�cients, which gives us:

–

A

1 0
0 1

B

+ —

A

0 1
1 0

B

+ “

A

0 ≠i
i 0

B

+ ”

A

1 0
0 ≠1

B

=
A

– + ” — ≠ i“
— + i“ – ≠ ”

B

.

Since this expression needs to be equal to 2.17, we can solve for the coe�cients and get:

– = a + d

2 , ” = a ≠ d

2 , — = b + c

2 , “ = c ≠ b

2i
.

Hence A can be written as a linear combination of I, X, Y, and Z. To prove the linear

50

2.4 Introducing Quantum Algorithms

independence we suppose:
A

– + ” — ≠ i“
— + i“ – ≠ ”

B

=
A

0 0
0 0

B

.

Therefore, we have the following equations:

– + ” = 0, — ≠ i“ = 0, — + i“ = 0, – ≠ ” = 0.

Solving the first and last results in – = ” = 0. With the second and third, it is — = 0 and
“ = 0. Thus, linear independence is satisfied. Since the Pauli operators {I, X, Y, Z} span
the space of 2 ◊ 2 matrices and are linearly independent, they form a basis for M(2,C)
and with Corollary 2.8 also a basis for L(H).

Lemma 2.5. Let H1 and H2 be Hilbert spaces. The space of linear operators L(H1 ¢H2)
on the tensor product of Hilbert spaces H1 ¢ H2 is isomorphic to the tensor product of
the spaces of linear operators on each Hilbert space:

L(H1 ¢ H2) ≥= L(H1) ¢ L(H2).

Proof. Consider two Hilbert spaces H1 and H2 with orthonormal bases {|iÍ} for H1 and
{|jÍ} for H2. The tensor product space H1 ¢ H2 has a basis {|iÍ ¢ |jÍ}.
An arbitrary linear operator A on H1¢H2 can be written in terms of these basis elements:

A =
ÿ

i,j,k,l

Aij,kl(|iÍ ¢ |jÍ)(Èk| ¢ Èl|),

where Aij,kl œ C are complex coe�cients. For A1 œ L(H1) and A2 œ L(H2), consider the
following map:

„ : L(H1) ¢ L(H2) æ L(H1 ¢ H2), „(A1 ¢ A2)(|uÍ ¢ |vÍ) = (A1 |uÍ) ¢ (A2 |vÍ).

This map is linear. Therefore, any basis of L(H1) and L(H2) gets mapped onto a basis
for L(H1 ¢ H2). For any A œ L(H1 ¢ H2), we can express A in the form:

A =
ÿ

i,k

(A1)ik |iÍ Èk| ¢
ÿ

j,l

(A2)jl |jÍ Èl| .

Thus, any operator A on H1 ¢H2 can be viewed as an element of L(H1)¢L(H2), making
„ bijective.

Multi-qubit gates or operators can be constructed from tensor products of the Pauli
Basis. The set of matrices obtained from all possible tensor products of Pauli matrices
(including the identity) for n qubits forms a basis for the 2n ◊2n matrices, which describe
operations on n-qubit systems. For n qubits, the Pauli basis consists of all possible n-fold
tensor products of the single-qubit Pauli matrices:

{I, X, Y, Z}¢n

This set contains 4n elements because there are 4 choices of the Pauli matrices for each

51

2 Background

of the n qubits.

Theorem 2.11. Let H be a 2n-dimensional Hilbert space, then {I, X, Y, Z}¢n forms a
basis for the 4n-dimensional space of linear operators L(H) on H.

Proof. We prove the statement by induction on the number of qubits n œ N.
Base Case: For n = 1, H is a 2-dimensional Hilbert space. The Pauli operators
{I, X, Y, Z} form a basis for the 4-dimensional space of linear operators L(H) on H.

Induction Hypothesis: Assume that for (n ≠ 1) qubits, the Pauli operators of the tensor
product {I, X, Y, Z}¢(n≠1) form a basis for the 4n≠1-dimensional space of linear operators
L(H).

Induction Step: Consider an n-qubit Hilbert space H. We want to show that the Pauli
operators {I, X, Y, Z}¢n form a basis for the 4n-dimensional space of linear operators
L(H). Given that H is a tensor product of n 2-dimensional Hilbert spaces, H = H1 ¢
H2 ¢ · · ·¢Hn. By the induction hypothesis, {I, X, Y, Z}¢(n≠1) forms a basis for the space
of linear operators on the (n ≠ 1)-qubit Hilbert space, which is 2n≠1-dimensional.
The Pauli operators for n qubits {I, X, Y, Z}¢n can be expressed as tensor products:

{I, X, Y, Z}¢n = {I, X, Y, Z}¢(n≠1) ¢ {I, X, Y, Z}

Since {I, X, Y, Z}¢(n≠1) forms a basis for the 4n≠1-dimensional space of linear oper-
ators on the (n ≠ 1)-qubit Hilbert space, and {I, X, Y, Z} forms a basis for the 4-
dimensional space of linear operators on a 2-dimensional Hilbert space, their tensor
product {I, X, Y, Z}¢n forms a basis for the 4n-dimensional space of linear operators
on an n-qubit Hilbert space.
Thus, by induction, the Pauli operators {I, X, Y, Z}¢n form a basis for the 4n-dimensional
space of linear operators L(H) on the 2n-dimensional Hilbert space H.

Remark 2.24 (Quantum Gate/Quantum Operator). A quantum gate or quantum op-
erator can be understood as a unitary operator U : H æ H that acts on a vector in a
Hilbert space H of dimension 2n for a system of n qubits. This means it is a unitary
element of L(H), the space of linear operators on the Hilbert space H. Quantum gates
are unitary transformations, which preserve the norm of probability amplitudes, ensuring
that the probabilities of measurement outcomes sum to 1 (see Theorem 2.10). Therefore,
a quantum gate can be represented as a unitary matrix. The action of quantum gates is
described using matrix multiplication, and the e�ect of sequences of gates is computed by
the product of their matrices. This framework forms the basis for constructing quantum
circuits and performing quantum computations.

For explicit computations, it is beneficial to have a convenient representation of the matrix
exponential of the Pauli-Z operator. Therefore, consider the following lemma:

Lemma 2.1. Let „ œ (≠Œ, Œ) and Z be the Pauli-Z operator, then the matrix exponen-
tial can be expressed as:

ei„Z =
A

ei„ 0
0 e≠i„

B

.

52

2.4 Introducing Quantum Algorithms

Proof. Let „ œ R and Z be the Pauli-Z operator. Because the Pauli Z-Operator is
Hermitian and unitary, it is Z · Z = Z̄T Z = I, the identity. Therefore, if k = 2n for
some n œ N, then Z2n = (Z2)n = In = I, and if k = 2n + 1 for some n œ N, then
Z2n+1 = (Z2)n · Z = In · Z = Z. Because ei„Z is converging, we can split the series into
its even and odd terms and receive:

ei„Z =
Œ

ÿ

k=0

(i„Z)2k

(2k)! +
Œ

ÿ

k=0

(i„Z)2k+1

(2k + 1)! = cos(„)I + i sin(„)Z

This can be further simplified using Euler’s formula:

ei„Z =
A

cos(„) + i sin(„) 0
0 cos(„) ≠ i sin(„)

B

=
A

ei„ 0
0 e≠i„

B

Note that a similar form of this lemma can be shown for all other Pauli operators, as
they are all Hermitian and implicitly unitary. However, we will not require these results
for our current calculations, so we omit the details.

53

2 Background

2.4.2 Quantum Signal Processing
Quantum Signal Processing (QSP) was introduced by [Low17] as a generalization of com-
posite pulse sequences. The core concept behind QSP involves the strategic alternation
between two distinct types of single-qubit rotation operations.

Definition 2.35 (Signal Rotation Operator). The unitary operator W , referred to as the
signal rotation operator, is represented as follows for a œ [≠1, 1]:

W (a) =
A

a i
Ô

1 ≠ a2

i
Ô

1 ≠ a2 a

B

, (2.18)

The signal rotation operator performs a rotation around the x-axis in the Bloch sphere,
with an angle of ◊ = ≠2 arccos(a).

Definition 2.36 (Signal Processing Rotation). The operator S, defined as the matrix
exponential of the Pauli Z-operator, is called the signal processing rotation. For „ œ
(≠Œ, Œ) (the rotation angle), it is given as follows:

S(„) = ei„Z , (2.19)

The signal processing rotation executes a rotation around the z-axis of the Bloch sphere,
with the e�ective rotation angle being ≠2„. Note that the signal rotation operator W
has a consistent rotation angle ◊, whereas the signal processing rotation S has a rotation
angle „ adjusted based on a specifically chosen input sequence as follows:

Definition 2.37 (QSP Operation Sequence). A sequence of rotations, represented by a
tuple of phase angles „̨ = („0, „1, . . . , „d) œ Rd+1 referred to as signals, defines the QSP
operation sequence U

„̨
as follows:

U
„̨

:= ei„0Z

d
Ÿ

k=1
W (a)ei„kZ . (2.20)

This sequence combines a set of given signals and converts them into processing rotations
that can be used to approximate a polynomial. Utilizing the above characterization,
Quantum Signal Processing (QSP) can be formulated as described in Theorem 1 from
[MRTC21] and Theorem 3 from [GSLW18]. The QSP operation sequence U

„̨
, through its

structured composition of signal and processing rotations, generates a matrix that can
be expressed as a polynomial function of a, in the form:

Theorem 2.12 (Quantum Signal Processing). There exist signals „̨ = („0, „1, . . . , „d) œ
Rd+1 such that for a œ [≠1, 1]:

U
„̨

=
A

P (a) iQ(a)
Ô

1 ≠ a2

iQú(a)
Ô

1 ≠ a2 P ú(a)

B

,

where P, Q œ C[X] are polynomials satisfying the following conditions:

1. The polynomials are of degree deg(P) Æ d and deg(Q) Æ d ≠ 1.
2. The polynomial P has parity d mod 2, and Q has parity (d ≠ 1) mod 2.

54

2.4 Introducing Quantum Algorithms

3. For all a œ [≠1, 1] : |P (a)|2 + (1 ≠ a2)|Q(a)|2 = 1.

Proof. We use the idea presented in [GSLW18] to prove the theorem in both directions.
” =∆ ”: We prove the statement by induction over d œ N0. Let „̨ œ Rd+1 be some
arbitrary signals.
Base Case: Let d = 0. Obeying the convention that the empty product is equal to one
and applying Lemma 2.1, the QSP Sequence is given by:

U
„̨

= ei„0Z

0
Ÿ

k=1
W (a)ei„kZ = ei„0Z · 1 =

A

ei„0 0
0 e≠i„0

B

with P © ei„0 and Q © 0 satisfying conditions 1-3.
Induction Hypothesis: Assume the proposition holds for some d œ N0, i.e., the QSP
sequence U

„̨
generates the defined matrix with P, Q œ C[X] satisfying conditions 1-3.

Induction Step: d ‘æ d + 1 Thus we consider a signal „̨ = („0, „1, . . . , „d+1) œ R(d+1)+1.
We obtain the following QSP operation sequence using Lemma 2.1:

U
„̨

= ei„0Z

d+1
Ÿ

k=1
W (a)ei„kZ = ei„0Z

d
Ÿ

k=1

1

W (a)ei„kZ
2

W (a)ei„d+1Z

=(IH)
A

P (a) iQ(a)
Ô

1 ≠ a2

iQú(a)
Ô

1 ≠ a2 P ú(a)

B A

a i
Ô

1 ≠ a2

i
Ô

1 ≠ a2 a

B A

ei„d+1 0
0 e≠i„d+1

B

=
A

P (a) iQ(a)
Ô

1 ≠ a2

iQú(a)
Ô

1 ≠ a2 P ú(a)

B A

aei„d+1 i
Ô

1 ≠ a2e≠i„d+1

i
Ô

1 ≠ a2ei„d+1 ae≠i„d+1

B

=
A

!

aP (a) + (a2 ≠ 1)Q(a)
"

ei„d+1 i
Ô

1 ≠ a2 (aQ(a) + P (a)) e≠i„d+1

i
Ô

1 ≠ a2 (aQú(a) + P ú(a)) ei„d+1
!

aP ú(a) + (a2 ≠ 1)Qú(a)
"

e≠i„d+1

B

Therefore, we can denote the polynomials P Õ, QÕ œ C[X] of the d + 1 iteration of the QSP
Operation Sequence as:

P Õ(a) =
1

aP (a) + (a2 ≠ 1)Q(a)
2

ei„d+1

QÕ(a) = (aQ(a) + P (a)) e≠i„d+1

These polynomials satisfy all the stated conditions 1-3 of the theorem:

1. Since the degree of deg(P) Æ d and deg(Q) Æ d ≠ 1 we can conclude that:

deg(P Õ) = max(deg(P) + 1, deg(Q) + 2) Æ d + 1
deg(QÕ) = max(deg(P), deg(Q) + 1) Æ d

2. The parity of P Õ(a) and QÕ(a) follows from the parity of the original polynomials
P (a) and Q(a). Which is defined by assumption with P having parity d mod 2,
and Q having parity (d ≠ 1) mod 2.

3. Since for U
„̨

the factors W (a) and ei„kZ for every 0 Æ k Æ d + 1 and a œ [≠1, 1] are
unitary, U

„̨
describes a product of unitaries which is unitary according to Lemma

2.1. Therefore, the normalization condition is preserved according to Theorem 2.10.

55

2 Background

” ≈= ”: We again prove the statement by induction over deg(P) œ N0. Let therefore
P Õ, QÕ œ C[X] be given such that they follow conditions 1-3.
Base Case: Let deg(P) = 0. Using 3. for a = 1 it is

|P (1)|2 + (1 ≠ 12)|Q(1)|2 = |P (1)|2 = 1

therefore |P (1)| = 1. That means P is a constant polynomial of magnitude one therefore
P © ei„0 for some „0 œ R. And with 3. we get

|P (a)|2 + (1 ≠ a2)|Q(a)|2 = 1 + (1 ≠ a2)|Q(a)|2 = 1 + (1 ≠ a2)|Q(a)|2 = 1

for any a œ [≠1, 1] and thus Q © 0. Because P is even. we get d mod 2 = 0, hence d is
even and the signal „̨ = („0, fi

2 , ≠fi

2 , . . . , fi

2 , ≠fi

2) œ Rd+1 is a solution, which is also valid if
d = 0:

U
„̨

= ei„0Z

d/2
Ÿ

k=1

1

W (a)ei„kZW (a)e≠i„kZ
2

= ei„0Z · 1 =
A

ei„0 0
0 e≠i„0

B

Induction Hypothesis: Assume the proposition holds for some the polynomials P Õ, QÕ œ
C[X] where deg(P) œ N, i.e., the polynomials satisfy 1-3 and are defined through a QSP
Operation Sequence U

„̨
with some „̨ œ Rd+1.

Induction Step: deg(P) ‘æ d + 1 Assume that P, Q œ C[X] are given with the leading
coe�cients p¸ and q¸≠1, respectively. Assume without loss of generality that 1 Æ deg(P) =
¸ Æ d + 1. Then, we must have deg(Q) = ¸ ≠ 1.
Note that property 3 from the theorem can be expressed for a œ [≠1, 1] as

|P (a)|2 + (1 ≠ a2)|Q(a)|2 = 1 … P (a)P ú(a) + (1 ≠ a2)Q(a)Qú(a) = 1,

because |P (a)|2 = P (a) ·P ú(a) and |Q(a)|2 = Q(a) ·Qú(a) for all a œ [≠1, 1], where P ú(a)
is the complex conjugate of P (a) and Qú(a) is the complex conjugate of Q(a), respectively.
Since this property holds for infinitely many points, the polynomial on the left-hand side
must be constant. Thus, we can write, with R(a) := (1 ≠ a2), for all a œ [≠1, 1]:

PP ú + RQQú © 1.

Note that in this term the highest order terms of the polynomials must cancel each other
out. The highest degree term of P (a)P ú(a) is p¸p¸a2¸, where p¸ is the leading coe�cient
of P (a). The leading term of Q(a)Qú(a) is q¸≠1q¸≠1a2(¸≠1). When multiplied by (1 ≠ a2),
the highest degree term in (1 ≠ a2)Q(a)Qú(a) becomes:

≠q¸≠1q¸≠1a2¸.

Since the polynomial equation must hold identically for all a œ [≠1, 1], the highest degree
terms on both sides of the equation must cancel each other out. Therefore, we must have:

p¸p¸a
2¸ ≠ q¸≠1q¸≠1a2¸ = 0 … p¸p¸ = q¸≠1q¸≠1 … |p¸| = |q¸≠1|

Let „Õ

d+1 œ R be such that e2i„
Õ
d+1 = p¸

q¸≠1
, with Lemma 2.1 we can write:

56

2.4 Introducing Quantum Algorithms

A

P Õ(a) iQÕ(a)
Ô

1 ≠ a2

iQÕú(a)
Ô

1 ≠ a2 P Õú(a)

B

:=
A

P (a) iQ(a)
Ô

1 ≠ a2

iQú(a)
Ô

1 ≠ a2 P ú(a)

B

e≠i„
Õ
d+1ZW †(a)

=
A

P (a) iQ(a)
Ô

1 ≠ a2

iQú(a)
Ô

1 ≠ a2 P ú(a)

B A

e≠i„
Õ
d+1a ≠ie≠i„

Õ
d+1

Ô
1 ≠ a2

≠iei„
Õ
d+1

Ô
1 ≠ a2 ei„

Õ
d+1a

B

=

Q

a

e≠i„
Õ
d+1aP (a) + ei„

Õ
d+1(1 ≠ a2)Q(a) i

1

e≠i„
Õ
d+1aQ(a) ≠ ei„

Õ
d+1P (a)

2 Ô
1 ≠ a2

i
1

e≠i„
Õ
d+1aQú(a) ≠ ei„

Õ
d+1P ú(a)

2 Ô
1 ≠ a2 e≠i„

Õ
d+1aP ú(a) + ei„

Õ
d+1(1 ≠ a2)Qú(a)

R

b

where

P Õ(a) = e≠i„
Õ
d+1aP (a) + ei„

Õ
d+1(1 ≠ a2)Q(a) = e≠i„

Õ
d+1

1

aP (a) + p¸
q¸≠1

(1 ≠ a2)Q(a)
2

QÕ(a) = ei„
Õ
d+1aQ(a) ≠ e≠i„

Õ
d+1P (a) = e≠i„

Õ
d+1

1

p¸
q¸≠1

aQ(a) ≠ P (a)
2

Note that the highest order terms P Õ and QÕ cancel out again. Consider the leading terms
in P Õ(a): The leading term of e≠i„

Õ
d+1aP (a) is e≠i„

Õ
d+1a ·p¸a¸ = e≠i„

Õ
d+1p¸a¸+1. The leading

term of ei„
Õ
d+1(1 ≠ a2)Q(a) is given by:

ei„
Õ
d+1(1 ≠ a2) · q¸≠1a¸≠1 = ei„

Õ
d+1 · q¸≠1(a¸≠1 ≠ a¸+1)

Combining these, the highest order terms in P Õ(a) are:

e≠i„
Õ
d+1p¸a

¸+1 + ei„
Õ
d+1(≠q¸≠1a¸+1)

Given that we already know that |p¸| = |q¸≠1| and assuming p¸ = q¸≠1ei„
Õ
d+1 , we have:

e≠i„
Õ
d+1p¸a

¸+1 ≠ ei„
Õ
d+1q¸≠1a¸+1 = e≠i„

Õ
d+1q¸≠1ei„

Õ
d+1a¸+1 ≠ ei„

Õ
d+1q¸≠1a¸+1

= q¸≠1a¸+1(e≠i(„Õ
d+1≠„

Õ
d+1) ≠ ei„

Õ
d+1)

For these terms to cancel out it needs to be e≠i(„Õ
d+1≠„

Õ
d+1) = 1 = ei„

Õ
d+1 , which is satisfied.

The leading term of ei„
Õ
d+1aQ(a) is ei„

Õ
d+1a · q¸≠1a¸≠1 = ei„

Õ
d+1q¸≠1a¸. The leading term of

≠e≠i„
Õ
d+1P (a) is ≠e≠i„

Õ
d+1p¸a¸. Combining these, the highest order terms in QÕ(a) are:

ei„
Õ
d+1q¸≠1a¸ ≠ e≠i„

Õ
d+1p¸a

¸

Given |p¸| = |q¸≠1| and assuming p¸ = q¸≠1ei„
Õ
d+1 , we have:

ei„
Õ
d+1q¸≠1a¸ ≠ e≠i„

Õ
d+1q¸≠1ei„

Õ
d+1a¸ = q¸≠1a¸(ei„

Õ
d+1 ≠ 1)

For these terms to cancel out: ei„
Õ
d+1 = 1, which is satisfied. Since the highest degree

terms cancel out, the degrees of P Õ(a) and QÕ(a) must be reduced by one:

deg(P Õ) Æ ¸ ≠ 1 Æ d

deg(QÕ) Æ ¸ ≠ 2 Æ d ≠ 1

Therefore, P Õ and QÕ satisfy condition 1 of the theorem regarding d. The polynomial P

57

2 Background

has parity ¸ mod 2. Since deg(P Õ) = ¸ ≠ 1, P Õ has parity (¸ ≠ 1) mod 2, which matches
the parity condition for d. Similarly, Q has parity (¸ ≠ 1) mod 2. Since deg(QÕ) = ¸ ≠ 2,
QÕ has parity (¸≠2) mod 2, which matches the parity condition for d≠1. Thus, condition
2 of the theorem is satisfied.
Note that e≠i„

Õ
d+1ZW †(a) is unitary as a product of unitary matrices according to Lemma

2.1. Therefore, Condition 3 is preserved due to the unitarity of the transformation, as
established in Theorem 2.10. Applying the induction hypothesis, we get that the matrix
equation equals

A

P Õ(a) iQÕ(a)
Ô

1 ≠ a2

iQÕú(a)
Ô

1 ≠ a2 P Õú(a)

B

= ei„0Z

Q

a

d+1
Ÿ

j=1
W (a)ei„jZ

R

b

for some „̨ œ Rd+1. Therefore, the signal sequence „̨Õ := („0, „1, „2, . . . , „d, „Õ

d+1) œ Rd+2

is valid for the polynomials.

To summarize, the QSP-Theorem states that angles can be identified to realize complex
polynomial transformations, which we can extract with projection P (a) = È0| U

„̨
|0Í,

where the maximal degree and parity of these transformations are directly governed by
the number of these angles used. The approximation can be made arbitrarily close to the
desired polynomial by increasing the number of unitary operations, subject to the limits
of practical implementation and the e�ects of quantum noise. The phase factors can be
calculated using the method described in Section 2.4.2.2. The Remez algorithm [Rem34]
can be used for finding optimal polynomial approximations (see [Che66]).

58

2.4 Introducing Quantum Algorithms

2.4.2.1 Chebychev Polynomials and QSP

Chebychev polynomials are closely related to Quantum Signal Processing, especially as
we will see in their connection to the powers W d of the signal rotation operator (see
Definition 2.35). Therefore, we introduce Chebychev polynomials following the formalism
from [Tre19, Sau13].

Definition 2.38. The Chebyshev polynomial of degree n œ N0, denoted by Tn, is
defined for ◊ œ [0, fi] and satisfies the equation:

Tn(cos ◊) = cos(n◊).

Remark 2.25. Note that the cosine function cos(◊) is continuous and monotonically
decreasing on the interval [0, fi], with cos(0) = 1 and cos(fi) = ≠1. By the intermediate
value theorem, for each x œ [≠1, 1], there exists a unique ◊ œ [0, fi] such that x = cos(◊).
Therefore, since ◊ œ [0, fi] implies ≠1 Æ cos(◊) Æ 1, we can make the change of variables
x := cos(◊). Consequently, the Chebyshev polynomial Tn(x) can be expressed for x œ
[≠1, 1] equivalently as:

Tn(x) = cos (n arccos(x)) .

An easy way of imagining Tn(x) as a function of x is to expand cos(n◊) in powers of
cos ◊, and to write x in place of cos ◊. Hence Tn œ R[X] of degree at most n with real
coe�cients. Then we get the following recursive formula:

Lemma 2.1. For x œ [≠1, 1], the Chebyshev polynomials satisfy the recurrence relation:

Tn+1(x) = 2xTn(x) ≠ Tn≠1(x)

where T0(x) = 1 and T1(x) = x.

Proof. Let x œ [≠1, 1] and ◊ œ [0, fi]. We identify x := cos(◊). It is T0(x) = cos(0) = 1
and T1(x) = cos(◊). For a given n Ø 2 consider the identity :

cos((n + 1)◊) + cos((n ≠ 1)◊) = 2 cos ◊ cos(n◊).

With the definition of Chebyshev polynomials, we have:

Tn+1(cos ◊) + Tn≠1(cos ◊) = 2 cos ◊Tn(cos ◊) … Tn+1(x) = 2xTn(x) ≠ Tn≠1(x)

Chebyshev polynomials have many applications in approximation theory (see [Tre19]).
They are particularly useful because the heights of the peaks of the function Tn(x) =
cos(n◊) for x = cos ◊ are all equal to one.

Lemma 2.2. For x œ [≠1, 1] and ◊ œ [0, fi] with x := cos(◊), the Chebyshev polynomials
are bounded |Tn(x)| Æ 1.

Proof. This follows by definition of Tn(x), since cos(y) is bounded for every y œ R,
therefore |Tn(x)| = | cos(n◊)| Æ 1.

Lemma 2.3. For Chebyshev polynomials of the first kind, Tj(≠x) = (≠1)jTj(x).

59

2 Background

Proof. We prove the statement by induction.
Base Case: For j = 0 and j = 1 we have:

T0(≠x) = 1 = (≠1)0T0(x)
T1(≠x) = ≠x = (≠1)1x = (≠1)1T1(x)

Induction hypothesis: Assume that for some j Ø 1, the following holds for j and j ≠ 1:

Tj(≠x) = (≠1)jTj(x).

Induction step: We need to show that Tj+1(≠x) = (≠1)j+1Tj+1(x). We have:

Tj+1(≠x) = 2(≠x)Tj(≠x) ≠ Tj≠1(≠x)
= 2(≠x)(≠1)jTj(x) ≠ (≠1)j≠1Tj≠1(x)
= (≠1)j+12xTj(x) ≠ (≠1)j≠1Tj≠1(x)
= (≠1)j+1(2xTj(x) ≠ Tj≠1(x))
= (≠1)j+1Tj+1(x).

Definition 2.39. The Chebyshev polynomial of the second kind of degree n œ N0,
denoted by Un, is defined for ◊ œ [0, fi] and satisfies the equation:

Un(cos ◊) = sin((n + 1)◊)
sin ◊

.

Remark 2.26. Again we can make the change of variables x := cos(◊), then the Cheby-
shev polynomial Un(x) can be expressed for x œ [≠1, 1] as:

Un(x) = sin ((n + 1) arccos(x))Ô
1 ≠ x2 .

We can imagine Un(x) as a function of x by expanding it in powers of cos ◊, and to write
x in place of cos ◊. Hence Un œ R[X] of degree n with real coe�cients. Then we get the
following recursive formula:

Lemma 2.4. For x œ [≠1, 1], the Chebyshev polynomials of the second kind satisfy the
recurrence relation:

Un+1(x) = 2xUn(x) ≠ Un≠1(x)

where U0(x) = 1 and U1(x) = 2x.

Proof. Let x œ [≠1, 1] and ◊ œ [0, fi]. We identify x := cos(◊). It is:

U0(x) = sin(1 · ◊)
sin(◊) = 1 and U1(x) = sin(2◊)

sin ◊
= 2 cos(◊) = 2x

For a given n Ø 2 consider the identity:

sin((n + 2)◊) = 2 cos ◊ sin((n + 1)◊) ≠ sin(n◊).

60

2.4 Introducing Quantum Algorithms

With the definition of Chebyshev polynomials of the second kind, we have:

Un+1(cos ◊) = sin((n + 2)◊)
sin ◊

= 2 cos ◊ sin((n + 1)◊) ≠ sin(n◊)
sin ◊

= 2 cos ◊
sin((n + 1)◊)

sin ◊
≠ sin(n◊)

sin ◊
= 2xUn(x) ≠ Un≠1(x)

We can demonstrate, as follows, that the Chebyshev polynomials are inherently con-
structed by the QSP sequence, as established in Theorem 2.12.

Lemma 2.5. For any integer d Ø 1, the d-th power of the signal rotation operator W (a)
from Def. 2.35 is given by

W d(a) =
A

Td(a) iUd≠1(a)
Ô

1 ≠ a2

iUd≠1(a)
Ô

1 ≠ a2 Td(a)

B

,

where Td(a) is the Chebyshev polynomial of the first kind with degree d and Ud≠1(a) is
the Chebyshev polynomial of the second kind with degree d ≠ 1.

Proof. Let a œ [≠1, 1]. Recall that the signal rotation operator according by Definition
2.35, is then given as:

W (a) =
A

a i
Ô

1 ≠ a2

i
Ô

1 ≠ a2 a

B

, (2.21)

We prove the statement by Induction over d œ N0.
Base Case: For d = 1, we have:

W 1(a) = W (a) =
A

a i
Ô

1 ≠ a2

i
Ô

1 ≠ a2 a

B

,

which matches with the matrix since T1(a) = a and U0(a) = 1 according to definition.
Induction Hypothesis: Assume that for some dinN folowing holds,

W d(a) =
A

Td(a) iUd≠1(a)
Ô

1 ≠ a2

iUd≠1(a)
Ô

1 ≠ a2 Td(a)

B

.

Induction Step: d ‘æ d + 1 We calculate W d+1(a) = W d(a)W (a) explicitly using the
induction hypothesis.

W d+1(a) =(IH)
A

Td(a) iUd≠1(a)
Ô

1 ≠ a2

iUd≠1(a)
Ô

1 ≠ a2 Td(a)

B A

a i
Ô

1 ≠ a2

i
Ô

1 ≠ a2 a

B

61

2 Background

Calculating each matrix element one its own, we get the following terms:
1

W d+1(a)
2

11
= Td(a) · a + iUd≠1(a)

1 ≠ a2 · i

1 ≠ a2 = aTd(a) ≠ (1 ≠ a2)Ud≠1(a),
1

W d+1(a)
2

12
= Td(a) · i

1 ≠ a2 + iUd≠1(a)

1 ≠ a2 · a = i (Td(a) + aUd≠1(a))

1 ≠ a2,
1

W d+1(a)
2

21
= iUd≠1(a)

1 ≠ a2 · a + Td(a) · i

1 ≠ a2 = i (aUd≠1(a) + Td(a))

1 ≠ a2,
1

W d+1(a)
2

22
= iUd≠1(a)

1 ≠ a2 · i

1 ≠ a2 + Td(a) · a = aTd(a) ≠ (1 ≠ a2)Ud≠1(a).

Note that (W d+1(a))11 = (W d+1(a))22 and (W d+1(a))12 = (W d+1(a))21. We use the
change of variables where a := cos(◊) for some ◊ œ [0, fi], therefore the polynomials can
be expressed according to Remark 2.25 and Remark 2.26 as:

Td(a) = cos (d arccos(a)) , Ud≠1(a) = sin (d arccos(a))Ô
1 ≠ a2 .

With this identification we can further simplify and get:

1

W d+1(a)
2

11
= a cos (d arccos(a)) ≠ (1 ≠ a2) sin (d arccos(a)) (

1 ≠ a2)≠1

= a cos (d arccos(a)) ≠

1 ≠ a2 sin (d arccos(a))
= cos (arccos(a)) cos (d arccos(a)) ≠ sin (arccos(a)) sin (d arccos(a))
= cos (arccos(a) + d arccos(a))
= cos ((d + 1) arccos(a))
= Td+1(a)

Where we used that a = cos(arccos(a)) thus
Ô

1 ≠ a2 = sin(arccos(a)) and then applied
the cosine addition formula.
1

W d+1(a)
2

12
= i

1

cos (d arccos(a)) + a sin (d arccos(a)) (

1 ≠ a2)≠1
2

1 ≠ a2

= i
1

cos (d arccos(a))

1 ≠ a2 + a sin (d arccos(a))
2

= i
1

cos (d arccos(a))

1 ≠ a2 + sin (d arccos(a))
1

a(

1 ≠ a2)≠1

1 ≠ a2
22

= i
1

sin ((d + 1) arccos(a)) (

1 ≠ a2)≠1
2

1 ≠ a2

= i sin ((d + 1) arccos(a))

= iUd(a)

1 ≠ a2

Where we used the same identification a = cos(arccos(a)) thus
Ô

1 ≠ a2 = sin(arccos(a))
and then applied the sine addition formula. Therefore we are left with:

W d+1(a) =
A

Td+1(a) iUd(a)
Ô

1 ≠ a2

iUd(a)
Ô

1 ≠ a2 Td+1(a)

B

,

62

2.4 Introducing Quantum Algorithms

Theorem 2.13. The signal sequence „̨ = (0, 0, ..., 0) œ Rd+1 creates P (a) := Td(a) the
Chebyshev polynomial of the first kind and degree d.

Proof. We prove the statement by Induction over d œ N. Let the signals U
„̨

for „̨ =
(0, 0, ..., 0) œ Rd+1 be given. Since for these signals ei„kZ = e0·iZ = 1 (see Lemma 2.1) for
every 0 Æ k Æ d

U
„̨

= ei„0Z

d
Ÿ

k=1
W (a)ei„kZ =

d
Ÿ

k=1
W (a) = W d(a)

Base Case: For d = 0 and the signal „̨ = (0) it is W 0(a) = I2 the identity matrix, thus
P © 1, which matches T0(a) = 1.

Induction Hypothesis: Assume the proposition holds for some d œ N, i.e., the signals
„̨ = (0, 0, ..., 0) œ Rd+1 generate with the QSP Operation sequence the polynomial
P (a) = Td(a) the Chebyshev polynomial of first kind and degree d.

Induction Step: d ‘æ d + 1 We consider the signal „̨ = (0, 0, ..., 0) œ R(d+1)+1. We apply
Lemma 2.5, then the QSP operation sequence is given by:

W d+1(a) =
A

Td+1(a) iUd(a)
Ô

1 ≠ a2

iUd(a)
Ô

1 ≠ a2 Td+1(a)

B

Thus with the QSP Operation sequence the signals „̨ generate the polynomial P (a) =
Td+1(a) the Chebyshev polynomial of first kind and degree d + 1.

Remark 2.27. The use of Chebyshev polynomials in Quantum Signal Processing (see
Theorem 2.12) o�ers significant benefits due to their special characteristics. When all
phase signals in the QSP sequence are set to zero, the resulting sequence naturally forms
Chebyshev polynomials (see Theorem 2.13), making them a fundamental part of the QSP
method. Additionally, Chebyshev polynomials are known for providing the best uni-
form approximation to a continuous function according to the minimax criterion (see
[Tre19, Sau13]), meaning they minimize the maximum possible error in approximation.
Moreover, Chebyshev polynomials are highly numerically stable (see [Sau13]), which en-
sures that their use in polynomial approximations does not introduce large errors during
computation.

63

2 Background

2.4.2.2 Determining the QSP Phase Factors

In this section, we detail the procedure to obtain the phase factors necessary for Quan-
tum Signal Processing (QSP) using the procedure described in [DMWL21], given a target
polynomial f(x).

The notation U
„̨
(x) in the QSP Theorem 2.12 refers to the QSP unitary matrix parame-

terized by the phase vector „̨ = („0, „1, . . . , „d) œ Rd+1, where d œ N is the degree of the
target polynomial f(x) to be approximated. This matrix is explicitly given by:

U
„̨
(x) =

A

P (x) iQ(x)
Ô

1 ≠ x2

iQú(x)
Ô

1 ≠ x2 P ú(x)

B

,

where P, Q œ C[X] are polynomials in x œ [≠1, 1] that satisfy the conditions specified
in the theorem. The vector „̨ corresponds to a sequence of phases used to construct
this matrix via a series of quantum operations, as described in the definition. The phase
factors „̨ from Theorem 2.12 are to be determined such that the polynomial encoded in
the upper-left element of U

„̨
approximates the target polynomial f(x). Note that this

upper-left element can be extracted using projectors:

È0|U
„̨
(x)|0Í = P (x).

Remark 2.28. In the context of Quantum Signal Processing, the target polynomial f(x)
is the polynomial that we aim to approximate using the QSP Theorem 2.12. The degree
d œ N mentioned throughout the text refers to the degree of this target polynomial f(x).
The polynomials P (x) and Q(x), which appear in the QSP unitary matrix U

„̨
(x), are

constructed such that the matrix U
„̨
(x) approximates f(x) through its upper-left element.

• P (x) is a polynomial of at most degree d.
• Q(x) is a polynomial typically of at most degree d ≠ 1.

These polynomials are intrinsically related to the phase factors „̨ and are designed to
ensure that the desired approximation of f(x) is achieved when applying the QSP pro-
cedure. Thus, f(x), P (x), and Q(x) are interconnected, with P (x) and Q(x) being the
components of the QSP unitary matrix used to approximate the target polynomial f(x).

Lemma 2.1 (Representation of Polynomials). Given a real polynomial f œ R[X] of
degree d œ N, there exist unique phase factors „̨ = („0, . . . , „d) œ Rd+1 such that:

Re
Ë

È0|U
„̨
(x)|0Í

È

= f(x),

Proof. For a proof see [DMWL21].

Definition 2.40 (Loss Function). The discrepancy between the desired polynomial f(x)
from Remark 2.28 and the real part of the QSP polynomial P (x) is quantified by a loss
function L : Rd+1 æ R, defined as:

L(„̨) = 1
N

N
ÿ

j=1

-

-

-
ReÈ0|U

„̨
(xj)|0Í ≠ f(xj)

-

-

-

2
,

64

2.4 Introducing Quantum Algorithms

where {xj}N

j=1 ™ [≠1, 1] are sample points.

Theorem 2.14 (Optimization Problem). The optimal phase factors „̨ú œ Rd+1 are ob-
tained by minimizing the loss function:

„̨ú = arg min
„̨

L(„̨).

Remark 2.29. This is a non-linear optimization problem where „̨ is iteratively updated
to reduce L(„̨) (see Algorithm 2.1).

Lemma 2.1 (Inversion Symmetry). If the polynomial f(x) from Remark 2.28 has definite
parity, the optimal phase factors „̨ú exhibit inversion symmetry:

„̨ú = („0, „1, . . . , „d≠1, „d) with „i = „d≠i, ’i.

Proof. For a proof see [DMWL21].

Note that this symmetry from the above Lemma 2.1 reduces the number of independent
parameters, enhancing the numerical stability of the optimization.

Theorem 2.15 (Complexity). The computational complexity of the optimization process
is O(Nd3), where d is the degree of the polynomial f(x) from Remark 2.28 and N is the
number of sample points.

Proof. For a proof see [DMWL21].

Remark 2.30. It is important to note that the computational complexity of determining
the phase factors using Algorithm 2.1 does not a�ect the overall complexity of the quantum
algorithm proposed for solving the UCP. This is because the phase factors are precomputed
and remain constant throughout the algorithm’s execution. As a result, the complexity of
the quantum algorithm is governed entirely by its operational structure and not by the
preliminary phase factor computation.

65

2 Background

Algorithm 2.1: Optimization-Based Method for Finding QSP Phase Factors
Input : Polynomial f œ R[X] of degree d œ N from Remark 2.28, initial

phase vector „̨(0) =
!

fi

4 , 0, . . . , 0, fi

4
"

œ Rd+1, tolerance ‘ > 0
Output : Optimized phase factors „̨ = („0, „1, . . . , „d) œ Rd+1

Complexity: The computational complexity of this procedure is O(Nd3), where
d is the degree of the polynomial and N is the number of sample
points.

Procedure :

1 Initialization: Choose an initial guess for the phase factors „̨(0) to ensure
symmetry, such as „̨(0) =

!

fi

4 , 0, . . . , 0, fi

4
"

.
2 Define the loss function:

L(„̨) = 1
N

N
ÿ

j=1

-

-

-
ReÈ0|U

„̨
(xj)|0Í ≠ f(xj)

-

-

-

2

where {xj}N

j=1 are sample points on the interval [≠1, 1].
3 Compute the gradient Ò

„̨
L(„̨) of the loss function with respect to the phase

factors „̨.
4 Update the phase factors iteratively using a quasi-Newton method such as

L-BFGS ([LN89],[DMWL21]). „̨(k) denotes the phase vector at the k-th iteration
of the algorithm:

„̨(k+1) = „̨(k) ≠ –kÒ
„̨
L(„̨(k)),

where –k is the step size determined by the optimization algorithm.
5 Repeat the gradient calculation and phase factor update until convergence:

L(„̨(k)) < ‘.

66

2.4 Introducing Quantum Algorithms

2.4.3 Quantum Singular Value Transformation

The Quantum Singular Value Transformation (QSVT) is a central component of our
proposed algorithm, o�ering a crucial mechanism for e�cient matrix inversion and poly-
nomial approximations. QSVT builds on the foundational concepts of Quantum Signal
Processing (QSP), extending its framework to enable more advanced transformations.
In this section, we use the notation and formalism from [MRTC21] and [GSLW18]. We
begin by establishing the fundamental concepts necessary for introducing QSVT.

Definition 2.41. Let A œ Cm◊n. The singular values ‡i of A, for all 1 Æ i Æ
min(m, n), are defined as the square roots of the eigenvalues of the matrix AúA, where
Aú denotes the conjugate transpose of A.

Note that for a given matrix A œ Cm◊n, the number of non-zero eigenvalues of AúA is
equal to rank(A). Consequently, the number of non-zero singular values is also equal to
rank(A). These non-zero singular values, denoted as ‡i > 0 for i œ {1, 2, . . . , rank(A)},
can be ordered such that ‡1 Ø ‡2 Ø · · · Ø ‡rank(A) > 0. Note that the above definition
includes min(m, n) singular values in total, with any remaining singular values being zero
if rank(A) < min(m, n).

Theorem 2.16 (Singular Value Decomposition). Let A œ Cm◊n and r := rank(A). Let
‡1, ‡2, . . . , ‡r > 0 be the non-zero singular values of A. Then there exist unitary matrices
W œ Cm◊m and V œ Cn◊n, and a diagonal matrix � œ Rm◊n with:

� :=

Q

c

c

c

c

c

c

c

c

c

c

c

a

‡1 0 0 · · · 0 · · · 0
0 ‡2 0 · · · 0 · · · 0
0 0 ‡3 · · · 0 · · · 0
...

...
...

...
0 0 0 · · · ‡r · · · 0
...

...
...

...
0 0 0 · · · 0 · · · 0

R

d

d

d

d

d

d

d

d

d

d

d

b

such that A = W�V †.

Proof. For a complete proof, see Theorem 5.2 and Lemma 5.13 from [Bis21].

2.4.3.1 Block Encoding and Linear Combination of Unitaries

A matrix A œ Cn◊m can be block encoded into a unitary matrix UA œ CN◊N with
N Ø max(n, m) and respect to a normalization factor ⁄ > 0:

UA =
A

A/⁄ ·
· ·

B

where A/⁄ is the upper-left block of the matrix UA. We use Definition 43 from [GSLW18]
to define block encoding:

Definition 2.42 (Block Encoding). Let A œ Cn◊m. A unitary matrix UA œ CN◊N with
N Ø max(n, m) and ⁄ > 0 is called a (⁄, a, Á)-Block Encoding for A if for Á > 0 the

67

2 Background

following holds:
.

.

.
A ≠ ⁄

1

È0|¢a ¢ In

2

UA

1

|0Í¢a ¢ Im

2
.

.

.
Æ Á,

where In œ Rn◊n and Im œ Rm◊m are identity matrices.

To see a detailed explanation of how the extraction of matrix A works, refer to the proof
of the QSVT Theorem 2.17, where this process is explicitly demonstrated. A common
approach to achieve a block encoding is to express an arbitrary matrix A œ Cn◊n as a
combination of unitary matrices. This process, called Linear Combination of Unitaries
(LCU), is described by [Boy23, CW12a].

Corollary 2.9 (Linear Combination of Unitaries). Let H be an n-dimensional Hilbert
space. Any operator A œ L(H) can be expressed as a linear combination of n2 unitary
operators. Specifically, there exist complex coe�cients ⁄i œ C and unitary operators
Ui œ L(H) for i œ {1, 2, . . . , n2} such that:

A =
n

2
ÿ

i=1
⁄iUi.

Proof. The corollary is implied by Theorem 2.11. The Pauli basis for the n-fold tensor
product space H consists of all possible tensor products of the single-qubit Pauli operators
{I, X, Y, Z}. The set {I, X, Y, Z}¢n forms a basis for L(H). Any operator A œ L(H)
can be expressed as a linear combination of these basis elements. Each Pauli matrix is
unitary, and the tensor product of unitary operators is also unitary.

2.4.3.2 The QSVT Theorem

Remark 2.31. Let A œ L(H1, H2) be a bounded linear operator between two Hilbert
spaces H1 and H2, with r := rank(A). The SVD of A (see Theorem 2.16) provides a
factorization A = U�V †, where U and V are mappings from finite-dimensional subspaces
of H2 and H1, respectively, onto Cr. The columns of U and V , denoted by {|ukÍ} and
{|vkÍ}, are orthonormal sets in their respective Hilbert spaces. According to the unitarity
of U and V , the vectors {|ukÍ}r

k=1 µ H2 and {|vkÍ}r

k=1 µ H1 form orthonormal bases
for the image and preimage subspaces corresponding to the non-zero singular values of A.
Therefore, we can express the operator A in terms of its singular value decomposition as:

A =
r

ÿ

k=1
‡k|ukÍÈvk|,

where ‡k > 0 are the singular values of A, |ukÍ œ H2 are the left singular vectors,
and |vkÍ œ H1 are the right singular vectors. This decomposition is analogous to the
spectral decomposition of a normal operator, with the singular values playing the role of
eigenvalues.

68

2.4 Introducing Quantum Algorithms

We now can formulate the process of Quantum Singular Value Transformation (QSVT),
according to Theorem 17 from [GSLW18] and Theorem 4 from [MRTC21] as the following:

Theorem 2.17 (Quantum Singular Value Transformation (QSVT)). Let A œ Rn◊n.
Given a (⁄, a, Á)-block encoding UA œ CN◊N according to Definition 2.42 with N Ø n of
the matrix A and the projector

� = |0Í¢a È0|¢a ¢ In

locating A inside UA, then for odd d, we have for the signals „̨ = („0, „1, . . . , „d) œ Rd+1

(see Theorem 2.12):

U
„̨

= �„1UA

S

U

(d≠1)/2
Ÿ

k=1
�„2k

U †

A
�„2k+1UA

T

V =
A

Poly(SV)(A) ·
· ·

B

,

where �„k
:= ei2„k� are projector-controlled phase shift operators and Poly(SV)(A) is

defined for an odd polynomial as

Poly(SV)(A) :=
ÿ

k

Poly(‡k) |wkÍ Èvk| , (2.22)

which applies a polynomial transform to the singular values of A =
q

k
‡k |vkÍ Èwk|. The

polynomial is of degree at most d and satisfies the conditions of P from Theorem 2.12.
Similarly, for d even, we have for the signals „̨ = („0, „1, . . . , „d) œ Rd+1 (see Theorem
2.12):

U
„̨

=

S

U

d/2
Ÿ

k=1
�„2k≠1U †

A
�„2k

UA

T

V =
A

Poly(SV)(A) ·
· ·

B

,

where Poly(SV)(A) is defined for an even polynomial as

Poly(SV)(A) :=
ÿ

k

Poly(‡k) |vkÍ Èvk| , (2.23)

which is also a polynomial transform of the singular values of A, but with the input and
output spaces both being the right singular vector space, spanned by {|vkÍ} (see Remark
2.31). Analogously, the polynomial is of degree at most d and satisfies the conditions of
P from Theorem 2.12.

Proof. Given a matrix A œ Rn◊n with r := rank(A) and its SVD (see Theorem 2.16):

A = V �W †,

where V œ Rn◊n is a unitary matrix containing the right singular vectors, W œ Rn◊n is
a unitary matrix containing the left singular vectors, and � œ Rn◊n is a diagonal matrix
with

� = diag(‡1, ‡2, . . . , ‡r),

the singular values ‡k > 0 on the diagonal for k œ {1, . . . , r}. We can identify A œ
L(H) (see Corollary 2.8) as a bounded linear operator between two Hilbert spaces H :=

69

2 Background

L(Rn) (see Remark 2.31). According to the unitarity of V and W , the column vectors
{|vkÍ}r

k=1 µ H and {|wkÍ}r

k=1 µ H form orthonormal bases for the image and preimage
subspaces corresponding to the non-zero singular values of A. Therefore, we can express
the operator A in terms of its singular value decomposition as:

A = V �W † =
r

ÿ

k=1
‡k|vkÍÈwk|,

where ‡k > 0 are the singular values of A, |vkÍ œ H are the left singular vectors, and
|wkÍ œ H are the right singular vectors. Therefore, V and W can then be expressed
according to Remark 2.31:

V =

Q

c

a

| | |
|v1Í |v2Í . . . |vrÍ

| | |

R

d

b

, W =

Q

c

a

| | |
|w1Í |w2Í . . . |wrÍ

| | |

R

d

b

where each |vkÍ and |wkÍ is a column vector as described above.

Let a (⁄, a, Á)-Block Encoding UA œ CN◊N with N Ø n and ⁄ > 0 be given for A
according to Definition 2.42. Therefore, for Á > 0, the following holds:

.

.

.
A ≠ ⁄

1

È0|¢a ¢ In

2

UA

1

|0Í¢a ¢ Im

2
.

.

.
Æ Á,

where In œ Rn◊n and Im œ Rm◊m are identity matrices.
The projector � œ RN◊N is defined according to the theorem as:

� = |0Í¢a È0|¢a ¢ In

where In œ Rn◊n is the identity matrix. We can calculate the tensor product and get the
explicit matrix representation, where N = 2a · n:

� = |0Í¢a È0|¢a ¢ In =

Q

c

c

c

c

a

1 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 0

R

d

d

d

d

b

¸ ˚˙ ˝

2a◊2a

¢

Q

c

c

c

c

a

1 0 · · · 0
0 1 · · · 0
...

...
0 0 · · · 1

R

d

d

d

d

b

¸ ˚˙ ˝

n◊n

=

Q

c

c

c

c

a

In 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 0

R

d

d

d

d

b

¸ ˚˙ ˝

N◊N

Given the unitary matrix UA, which is a block encoding of a matrix A, it can be expressed
as:

UA =
A

U11 U12
U21 U22

B

,

where U11 œ Cn◊n corresponds to the block encoding of A. The submatrices U12 œ
Cn◊(N≠n), U21 œ C(N≠n)◊n, and U22 œ C(N≠n)◊(N≠n) are the other blocks.
Applying the projector � isolates the top-left block of UA as follows:

�UA� =
A

In 0
0 0

B

¸ ˚˙ ˝

�œRN◊N

·
A

U11 U12
U21 U22

B

¸ ˚˙ ˝

UAœCN◊N

·
A

In 0
0 0

B

¸ ˚˙ ˝

�œRN◊N

= U11 = 1
⁄

A.

70

2.4 Introducing Quantum Algorithms

With that in mind, let „k œ R for all k œ {0, ..., d} as defined in the theorem, we can
compute the matrix representation of the projector phase shift:

�„k
:= ei2„k�.

The exponential of a matrix for �„k
is given by:

�„k
= ei2„k� =

Œ
ÿ

t=0

(i2„k�)t

t! .

We calculate the first few terms explicitly and follow the same reasoning as in Lemma
2.1. For t = 0 we have (i2„k�)0

0! = I. For t = 1 we have (i2„k�)1

1! = i2„k�. For t = 2 we
have:

(i2„k�)2

2! = (i2„k)2�2

2! = (i2„k)2�
2! = (i2„k)2

2! �.

Since �2 = �, by the definition of a projector (see Definition 2.26), each higher power of
� is just equal to �, meaning:

(i2„k�)t

t! = (i2„k)t

t! � for all t Ø 1.

Excluding the identity matrix I, which comes from the t = 0 term, we can factor the
series and relate it to the Taylor series for the exponential function:

�„k
= I +

Œ
ÿ

t=1

(i2„k)t

t! � = I +
A

Œ
ÿ

t=1

(i2„k)t

t!

B

� = I +
1

ei2„k ≠ 1
2

�.

We know the representation of � thus, we obtain:

�„k
= ei2„k� = I + (ei2„k ≠ 1)

Q

c

c

c

c

a

In 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 0

R

d

d

d

d

b

.

This expression can be explicitly written as a block matrix:

�„k
=

Q

c

c

c

c

a

ei2„kIn 0 · · · 0
0 In · · · 0
...

...
0 0 · · · In

R

d

d

d

d

b

œ RN◊N .

The top-left block is ei2„kIn, applying the phase shift ei2„k to the identity matrix. This
matrix form reflects the phase shift of the projector in combination with the phase shift
applied to the corresponding subspace given by the block encoding. We first consider the
case where d œ N is even. Then the QSVT Sequence according to the theorem is given
by:

U
„̨

=

S

U

d/2
Ÿ

k=1
�„2k≠1U †

A
�„2k

UA

T

V

71

2 Background

The expression �„2k
U †

A
�„2k+1UA of the QSVT Sequence can be explicitly calculated as

follows. We consider the k-th term in the product for even d:

�„2k≠1U †

A
�„2k

UA =
1

I + (ei2„2k≠1 ≠ 1)�
2

U †

A

1

I + (ei2„2k ≠ 1)�
2

UA.

Expand this expression:

�„2k≠1U †

A
�„2k

UA =
1

I + (ei2„2k≠1 ≠ 1)�
2

U †

A

1

I + (ei2„2k ≠ 1)�
2

UA

= U †

A
UA + (ei2„2k≠1 ≠ 1)�U †

A
UA + (ei2„2k ≠ 1)U †

A
�UA

+ (ei2„2k≠1 ≠ 1)(ei2„2k ≠ 1)�U †

A
�UA.

We already calculated UA and � in terms of their matrix representations:

�UA =
A

U11 0
0 0

B

, U †

A
� =

A

U †

11 0
0 0

B

,

where U11 is related to A as U11 = 1
⁄

A. Given that the SVD of A is given by A = V �W †

as described above, we can substitute U11 into the expression for �„2k
U †

A
�„2k+1UA. We

can calculate U †

11U11 as follows since V is unitary with Lemma 2.1:

U †

11U11 =
3 1

⁄
W�†V †

4 3 1
⁄

V �W †

4

= 1
⁄2 W�†�W †,

where �†� is the square of the diagonal matrix of singular values. As described in
[MRTC21], we can assume that the block encoding UA for A is given as:

UA =
A

A
Ô

I ≠ AAT

Ô
I ≠ AT A ≠AT

B

where the matrix square root is defined through its singular value decomposition as
follows:

I ≠ AAT :=
n

ÿ

k=1

Ò

1 ≠ ‡2
k
|vkÍÈvk|,

I ≠ AT A :=
n

ÿ

k=1

Ò

1 ≠ ‡2
k
|wkÍÈwk|.

where ‡k are the singular values of A, and |vkÍ and |wkÍ are the left and right singular
vectors of A, as described above. Then the term that dominates this expression is the
first one:

U †

A
UA =

A

U †

11U11 U †

11U12
U †

21U11 U †

21U12 + U †

22U22

B

,

Therefore, after applying the sequence for d/2 steps, we can apply the QSP Theorem 2.12
which gives us for the signals „̨ = („0, „1, . . . , „d) œ Rd+1 such that for ‡k œ [≠1, 1] for
all k œ {1, . . . , r} with Q © 1 and ensures that the block in the upper-left corner of the
resulting matrix is given by:

�U
„̨
� = V �ÕV †,

72

2.4 Introducing Quantum Algorithms

where �Õ œ Rn◊n is given as

�Õ = diag(P (‡1), P (‡2), . . . , P (‡r)),

and P (‡k) is the polynomial from QSP applied to ‡k for all k œ {1, . . . , r}. This corre-
sponds to the polynomial applied to the singular values of A through the QSVT sequence.

Poly(SV)(A) :=
ÿ

k

Poly(‡k) |vkÍ Èvk|

To show for odd d, follow exactly the same way. The other direction can be shown with
the same argument (see [GSLW18]).

Remark 2.32 (Prerequisites to the Polynomial Used in QSVT and QSP). The QSP
Theorem 2.12 specifies that since for QSVT the use of only P is relevant, we can use
Q © 1 to simplify the condition |P |2 + (1 ≠ a2)|Q|2 = 1 for a œ [≠1, 1] with |P | Æ 1.
Therefore, |P (x)| Æ 1 for all x œ [≠1, 1]. Thus, although the QSVT Theorem 2.17 states
that P must satisfy all the conditions of P from Theorem 2.12, it is only relevant to show
|P (x)| Æ 1 for all x œ [≠1, 1].

73

2 Background

2.4.3.3 Using QSVT for Matrix Inversion

The process of matrix inversion using Quantum Singular Value Transformation (QSVT)
was proposed and detailed in [MRTC21]. This approach allows for the inversion of a
given square matrix by constructing an approximation to its inverse. Traditionally, this
task has been addressed by the HHL algorithm, developed by Harrow, Hassidim, and
Lloyd [HHL09].

Definition 2.43 (‘-approximation). Let f : D æ R be a function defined on a domain
D ™ R, and let ‘ > 0. A function g : D æ R is said to be an ‘-approximation of f on D
if for all x œ D:

|g(x) ≠ f(x)| Æ ‘.

This definition ensures that the maximum deviation between the approximating function
g(x) and the target function f(x) is bounded by ‘ across the specified domain. The
following lemma demonstrates how the inversion of a matrix can be achieved through
the inversion of its SVD. It shows that inverting a matrix can be reduced to inverting its
singular values, which is utilized by QSVT to perform matrix inversion.

Lemma 2.1 (SVD Inversion). Let A œ Cn◊n be invertible with A = U�V ú as the SVD
of A. Then the inverse of A is given by:

A≠1 = V �≠1Uú,

where U œ Cn◊n and V œ Cn◊n are unitary matrices and �≠1 œ Cn◊n is defined by taking
the reciprocal of each non-zero singular value in �.

Proof. Given A = U�V ú œ Cn◊n, we need to prove that A≠1 = V �≠1Uú. Since A is
invertible, all singular values are non-zero, and � is invertible. We verify:

AA≠1 = (U�V ú)(V �≠1Uú) = U�(V úV)�≠1Uú = U��≠1Uú = UIUú = UUú = I

A≠1A = (V �≠1Uú)(U�V ú) = V �≠1(UúU)�V ú = V �≠1�V ú = V IV ú = V V ú = I

In both cases, we used the fact that U and V are unitary.

Remark 2.33. To summarize, for an invertible matrix A = U�V ú œ Cn◊n, the Quantum
Singular Value Transformation (QSVT) can be used to directly approximate the inverse
A≠1. When we use QSVT to invert singular values, we employ a polynomial approxima-
tion of the function f(x) = 1/x. This approximation can invert singular values up to a
precision ‘. The resulting matrix, after applying QSVT, approximates the inverse A≠1.
If we use a polynomial that exactly inverts the singular values (without any approxima-
tion error), the result is the exact inverse A≠1 of A, as discussed in Lemma 2.1 above.
Note that for an invertible matrix—in our case, the reduced susceptance matrix, which is
invertible—there is no need to consider the Moore-Penrose pseudoinverse (see [SB02]).
QSVT directly provides an approximation of A≠1 with the desired precision ‘. For a
non-invertible or non-square matrix, QSVT would still provide an approximate inver-
sion, resulting in a matrix close to the Moore-Penrose pseudoinverse A+. However, since
A is invertible in our context, we obtain an approximation of A≠1 itself. For QSVT of
non-square matrices, see [MRTC21].

74

2.5 Approximation Methods for Polynomial Construction

2.4.4 Quantum Approximate Optimization Algorithm
The Quantum Approximate Optimization Algorithm (QAOA) was introduced by Farhi et
al. [FGG14] to provide approximate solutions for combinatorial optimization problems.
The algorithm is designed to solve optimization problems by finding the ground state of
a classical Hamiltonian Ĉ, which encodes the cost function of the optimization problem.
The objective is to find the bit string z œ {0, 1}n that minimizes a given cost function
C(z). This can be translated into finding the ground state, which corresponds to the
minimum eigenvalue of the Hamiltonian Ĉ. We follow the notation of [FGG14] and
introduce the two main components of the algorithm:

• The Cost Hamiltonian Ĉ: This encodes the problem we aim to solve.
• The Mixing Hamiltonian B̂: Commonly chosen as the transverse field Hamiltonian:

B̂ = ≠
n

ÿ

i=1
‡x

i ,

where ‡x

i
are the Pauli-X matrices acting on the i-th qubit. This Hamiltonian serves to

explore the solution space (see [FGG14]).
The QAOA operates by applying a series of unitary transformations parameterized by
angles “ and —, which are optimized to maximize the overlap with the ground state of Ĉ.

2.5 Approximation Methods for Polynomial Construction
To establish a polynomial that can e�ectively invert matrices via Quantum Singular
Value Transformation, we need to approximate continuous functions that are infinitely
di�erentiable. This approximation relies heavily on the properties of functions within
Lp-spaces. Therefore, we require the following foundational concepts from [LL01].

Definition 2.44. A Borel set is any set in the ‡-algebra generated by the open sets in
R.

Definition 2.45. The Lebesgue measure ⁄ of an interval [a, b] µ R is defined by

⁄([a, b]) = b ≠ a.

Definition 2.46. Let 1 Æ p < Œ. The Lp space, denoted by Lp(R), is the set of all
measurable functions f : R æ R such that

ÎfÎp :=
3

⁄

R
|f(x)|p dx

41/p

< Œ.

Definition 2.47. The Lp-norm of a function f œ Lp(R), where 1 Æ p < Œ, is defined by

ÎfÎp =
3

⁄

R
|f(x)|p dx

41/p

.

Definition 2.48. The support of a function f : R æ C is the closure of the set where f
is non-zero:

supp(f) = {x œ R : f(x) ”= 0}.

75

2 Background

Algorithm 2.2: Quantum Approximate Optimization Algorithm (QAOA)
Input : Number of qubits n, depth p, cost Hamiltonian Ĉ, mixing

Hamiltonian B̂
Output : Approximate solution to the optimization problem
Procedure :

1 Initialization: Start with an equal superposition of all possible states, usually
achieved by applying a Hadamard gate H¢n to the n-qubit initial state |0Í¢n.

2 Parameterized Quantum Circuit:

1. Apply the cost unitary UC(“) = e≠i“Ĉ .
2. Apply the mixing unitary UB(—) = e≠i—B̂.
3. Repeat the above two steps p times, where p is the depth of the QAOA circuit,

leading to the final state:

|Â(“̨, —̨)Í = UB(—p)UC(“p) · · · UB(—1)UC(“1)H¢n|0Í¢n

Here, “̨ = (“1, “2, . . . , “p) and —̨ = (—1, —2, . . . , —p) are the parameters to be
optimized.

Measurement: Measure the final state in the computational basis to obtain bit
strings.

Classical Optimization: Use a classical optimization algorithm, e.g., gradient
descent, Nelder-Mead (see [ZWC+20]), to find parameters (“̨ú, —̨ú) that yield good
approximations of the optimal parameters by maximizing the expectation value:

ÈÂ(“̨, —̨)|Ĉ|Â(“̨, —̨)Í.

76

3 Related work

The exploration of quantum computing for solving the Unit Commitment Problem has
attracted significant attention due to its potential to outperform classical methods. In
[AY19], the UCP was reformulated as a Quadratic Unconstrained Binary Optimization
(QUBO) problem, applying QAOA on D-Wave processors. This approach showed promise
but faced scalability issues due to hardware limitations. In [KGB+21], a hybrid method
was introduced, combining QAOA for binary variables with classical optimization for
continuous variables, which improved accuracy for small-scale problems. In [NZB22], a
distributed quantum approach to UCP was proposed, breaking it down into QUBO sub-
problems solved using QAOA. This method allows for scalability and is particularly suited
for large-scale energy systems where computational resources are limited. In [JPJL10], a
quantum variant of Binary Particle Swarm Optimization (PSO) for UCP was introduced.
This method performed well on systems with up to 100 units, though its computational
time increased quadratically with system size, highlighting scalability concerns. QSVT,
developed in [GSLW18] and expanded in [MRTC21], o�ers a flexible and e�cient ap-
proach for solving linear systems, critical in UCP and power flow problems. Compared
to HHL, QSVT handles a broader range of problems, making it well-suited for large-scale
quantum optimization tasks. QSVT is increasingly integrated into power systems opti-
mization, showing improvements in computational e�ciency and accuracy over classical
methods. Its flexibility makes it preferable over HHL in scenarios where matrix inversion
is a key step. In [HHPT23], quantum surrogate models, combining classical surrogate
models with quantum-enhanced optimization, have shown promise in improving solution
speed and quality, particularly for sub-hourly commitments in renewable energy con-
texts. The integration of QAOA within hybrid frameworks has demonstrated significant
improvements in computational e�ciency and solution quality, especially given current
quantum hardware limitations [HHPT23].

77

4 Methodology

4.1 Formulation of the Unit Commitment Optimization
Problem

Definition 4.1 (Quantum simulation-based optimization). For an objective function
f : RN ◊RL æ R, with u : RM æ RL, a quantum simulation-based optimization (QuSO)
problem is defined as a special form of a MINLP problem, where f is e�ciently imple-
mentable and may depend on the summary statistic result of the solution of a SLE:

min
x

f(x, u(y))

subject to Axy = bx,

cj(x, u(y)) Æ 0, ’j œ [K],
xi œ [li, ui] µ R,

xi œ Z, ’i œ I ™ [N],

where Ax œ RR◊M and bx œ RM represent a SLE that depends on the solution x œ X,
where x ‘æ Ax and x ‘æ bx are continuous.

Remark 4.1. Definition 4.1 of a QuSO problem is compliant with Definition 2.2 from
Section 2.1 of a MINLP problem, since the objective function f(x, u(y)) is demanded to be
an algebraic function. The constraints Axy = bx are defined as linear equations dependent
on x. The constraints cj(x, u(y)) Æ 0 are algebraic. The variable bounds xi œ [li, ui] µ R
define a polyhedral set and the variables xi must be integers ’i œ I ™ [N]. Thus, the
QuSO problem can be viewed as a specific instance of a MINLP problem.

In order to make the Susceptance Matrix invertible, we use the procedure described in
Section 2.3.2 which assumes a connected power network graph, non-zero line suscep-
tances for all buses, and a defined reference bus. The reference bus is explicitly defined
in the constraints of the problem. For the formulation of the Unit Commitment Problem
(UCP), we consider an m+1-bus AC system with m œ N and m Ø 2, under the relaxation
assumptions described in Section 2.3.1 and thus make use of the DC power flow approx-
imations from Theorem 2.8. We formulate the UCP as a generalization of the Economic
Dispatch (ED) and Optimal Power Flow (OPF) problem, introducing a time component
with discrete timesteps t œ T . Note that the following formulation of the UCP defines a
MINLP according to Def. 2.2 from Section 2.1.

79

4 Methodology

min
u,PG

ÿ

tœT

Q

a

ÿ

iœG

1

cprod
i,t

· ui,t + cstart
i,t · (1 ≠ ui,t≠1)ui,t + cstop

i,t
· ui,t≠1(1 ≠ ui,t)

2

+
ÿ

lœL
ctrans

l,t

R

b

subject to:
ÿ

iœG
Pi,t =

ÿ

kœB
Lk,t, ’t œ T

P min
i · ui,t Æ Pi,t Æ P max

i · ui,t, ’i œ G, ’t œ T
ui,t œ {0, 1}, ’i œ G, ’t œ T
ctrans

l,t Ø Pl,t · Cl, ’l œ L, ’t œ T
ctrans

l,t Ø ≠Pl,t · Cl, ’l œ L, ’t œ T
BÕ◊Õ

t = P Õ

t ≠ LÕ

t, ’t œ T
◊m+1,t = 0, ’t œ T

Where:

• m œ N with m Ø 2 is a finite number of buses.
• m + 1 is the index of the reference bus.
• B = {1, 2, . . . , m} is the index set of buses.
• G ™ B is the index set of generators.
• L is a finite index set of transmission lines.
• T is a finite set of discrete time steps.

• Pmin,i œ R is the minimum power output limit of generator i.
• Pmax,i œ R is the maximum power output limit of generator i.
• cprod

i,t
œ R is the production cost of generator i at time t.

• cstart
i,t

œ R is the start-up cost of generator i at time t.
• cstop

i,t
œ R is the shut-down cost of generator i at time t.

• ctrans
l,t

œ R is the transmission cost through line l at time t.
• Cl œ R is the cost per unit of power transmission per unit time for line l.

• ui,t œ {0, 1}, with ui,t = 0 if o� and ui,t = 1 if on, the operational state of generator
i at time t

• u œ {0, 1}(|G|·|T|) with u = (ui,t)iœG,tœT the vector of all generator state variables.
• Pi,t œ R is the power generated by generator i at time t.
• PG œ R(|G|·|T|) with PG = (Pi,t)iœG,tœT the vector of all the power generated by

generator i at time t.
• Lk,t œ R is the load at bus k and time t.
• Pl,t œ R is the power flowing through line l at time t.
• ◊k,t œ R is the voltage angle at bus k at time t.

• BÕ œ Rm◊m (Def. 2.22 from Section 2.3.1) is the reduced susceptance matrix,
obtained by excluding the rows and columns connected to the reference bus m + 1.

• ◊Õ
t = (◊1,t, ◊2,t, . . . , ◊m,t)€ œ Rm is the reduced vector of voltage angles ◊k,t œ R at

bus k and time t, excluding the reference bus m + 1.

80

4.1 Formulation of the Unit Commitment Optimization Problem

• P Õ
t = (P1,t u1,t, P2,t u2,t, . . . , Pm,t um,t)€ œ Rm is the reduced vector of total power

generation, where Pk,t œ R is the power injected by generator k at bus k and time
t and uk,t = 0 for k œ B \ G, excluding the reference bus m + 1.

• LÕ
t = (L1,t, L2,t, . . . , Lm,t)€ œ Rm is the reduced vector of total loads (power ex-

traction), where Lk,t œ R is the power extracted at bus k and time t, excluding the
reference bus m + 1.

Remark 4.2. Note that the Generator Parameters: Pmin,i, Pmax,i, cprod
i,t

, cstart
i,t

, cstop
i,t

as well as the Transmission Line Parameters: ctrans
l,t

, Cl, B and the Load and Network
Parameters: Li,t, BÕ are all known values and determined by the setup of the underlying
energy grid for a given i œ G, l œ L and t œ T. The variables yet to be determined are
the Operational State of Generators: ui,t, Pi,t as well as Voltage Angles: ◊k,t for a given
i œ G, k œ B and t œ T.

A concrete representation of L, the index set of transmission lines, can be found in Section
2.2. The construction of BÕ œ Rm◊m, the reduced susceptance matrix, which excludes
the rows and columns connected to the reference bus m + 1, can be found in Def. 2.22
from Sec. 2.3.2. The explicit derivation and concrete construction of the DC-Powerflow
BÕ◊Õ = P Õ

t ≠ LÕ
t for t œ T in its matrix form is found in Section 2.3.1.

A broader formulation including more constraints and a specific representation of cprod
i,t

,
cstart

i,t
and cstop

i,t
as well as the transmission cost ctrans

l,t
can be found in [dBDD14] and

[dBBDD14]. These constraints are consistent with our definition and can be added mod-
ularly for extended formalism.

Remark 4.3. Note that for a given timestep t œ T, when we write out the matrix-vector
product BÕ · ◊Õ

t = P Õ
t ≠ LÕ

t in its summation form, it explicitly involves terms of the form
◊i,t ≠ ◊j,t as seen in Section 2.3.1. These terms represent the voltage angle di�erences
between connected buses. For a specific bus i, the equation BÕ ·◊Õ

t = P Õ
t ≠LÕ

t can be written
according to Lem. 2.1 from Section 2.3.1 as follows:

m
ÿ

j=1
Bij◊j,t = Pi,t ≠ Li,t, ’i œ {1, 2, . . . , m}, ’t œ T

The elements Bij of the matrix are determined by the network topology and the line
susceptances. Bii represent the sum of susceptances connected to bus i. Bij are negative
and represent the susceptance of the line between bus i and bus j (see Def. 2.20). Given
that Bij = ≠ 1

xij
for i ”= j (where xij is the reactance of the line between buses i and j),

and Bii is the sum of the inverse reactances of the lines connected to bus i:
m

ÿ

j=1,j ”=i

◊i,t ≠ ◊j,t

xij

= Pi,t ≠ Li,t

We can reformulate the UCP within the QuSO framework, making it suitable for process-
ing by the proposed quantum algorithm. Note that a precise explanation of all compo-
nents in this problem is given at the beginning of this section, we will use them implicitly
for the next definition. The following definition encapsulates this transformation:

Definition 4.2 (UCP as Quantum simulation-based optimization). For an objective
function f : R|G|·|T|+|G|·|T| ◊ R|B|·|T| æ R, with u : R|B|·|T| æ R|B|·|T| with u : y ‘æ y,

81

4 Methodology

the following definition is a quantum simulation-based optimization (QuSO) problem:

f(x, u(y)) :=
ÿ

tœT

ÿ

iœG

3

cprod
i,t

· ui,t + cstart
i,t · (1 ≠ ui,t≠1)ui,t

+ cstop
i,t

· ui,t≠1(1 ≠ ui,t)
4

+
ÿ

tœT

ÿ

lœL
ctrans

l,t

where x = (ui,t, Pi,t)iœG,tœT for ui,t œ {0, 1} µ Z, Pi,t œ [li, ui] µ R with li < ui for i œ G
and t œ T and where y = (◊k,t)kœB,tœT for ◊k,t œ R with k œ B and t œ T. Then the QuSO
is defined as the following:

min
x

f(x, u(y))

subject to B
Õy = �P

ÿ

iœG
Pi,t ≠

ÿ

kœB
Lk,t Æ 0 ’t œ T

≠
ÿ

iœG
Pi,t +

ÿ

kœB
Lk,t Æ 0 ’t œ T

P min
i ui,t ≠ Pi,t Æ 0 ’t œ T

≠ P max
i ui,t + Pi,t Æ 0 ’t œ T

Pl,tCl ≠ ctrans
l,t Æ 0 ’t œ T

≠ ctrans
l,t ≠ Pl,tCl Æ 0 ’t œ T

◊m+1,t Æ 0 ’t œ T
≠ ◊m+1,t Æ 0 ’t œ T

where B
Õ œ R|B|·|T |◊|B|·|T | and �P œ R|B|·|T | with �P = (Pk,t uk,t ≠Lk,t)kœB,tœT represent

a SLE that depends on the solution y œ R|B|·|T |. This SLE is defined with the block
matrices 0 œ R|B|◊|B| through BÕ œ R|B|◊|B|, the reduced susceptance matrix, in the
following way:

B
Õ =

S

W

W

W

W

W

W

U

BÕ 0 0 · · · 0
0 BÕ 0 · · · 0
0 0 BÕ · · · 0
...

...
...

0 0 0 · · · BÕ

T

X

X

X

X

X

X

V

Remark 4.4. We will refer to B
Õ œ R|B|·|T |◊|B|·|T | as the reduced block susceptance ma-

trix.

Remark 4.5. In order to process the transmission line flows accordingly, we will use,
corresponding to the notation of PG, the vector PL œ R(|L|·|T|) with PL = (Pl,t)lœL,tœT the
vector of all the power flowing through transmission line l at time t. This vector lists the
power flow values Pl,t in a lexicographical order by time t and line l.

Remark 4.6. In the above definition of the optimization problem we follow the convention

82

4.1 Formulation of the Unit Commitment Optimization Problem

to formulate Pl,tCl ≠ ctrans
l,t

Æ 0 and ≠ctrans
l,t

≠ Pl,tCl Æ 0 for t œ T and l œ L as inequality
constraints. To process them more easily, we will use the equivalent form ctrans

l,t
= |Pl,tCl|.

Remark 4.7. The diagonal block structure of B
Õ is convenient because it preserves the

properties of the individual block matrix BÕ. Specifically, B
Õ is invertible if and only if

BÕ is invertible. Moreover, the eigenvalues of B
Õ are the same as the eigenvalues of BÕ,

repeated |T | times. Consequently, the condition number of B
Õ is identical to the condition

number of BÕ.

Remark 4.8. Note that the above inequality constraints cj,t(x, u(y)) Æ 0 with j =
1, . . . , 8 are defined for every timestep t œ T. This means that every constraint of the
form cj,t(x, u(y)) Æ 0 is given |T |-times i.e., the total number of these constraints is 8·|T|.

Remark 4.9. The above version of the Unit Commitment Problem (UCP) is well-defined
within the Definition 4.1 of a QuSO. In the UCP formulation, the objective function
f(x, u(y)) maps x œ R|G|·|T|+|G|·|T| and u(y) œ R|B|·|T| to R, aligning with this requirement.
In the UCP, u : R|B|·|T| æ R|B|·|T| is defined as u(y) = y, satisfying this condition. The
QuSO definition specifies constraints Axy = bx and cj(x, u(y)) Æ 0. In the UCP, the
equality constraint B

Õy = �P and various inequalities involving Pi,t, ◊m+1,t, and other
terms fit this representation. The QuSO definition includes decision variables x, which
can be real numbers or integers within specific bounds. The UCP decision variables x =
(ui,t, Pi,t) and y = (◊k,t) include both binary and continuous variables, each constrained
within specific bounds, consistent with the QuSO formulation.

Remark 4.10 (Rescaling singular values of B
Õ). In order to process B

Õ with the QSVT,
the matrix inversion polynomial, which is defined in the following section, requires that
all singular values ‡i for B

Õ are within ‡i œ [1
Ÿ
, 1] for Ÿ Ø 1, where Ÿ is the condition

number of B
Õ. The singular values of a matrix B

Õ are defined as the square roots of the
eigenvalues of the matrix multiplied by its transpose. If ⁄i are the eigenvalues of B

ÕT
B

Õ,
then the singular values ‡i are given by ‡i =

Ô
⁄i for 1 Æ i Æ m. Since the eigenvalues ⁄i

of the matrix B
ÕT

B
Õ are non-negative, because it is also a positive semi-definite matrix,

the singular values ‡i, being the square roots of these non-negative eigenvalues, are also
non-negative. Thus ‡i > 0. To transform the matrix such that all its singular values ‡i

lie within the interval [1/Ÿ, 1] for Ÿ Ø 1, we can rescale it as shown in Algorithm 4.3. The
rescaling does not lose any information for our optimization problem, to avoid confusion
with indexes we assume B

Õ as rescaled implicitly.

83

4 Methodology

Algorithm 4.3: Rescaling B
Õ to Ensure Singular Values Within

Ë

1
Ÿ
, 1

È

Input : Matrix B
Õ œ R|B||T |◊|B||T |

Output : Rescaled matrix B
Õ
r such that all singular values ‡i œ

Ë

1
Ÿ
, 1

È

Procedure:

1. For n = |B| · |T |. Compute the SVD Thm. 2.16 from Sec. 2.4.3 of B
Õ:

B
Õ = U�V T

where U œ Rn◊n and V œ Rn◊n are orthogonal matrices, and � œ Rn◊n is a
diagonal matrix with singular values ‡1, ‡2, . . . , ‡n.

2. Determine the largest singular value ‡max = max(‡1, ‡2, . . . , ‡n).
3. Rescale the matrix B

Õ to ensure the largest singular value is at most 1:

B̃
Õ = B

Õ

‡max
= U

3 �
‡max

4

V T

Now, the singular values of B̃
Õ are ‡Õ

i
= ‡i

‡max
, with ‡Õ

max = 1.
4. Determine the smallest singular value ‡Õ

min of B̃
Õ:

‡Õ

min = min(‡Õ

1, ‡Õ

2, . . . , ‡Õ

n)

5. Check if ‡Õ
min Ø 1

Ÿ
. If true, set B

Õ
r = B̃

Õ. If false, further rescale B̃
Õ:

B
Õ

r = Ÿ

‡Õ
min

· B̃
Õ = Ÿ

‡Õ
min

· B
Õ

‡max

6. The final matrix B
Õ
r now has all singular values within the interval

Ë

1
Ÿ
, 1

È

.

84

4.1 Formulation of the Unit Commitment Optimization Problem

Algorithm 4.4: Rescaling B
Õ Using Condition Number Estimates

Input : Matrix B
Õ œ R|B||T |◊|B||T |

Output : Rescaled matrix B
Õ
r

Procedure:

1. Estimate the condition number Ÿ(BÕ) using the Rayleigh Quotient or Cheeger
constant (see Section 2.2.1).

2. Rescale the matrix B
Õ to ensure the largest singular value is at most 1:

B̃
Õ = B

Õ

‡max

where ‡max is the largest singular value of B
Õ, estimated from the condition

number Ÿ(BÕ).
3. Determine the smallest singular value ‡Õ

min of B̃
Õ. If ‡Õ

min Ø 1
Ÿ(BÕ) , set B

Õ
r = B̃

Õ.
If ‡Õ

min < 1
Ÿ(BÕ) , further rescale B̃

Õ:

B
Õ

r = B̃
Õ

‡Õ
min · Ÿ(BÕ)

4. Output the final rescaled matrix B
Õ
r.

Remark 4.11 (Rescaling singular values of B
Õ using estimated condition number). Given

the high algebraic connectivity ⁄2 (see Section 2.2) typically present in the power grids
considered in this work, the matrix B

Õ is expected to be well-conditioned. High algebraic
connectivity, characterized by a significant second smallest eigenvalue ⁄2 of the Laplacian
matrix, ensures that the condition number Ÿ(BÕ) is naturally low (as described in Remark
2.9 from Section 2.2). Consequently, the singular values ‡i of B

Õ are well-distributed
within the interval [1/Ÿ(BÕ), 1].
By estimating the condition number using the Rayleigh Quotient or the Cheeger constant
(see Section 2.2.1), we can e�ectively rescale the matrix to achieve the desired singular
value distribution (see Algorithm 4.4). Importantly, these estimation and rescaling steps
are computationally e�cient, maintaining the overall e�ciency of the quantum algorithm
and ensuring that the exponential speedup is preserved.

85

4 Methodology

4.2 Polynomial Approximation for QSVT
4.2.1 Overview of the Polynomial Approximations
In our quantum algorithm, we employ two distinct Quantum Singular Value Transfor-
mation (QSVT) procedures. The first is used to invert the reduced block susceptance
matrix B

Õ œ Rm·|T |◊m·|T |, and the second calculates the absolute value of the expression
ctrans

l,t
= |Pl,t · Cl| for l œ L and t œ T (see Section 4.2). These procedures require the

construction of two separate polynomials tailored to these tasks.

Matrix Inversion Polynomial To invert a matrix using the Quantum Singular Value
Transformation 2.17 from Section 2.4.3, we require a polynomial P (x) that approximates
the function f(x) = 1

x
on the singular values of the reduced block susceptance matrix

B
Õ. QSVT demands that the polynomial P (x) be bounded by 1 in magnitude. However,

directly approximating P (x) ¥ 1
x

is infeasible since typically 1
‡i

Ø 1 for a singular value
‡i of B

Õ. To overcome this, we focus on approximating a function that behaves as 1
2Ÿ

1
x

within the interval [≠1, 1]\
Ë

≠1
Ÿ

, 1
Ÿ

È

, where Ÿ is the condition number of B
Õ. The condition

number is well defined by Lemma 2.1 from Section 2.3.2 and Theorem 2.1 from Section
2.2.

Remark 4.12. This approach is also valid for any invertible matrix A œ Rn◊n with
a finite condition number, and is not limited to the reduced block susceptance matrix
B

Õ œ Rm·|T |◊m·|T | or its blocks B
Õ œ Rm◊m.

To construct a representation for P MI
‘,Ÿ (x), we proceed as follows: In the P �

‘,Ÿ section, we be-
gin by constructing part of the matrix inversion polynomial, which involves a Chebyshev
polynomial approximation to the step function �c. We utilize two techniques (mollifiers)
to obtain an analytic CŒ approximation, which is a variation of the error function. This
error function is then approximated by a Chebyshev representation and developed into
an approximation to the sign function �0, producing an approximation to the rectan-
gular function. Then we construct a Chebyshev approximation to 1

x
. Since 1

x
is usually

unbounded, we combine it with a polynomial that approximates a rectangular function in
[≠1, 1]. Ultimately, we combine the 1

x
approximation and the rectangular approximation

to derive the matrix inversion polynomial. To summarize, the construction of the matrix
inversion polynomial P MI

‘,Ÿ (x) involves several polynomial approximation steps:

1. Construct the polynomial approximation P �
‘,Ÿ to the step function.

2. Construct the polynomial approximation P 1/x

‘,Ÿ to the inverse function.
3. Construct the polynomial approximation P rect

‘,Ÿ using P �
‘,Ÿ.

4. Combine P rect
‘,Ÿ and P 1/x

‘,Ÿ to construct the matrix inversion polynomial P MI
‘,Ÿ (x).

Absolute Value Approximation Polynomial To compute the cost function, we need to
apply the absolute value to the parameters, necessitating another QSVT routine. Hence,
we construct a polynomial that approximates the absolute value function. The absolute
value approximation polynomial P abs

‘ (x) is designed for x œ [≠1, 1].

86

4.2 Polynomial Approximation for QSVT

4.2.2 The Matrix Inversion Polynomial

4.2.2.1 Approximation of the Step Function

The following approximation theorem for Lp spaces states that functions in Lp can be
approximated by CŒ functions through convolution with a given mollifier j œ L1(Rn).

Theorem 4.1 (Approximation by CŒ-functions [Thm. 2.16 [LL01]]). Let j be in L1(Rn)
with

s

Rn j = 1. For Á > 0, define jÁ(x) := Á≠nj(x/Á), so that
s

Rn jÁ = 1 and ÎjÁÎ1 = ÎjÎ1.
Let f œ Lp(Rn) for some 1 Æ p < Œ and define the convolution for x œ Rn:

fÁ(x) = (jÁ ú f)(x) =
⁄

Rn
jÁ(x ≠ y)f(y) dy

Then the following holds:

• fÁ œ Lp(Rn) and ÎfÁÎp Æ ÎjÎ1ÎfÎp,
• fÁ æ f strongly in Lp(Rn) as Á æ 0.
• If j œ CŒ

c (Rn), then fÁ œ CŒ(Rn)

Proof. For a complete proof see Theorem 2.16 from [LL01].

The above theorem is formulated using Rn. It also applies for any measurable set � µ Rn.

Remark 4.13 (Rem. to [Thm. 2.16 [LL01]]). Let � µ Rn be a measurable set. Given
f œ Lp(�), we can define f̃ œ Lp(Rn) by f̃(x) = f(x) for x œ � and f̃(x) = 0 for x /œ �.
Then, for x œ �, define:

fÁ(x) = (jÁ ú f̃)(x) =
⁄

Rn
jÁ(x ≠ y)f̃(y) dy

The following holds:

• fÁ œ Lp(�) and ÎfÁÎLp(�) Æ ÎjÎ1ÎfÎLp(�),
• fÁ æ f strongly in Lp(�) as Á æ 0,
• If j œ CŒ

c (Rn) and � is open, then fÁ œ CŒ(�).

Remark 4.14. The interval [≠1, 1], is a Borel set because it can be written as an inter-
section of open sets:

[≠1, 1] =
Œ
‹

n=1

3

≠1 ≠ 1
n

, 1 + 1
n

4

.

That means it is measurable in R with respect to the Lebesgue measure. The Lebesgue
measure of � is given by ⁄([≠1, 1]) = 1 ≠ (≠1) = 2. Note that the interval (≠1, 1) is open
and measurable. As an open set in R, it is a Borel set and hence measurable with respect
to the Lebesgue measure.

Since for Remark 4.13 the approximation by CŒ-functions on a measurable set � µ Rn

is only achieved if it is open, we will apply the approximation to the interior of the closed
interval and then generalize it to its boundary.

87

4 Methodology

Lemma 4.1. The function �c for c œ (≠1, 1) is defined as:

�c : [≠1, 1] æ R, �c(x) =

Y

_

_

]

_

_

[

≠1 if x < c

0 if x = c

1 if x > c

is in �c œ Lp([≠1, 1]) for 1 Æ p < Œ.

Proof. We will use the following definition of the Lp norm with 1 Æ p < Œ:

Î�cÎLp =
3

⁄ 1

≠1
|�c(x)|p dx

4

1
p

=
3

⁄

c

≠1
1 dx +

⁄ 1

c

1 dx
4

1
p

= 2
1
p < Œ

Hence �c œ Lp([≠1, 1]) for 1 Æ p < Œ.

Remark 4.15. Since the integral of |�c(x)|p is finite and �c(x) is measurable on [≠1, 1]
with respect to the Lebesgue measure, we conclude that �c œ Lp([≠1, 1]) for 1 Æ p < Œ.
The theorem for approximating functions in Lp by CŒ functions can be applied to �c.

We first consider the following well known mollifier given by [Eva22].

Definition 4.3. We call ÷ œ CŒ(Rn) the standard mollifier defined by

÷(x) :=

Y

]

[

C exp
1

1
ÎxÎ2≠1

2

if ÎxÎ < 1
0 if ÎxÎ Ø 1,

the constant C > 0 selected so that
s

Rn ÷ dx = 1 and Î · Î is the Euclidean norm.

Remark 4.16. Let ÷ œ CŒ(Rn) be the standard mollifier as defined above. For Á > 0,
we define the scaled mollifiers ÷Á(x) according to Theorem 4.1 by

÷Á(x) := 1
Án

÷
3

x

Á

4

.

These functions ÷Á have the following properties, as described in [Eva22]: It is ÷Á œ
CŒ

c (Rn). Specifically, supp(÷Á) µ B(0, Á). This follows directly from the definition of
÷, which has support in B(0, 1). By the scaling property, ÷Á(x) = 0 for |x| Ø Á. The
mollifiers ÷Á are normalized such that

s

Rn ÷Á(x) dx = 1. This can be verified through a
change of variables y = x

Á
. Thus, the functions ÷Á satisfy all requirements for a mollifier

in Theorem 4.1 to achieve a CŒ approximation.

Theorem 4.2 (CŒ-approximation of �c by the Standard Mollifier). Let Á > 0. The
function (�Õ

c)Á œ CŒ((≠1, 1)) is a CŒ-approximation to �c according to Theorem 4.1:

(�Õ

c)Á(x) := C
⁄

x+1
Á

x≠c
Á

exp
3 1

u2 ≠ 1

4

du,

where C > 0 is the normalization constant from the definition of the standard mollifier.

Proof. Let c œ (≠1, 1). To approximate the step function �c on the interval (≠1, 1) using
the standard mollifier, we follow Theorem 4.1 and Remark 4.13 on CŒ approximation.

88

4.2 Polynomial Approximation for QSVT

Let ÷ œ CŒ(Rn) be the standard mollifier and ÷Á for Á > 0 its scaled version. Let
�c œ Lp((≠1, 1)) be the step function from Lemma 4.1. By Remark 4.14, (≠1, 1) is
measurable. We extend �c to R according to Remark 4.13. Define �̃c œ Lp(R) for
c œ (≠1, 1) such that:

�̃c(x) =
I

�c(x) if x œ (≠1, 1),
0 if x /œ (≠1, 1).

We calculate the convolution of �̃c with ÷Á as follows:

(�Õ

c)Á(x) = (÷Á ú �̃c)(x) =
⁄

R
÷Á(x ≠ y)�̃c(y) dy

=
⁄ 1

≠1

1
Á

÷
3

x ≠ y

Á

4

�c(y) dy

=
⁄

c

≠1

1
Á

÷
3

x ≠ y

Á

4

(≠1) dy +
⁄ 1

c

1
Á

÷
3

x ≠ y

Á

4

(1) dy.

We can substitute with u = x≠y

Á
. Then dy = ≠Ádu. The limits of integration change

accordingly: For y < c: y = ≠1 to c becomes u = x+1
Á

to x≠c

Á
. For y > c: y = c to 1

becomes u = x≠c

Á
to x≠1

Á
. Thus:

(�Õ

c)Á(x) = ≠
⁄

x≠c
Á

x+1
Á

÷(u) du +
⁄

x≠1
Á

x≠c
Á

÷(u) du.

We can insert the definition of ÷ and are left with the following:

(�Õ

c)Á(x) = C
⁄

x+1
Á

x≠c
Á

exp
3 1

u2 ≠ 1

4

du.

for a normalization constant C > 0. Since ÷ œ CŒ(R), the convolution (�Õ
c)Á will be

CŒ((≠1, 1)) by Theorem 4.1.

Corollary 4.1. Let Á > 0. The function (�Õ
c)Á œ CŒ([≠1, 1]) is a CŒ-approximation to

�c on the closed interval [≠1, 1] when extended continuously to the boundaries.

Proof. By the properties of the mollifier ÷Á, the convolution (÷Á ú �̃c)(x) from the above
proof is CŒ on (≠1, 1) by Theorem 4.1. Since �̃c is supported on [≠1, 1], the convolution
essentially involves integration over [≠1, 1]. Thus, (�Õ

c)Á inherits the smoothness from
÷Á on the open interval (≠1, 1). Consider the behavior as x æ 1. For x near 1, the
convolution integral becomes:

(�Õ

c)Á(x) =
⁄ 1

≠1

1
Á

÷
3

x ≠ y

Á

4

�c(y) dy.

Since ÷ has compact support, ÷
1

x≠y

Á

2

”= 0 only when |x ≠ y| < Á. As x æ 1, the integral
only considers y close to 1, where �Õ

c(y) = 1 for y > c and �Õ
c(y) = ≠1 for y < c. The

smoothness of ÷ ensures that this transition is smooth.

89

4 Methodology

For the derivatives of (�Õ
c)Á(x), we di�erentiate under the integral sign:

(�Õ

c)(k)
Á (x) =

⁄ 1

≠1

1
Ák+1 ÷(k)

3

x ≠ y

Á

4

�c(y) dy.

As x æ 1, the behavior of the derivatives can be analyzed by considering the smoothness
of the integrand. The integral of the product of the k-th derivative of the smooth function
÷ and the compactly supported function �c over the interval [x≠Á, x+Á] remains smooth.
This is due to the fact that ÷(k)

1

x≠y

Á

2

scales with 1
Ák+1 while �c(y) is evaluated over a

shrinking interval as x æ 1, ensuring that the integrand remains smooth and the resulting
derivatives has smooth behavior.
A similar argument holds for x æ ≠1. Near x = ≠1, the integral involves y close to
≠1, where �Õ

c(y) transitions smoothly due to the properties of ÷. The di�erentiation
under the integral sign ensures smoothness for all derivatives. Since (�Õ

c)Á is CŒ on
(≠1, 1) and extends smoothly to x = ±1 along with its derivatives, we conclude that
(�Õ

c)Á œ CŒ([≠1, 1]).

Definition 4.4 (Error Function). The error function erf : R æ R is defined as:

erf(x) = 2Ô
fi

⁄

x

0
e≠t

2
dt.

Remark 4.17. The simplified expression for (�Õ
c)Á(x) from Theorem 4.2 does not corre-

spond to elementary functions. While the error function itself arises from the Gaussian
integral, the integral of ÷ does not match this form. The integrand is not directly re-
latable to the Gaussian or error function. This convolution is inherently complex and
must be handled as a numerical or special function integral without a simpler closed-form
representation, which is therefore not suitable for our purpose.

Therefore, we need to lower our requirements and define the following mollifier with-
out compact support. The Approximation by CŒ-functions Theorem 4.1 then gives us,
nevertheless, a strong convergence in Lp(Rn).

Lemma 4.1 (Gaussian Mollifier). The function defined by

Ï : Rn æ R, Ï(x) := (2fi)≠n/2e≠
ÎxÎ2

2

where Î · Î is the Euclidean norm, is called the Gaussian Mollifier and satisfies:

• Ï œ CŒ.
• Ï œ L1(Rn) with

s

Rn Ï(x) dx = 1.

For Á > 0, with ÏÁ(x) := Á≠nÏ(x/Á), it holds that
s

Rn ÏÁ(x) dx = 1 and ÎÏÁÎ1 = ÎÏÎ1.

Proof. First note that the Gaussian function e≠
ÎxÎ2

2 œ CŒ(Rn) because the exponential
function ez is infinitely continuously di�erentiable for all z œ R, and (2fi)≠n/2 is a con-
stant. Thus, Ï œ CŒ(Rn). The solution of the one-dimensional integral is commonly
known:

⁄

Œ

≠Œ

e≠
x2

i
2 dxi =

Ô
2fi.

90

4.2 Polynomial Approximation for QSVT

Since ÎxÎ2 = x2
1 + x2

2 + · · · + x2
n, the integrand can be separated into a product of n

identical one-dimensional integrals:
⁄

Rn
e≠

ÎxÎ2
2 dx =

⁄

Œ

≠Œ

⁄

Œ

≠Œ

· · ·
⁄

Œ

≠Œ

e≠
x2

1+x2
2+···+x2

n
2 dx1 dx2 · · · dxn = (2fi)n/2

Therefore, we can calculate:
⁄

Rn
Ï(x) dx =

3 1
2fi

4

n/2 ⁄

Rn
e≠

ÎxÎ2
2 dx =

3 1
2fi

4

n/2
(2fi)n/2 = 1.

Since the integral is finite, Ï œ L1(Rn). Now consider ÏÁ(x) = Á≠nÏ(x/Á). Using the
change of variables u = x/Á, so x = Áu and dx = Án du:

⁄

Rn
ÏÁ(x) dx =

⁄

Rn
Á≠nÏ(x/Á) dx

=
⁄

Rn
Á≠n

3 1
2fi

4

n/2
e≠

Îx/ÁÎ2
2 dx

=
⁄

Rn
Á≠n

3 1
2fi

4

n/2
e≠

ÎuÎ2
2 Án du

=
⁄

Rn

3 1
2fi

4

n/2
e≠

ÎuÎ2
2 du = 1

Therefore,
s

Rn ÏÁ(x) dx = 1. Finally, we show that ÎÏÁÎ1 = ÎÏÎ1 again using the change
of variables u = x/Á:

ÎÏÁÎ1 =
⁄

Rn
|ÏÁ(x)| dx

=
⁄

Rn
Á≠n|Ï(x/Á)| dx

=
⁄

Rn
Á≠n|Ï(u)|Án du

=
⁄

Rn
|Ï(u)| du = ÎÏÎ1

Remark 4.18. Observe that for any radius R > 0, Ï(x) ”= 0 for x œ BR(0) outside the
ball, indicating that it does not have compact support. This characteristic is important
for achieving a CŒ-approximation as stated in Theorem 4.1.

Nevertheless, we will demonstrate that it is still possible to obtain a CŒ approximation.

Theorem 4.3 (Approximation of �c by the Gaussian Mollifier). Let Á > 0 and c œ
(≠1, 1). The function (�c)Á : [≠1, 1] æ R is defined with:

(�c)Á(x) := erf
3

x ≠ c

Á
Ô

2

4

and an approximation to �c according to Theorem 4.1 in the sense that (�c)Á æ (�c)
strongly in Lp(R) as Á æ 0.

91

4 Methodology

Proof. We now approximate �c on the interval [≠1, 1] using the Gaussian mollifier. We
again follow Theorem 4.1 and Remark 4.13 on CŒ approximation. Let Ï œ CŒ(Rn) be
the Gaussian mollifier and ÏÁ for Á > 0 its scaled version. Let �c œ Lp([≠1, 1]) be the
step function from Lemma 4.1, which is measurable by Remark 4.14. Define �̃c œ Lp(R)
for c œ (≠1, 1) such that:

�̃c(x) =
I

�c(x) if x œ [≠1, 1],
0 if x /œ [≠1, 1].

We calculate the convolution of �̃c with ÏÁ as follows:

(�c)Á(x) = (ÏÁ ú �̃c)(x) =
⁄

Œ

≠Œ

ÏÁ(x ≠ y)�̃c(y) dy

=
⁄

c

≠Œ

ÏÁ(x ≠ y)(≠1) dy
¸ ˚˙ ˝

I1

+
⁄

Œ

c

ÏÁ(x ≠ y)(1) dy
¸ ˚˙ ˝

I2

With the substitution u = x ≠ y and dy = ≠du we can calculate both integrals:

I1 = ≠
⁄

c

≠Œ

1
Á
Ô

2fi
e≠

(x≠y)2
2Á2 dy = ≠

⁄

Œ

x≠c

1
Á
Ô

2fi
e≠

u2
2Á2 du = ≠I2

Note that these integrals represent the area under a Gaussian curve, which can be ex-
pressed in terms of the error function:

I1 = ≠
⁄

Œ

x≠c

1
Á
Ô

2fi
e≠

u2
2Á2 du = ≠1

2

3

1 ≠ erf
3

x ≠ c

Á
Ô

2

44

I2 =
⁄

x≠c

≠Œ

1
Á
Ô

2fi
e≠

v2
2Á2 dv = 1

2

3

1 + erf
3

x ≠ c

Á
Ô

2

44

Adding these two integrals together gives:

(�c)Á(x) = ≠1
2

3

1 ≠ erf
3

x ≠ c

Á
Ô

2

44

+ 1
2

3

1 + erf
3

x ≠ c

Á
Ô

2

44

= erf
3

x ≠ c

Á
Ô

2

4

Remark 4.19. Although the Gaussian mollifier used in the theorem above does not have
compact support, the CŒ approximation Theorem 4.1 ensures that for a given c œ (≠1, 1)
and Á > 0, the approximation (�c)Á æ �c converges strongly in Lp(R) as Á æ 0. However,
this theorem does not imply that the approximated function (�c)Á is itself CŒ.
To clarify why (�c)Á is indeed CŒ when using a Gaussian mollifier, consider the approx-
imation of �c using the Gaussian mollifier, expressed in terms of the error function:

(�c)Á(x) = erf
3

x ≠ c

Á
Ô

2

4

.

The error function erf is both continuous and di�erentiable, with its first derivative given

92

4.2 Polynomial Approximation for QSVT

by:
d
dz

erf(z) = 2Ô
fi

e≠z
2
,

which is CŒ as a well-known combination of CŒ functions. Therefore, (�c)Á is a CŒ

function due to the smoothness of the error function, providing a smooth CŒ approxima-
tion to the discontinuous function �c.

Therefore, we will now find an approximation of Chebyshev polynomials to the error
function erf(k [x ≠ ”]) for k > 0 and ” œ [≠1, 1]. To construct this approximation poly-
nomial, we utilize special functions. We begin with the following definition adapted from
[AW05, Leb72]:

Definition 4.5 (Modified Bessel Functions of the First Kind). The modified Bessel func-
tions of the first kind, denoted I‹(x), are defined for x œ C by:

I‹(x) =
Œ

ÿ

m=0

1
m! �(m + ‹ + 1)

3

x

2

42m+‹

,

where ‹ œ R. Here, �(z) represents the Gamma function, which is given by:

�(z) =
⁄

Œ

0
tz≠1e≠t dt, for Re(z) > 0,

and is defined for all z œ C \ {0, ≠1, ≠2, . . .}.

Remark 4.20. Note that this series converges for all x œ C and ‹ œ R, ensuring that
the series characterization of I‹(x) is well-defined. For further details, see [Leb72].

We can adapt the error function approximation from [Low17], which is derived through
the Jacobi-Anger expansion of the exponential decay function:

e≠—(x+1) = e≠—

Q

aI0(—) + 2
Œ

ÿ

j=1
Ij(—)Tj(≠x)

R

b ,

where — > 0, x œ [≠1, 1], Ij(—) are the modified Bessel functions of the first kind, and
Tj(x) are the Chebyshev polynomials of the first kind. Using this expression, and through
a change of variables and integration of the whole series, we obtain the expression for the
error function, which gives us the following approximation (Corollary 6.25 and Corollary
2.26 from [Low17]) to erf(k [x ≠ ”]) using Chebyshev polynomials (see Figure 4.1):

Lemma 4.1 (Polynomial approximation to the error function). Let ‘ > 0. For k > 0
and ” œ [≠1, 1], the polynomial perf,k,”,n of odd degree n = O(

(k2 + log(1/‘)) log(1/‘))
is an ‘-approximation to erf(k [x≠”]) for x œ [≠1, 1]. The polynomial perf,k,”,n(x) is given
by

perf,k,”,n(x) := 2ke≠k
2
/2

Ô
fi

Q

aI0(k2/2) x +
(n≠1)/2

ÿ

j=1
Ij(k2/2) (≠1)j

1

T2j+1(x≠”)
2j+1 ≠ T2j≠1(x≠”)

2j≠1

2

R

b ,

where Ij(x) is the j-th modified Bessel function of the first kind, and Tj(x) is the j-th
Chebyshev polynomial of the first kind.

93

4 Methodology

Proof. A proof can be found in Lemma 6.22, Corollary 6.25, and Corollary 2.26 of [Low17].

Figure 4.1: Comparison between the polynomial approximation perf,k,n(x) from Lemma
4.1 and the error function erf(k[x≠”]) from Definition 4.4. The approximation
is computed using parameters derived from Corollary 6.25 in [Low17], with
k = 1, ‘ = 1 ◊ 10≠2, ” = 0, and n =

k2 + log(1/‘) log(1/‘). The x-axis
represents the x values, and the y-axis represents the function values.

94

4.2 Polynomial Approximation for QSVT

The idea now is to use perf,k,”,n and to define a k > 0 that gets arbitrarily small with
respect to some ‘, Ÿ > 0. By doing so, we will obtain an approximation to the sign
function (see Figure 4.2). Note that this sign function is given by �0 from Lemma 4.1.

Definition 4.6 (Sign function). The function sgn : [≠1, 1] æ R is defined as:

sgn(x) := �0(x)

To define such a k > 0 we follow Corollary 6.27 from [Low17]:

Lemma 4.2 (Polynomial approximation to the sign function). Let ‘ > 0. For Ÿ > 0 and
” œ [≠1, 1] with

k :=
Ô

2
Ÿ

log1/2
3 2

fi‘2

4

the polynomial of odd degree n = O(1/Ÿ log(1/‘)), given by psgn,Ÿ,”,n(x) := perf,k,”,n(x) is
an ‘-approximation to sgn(x ≠ ”) for x œ [≠1, 1].

Proof. A proof can be found in Lemma 6.19 and Corollary 6.27 of [Low17].

Lemma 4.3. psgn,Ÿ,”,n is an odd polynomial.

Proof. With Lemma 2.3 from Section 2.4.2.1 we know that Chebyshev polynomials have
the property Tj(≠x) = (≠1)jTj(x). Thus, for odd indices, T2j+1(≠(x ≠ ”)) = ≠T2j+1(x ≠
”) and T2j≠1(≠(x ≠ ”)) = ≠T2j≠1(x ≠ ”). Since I0(k2/2) x is linear in x, it is also an odd
function. The sum involves only terms of T2j+1(x ≠ ”) and T2j≠1(x ≠ ”), which are odd,
preserving the overall odd parity. Thus, perf,k,”,n(x) is an odd polynomial. Therefore,
psgn,Ÿ,”,n(x) is also an odd polynomial.

Let Ÿ œ (0, 2]. Consider the rectangular function rect(x/w), which is a rectangular
function scaled by a factor w œ [0, 2 ≠ Ÿ]:

rect
3

x

w

4

=
I

1 if |x| Æ w

2 ,

0 if |x| > w

2 .

We can combine two such sign function approximations from above and obtain a scaled
rectangular function (see Figure 4.3), as described in the following Corollary 6.28 from
[Low17]:

Lemma 4.4. Let ‘ > 0. For Ÿ œ (0, 2] and w œ [0, 2 ≠ Ÿ] the even polynomial

prect,w,Ÿ,n(x) = 1
2

1

psgn,Ÿ,(w+Ÿ)/2,n+1(x) + psgn,Ÿ,(w+Ÿ)/2,n+1(≠x)
2

(4.1)

of even degree n = O(1/Ÿ log(1/‘)) is an ‘-approximation to rect(x/w) for x œ [≠1, 1].

Proof. A proof can be found in Lemma 6.20 from [Low17].

95

4 Methodology

Figure 4.2: Comparison between the polynomial approximation psgn,k,”,n(x) from Lemma
4.2 and the sign function sgn(x ≠ ”) from Definition 4.6. The approxima-
tion is computed for ‘ = 1 ◊ 10≠562 and using parameters derived from
Corollary 6.27 in [Low17], with ” = ≠1/2, k = (

Ô
2/2) log1/2(2/(fi‘2)), and

n = Á(1/k) log(1/‘)Ë (odd). The x-axis represents the x values, and the y-axis
represents the function values.

96

4.2 Polynomial Approximation for QSVT

Figure 4.3: Comparison between the polynomial approximation prect,k,”,n(x) from Lemma
4.4 and the rectangular function rect(x/”). The approximation is computed
for ‘ = 1◊10≠562 and using parameters derived from Corollary 6.28 in [Low17],
with ” = 1/2, k = (

Ô
2/2) log1/2(2/(fi‘2)), and n = Á(1/k) log(1/‘)Ë (odd).

The x-axis represents the x values, and the y-axis represents the function
values. Note that any observed discrepancies, particularly around the discon-
tinuities, might stem from the numerical implementation and the challenges
associated with approximating functions with high precision for extremely
small ‘ values.

97

4 Methodology

4.2.2.2 Construction of the Inversion Polynomial

Building on the methodologies proposed by [GSLW18] and [MRTC21], we aim to con-
struct a polynomial that closely approximates 1

x
. Our specific goal is to achieve an

‘

2Ÿ
-approximation of the function f(x) := 1

2Ÿ

1
x
, where Ÿ denotes the condition number

of the matrix BÕ. [GSLW18] developed a polynomial approximation to achieve this. For
clarity in our notation, we assume Ÿ > 0, as that will be the condition number later on
and the condition number (see Definition 2.10 from Section 2.2)is always positive.

Definition 4.7. Let b‘,Ÿ œ N. For x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

we define:

g‘,Ÿ(x) := 1 ≠ (1 ≠ x2)b‘,Ÿ

x

This function approximates 1
x

e�ectively over the range x œ [≠1, 1]\
Ë

≠1
Ÿ

, 1
Ÿ

È

for su�ciently
large b‘,Ÿ œ N as seen in the following:

Lemma 4.5. For 0 < ‘ < 1
2 the function g‘,Ÿ(x) is an ‘-approximation for 1

x
on the

interval x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

, where b‘,Ÿ = O
!

Ÿ2 log
!

Ÿ

‘

""

.

Proof. Let 0 < ‘ < 1
2 . For x œ [≠1, 1] \

Ë

≠1
Ÿ

, 1
Ÿ

È

, we analyze the behavior of g‘,Ÿ(x) as x

approaches the boundaries of the excluded interval, i.e., as x æ 1
Ÿ

≠ or x æ ≠ 1
Ÿ

+. We
observe that

lim
xæ

1
Ÿ

≠
(1 ≠ x2)b‘,Ÿ = 1 and lim

xæ≠
1
Ÿ

+
(1 ≠ x2)b‘,Ÿ = 1.

For larger values of b‘,Ÿ, the expression (1 ≠ x2)b‘,Ÿ remains close to 1 except near the
endpoints x = ±1. Thus, as b‘,Ÿ æ Œ, the function g‘,Ÿ(x) tends towards

lim
b‘,ŸæŒ

g‘,Ÿ(x) = 1
x

.

We next consider the Taylor expansion of (1 ≠ x2)b‘,Ÿ around x near the boundaries 1
Ÿ

≠

or ≠ 1
Ÿ

+:

(1 ≠ x2)b‘,Ÿ = 1 ≠ b‘,Ÿx2 + b‘,Ÿ(b‘,Ÿ ≠ 1)
2 x4 + O(x6).

Therefore, for large b‘,Ÿ, we have:

g‘,Ÿ(x) ¥ 1 ≠ (1 ≠ b‘,Ÿx2)
x

= b‘,Ÿx2

x
= b‘,Ÿx.

We need to choose b‘,Ÿ such that
-

-

-
g‘,Ÿ(x) ≠ 1

x

-

-

-
< ‘, and since it is (1 ≠ x2)b‘,Ÿ Æ e≠b‘,Ÿx

2

for x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

, we have:
-

-

-

-

-

1 ≠ (1 ≠ x2)b‘,Ÿ

x
≠ 1

x

-

-

-

-

-

< ‘ ≈∆
-

-

-

-

-

(1 ≠ x2)b‘,Ÿ

x

-

-

-

-

-

< ‘ ≈∆
-

-

-

-

-

e≠b‘,Ÿx
2

x

-

-

-

-

-

< ‘.

98

4.2 Polynomial Approximation for QSVT

Hence, it must be e≠b‘,Ÿx
2

< ‘|x|. Consider the worst-case scenario where x æ 1
Ÿ

≠

approaches from the left. Note that by the symmetry of the problem, the other limit as
x æ ≠ 1

Ÿ

+ from the right can be computed similarly.

lim
xæ

1
Ÿ

≠

1

≠b‘,Ÿx2
2

< lim
xæ

1
Ÿ

≠
log(‘x). (4.2)

Note that for the limit on the right-hand side of the above Equation 4.2, we have:

lim
xæ

1
Ÿ

≠
log(‘x) = log

3

‘ · 1
Ÿ

4

= log(‘) ≠ log(Ÿ).

Considering the left-hand side of Equation 4.2, as x æ 1
Ÿ

≠:

lim
xæ

1
Ÿ

≠

1

≠b‘,Ÿx2
2

= ≠b‘,Ÿ

3 1
Ÿ

42
= ≠b‘,Ÿ

Ÿ2 .

Therefore, we are left with the following inequality:

≠b‘,Ÿ

Ÿ2 < log(‘) ≠ log(Ÿ) ≈∆ b‘,Ÿ > Ÿ2 (log(Ÿ) ≠ log(‘)) ≈∆ b‘,Ÿ > Ÿ2 log
3

Ÿ

‘

4

.

Thus, choosing b‘,Ÿ =
'

Ÿ2 log
!

Ÿ

‘

"(

ensures that g‘,Ÿ(x) ‘-approximates 1
x

for x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

. Consequently, g‘,Ÿ(x) is an ‘-approximation to 1
x

in the specified range, as
required.

Although g‘,Ÿ(x) is not a polynomial yet, we can find an ‘-approximation to it with the
following polynomial proposed by [MRTC21], which we call the inversion polynomial (see
4.4):

Definition 4.8 (Inversion Polynomial). Let 0 < ‘ < 1
2 . For x œ [≠1, 1] \

Ë

≠1
Ÿ

, 1
Ÿ

È

, we
define

P 1/x

2‘,Ÿ
(x) := 4

D‘,Ÿ
ÿ

j=0
(≠1)j

S

U2≠2b‘,Ÿ

b‘,Ÿ
ÿ

i=j+1

A

2b‘,Ÿ

b‘,Ÿ + i

B

T

V T2j+1(x),

where Ti(x) is the Chebyshev polynomial of the first kind of order i, and

b‘,Ÿ := O
3

Ÿ2 log
3

Ÿ

‘

44

,

D‘,Ÿ :=
G

Û

b‘,Ÿ log
34b‘,Ÿ

‘

4

H

= O(Ÿ log(Ÿ/‘)).

Lemma 4.6. P 1/x

2‘,Ÿ
(x) is an ‘-approximation to g‘,Ÿ(x) for x œ [≠1, 1] \

Ë

≠1
Ÿ

, 1
Ÿ

È

.

Proof. For a complete proof see [MRTC21, Low17].

Lemma 4.7. P 1/x

2‘,Ÿ
(x) is a 2‘-approximation to 1

x
for x œ [≠1, 1] \

Ë

≠1
Ÿ

, 1
Ÿ

È

.

99

4 Methodology

Proof. Since with Lemma 4.5, P 1/x

2‘,Ÿ
(x) is a polynomial that ‘-approximates g‘,Ÿ(x) over

the interval x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

, we get with the triangle inequality:
-

-

-

-

P 1/x

2‘,Ÿ
(x) ≠ 1

x

-

-

-

-

Æ
-

-

-
P 1/x

2‘,Ÿ
(x) ≠ g‘,Ÿ(x)

-

-

-
+

-

-

-

-

g‘,Ÿ(x) ≠ 1
x

-

-

-

-

< ‘ + ‘ = 2‘

Lemma 4.8.
1

2Ÿ
P 1/x

‘
2 ,2Ÿ

(x) is an ‘-approximation for 1
2Ÿ

1
x

on x œ [≠1, 1] \
Ë

≠1
2Ÿ

, 1
2Ÿ

È

.

Proof. Let x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

. From Corollary 4.7, we know that P 1/x

2‘,Ÿ
(x) is a 2‘-

approximation to 1
x
. Therefore:

-

-

-

-

1
2Ÿ

P 1/x

2‘,Ÿ
(x) ≠ 1

2Ÿ

1
x

-

-

-

-

= 1
2Ÿ

-

-

-

-

P 1/x

2‘,Ÿ
(x) ≠ 1

x

-

-

-

-

<
1

2Ÿ
· 2‘ = ‘

Ÿ
.

By substituting ‘ with ‘

2 in the polynomial approximation, we get that P 1/x
‘
2 ,2Ÿ

(x) is an ‘

2 ≠
approximation to 1

x
. Thus,

-

-

-

-

1
2Ÿ

P 1/x
‘
2 ,2Ÿ

(x) ≠ 1
2Ÿ

1
x

-

-

-

-

= 1
2Ÿ

-

-

-

-

P 1/x
‘
2 ,2Ÿ

(x) ≠ 1
x

-

-

-

-

<
1

2Ÿ
· ‘

2 = ‘

4Ÿ
.

Since the function 1
2Ÿ

1
x

is scaled by 1
2Ÿ

, this gives us an ‘-approximation.

The following lemma is essential as it establishes the requirement Ÿ Ø 1 for the polynomial
to be bounded, which is necessary for applying the QSVT Theorem 2.17 from Section
2.4.3.

Lemma 4.9. Let 0 < ‘ < 1
2 and Ÿ Ø 1. Then

-

-

-

1
2Ÿ

P 1/x
‘
2 ,2Ÿ

(x)
-

-

-
Æ 1 for x œ [≠1, 1] \

Ë

≠1
Ÿ

, 1
Ÿ

È

.

Proof. Let 0 < ‘ < 1
2 . Since ‘ < 1

2 , we can bound the polynomial for x œ [≠1, 1]\
Ë

≠1
Ÿ

, 1
Ÿ

È

.
Using the triangle inequality and the bounds on the approximation error, we have:

-

-

-

-

1
2Ÿ

P 1/x

2‘,2Ÿ
(x)

-

-

-

-

Æ
-

-

-

-

1
2Ÿ

1
x

-

-

-

-

+ ‘ <

-

-

-

-

1
2Ÿ

1
x

-

-

-

-

+ 1
2 Æ

-

-

-

-

1
2Ÿ

-

-

-

-

+ 1
2 Æ 1

100

4.2 Polynomial Approximation for QSVT

Figure 4.4: Comparison between the polynomial approximation P 1/x

Á,Ÿ (x) from Definition
4.8 and the function 1/x. The approximation is computed according to
Corollary 4.7 using parameters Á = 1 ◊ 10≠3, Ÿ = 1, b = ÁŸ2 log

!

Ÿ

Á

"

Ë, and
D = Á

b log(4b/Á)Ë. As a reference, there is the function gÁ,Ÿ from Lemma
4.5 with Á = 1 ◊ 10≠2, Ÿ = 1, and b = ÁŸ2 log

!

Ÿ

Á

"

Ë. The x-axis represents the
x values, and the y-axis represents the function values.

101

4 Methodology

4.2.2.3 Construction of the Matrix Inversion Polynomial

Again let Ÿ > 0 for the following. However, the inversion polynomial may not be bounded
for x œ

Ë

≠1
2Ÿ

, 1
2Ÿ

È

. To enforce this bound, we multiply the polynomial by an even function

that remains close to 1 for x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

and approaches 0 for x œ
Ë

≠1
2Ÿ

, 1
2Ÿ

È

. This
is achieved using a polynomial approximation of a rectangular function as proposed by
[MRTC21]. To make the construction of the step function approximation polynomial
more comprehensible, we used the notation of [Low17] in Section 4.2.2.1 for defining
a polynomial approximation prect and psgn (see Lemma 4.11 / Lemma 4.2). We need
to modify those slightly to make them compliant with the notation of [MRTC21]. We
need a slightly more specialized rectangular approximation than the basic one given in
Lemma 4.4. We will adapt Lemma 4.2 for this and use P �

‘,
1

4Ÿ
:= psgn,

1
4Ÿ ,0,n

as our sign
approximation component to construct the following.

Definition 4.9. For ‘ œ
!

0,

2/efi
$

, Ÿ Ø 1 and x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

, we define:

P rect
‘,Ÿ (x) := 1

1 + ‘

2

3

1 + 1
2

3

P �
‘,

1
4Ÿ

1

x ≠ 3
4Ÿ

2

+ P �
‘,

1
4Ÿ

1

≠x ≠ 3
4Ÿ

2

44

,

where P �
‘,

1
4Ÿ

:= psgn,
1

4Ÿ ,0,n
is the polynomial approximation from Lemma 4.2.

Lemma 4.10. For the polynomial P �
‘,

1
4Ÿ

and x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

the following holds:

• P �
‘,

1
4Ÿ

is odd.
• P �

‘,
1

4Ÿ
(x) is an ‘-approximation to �0(x).

• |P �
‘,

1
4Ÿ

(x)| Æ 1.

Proof. P �
‘,

1
4Ÿ

being odd follows from Lemma 4.3. The ‘-approximation follows from
Lemma 4.2. The boundedness follows from Lemma 2.2 from Section 2.4.2.1 and since
x œ [≠1, 1], all other terms are bounded by 1 as well.

Lemma 4.11. Let 0 < ‘ < 1
2 . For P rect

‘,Ÿ (x), the following holds:

1. P rect
‘,Ÿ (x) œ [1 ≠ ‘, 1] for x œ [≠1, 1] \

Ë

≠1
Ÿ

, 1
Ÿ

È

.

2. P rect
‘,Ÿ (x) œ [0, ‘] for x œ

Ë

≠1
2Ÿ

, 1
2Ÿ

È

.
3. P rect

‘,Ÿ (x) has an even degree O(Ÿ log(1/‘)) for x œ [≠1, 1].

Proof. 1. Let x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

. Both x ≠ 3
4Ÿ

and ≠x ≠ 3
4Ÿ

are outside the interval
Ë

≠ 1
4Ÿ

, 1
4Ÿ

È

. By definition of P �
‘,

1
4Ÿ

(x ≠ 3
4Ÿ

) ¥ 1 and P �
‘,

1
4Ÿ

(≠x ≠ 3
4Ÿ

) ¥ 1. Therefore,
it is:

P rect
‘,Ÿ (x) ¥ 1

1 + ‘

2

3

1 + 1
2(1 + 1)

4

= 1
1 + ‘

2
· 2 = 2

1 + ‘

2
œ [1 ≠ ‘, 1].

2. Let x œ
Ë

≠1
2Ÿ

, 1
2Ÿ

È

. Both x≠ 3
4Ÿ

and ≠x≠ 3
4Ÿ

are close to ± 3
4Ÿ

respectively, which is far
from ± 1

4Ÿ
. Hence, by Definition 4.9, we have P �

‘,
1

4Ÿ
(x≠ 3

4Ÿ
) ¥ 0 and P �

‘,
1

4Ÿ
(≠x≠ 3

4Ÿ
) ¥

0. Therefore:

102

4.2 Polynomial Approximation for QSVT

P rect
‘,Ÿ (x) ¥ 1

1 + ‘

2

3

1 + 1
2(0 + 0)

4

= 1
1 + ‘

2
.

To establish that this expression lies within the interval [1 ≠ ‘, 1], consider that the
function

f(‘) := 1
1 + ‘

2

is strictly decreasing because its derivative is

f Õ(‘) = ≠ 1
2(1 + ‘

2)2 < 0 for all ‘ > 0.

For any 0 < ‘ < 1
2 , we can expand f(‘) as:

1
1 + ‘

2
= 1 ≠ ‘

2 + O(‘2).

For small ‘, the higher-order terms O(‘2) are negligible, so we approximate:

1
1 + ‘

2
¥ 1 ≠ ‘

2 .

Since 1 ≠ ‘ Æ 1 ≠ ‘

2 for 0 < ‘ < 1
2 , it follows that:

1 ≠ ‘ Æ 1
1 + ‘

2
Æ 1,

confirming that P rect
‘,Ÿ (x) indeed lies within [1 ≠ ‘, 1].

3. The polynomials P �
‘,

1
4Ÿ

(x) used in P rect
‘,Ÿ (x) are constructed to have an even degree

O(Ÿ log(1/‘)). Since P rect
‘,Ÿ (x) is a combination of such polynomials shifted by con-

stants, its degree remains even and in the same order.

103

4 Methodology

We can construct the final polynomial for matrix inversion as follows:

Definition 4.10. Let 0 < ‘ < 1
2 . For a matrix A œ Rn◊n invertible with the condition

number Ÿ = ‡max
‡min

Ø 1, where ‡max and ‡min are the largest and smallest non-zero singular
values of A, the matrix inversion polynomial is defined for x œ [≠1, 1] \

Ë

≠1
Ÿ

, 1
Ÿ

È

as:

P MI
‘,Ÿ (x) := 1

2Ÿ
P 1/x

‘
2 ,2Ÿ

(x)P rect
‘Õ,Ÿ (x),

where ‘Õ = min
3

2‘

5Ÿ
, Ÿ

2·D ‘
4 ,2Ÿ

4

= O
!

‘

Ÿ

"

.

Note that D ‘
4 ,2Ÿ is the degree of the polynomial from P 1/x (see Definition 4.8). Also,

note that the term 2‘

5Ÿ
in the above definition ensures an ‘

2Ÿ
-approximation to 1

2Ÿ

1
x

over
the range of singular values, while the other term ensures that the polynomial is bounded
for x œ

Ë

≠1
Ÿ

, 1
Ÿ

È

.

Lemma 4.12. P MI
‘,Ÿ (x) has degree d = O(Ÿ log(Ÿ/‘)).

Proof. The degree of P MI
‘,Ÿ (x) is determined by the degrees of its parts P 1/x

‘
2 ,2Ÿ

(x) and

P rect
‘Õ,Ÿ (x). The degree of P 1/x

‘
2 ,2Ÿ

(x) is by construction, given by D‘,Ÿ = O(Ÿ log(Ÿ/‘)). With
Lemma 4.11, the degree of P rect

‘Õ,Ÿ (x) is O(Ÿ log(1/‘Õ)). Since ‘Õ = O
!

‘

Ÿ

"

, we have:

log
!

1/‘Õ
"

= log(Ÿ/‘) = log(Ÿ) + log(1/‘).

Thus, the combined degree of P MI
‘,Ÿ (x) is calculated as the sum of its components:

d = O(Ÿ log(Ÿ/‘) + Ÿ log(Ÿ/‘)) = O(Ÿ log(Ÿ/‘)).

Theorem 4.4. Let 0 < ‘ < 1
2 . The matrix inversion polynomial P MI

‘,Ÿ (x) satisfies all
requirements for the application of the QSVT Theorem 2.17:

1. P MI
‘,Ÿ is odd.

2. |P MI
‘,Ÿ (x)| Æ 1 for all x œ [≠1, 1].

3. P MI
‘,Ÿ (x) is a ‘

2Ÿ
-approximation to 1

2Ÿ

1
x

for x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

.

Proof. We prove all the points separately:

1. Consider the components of P MI
‘,Ÿ (x) separately. P 1/x

2‘,Ÿ
(x) is constructed from Cheby-

shev polynomials of odd order (T2j+1(x)), which ensures it has odd parity. P rect
‘,Ÿ (x)

could potentially be constructed to be even. Thus, the product of an odd function
(P 1/x

2‘,Ÿ
(x)) and an even function (P rect

‘,Ÿ (x)) results in an odd function. Therefore,
P MI

‘,Ÿ (x) has odd parity.
2. We need to show that |P MI

‘,Ÿ (x)| Æ 1 for x œ [≠1, 1]. From Lemma 4.11, P rect
‘,Ÿ (x) is

bounded by 1 for x œ [≠1, 1]. For x œ
Ë

≠1
2Ÿ

, 1
2Ÿ

È

, with Lemma 4.11, the polynomial

P rect
‘,Ÿ (x) ensures that P MI

‘,Ÿ (x) is bounded by ‘, thus
-

-

-

-

1
2Ÿ

P 1/x

1
2 ‘,2Ÿ

(x)P rect
‘Õ,Ÿ (x)

-

-

-

-

Æ 1. For

x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

, P 1/x

1
2 ‘,2Ÿ

(x) ‘

2Ÿ
-approximates 1

x
, as shown in Lemma 4.8.

104

4.2 Polynomial Approximation for QSVT

3. We need to show that P MI
‘,Ÿ (x) is a ‘

2Ÿ
-approximation to 1

2Ÿ

1
x

for x œ [≠1, 1]\
Ë

≠1
Ÿ

, 1
Ÿ

È

.

From Corollary 4.7, P 1/x

1
2 ‘,2Ÿ

(x) is a ‘

2 -approximation to 1
x

for x œ [≠1, 1] \
Ë

≠1
Ÿ

, 1
Ÿ

È

.

P rect
‘,Ÿ (x) is in the desired range

Ë

≠1
Ÿ

, 1
Ÿ

È

as shown in Lemma 4.11.

Remark 4.21. Note that points 1 and 3 in the above theorem are not explicit requirements
for QSVT, as stated in Remark 2.32. However, point 1 allows us to choose the correct
circuit for the QSVT operator since it distinguishes between odd and even (see Theorem
2.17 from Section 2.4.3). Point 3 ensures that the use of the polynomial is justified.

105

4 Methodology

4.2.3 The Absolute Value Approximation Polynomial

In this subsection, we construct the QSVT absolute value approximation polynomial,
which is crucial for implementing quantum algorithms that utilize Quantum Singular
Value Transformation (QSVT). This polynomial provides an e�cient and accurate ap-
proximation of the absolute value function | · | : [≠1, 1] æ R, meeting the requirements of
the QSVT Theorem 2.17.

Definition 4.11 (Fourier series). Let f œ L1([0, 2fi]) be a 2fi-periodic function. The
Fourier series of f , is given by

(Ff)(x) = a0
2 +

Œ
ÿ

k=1
(ak cos kx + bk sin kx),

where the Fourier coe�cients ak and bk for k œ N are defined as

ak = 1
fi

⁄ 2fi

0
f(x) cos kx dx and bk = 1

fi

⁄ 2fi

0
f(x) sin kx dx.

Theorem 4.5. The Fourier series of f(x) := | cos(x)| for x œ R is:

(Ff)(x) = 2
fi

+ 4
fi

Œ
ÿ

k=1

(≠1)k+1

4k2 ≠ 1 cos(2kx)

Proof. Consider f(x) := | cos(x)|, which is f œ L1([0, 2fi]) and a 2fi-periodic function.
The Fourier coe�cients ak and bk for k œ N can be determined according to the definition.
We first calculate the ak coe�cients:

ak = 1
fi

⁄ 2fi

0
f(x) cos(kx) dx

= 1
fi

⁄ 2fi

0
| cos(x)| cos(kx) dx

= 2
fi

1

⁄ fi
2

0
cos(x) cos(kx) dx

¸ ˚˙ ˝

I1

≠
⁄

fi

fi
2

cos(x) cos(kx) dx

¸ ˚˙ ˝

I2

2

We calculate I1 using the trigonometric identity:

cos(x) cos(kx) = 1
2 (cos((k + 1)x) + cos((k ≠ 1)x))

Therefore,

I1 = 1
2

1

⁄ fi
2

0
cos((k + 1)x) dx

¸ ˚˙ ˝

I11

+
⁄ fi

2

0
cos((k ≠ 1)x) dx

¸ ˚˙ ˝

I12

2

Substitution with u := (k + 1)x leaves us with:

I11 =
⁄ fi

2

0
cos(u) du

k + 1 = 1
k + 1

⁄ fi
2

0
cos(u) du = 1

k + 1 sin
3

(k + 1)fi

2

4

.

106

4.2 Polynomial Approximation for QSVT

Substitution with v := (k ≠ 1)x gives us:

I12 =
⁄ fi

2

0
cos(v) dv

k ≠ 1 = 1
k ≠ 1

⁄ fi
2

0
cos(v) dv = 1

k ≠ 1 sin
3

(k ≠ 1)fi

2

4

.

Therefore,

I1 = 1
2(I11 + I12) = 1

2

3 1
k + 1 sin

3

(k + 1)fi

2

4

+ 1
k ≠ 1 sin

3

(k ≠ 1)fi

2

44

.

Now we calculate I2 which is the same integral as I1 evaluated at di�erent values:

I2 = 1
2

A

⁄

fi

fi
2

cos(kx + x) dx +
⁄

fi

fi
2

cos(kx ≠ x) dx

B

= 1
2

1

1
k+1

!

sin((k + 1)fi) ≠ sin
!

(k + 1)fi

2
""

+ 1
k≠1

!

sin((k ≠ 1)fi) ≠ sin
!

(k ≠ 1)fi

2
""

2

Therefore we have:

ak = 2
fi

(I1 ≠ I2)

= 1
fi

A

2 sin
!

(k + 1)fi

2
"

k + 1 +
2 sin

!

(k ≠ 1)fi

2
"

k ≠ 1

B

= 2
fi

A

sin
!

(k + 1)fi

2
"

k + 1 +
sin

!

(k ≠ 1)fi

2
"

k ≠ 1

B

Note that for k = 2m + 1 with m œ N, it is

sin
!

(2m + 1 + 1)fi

2
"

2m + 1 + 1 +
sin

!

(2m + 1 ≠ 1)fi

2
"

2m + 1 ≠ 1 =
sin

!

(2(m + 1))fi

2
"

2(m + 1) +
sin

!

(2m)fi

2
"

2m
= 0.

Therefore, we only need to consider k ‘æ 2k for our terms:

ak = 2
fi

A

sin
!

(2k + 1)fi

2
"

2k + 1 +
sin

!

(2k ≠ 1)fi

2
"

2k ≠ 1

B

= 2
fi

A

(≠1)k

2k + 1 + ≠(≠1)k

2k ≠ 1

B

= 2(≠1)k

fi

3 1
2k + 1 ≠ 1

2k ≠ 1

4

= 2(≠1)k

fi

3(2k ≠ 1) ≠ (2k + 1)
(2k + 1)(2k ≠ 1)

4

= 2(≠1)k

fi
· ≠2

(2k + 1)(2k ≠ 1)

= 4(≠1)k+1

fi
· 1

4k2 ≠ 1

= 4(≠1)k+1

fi(4k2 ≠ 1)

107

4 Methodology

Also, since | cos(x)| is even, the bk terms vanish. Therefore, we only need to calculate a0,
which is the following:

a0 = 1
fi

⁄ 2fi

0
| cos(x)| dx

= 2
fi

1

⁄ fi
2

0
cos(x) dx ≠

⁄

fi

fi
2

cos(x) dx
2

= 2
fi

Q

asin(x)
-

-

-

-

fi
2

0
≠ sin(x)

-

-

-

-

fi

fi
2

R

b

= 4
fi

.

Corollary 4.2. The Chebyshev series of f(x) := |x| for x œ [≠1, 1] is given by:

fŒ(x) = 2
fi

+ 4
fi

Œ
ÿ

k=1

(≠1)k+1

4k2 ≠ 1 T2k(x)

Proof. This follows with a change of variables since Tn(cos ◊) = cos(n◊) for ◊ œ [0, fi].

Remark 4.22. Note that the Fourier series and Chebyshev series are related in a special
way when the function f : R æ R is even and 2fi-periodic. This is because, in such
cases, the sine terms in the Fourier series disappear (since sin(nx) is an odd function
and integrates to zero over a symmetric interval), leaving only cosine terms. The cosine
terms in the Fourier series correspond to the terms in the Chebyshev series. A more
extensive review of this relationship can be found in [Boy00].

Therefore, we can use this as the polynomial to approximate the absolute value as follows:

Definition 4.12. For x œ [≠1, 1], the absolute value approximation polynomial is defined
as:

P abs
‘ (x) = 2

fi
+ 4

fi

d
ÿ

k=1

(≠1)k+1

4k2 ≠ 1 T2k(x)

with d = O
1Ï

1
fi‘

Ì2

as the degree of the polynomial.

Note that the absolute value approximation polynomial is illustrated in Figure 4.5.

Lemma 4.1. The degree of P abs
‘ (x) is even.

Proof. Let d œ N be the degree of P abs
‘ (x). This polynomial is represented as a finite sum

of Chebyshev polynomials T2k(x). The term with the highest degree is T2d(x), which has
degree 2d. Thus, the degree is even.

Lemma 4.2. P abs
‘ (x) is an ‘-approximation to |x| for x œ [≠1, 1].

108

4.2 Polynomial Approximation for QSVT

Proof. Let ‘ > 0. Consider the Chebyshev series fŒ(x) for x œ [≠1, 1]. The truncated
series fN (x) after N terms is:

fN (x) = 2
fi

+ 4
fi

N
ÿ

k=1

(≠1)k+1

4k2 ≠ 1 T2k(x)

Define EN (x) := ||x| ≠ fN (x)| as the error term after N iterations, then it is:

EN (x) = ||x| ≠ fN (x)| = |fŒ(x) ≠ fN (x)| =

-

-

-

-

-

-

4
fi

Œ
ÿ

k=N+1

(≠1)k+1

4k2 ≠ 1 T2k(x)

-

-

-

-

-

-

We want to achieve |EN (x)| < ‘. Since the Chebyshev polynomials satisfy |T2k(x)| Æ 1
for x œ [≠1, 1], we can bound the error term:

|EN (x)| Æ 4
fi

Œ
ÿ

k=N+1

-

-

-

-

-

(≠1)k+1

4k2 ≠ 1

-

-

-

-

-

= 4
fi

Œ
ÿ

k=N+1

1
4k2 ≠ 1 < ‘

For large k, the terms 1
4k2≠1 can be approximated by 1

4k2 . The series
q

Œ

k=N+1
1

k2 is a
well-known p-series with p = 2, which converges and can be bounded by:

Œ
ÿ

k=N+1

1
4k2 = 1

4

Œ
ÿ

k=N+1

1
k2 Æ 1

4

⁄

Œ

N

1
x2 dx = 1

4 · 1
N

So we have:
|EN (x)| Æ 4

fi

Œ
ÿ

k=N+1

1
4k2 ≠ 1 Æ 4

fi
· 1

4 · 1
N

= 1
fiN

< ‘

To satisfy |EN (x)| < ‘, we need N > 1/fi‘. Thus, for N = O (Á1/fi‘Ë), the polynomial
P abs

‘ (x) is an ‘-approximation to |x| for x œ [≠1, 1].

Theorem 4.6. The absolute value approximation polynomial P abs
‘ (x) satisfies all require-

ments for the application of the QSVT Theorem 2.17:
1. P abs

‘ (x) is even.
2. |P abs

‘ (x)| Æ 1 for all x œ [≠1, 1].
3. P abs

‘ (x) is an ‘-approximation to |x| for x œ [≠1, 1].
Proof. Note that 1. is the result of Lemma 4.1 and 3. follows from Lemma 4.2.
We prove 2. explicitly. Let therefore x œ [≠1, 1]. Consider the sum:

d
ÿ

k=1

(≠1)k+1

4k2 ≠ 1 T2k(x).

The Chebyshev polynomials Tk(x) satisfy |Tk(x)| Æ 1 for any k œ N by definition. There-
fore, the absolute value of each term in the sum is bounded by 1. To bound the entire
sum, we consider the series:

-

-

-

-

-

d
ÿ

k=1

(≠1)k+1

4k2 ≠ 1 T2k(x)
-

-

-

-

-

Æ
d

ÿ

k=1

-

-

-

-

-

(≠1)k+1

4k2 ≠ 1 T2k(x)
-

-

-

-

-

Æ
d

ÿ

k=1

1
4k2 ≠ 1

109

4 Methodology

We know from the last proof that for large k, 1
4k2≠1 behaves similarly to 1

4k2 , which is a
convergent p-series with p = 2. Therefore, the sum

q

Œ

k=1
1

4k2≠1 is convergent and thus
bounded by 1/N with N = O (Á1/fi‘Ë) for some ‘ > 0 and its partial sums are bounded
as well. Therefore, taking the absolute value of P abs

‘ (x) leaves us with:

-

-

-
P abs

‘ (x)
-

-

-
Æ

-

-

-

-

2
fi

-

-

-

-

+
-

-

-

-

-

4
fi

d
ÿ

k=1

(≠1)k+1

4k2 ≠ 1 T2k(x)
-

-

-

-

-

Æ 2
fi

+ 4
fi

d
ÿ

k=1

1
4k2 ≠ 1 Æ 2

fi
+ 4

fiN
.

Given that 2
fi

+ 4
fiN

Æ 2
fi

Æ 1 for an appropriate choice of ‘.

Remark 4.23. Note that points 1 and 3 in the above theorem are not explicit requirements
for QSVT, as stated in Remark 2.32. However, point 1 allows us to choose the correct
circuit for the QSVT operator since it distinguishes between odd and even (see Theorem
2.17 from Section 2.4.3). Point 3 ensures that the use of the polynomial is justified.

Figure 4.5: Comparison between the absolute value approximation polynomial P abs
‘ (x)

from Definition 4.12 and the absolute value |x|. The approximation is com-
puted with ‘ = 1 ◊ 10≠4 and d = Á1/fi‘Ë. The x-axis represents the x values,
and the y-axis represents the function values.

110

4.3 Overview of the Quantum Algorithm

4.3 Overview of the Quantum Algorithm
The following is an overview of the components of the proposed quantum algorithm to
solve the UCP from Definition 4.2 as shown in Figure 4.6:

State Preparation: Prepare the quantum state corresponding to the vector �P =
(Pk,t uk,t ≠ Lk,t)kœB,tœT. This step encodes the elements of �P into the amplitudes of a
quantum state, ensuring proper normalization.

Block Encoding of B
Õ
: To perform the inversion of the reduced susceptance matrix

B
Õ, employ the Linear Combination of Unitaries (LCU) approach for block encoding.

This involves expressing B
Õ as a sum of unitary matrices and constructing the necessary

operators for e�cient block encoding.

Applying QSVT to Calculate B
Õ≠1

: Using the block encoding of B
Õ, apply Quantum

Singular Value Transformation (see “QSVT 1” in Figure 4.6) to compute the inverse of
B

Õ. Construct a polynomial that approximates the matrix inversion and apply it using
QSVT to calculate the voltage angles.

Block Encoding of the PL-Vector: Construct a diagonal matrix corresponding to
the power flow vector PL as diagonal block encoding of the matrix D from Section 4.5.
Prepare a quantum state with amplitudes matching the entries of PL and use this state
for e�cient block encoding of the diagonal matrix.

Applying QSVT to Calculate |Pl,t|: Apply QSVT (see “QSVT 2” in Figure 4.6) to
compute the absolute values of the power flow vector entries, ensuring correct accounting
of the power flow through each transmission line in subsequent calculations.

Applying Quantum Amplitude Estimation (QAE): Given the absolute values of
the power flow vector in quantum state form, employ QAE to calculate the scalar product
È|Pl,t|, ClÍ with the transmission cost coe�cients, which is then incorporated into the cost
Hamiltonian as Htrans in Section 4.8.1.5.

Applying the Quantum Approximate Optimization Algorithm (QAOA): Con-
struct the cost Hamiltonian including terms representing operational costs, power bal-
ance, generator output limits, and transmission costs. Optimize the decision variables
by constructing the QAOA state through alternating applications of phase separator
and mixer operators. Calculate the expectation value of the cost Hamiltonian and use
classical optimization techniques to find the optimal parameters. Measure the optimal
quantum state, corresponding to the minimized cost Hamiltonian, to obtain the optimal
operational states of the generators.

111

4 Methodology

Remark 4.24 (Verification of the Algorithm). Given the input values specified in Sec-
tion 4.1, the proposed quantum algorithm is confirmed to be well-defined and correct. It
generates an approximated optimized set of operational states {ui,t}iœG,tœT and the corre-
sponding power outputs {Pi,t}iœG,tœT, ensuring that all conditions outlined in Definition
4.2 are satisfied. The correctness of each component of the algorithm has been verified
through the following:

• State Preparation: Theorem 4.7 confirms the accurate preparation of the initial
quantum state based on the given input parameters.

• Quantum Singular Value Transformation (QSVT): Theorem 2.17 ensures
that QSVT correctly transforms the singular values as required.

• Matrix Inversion Polynomial: Theorem 4.4 verifies the correct approximation
of matrix inversion by the polynomial used in QSVT.

• Absolute Value Polynomial: Theorem 4.6 confirms the accuracy of the polyno-
mial involved.

• Quantum Phase Estimation (QPE): Theorem 4.1, along with Lemma 4.2 and
Corollary 4.5, establishes the accuracy of QPE in phase estimation, essential for
constructing the cost function.

• Quantum Approximate Optimization Algorithm (QAOA): The existence of
a solution using QAOA is a�rmed in Remark 4.41.

Together, these verifications ensure that the algorithm functions correctly and achieves
the desired outcomes under the specified conditions.

112

4.3 Overview of the Quantum Algorithm

Parameter list from Rem. 4.24

State Preparation

QSVT 1

QSVT 2

QPE

QAOA

Optimized decision variables {ui,t}iœG,tœT and {Pi,t}iœG,tœT

�Penc-Operator

P MI
‘,Ÿ -Polynomial

P abs
‘ -Polynomial

LCU Block Encoding of B
Õ

Diag. Block Encoding of D

Prepared State |ÂoutÍ from Thm. 4.7

Calculated |PL|-Vector

È|Pl,t|, ClÍ incorporated into Htrans

Figure 4.6: Flowchart illustrating the Quantum Optimization Algorithm for solving the
UCP as described in the above Overview Section 4.3. Note that this figure is
for visualization purposes only and does not represent the exact input data
or computational processes of the algorithms. The diagram is simplified and
sequentially arranged for clarity; however, it should be understood that the
actual process involves nested and parallel operations that are more complex
than demonstrated here.

113

4 Methodology

4.4 The QSVT Matrix Inversion Procedure
4.4.1 Quantum State Preparation
Given �P œ R|B|·|T | with �P = (Pk,t uk,t ≠ Lk,t)kœB,tœT. We use the amplitude encoding
method for quantum state preparation, following the methodology described in [SP18]
and introduced by [MVBS04]. This method utilizes Ry(÷�P

i
) rotation gates about the y-

axis to encode the elements of �P into the amplitudes of a quantum state. The required
rotation angles, ÷�P

i
, are derived to ensure the resulting quantum state corresponds to a

normalized version of �P .

Definition 4.13. Given the vector �P œ R|B|·|T |, the amplitude encoding operator �Penc

is defined by the sequence of unitary operations that prepare the quantum state |�P Í. The
operator �Penc is defined as:

�Penc : |0Í¢ log2(|B|·|T |) ‘æ 1
ÎV̨ Î

ÿ

kœB,tœT
Vk,t |k, tÍ

where |k, tÍ is a given basis vector indexed by the pair (k, t) and

Vk,t :=
I

Pk,t if k œ G

≠Lk,t if k ”œ G

where Pk,t is the net power generated at the bus k and timestep t and Lk,t the load. ÎV̨ Î
is the norm of all the vectors including all Vk,t for all k œ B.

Remark 4.25 (Index mapping). To prepare this quantum state, each rotation angle ÷�P

j

is given for j œ {1, 2, . . . , |B| · |T |}. Therefore we can use the following index mapping:

j = (t ≠ 1) · |B| + k for k œ B and t œ T

If the index set T ”µ N use the position of the given index.

The value of ÷�P

j
is calculated according to the formula described in [MVBS04] where

the Vk,t are calculated for all k œ B and t œ T as by definition:

÷�P

j = 2 arcsin

Q

a

Vj
Ò

q

kœB,tœT |Vk,t|2

R

b

This formula also accounts for the normalization from the i-th component onwards. The
implementation uses a series of controlled Ry(÷�P

i
) rotations. Note that Rz-rotations

are not necessary in this circuit since the input values are real. The amplitude encoding
operator �Penc is incorporated into the whole state preparation circuit (see Figure 4.7).

114

4.4 The QSVT Matrix Inversion Procedure

Theorem 4.7. The state preparation operator (see Figure 4.7) creates the following state
|ÂoutÍ œ C2(n+1) as output of the first register assuming that all buses are connected to a
generator where n = (|B| · |T |):

|ÂoutÍ = 1
ÎV̨ Î

Q

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

a

P0u0
P1u1
P2u2
P3u3

...
Pnun

(1 ≠ u0)P0
(1 ≠ u1)P1

...
(1 ≠ un)Pn

0
...
0

R

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

b

where ÎV̨ Î is the normalization factor of the amplitude encoding operator and the indexes
are mapped to one dimension using the mapping from Remark 4.25.

Proof. Let n = |B| · |T |. The initial state of the system can be written as:

|Â0Í = |0Í ¢ |0Í¢ log2(n) ¢ |u0Í ¢ |u1Í ¢ · · · ¢ |unÍ

The �Penc operator encodes the vector of Vk,t for k œ B and t œ T into the second register
where |k, tÍ is a given basis vector indexed by the pair (k, t) and Vk,t = Pk,t if k œ G and
≠Lk,t if k /œ G:

�Penc |0Í¢ log2(n) = 1
ÎV̨ Î

ÿ

kœB,tœT
Vk,t |k, tÍ

Assuming B = G (i.e., all buses are connected to a generator), then Vk,t = Pk,t for every
k œ B and t œ T . The state after this operation is:

|Â1Í = |0Í ¢

Q

a

1
ÎV̨ Î

ÿ

kœB,tœT
Pk,t |k, tÍ

R

b ¢ |u0Í ¢ |u1Í ¢ · · · ¢ |unÍ

Next, we apply a series of controlled-X gates, with the first qubit as the target and the
second register and the |uiÍ qubits as controls. The e�ect of these controlled-X gates can
be understood as follows: Each controlled-X gate will flip the first qubit if and only if the
corresponding control qubits (from the second register and the |uiÍ qubits) are in the |1Í
state. Using the index mapping from Remark 4.25 so that i = (t ≠ 1) · |B| + k for k œ B
and t œ T, the state after applying all controlled-X gates can be expressed as:

|Â2Í = 1
ÎV̨ Î

n
ÿ

i=0
Pi |ui ü 0Í |iÍ ¢ |u0Í ¢ |u1Í ¢ · · · ¢ |unÍ

115

4 Methodology

Since the initial target qubit is in the |0Í state, the ü operation with ui either flips or
maintains the state based on the value of ui:

|Â2Í = 1
ÎV̨ Î

n
ÿ

i=0
Pi |uiÍ |iÍ ¢ |u0Í ¢ |u1Í ¢ · · · ¢ |unÍ

This means the first qubit will be in the state |uiÍ corresponding to the control qubits’
state. To account for the (1 ≠ ui) terms, we recognize that the state can be decomposed
into parts where the qubit is |0Í or |1Í for each ui:

|Â3Í = 1
ÎV̨ Î

n
ÿ

i=0
Pi (ui |1Í + (1 ≠ ui) |0Í) |iÍ ¢ |u0Í ¢ |u1Í ¢ · · · ¢ |unÍ

When we combine these results, the first register’s state after considering both ui and
(1 ≠ ui) contributions is:

|ÂoutÍ = 1
ÎV̨ Î

1

P0u0 . . . Pnun (1 ≠ u0)P0 . . . (1 ≠ un)Pn 0 . . . 0
2

116

4.4 The QSVT Matrix Inversion Procedure

UCU

· · ·

· · ·

· · ·

· · ·

· · ·

...
...

...
...

...
...

...

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

. . .

· · ·

· · ·

· · ·

· · ·

|0Í

|ÂoutÍ
|0Í¢ log2(n) �Penc

|u0Í X X |u0Í

|u1Í X X |u1Í

|u2Í X X |u2Í

|u3Í X X |u3Í

|un≠3Í X X |un≠3Í

|un≠2Í X X |un≠2Í

|un≠1Í X X |un≠1Í

|unÍ X X |unÍ

Figure 4.7: Quantum Circuit for State Preparation, where X are Pauli X-Gates and �Penc
is the amplitude encoding operator for n = |G| · |B|. The output state |ÂoutÍ
is described in Theorem 4.7.

117

4 Methodology

Algorithm 4.5: Quantum State Preparation
Input : The values of Pk,t, ui, and Lk,t for k œ B, i œ G, and t œ T
Output : Quantum state |ÂoutÍ encoded in a quantum register, see Theorem

4.7 for an explicit form of the output state.
Complexity: See Theorem 5.1 from Section 5.1
Procedure :

1 Prepare the initial state as |0Í ¢ |0Í¢ log2(n) ¢ |u0Í ¢ |u1Í ¢ · · · ¢ |unÍ, where
n = |B| · |T |.

2 Calculate the Euclidean norm ÎV̨ Î of the vector V̨ where

Vk,t :=
I

Pk,t if k œ G

≠Lk,t if k /œ G
.

3 foreach k œ B and t œ T do

4 Encode Vk,t into the amplitude of the basis state |k, tÍ in the second register
using the �Penc operator:

�Penc |0Í¢ log2(n) = 1
ÎV̨ Î

ÿ

kœB,tœT

Vk,t |k, tÍ

5 foreach i = 0 to n do

6 Apply a controlled-X gate with the first qubit as the target and the second
register qubits and the |uiÍ qubits as controls:

Apply CnX gates to transform |0Í to |ui ü 0Í

7 Account for both ui and 1 ≠ ui contributions:

|Â3Í = 1
ÎV̨ Î

n
ÿ

i=0
Pi (ui |1Í + (1 ≠ ui) |0Í) |iÍ ¢ |u0Í ¢ |u1Í ¢ · · · ¢ |unÍ

8 Combine the results to form the output state |ÂoutÍ.

118

4.4 The QSVT Matrix Inversion Procedure

4.4.2 LCU Block Encoding of the Reduced Block Susceptance Matrix

We use the Linear Combination of Unitaries (LCU) approach (see Section 2.4.3.1) for
block encoding the matrix B

Õ, following the methodology described in [CW12b] and
discussed in [DMWL21]. To achieve the block encoding of the matrix B

Õ according to
Corollary 2.9, we first need to express it as an LCU, with K Æ (|B| · |T |)2 as follows:

B
Õ =

K
ÿ

k=1
ykUk,

where yk œ C are complex coe�cients and Uk œ R|B||T |◊|B||T | are unitary matrices. Let
– =

q

K

k=1 |yk| be a normalization factor and ak = yk
–

be the normalized coe�cients. For
implementing the LCU-Operators, we follow a slightly modified version of [DMWL21].

Definition 4.14. The Prepare operator for the matrix B
Õ is defined to create a state:

PREPBÕ œ L(C2n
,CK), PREPBÕ |0Í =

K
ÿ

k=1

Ô
ak|kÍ,

Definition 4.15. The Select operator for the matrix B
Õ is a controlled unitary defined

as:

SELBÕ œ L(CK ¢ Cn), SELBÕ =
K

ÿ

k=1
|kÍÈk| ¢ Uk,

Note that for PREPBÕ the state |0Í is the initial state of an ancillary register and |kÍ are
computational basis states, for SELBÕ the |kÍÈk| acts on an ancillary register and Uk on
the target register as seen in the exemplary circuit 4.8.

Theorem 4.8. For the matrix B
Õ with n = |B| · |T | the unitary operator UBÕ defined as:

UBÕ := (PREP†

BÕ ¢ In) · SELBÕ · (PREPBÕ ¢ In)

creates a block encoding for B
Õ, where In œ Rn◊n are the identity matrices.

Proof. To prove that UBÕ is a block encoding of B
Õ, we need to show that:

.

.B
Õ ≠ –

!

È0|¢a ¢ I
"

UBÕ
!

|0Í¢a ¢ I
"
.

. Æ ‘,

where – =
q

K

k=1 |yk| and the operators are defined with ak = yk
–

as:

PREPBÕ |0Í =
K

ÿ

k=1

Ô
ak |kÍ , SELBÕ =

K
ÿ

k=1
|kÍ Èk| ¢ Uk, PREP†

BÕ =
K

ÿ

k=1

Ô
ak Èk| .

Let |ÂÍ œ Cn be an arbitrary quantum state. We apply PREPBÕ ¢ In to |0Í ¢ |ÂÍ, and
then SELBÕ to this state:

SELBÕ

1

(PREPBÕ ¢ In)(|0Í ¢ |ÂÍ)
2

= SELBÕ

A

K
ÿ

k=1

Ô
ak |kÍ ¢ |ÂÍ

B

=
K

ÿ

k=1

Ô
ak |kÍ ¢ Uk |ÂÍ .

119

4 Methodology

Applying the un-preparation operator PREP†

BÕ ¢ In to the above state and using the fact
that Èk|jÍ = ”kj (Kronecker delta), we get:

(PREP†

BÕ ¢ In)
A

K
ÿ

k=1

Ô
ak |kÍ ¢ Uk |ÂÍ

B

=
A

K
ÿ

k=1

Ô
ak Èk|

B

Q

a

K
ÿ

j=1

Ô
aj |jÍ ¢ Uj |ÂÍ

R

b

=
K

ÿ

k=1
akUk |ÂÍ .

Combining the results from the previous steps leaves us with:

UBÕ(|0Í ¢ |ÂÍ) =
1

(PREP†

BÕ ¢ In) · SELA · (PREPBÕ ¢ In)
2

(|0Í ¢ |ÂÍ)

= |0Í ¢
A

K
ÿ

k=1
akUk

B

|ÂÍ .

We project onto È0|¢a · |0Í¢a:

!

È0|¢a ¢ I
"

UBÕ
!

|0Í¢a ¢ I
"

=
K

ÿ

k=1
akUk =

K
ÿ

k=1

yk

–
Uk = 1

–

K
ÿ

k=1
ykUk = –≠1

B
Õ.

Since with the following the condition is satisfied:
.

.B
Õ ≠ –

!

È0|¢a ¢ I
"

UBÕ
!

|0Í¢a ¢ I
"
.

. =
.

.

.
B

Õ ≠ –(–≠1
B

Õ)
.

.

.
= 0 Æ ‘.

The operator UBÕ defines a block encoding for B
Õ.

The following circuit, PREPBÕ prepares the state
q

K

k=1
Ô

ak |kÍ and SELBÕ is a controlled
unitary operation U =

q

K

k=1 |kÍ Èk|¢Uk. Then PREP†

BÕ unprepares the ancilla state back
to |0Í¢ log K . Thus with:

UBÕ = (PREP†

BÕ ¢ In) · SELBÕ · (PREPBÕ ¢ In),

the matrix B
Õ is block encoded as:

B
Õ = –(È0¢ log K | ¢ I)UBÕ(|0¢ log KÍ ¢ I)

where – =
q

K

k=1 |yk|, the normalization factor.

120

4.4 The QSVT Matrix Inversion Procedure

SELBÕ

m

· · ·

· · ·

· · ·

· · ·

|0Í¢n PREPBÕ PREP†

BÕ

U0 U1 U2 UK

Figure 4.8: Exemplary Quantum Circuit for LCU-Block Encoding B
Õ using the LCU

method, with n = log2(|B| · |T |) .

Algorithm 4.6: Quantum Circuit for LCU-Block Encoding of Matrix B
Õ

Input : The matrix B
Õ that can be decomposed as B

Õ =
q

K

k=1 ykUk where
yk are complex coe�cients and Uk are unitary matrices.

Output : A quantum state proportional to B
Õ |�P Í, specifically –≠1

B
Õ |�P Í

where – =
q

K

k=1 |yk|.
Complexity: See Theorem 5.2 from Section 5.1
Procedure :

1 Calculate the normalization factor – =
q

K

k=1 |yk| and the normalized coe�cients
ak = yk

–
.

2 Apply the Prepare operator PREPBÕ to create the state
PREPBÕ |0Í =

q

K

k=1
Ô

ak|kÍ.
3 Apply the Select operator SELBÕ =

q

K

k=1 |kÍÈk| ¢ Uk to the combined ancillary
and target registers.

4 Apply the Unprepare operator PREP†

BÕ to return the ancillary register to the |0Í
state.

121

4 Methodology

4.4.3 QSVT-Based Inversion of the Reduced Block Susceptance Matrix
We assume that for B

Õ all its singular values ‡i œ [1
Ÿ
, 1] for Ÿ Ø 1, where Ÿ is the condition

number, the matrix is already rescaled according to Remark 4.10.

Remark 4.26. For the inversion of A œ Rn◊n in [MRTC21], the matrix A† is used.
However, this is unnecessary for our case, because, if we consider a real-valued, full-
rank, square matrix A œ Rn◊n. Since A is real, A = AT . For a full-rank matrix,
all singular values are non-zero, ensuring invertibility. The distinction between A and
A† is important for complex-valued matrices or ensuring unitary evolution in quantum
algorithms. For real-valued matrices, where A = AT , operations involving A maintain
the requisite properties without needing A†.

The block encoding UBÕ of Theorem 4.8, together with the matrix inversion polynomial
from Definition 4.10 with Theorem 4.10 satisfy all prerequisites for the QSVT Theorem
2.17. Therefore with these, we can define a QSVT Operator:

Corollary 4.3. Given the UBÕ block encoding of Theorem 4.8 from Section 4.4.2 and the
matrix inversion polynomial P MI

‘,Ÿ of Definition 4.10, the operator QSVTP MI
‘,Ÿ

performing
the Quantum Singular Value Transformation (see Theorem 2.17) can be constructed ac-
cording to Figure 4.9. The projectors �„k

= |0Í¢m È0|¢m ¢ ei„k‡Z are given with phase
angles „k œ R for 1 Æ k Æ Âd/2Ê locating B

Õ inside the block encoding UBÕ. The operator
is defined for d = O(Ÿ log(Ÿ/‘)) odd, the degree of the matrix inversion polynomial as
(see Theorem 4.4):

QSVTP MI
‘,Ÿ

(UBÕ) = �„1UBÕ

S

U

(d≠1)/2
Ÿ

k=1
�„2k

U †

BÕ�„2k+1UBÕ

T

V =
A

P MI (SV)
‘,Ÿ (BÕ) ·

· ·

B

where P MI (SV)
‘,Ÿ (BÕ) is given as a block encoding for the singular value decomposition:

B
Õ = U�V T

where U œ R|B||T |◊|B||T | and V œ R|B||T |◊|B||T | are orthogonal matrices, and a diagonal
matrix � œ R|B||T |◊|B||T | with singular values ‡1, ‡2, . . . , ‡(|B||T |) on its diagonal:

P MI (SV)
‘,Ÿ (BÕ) :=

|B||T |
ÿ

j=1
P MI

‘,Ÿ (‡j) |ujÍ Èvj | , (4.3)

Proof. Follows from Theorem 2.17.

To calculate the phase factors for the QSVT-Sequence, one can apply the method de-
scribed in Section 2.4.2.2.

122

4.5 Block Encoding of the Load Power Vector

r

m≠r

· · ·

· · ·

· · ·

e≠i„d+1‡z e≠i„d‡z e≠i„d+1‡z e≠i„1‡z

UBÕ U †

BÕ UBÕ

Figure 4.9: Quantum Circuit the QSVTP MI
‘,Ÿ

(UBÕ)-Operator if with the degree d of P MI
‘,Ÿ

odd, where r = log2(|B||T |) and m-ancillas from the LCU Block encoding.

Algorithm 4.7: QSVTP MI
‘,Ÿ

Operator

Input: A Block encoding UBÕ for B
Õ with a condition number Ÿ Ø 1 for the

matrix B
Õ and an error ‘ < 1/2.

Output: A block encoded ‘

2Ÿ
-approximation of Ÿ

2 B
Õ≠1.

Complexity: See Theorem 5.3 from Section 5.1
Procedure :

1 Determine a unitary block encoding UBÕ for B
Õ. (see Thm. 4.8)

2 Calculate the phase angles „k œ R for 1 Æ k Æ Âd/2Ê using the method described
in Section 2.4.2.2.

3 Apply the QSVT sequence to with this block encoding to compute (P MI
‘,Ÿ)(SV)(BÕ),

with the matrix inversion polynomial P MI
‘,Ÿ (x) from Definition 4.10

4.5 Block Encoding of the Load Power Vector
Remark 4.27. After applying the QSVT procedure, we obtain the pseudoinverse of the
matrix B

Õ (see Section 2.4.3.3). This allows us to calculate the voltage angles for each
time step and, consequently, for each transmission line l œ L between buses i, j œ B. At
each time step t œ T, we calculate the power flow Pl,t using the voltage angles and line
susceptance Bl:

Pl,t = Bl(◊i,t ≠ ◊j,t)

where ◊i,t and ◊j,t are the voltage angles at the buses connected by line l. The transmission
cost for line l at time t is:

ctrans
l,t = |Pl,t · Cl|

We call PL œ R|L||T | the Load Power Vector, which we will construct now. We again use
block encoding for the vector PL := (Pl,t)lœL,tœT where L = {l1, l2, . . . , l|L|} is the index
set of all transmission lines and T = {t1, t2, . . . , t|T |} the index set of all time steps. The
vector can be expressed as:

PL = (Pl1,t1 , Pl2,t1 , . . . , Pl|L|,t1 , Pl1,t2 , . . . , Pl|L|,t2 , . . . , Pl1,t|T | , Pl2,t|T | , . . . , Pl|L|,t|T |)
€

This vector explicitly lists each element Pl,t in a sequential manner, starting from t1 and
iterating through all l values, then moving to t2 and so on, until t|T |.
Define the set of indices where all entries of PL are zero, i.e., the value Pl,t = 0 where no
power flows through line l at times t:

123

4 Methodology

Z = {(l, t) œ L ◊ T | Pl,t = 0}

Given the set Z, we can construct a vector PÕ

L
by excluding the zero entries. Then, PÕ

L

is formed by excluding the elements Pl,t where (l, t) œ Z:

PÕ

L = (Pl,t | (l, t) œ (L ◊ T) \ Z)

The resulting vector is PÕ

L
œ R|L||T |≠|Z|. Thus, PÕ

L
is the refined vector obtained by

removing all |Z|-zero entries from PL.
In order to process that refined vector using a block encoding, we construct a quadratic
diagonal matrix with the entries (Pl,t)(lœL,tœT) without Z of the vector PÕ

L
on its diagonal.

We need to create a matrix D œ R(|L|·|T |≠|Z|)◊(|L|·|T |≠|Z|) with the elements of the vector
on the diagonal and all other elements zero as follows:

D = diag(Pl1,t1 , Pl2,t1 , . . . , Pl|L|,t1 , Pl1,t2 , Pl2,t2 , . . . , Pl|L|,t2 , . . . , Pl1,t|T | , Pl2,t|T | , . . . , Pl|L|,t|T |)

Let n = |L| ◊ |T | ≠ |Z|. Then the matrix D can be represented as:

D =

Q

c

c

c

c

c

c

a

Pl1,t1 0 0 · · · 0
0 Pl2,t1 0 · · · 0
0 0 Pl3,t1 · · · 0
...

...
...

0 0 0 · · · Pln,tn

R

d

d

d

d

d

d

b

This construction ensures that D is a diagonal matrix with no zero entries on its diagonal,
thus has full rank and is invertible. Also, the singular values are given through

Lemma 4.1. Let n = |L| ◊ |T | ≠ |Z|. The singular values ‡(D) of D are given through

‡(D) = {|Pl1,t1 |, |Pl2,t1 |, . . . , |Pln,tn |}

Proof. The singular values are given as the square root of the eigenvalues of DT D. For
a diagonal matrix, the eigenvalues of:

DT D = diag(P 2
l1,t1 , P 2

l2,t1 , P 2
l3,t1 , . . . , P 2

ln,tn
)

are simply its diagonal elements. Applying the square root gives us the result.

The following theorem provides a method proposed by [RR23] to block encode a diagonal
matrix using a state preparation unitary. By preparing a quantum state whose amplitudes
correspond to the diagonal entries of the matrix D, we can use the theorem to construct
an e�cient block encoding of D. This block encoding can then be used in our algorithm.
Using this instead of LCU gives us more e�ciency as seen later:

Theorem 4.9 ([RR23]). Given an n-qubit quantum state specified by a state-preparation
unitary U , such that |ÂÍ¢n = U |0Í¢n =

q

N≠1
j=0 Âj |jÍ¢n (with Âj œ C), we can prepare a

(1, n + 3, 0)-block-encoding UA of the diagonal matrix A = diag(Â0, . . . , ÂN≠1) with O(n)
circuit depth and a total of O(1) queries to a controlled-U gate.

124

4.5 Block Encoding of the Load Power Vector

Proof. The complete proof involves the construction of a number of truncated lemmas;
therefore, for a complete proof see [RR23].

To use this theorem for block encoding the diagonal matrix D, we need a quantum state
preparation unitary U such that it prepares the state |ÂÍn =

q

N≠1
j=0 Âj |jÍn where the Âj

are the diagonal entries of D:

|ÂÍn =
n≠1
ÿ

j=0
Plj ,tj |jÍn

where n = |L||T | ≠ |Z|. If we can prepare this state using a unitary U , then we receive
a (1, n + 3, 0)-block-encoding UD of the diagonal matrix D = diag(Â0, . . . , ÂN≠1) with
Âj = Plj ,tj .

Theorem 4.10. For the diagonal matrix D from above with n = |L||T | ≠ |Z| the unitary
operator UD creates a (1, n + 3, 0)-block encoding for D, where In œ Rn◊n is the identity
matrix.

Proof. Follows from Theorem 4.9.

Thus, with the above theorem, the matrix D is block encoded as:

D = –(È0¢ log K | ¢ I)UD(|0¢ log KÍ ¢ I)

where – is the normalization factor.

125

4 Methodology

4.6 Applying QSVT for Absolute Value Computation
We again assume that for D all its singular values ‡i œ [1

Ÿ
, 1] for Ÿ Ø 1, where Ÿ is

the condition number. If D is not already rescaled, apply the procedure as described
in Algorithm 4.10. The block encoding UD of Theorem 4.10, together with the identity,
which satisfies all prerequisites for the QSVT Theorem 2.17:

Corollary 4.4. Given the UD diagonal block encoding of Theorem 4.10 and the absolute
value approximation polynomial P abs

‘ of Definition 4.12 from Section 4.2.3, the operator
QSVTP abs

‘
performing the Quantum Singular Value Transformation (Theorem 2.17) can

be constructed according to Figure 4.10. The projectors �„k
= |0Í¢m È0|¢m ¢ ei„k‡Z are

given with phase angles „k œ R for 1 Æ k Æ Âd/2Ê locating D inside the block encoding
UD. The operator is defined for d even, where d is the degree of the absolute value
approximation polynomial (see Theorem 4.6) as:

QSVTP abs
‘

(UD) =

S

U

d/2
Ÿ

k=1
�„2k≠1U †

D
�„2k

UD

T

V =
A

P abs (SV)
‘ (D) ·

· ·

B

where P abs (SV)
‘ (D) is given as a block encoding for the singular value decomposition:

D = I|L||T |≠|Z| · diag(|Pl1,t1 |, |Pl2,t1 |, . . . , |Pl|L|≠|Z|,t|T |≠|Z| |) · I|L||T |≠|Z|

where In œ R(|L||T |≠|Z|)◊(|L||T |≠|Z|) is the identity matrix:

P abs (SV)
‘ (D) :=

ÿ

(l,t)œ(L◊T)\Z

P abs
‘ (Pl,t)eje€

t , (4.4)

Proof. Follows from Theorem 2.17.

r

m≠r

· · ·

· · ·

· · ·

e≠i„d+1‡z e≠i„d‡z e≠i„d+1‡z e≠i„1‡z

UD U †

D
U †

D

Figure 4.10: Quantum Circuit for the QSVTP abs
‘

(UD)-Operator with the degree d of P abs
‘

being even (see Lemma 4.6), where r = log2(|B||T |) and m-ancillas from the
diagonal block encoding.

126

4.7 Applying the Quantum Amplitude Estimation

Algorithm 4.8: QSVTP abs
‘

Operator
Input: A block encoding UD for D and an error ‘ > 0.
Output: A block encoded ‘-approximation of |Pl,t|.
Complexity: See Theorem 5.4 from Section 5.1
Procedure :

1 Determine a unitary block encoding UD for D. (see Thm. 4.9)
2 Calculate the phase angles „k œ R for 1 Æ k Æ Âd/2Ê using the method described

in Section 2.4.2.2.
3 Apply the QSVT sequence to this block encoding to compute P abs

‘
(SV)(D), with

the absolute value approximation polynomial P abs
‘ (x) from Definition 4.12

4.7 Applying the Quantum Amplitude Estimation
Given that the Pl,t values are obtained from the QSVT and are thus already in a quantum
state form, we can proceed directly to the subsequent steps without separate state prepa-
ration for Pl,t. Our goal is to calculate È|Pl,t|, ClÍ, which is then inserted and completes
the cost function (see Def. 4.2).

Remark 4.28. For the detailed definition of the Hilbert space for the power flow variables
Pl,t, refer to Remark 4.37. We assume a Hilbert Space H of dimension dim(H) = 2n.

Remark 4.29. To avoid potential confusion with the notation |Pl,t| when used within
kets, we define abs(Pl,t) := |Pl,t| in the following section.

Definition 4.16. The quantum state representing the transmission cost Cl for line l œ L
is prepared using the unitary operator UCl:

UCl : H æ H, |0Í¢n ‘æ |ClÍ

Definition 4.17. Define the Hermitian operator UH : H æ H for the Hadamard test as:

UH = U †

Cl
Uabs(Pl,t)

where Uabs(Pl,t) is the identity operator since |abs(Pl,t)Í is already in quantum state form
from the QSVT procedure in the step before.

Remark 4.30. The Hadamard test creates the superposition state necessary for estimat-
ing the real part of the inner product of the two quantum states:

1Ô
2

(|0Í ¢ |abs(Pl,t)Í + |1Í ¢ UH |abs(Pl,t)Í) œ H ¢ C2

Definition 4.18. The Grover operator Q : H æ H is defined as:

Q := AU0A†UÂ1

where:

• A : H æ H is the unitary operator that prepares the state |ÂÍ.

127

4 Methodology

• U0 : H æ H, U0 = I ≠ 2 |0Í¢n È0|¢n is the di�usion operator, flipping the sign of
the amplitude of the |0Í¢n state.

• UÂ1 : H æ H, UÂ1 = Z ¢ I¢(n≠1) applies a phase flip conditioned on the first
qubit being |1Í.

Lemma 4.1 (Quantum Amplitude Estimation [Thm. 12 [BHMT02]]). Given an n-qubit
unitary operator A : |0Í¢n ‘æ |ÂÍ, where |ÂÍ :=

Ô
1 ≠ a |Â0Í +

Ô
a |Â1Í, we can compute

a basis-encoded Á-approximation of 2m

fi
arcsin (

Ô
a) with success probability 1 ≠ ” for any

0 < ” < 1 by applying Quantum Phase Estimation (QPE) on |ÂÍ and Q := ≠AU0A†UÂ1.

Lemma 4.2 ([LHF24]). Given |ÂÍ œ H via U : |0Í¢n ‘æ |ÂÍ, we can find an Á-
approximation of

2m

fi
· arcsin

Q

a

Û

1
2 + ÈÂ|H|ÂÍ

2

R

b

with success probability 1 ≠ ” for any 0 < ” < 1 by applying QAE on Q := AU0A†UÂ1,
where U0 := I ≠ 2 |0Í¢n È0|¢n, UÂ1 := Z ¢ I¢(n≠1), and A represents a Hadamard test
of |0Í¢m |ÂÍ with UH , a given (1, m, 0)-block-encoding of the subnormalized Hermitian
matrix H œ C2n

◊2n.

Corollary 4.5 ([LHF24]). Given UÂ : |0Í¢n ‘æ |ÂÍ and UÏ : |0Í¢n ‘æ |ÏÍ, we can compute
an Á-approximation of

2m

fi
· arcsin

Q

a

Û

1
2 + |ÈÏ|ÂÍ|

2

R

b

with success probability 1 ≠ ” for any 0 < ” < 1 by applying the algorithm proposed in
Lemma 4.2 to m = 0, U = I¢n and UH := U †

ÏUÂ.

Remark 4.31. Using Quantum Amplitude Estimation (QAE), we aim to obtain an Á-
approximation of the scalar product È|Pl,t|, ClÍ. The goal is to estimate the amplitude
a œ [0, 1]:

A : H æ H, |0Í¢n ‘æ |abs(Pl,t)Í :=
Ô

1 ≠ a |Â0Í +
Ô

a |Â1Í

where the value a is related to the scalar product |ÈCl|Pl,tÍ|.
We use the Grover operator Q iteratively and apply quantum phase estimation (QPE) to
obtain an Á-approximation of:

2m

fi
arcsin

!Ô
a

"

We then obtain the Á-approximation of the scalar product:

2m

fi
arcsin

Q

a

Û

1
2 + |ÈCl|Pl,tÍ|

2

R

b

and solve for |ÈCl|Pl,tÍ|.

128

4.7 Applying the Quantum Amplitude Estimation

Algorithm 4.9: QAE for Cost Calculation
Input : Quantum state |abs(Pl,t)Í with abs(Pl,t) := |Pl,t| from QSVT,

transmission cost state preparation unitary UCl , number of qubits
n, precision parameter Á, success probability parameter ”

Output : Á-approximation of the scalar product È|Pl,t|, ClÍ
Complexity: See Theorem 5.5 from Section 5.1
Procedure :

1 Prepare the quantum state for the transmission cost |ClÍ using the unitary
operator:

UCl : C2n æ C2n
, |0Í¢n ‘æ |ClÍ

2 Define the Hermitian operator for the Hadamard test:

UH = U †

Cl
Uabs(Pl,t)

3 Perform the Hadamard test to prepare the superposition state:

1Ô
2

(|0Í ¢ |abs(Pl,t)Í + |1Í ¢ UH |abs(Pl,t)Í)

4 Define the Grover operator Q:

Q := AU0A†UÂ1

• A : C2n æ C2n is the unitary operator that prepares the state.
• U0 = I ≠ 2 |0Í¢n È0|¢n is the di�usion operator.
• UÂ1 = Z ¢ I applies a phase flip conditioned on the first qubit being |1Í.

Use Quantum Amplitude Estimation (QAE) to estimate the amplitude a œ [0, 1]:

A : C2n æ C2n
, |0Í¢n ‘æ |abs(Pl,t)Í :=

Ô
1 ≠ a |Â0Í +

Ô
a |Â1Í

Apply the Grover operator Q iteratively and use Quantum Phase Estimation
(QPE) to obtain an Á-approximation of:

2m

fi
arcsin

!Ô
a

"

where the value a œ [0, 1] is related to the scalar product |ÈCl|Pl,tÍ|.
Obtain the Á-approximation of the scalar product:

2m

fi
arcsin

Q

a

Û

1
2 + |ÈCl|Pl,tÍ|

2

R

b

Output the Á-approximation of È|Pl,t|, ClÍ.

129

4 Methodology

4.8 Applying the Quantum Approximate Optimization
Algorithm

4.8.1 Constructing the Cost Hamiltonian

To incorporate the constraints of the UCP formulation (see Definition 4.2) into the QAOA
framework (see Section 2.4.4), we need to formulate the constraints as penalty terms
within a Hamiltonian. This will ensure that the constraints are respected during the
optimization process. Therefore, these penalties will be included in the cost Hamiltonian
(as described in [ZWC+20, Luc14, Con24]).

4.8.1.1 QAOA Representation of the Generator States

The operational state of each generator is binary:

ui,t œ {0, 1}, ’i œ G, ’t œ T

This constraint is naturally handled by encoding ui,t into qubits where ûi,t is a quantum
operator representing the binary variable. Each ûi,t is mapped to a single qubit, with |0Í
representing ui,t = 0 (o�) and |1Í representing ui,t = 1 (on).
The Ising model (see [Con24, NC10]) is a mathematical model used in statistical mechan-
ics and quantum computing, where each spin (or binary variable) si œ {≠1, +1}. The
Ising Hamiltonian is typically written as (see [Con24]):

HIsing = ≠
ÿ

i

hisi ≠
ÿ

i<j

Jijsisj

However, in our formulation of the UCP (see Definition 4.2), the binary variables ui,t œ
{0, 1} are given for i œ G at time t œ T. To translate this into an Ising form, we relate
the binary variable ui,t to an Ising spin si,t as follows:

si,t = 2ui,t ≠ 1 or equivalently, ui,t = 1
2(1 + si,t)

In the quantum context, where si,t is represented by the Pauli-Z matrix ‡z

i,t
with eigen-

values ±1 (see Remark 2.23):
ûi,t = 1

2(Iu ≠ ‡z

i,t)

This form directly maps the problem into an Ising model (see [Luc14]) where ‡z

i,t
acts as

the spin variable. The Hamiltonian for the UCP, formulated using ûi,t, is then in Ising
form, allowing the problem to be addressed using quantum algorithms that solve Ising
models, such as the QAOA. To define ûi,t, first consider the following Hilbert space:

Remark 4.32 (Hilbert Space for Binary Variables). Let H2 denote the two-dimensional
Hilbert space associated with a single qubit (see Definition 2.31), defined as:

H2 = span{|0Í, |1Í}

Since we consider a system with |G| generators and |T| time steps, the total Hilbert space

130

4.8 Applying the Quantum Approximate Optimization Algorithm

Hu for the binary variables is the tensor product of the individual qubit spaces:

Hu =

Q

a

p

iœG

p

tœT
H2

R

b

This space has dimension dim(Hu) = 2|G|·|T|.

Definition 4.19 (Pauli-Z Operator for Generator States). Given Hu as described in
Remark 4.32, the operator ‡z

i,t
œ L(Hu) is the Pauli-Z operator acting on the qubit cor-

responding to generator i œ G at time t œ T. The index j for this qubit is given by the
index mapping in Remark 4.25:

j = (t ≠ 1) · |G| + i,

where i œ G and t œ T. The operator ‡z

i,t
is then expressed as:

‡z

i,t = I¢(j≠1)
2 ¢ ‡z ¢ I¢(n≠j)

2 ,

where n = |G| ◊ |T| and j is the index calculated using the mapping from Remark 4.25.
‡z is the Pauli-Z operator (see Definition 2.34) acting on the j-th qubit, and I2 œ L(H2)
is the identity operator.

This definition ensures that the Pauli-Z operator acts specifically on the qubit corre-
sponding to the generator i at time t, with identity operators acting on all other qubits.

Definition 4.20. The operator ûi,t : Hu æ Hu where Hu is the Hilbert space described
in Remark 4.32, is defined for a generator i œ G at time t œ T as:

ûi,t := 1
2(Iu ≠ ‡z

i,t)

where ‡z

i,t
is the Pauli-Z operator acting on the qubit corresponding to generator i œ G at

time t œ T from Definition 4.19, and Iu œ L(Hu) is the identity operator.

Lemma 4.3. The operator ûi,t œ L(Hu) is linear.

Proof. Let Â, „ œ Hu. Then:

ûi,t(Â + „) = 1
2(Iu ≠ ‡z

i,t)(Â + „) = 1
2(IuÂ + Iu„ ≠ ‡z

i,tÂ ≠ ‡z

i,t„) = ûi,tÂ + ûi,t„

For any – œ C and Â œ Hu:

ûi,t(–Â) = 1
2(Iu ≠ ‡z

i,t)(–Â) = 1
2(–IuÂ ≠ –‡z

i,tÂ) = –ûi,tÂ

Remark 4.33. In the Hilbert space Hu (see Remark 4.32), the operator ûi,t acts as
1
2(I2 ≠ ‡z) on the qubit associated with generator i œ G at time t œ T and as the identity
on all other qubits:

ûi,t = I2 ¢ · · · ¢ 1
2(I2 ≠ ‡z) ¢ · · · ¢ I2

131

4 Methodology

The construction of ûi,t ensures that it correctly represents the binary state of the gen-
erator in the Ising model form, allowing it to be used e�ectively in the QAOA algorithm
(see [Luc14, Con24]).

We can define the Hamiltonian for the cost function or objective function of our opti-
mization problem as follows:

Definition 4.21 (Cost Function Hamiltonian).

Hobjective :=
ÿ

tœT

ÿ

iœG

1

cprod
i,t

· ûi,t + cstart
i,t · (1 ≠ ûi,t≠1)ûi,t + cstop

i,t
· ûi,t≠1(1 ≠ ûi,t)

2

where ûi,t œ L(Hu) is the quantum operator from Definition 4.20 associated with the qubit
representing the binary state of generator i œ G at time t œ T. All other parameters are
given in Definition 4.2 from Section 4.1.

4.8.1.2 QAOA Representation of the Power Outputs

To define the power output operator P̂i,t for i œ G and t œ T within the QAOA framework,
we proceed by constructing the operator using the Hilbert space structure and Pauli-Z
matrices, similar to how the binary state operator ûi,t was defined. First, we need to
discretize the power output variables Pi,t (see [Sau13, PTVF07]):

Lemma 4.4 (Discretized Power Output Variables). Let qP œ N. Given the continuous
power output variable Pi,t œ [Pmin,i, Pmax,i] (see Definition 4.1) for i œ G and t œ T, the
variable can be expressed as:

Pi,t = Pmin,i +
qP
ÿ

j=1
�Pi · 2j≠1 · bj,i,t,

where �Pi = Pmax,i≠Pmin,i

2qP ≠1 and bj,i,t œ {0, 1} represents the j-th binary digit of the power
output. This representation ensures that the entire range [Pmin,i, Pmax,i] is covered by the
binary variables.

Proof. Let N œ N be an integer. Note that it can be represented using qP œ N binary
digits, which has a standard binary expansion given by (see [PTVF07]):

N =
qP
ÿ

j=1
2j≠1zj ,

where zj œ {0, 1} represents the j-th binary digit of N . To represent the continuous
variable Pi,t within the range [Pmin,i, Pmax,i] µ [0, Œ), we scale this binary expansion by
defining a step size �Pi as:

�Pi = Pmax,i ≠ Pmin,i

2qP ≠ 1 .

Note that the step size �Pi ensures that the entire range is covered in discrete increments.
We can then express Pi,t as:

Pi,t = Pmin,i +
qP
ÿ

j=1
�Pi · 2j≠1 · bj,i,t,

132

4.8 Applying the Quantum Approximate Optimization Algorithm

where bj,i,t œ {0, 1} are the binary variables corresponding to the value of Pi,t.
Consider the case when all bj,i,t = 0:

Pi,t = Pmin,i +
qP
ÿ

j=1
�Pi · 2j≠1 · 0 = Pmin,i.

Consider the case when all bj,i,t = 1:

Pi,t = Pmin,i +
qP
ÿ

j=1
�Pi · 2j≠1 = Pmin,i + �Pi · (2qP ≠ 1)

= Pmin,i +
3

Pmax,i ≠ Pmin,i

2qP ≠ 1

4

· (2qP ≠ 1) = Pmin,i + (Pmax,i ≠ Pmin,i) = Pmax,i

Thus, the expression for Pi,t correctly maps the entire binary space to the continuous
range [Pmin,i, Pmax,i].

Remark 4.34 (Hilbert Space for Binary-Encoded Power Output Variables). Each binary
variable bj,i,t corresponds to the state of a qubit, where |0Í represents bj,i,t = 0 and |1Í
represents bj,i,t = 1. The Hilbert space for qP qubits is therefore:

H2qP = span{|0Í, |1Í, . . . , |2qP ≠ 1Í},

where each basis state |kÍ œ H2 with k œ {0, 1, . . . , 2qP ≠1} (see Definition 2.33) represents
a possible binary configuration of the qubits.

Remark 4.35 (Hilbert Space for Power Output Variables). Power output variables Pi,t

associated with generator i œ G at time t œ T need to be represented with a certain pre-
cision. Assume each power output variable is encoded using basis encoding (see [NC10]),
where qP œ N qubits are used to represent the binary expansion of Pi,t (see [Sau13]):

Pi,t = Pmin,i + �Pi

qP
ÿ

j=1
2j≠1bj,i,t,

where bj,i,t œ {0, 1} represents the j-th binary digit of the power output. Each bj,i,t

corresponds to the state of a qubit, where |0Í represents bj,i,t = 0 and |1Í represents
bj,i,t = 1. The Hilbert space for qP qubits is therefore:

H2qP = span{|0Í, |1Í, . . . , |2qP ≠ 1Í},

where each basis state |kÍ œ H2qP with k œ {0, 1, . . . , 2qP ≠ 1} represents a possible binary
configuration of the qubits. Since there are |G| generators and |T| time steps, the total
number of power output variables is |G| · |T|. Thus, the combined Hilbert space for all
power output variables is:

HP =

Q

a

p

iœG

p

tœT
H2qP

R

b .

The dimension of this Hilbert space is dim(HP) = (2qP)|G|·|T| = 2qP ·|G|·|T|.

133

4 Methodology

Definition 4.22 (Pauli-Z Operator for Power Output). Given the Hilbert space H2qP as
described in Remark 4.35, the operator ‡z

j,i,t
œ L(H2qP) is the Pauli-Z operator acting on

the qubit associated with the j-th binary digit bj,i,t of the power output of generator i œ G
at time t œ T. Using the index mapping from Remark 4.25, the position k of the qubit
corresponding to the j-th binary digit is given by:

k = (t ≠ 1) · |G| · qP + (i ≠ 1) · qP + j,

where j œ {1, 2, . . . , qP }, i œ G, and t œ T. The operator ‡z

j,i,t
is then expressed as:

‡z

j,i,t = I¢(k≠1)
2 ¢ ‡z ¢ I¢(n≠k)

2 ,

where n = |G| ◊ |T| ◊ qP and k is the index calculated using the mapping described
above. ‡z is the Pauli-Z operator acting on the k-th qubit, and I2 œ L(H2) is the identity
operator.
This ensures that the Pauli-Z operator ‡z

j,i,t
specifically acts on the qubit representing

the j-th binary digit of the power output for generator i at time t, with identity oper-
ators acting on all other qubits. To translate the classical representation from Lemma
4.4 into the quantum domain, we associate each binary digit bj,i,t with a qubit, where
bj,i,t = 0 corresponds to the qubit state |0Í œ H2 and bj,i,t = 1 corresponds to |1Í. The
corresponding quantum operator for bj,i,t (see [Luc14, Con24]) is then:

b̂j,i,t = 1
2(I2 ≠ ‡z

j,i,t),

where ‡z

j,i,t
is the Pauli-Z operator with eigenvalues ±1. This operator e�ectively maps the

qubit states to the binary values, with ‡z

j,i,t
corresponding to the quantum representation

of the classical binary digit bj,i,t. Given this mapping, the power output operator P̂i,t is
constructed by substituting the quantum operator b̂j,i,t for each binary digit:

P̂i,t = Pmin,i · I2qP + �Pi

qP
ÿ

j=1
2j≠1 · b̂j,i,t

= Pmin,i · I2qP + �Pi

2

qP
ÿ

j=1
2j≠1(I2 ≠ ‡z

j,i,t)

We can therefore define this operator as follows:
Definition 4.23 (Quantum Operator for Power Output). The operator P̂i,t : H2qP æ
H2qP where H2qP is the Hilbert space described in Remark 4.35, is defined for a generator
i œ G at time t œ T as:

P̂i,t := Pmin,i · I2qP + �Pi

2

qP
ÿ

j=1
2j≠1

1

I2 ≠ ‡z

j,i,t

2

,

where Pmin,i is the minimum power output of generator i œ G (see Section 4.1), �Pi is
the power increment for each binary digit, ‡z

j,i,t
is the Pauli-Z operator acting on the jth

qubit as defined in Definition 4.22, and I2qP œ L(H2qP) is the identity operator on the
Hilbert space H2qP .

134

4.8 Applying the Quantum Approximate Optimization Algorithm

Lemma 4.5. The operator P̂i,t œ L(H2qP) is linear.

Proof. Let Â, „ œ H2qP . Then:

P̂i,t(Â + „) =

Q

aPmin,i · I2qP + �Pi

2

qP
ÿ

j=1
2j≠1

1

I2 ≠ ‡z

j,i,t

2

R

b (Â + „)

= Pmin,i · I2qP (Â + „) + �Pi

2

qP
ÿ

j=1
2j≠1

1

I2(Â + „) ≠ ‡z

j,i,t(Â + „)
2

= Pmin,i · (I2qP Â + I2qP „) + �Pi

2

qP
ÿ

j=1
2j≠1

1

I2Â ≠ ‡z

j,i,tÂ + I2„ ≠ ‡z

j,i,t„
2

= P̂i,tÂ + P̂i,t„.

Consider – œ C and Â œ H2qP . We have:

P̂i,t(–Â) =

Q

aPmin,i · I2qP + �Pi

2

qP
ÿ

j=1
2j≠1

1

I2 ≠ ‡z

j,i,t

2

R

b (–Â)

= –

Q

aPmin,i · I2qP + �Pi

2

qP
ÿ

j=1
2j≠1

1

I2 ≠ ‡z

j,i,t

2

R

b Â

= –P̂i,tÂ.

4.8.1.3 Power Balance Constraint

The power balance constraint ensures that the total generated power meets the total load
at each time step:

ÿ

iœG
Pi,t =

ÿ

kœB
Lk,t, ’t œ T

This constraint can be incorporated as a penalty term in the cost Hamiltonian HC :

Definition 4.24 (Power Balance Constraint as Penalty Term).

Hbalance :=
ÿ

tœT
⁄balance

Q

a

ÿ

iœG
P̂i,t ≠

ÿ

kœB
Lk,t

R

b

2

where ⁄balance œ R+ is a penalty parameter and P̂i,t œ L(H2qP) as defined in Definition
4.23.

4.8.1.4 Generator Output Limits

The following constraints ensure that the power output of each generator stays within its
minimum and maximum limits:

P min
i · ui,t Æ Pi,t Æ P max

i · ui,t, ’i œ G, ’t œ T

135

4 Methodology

This can be incorporated as two penalty terms:

Definition 4.25 (Generator Output Limits as Penalty Term).

Hlimits :=
ÿ

tœT

ÿ

iœG

3

–max
1

P̂i,t ≠ Pmax,i · ûi,t

22
+ —min

1

Pmin,i · ûi,t ≠ P̂i,t

224

where –max, —min œ R are penalty parameters. P̂i,t œ L(H2qP) is described in Definition
4.23 and ûi,t œ L(Hu) is described in Definition 4.20.

4.8.1.5 Transmission Cost

The transmission cost through each line should reflect the power flow through that line:

ctrans
l,t := |Pl,t| · Cl, ’l œ L, ’t œ T

To ensure the transmission cost correctly penalizes the power flow, we include it directly
in the cost Hamiltonian:

Definition 4.26 (Transmission Cost Constraints as Penalty Term).

Htrans :=
ÿ

tœT

ÿ

lœL

1

|P̂l,t| · Cl

2

where Cl œ R+ is the cost per unit power flow for line l œ L, and P̂l,t are quantum
operators acting on the Hilbert space HPl associated with the power flow variables.

Remark 4.36. In this context, P̂l,t denotes the quantum operator corresponding to the
classical power flow variable Pl,t. While Pl,t represents the actual power flow as a real
number, P̂l,t is its quantum analog, used within the quantum algorithm to encode and
manipulate this value in a quantum state. Upon measurement, P̂l,t gives the classical
value Pl,t.

Remark 4.37 (Hilbert Space for Power Flow Variables in Amplitude Encoding). The
power flow variables Pl,t are represented using amplitude encoding (see Section 4.4.1).
The Hilbert space dimension HPl is determined by the number of qubits nPl œ N used to
encode the entire system:

dim(HPl) = 2nPl .

136

4.8 Applying the Quantum Approximate Optimization Algorithm

4.8.1.6 Combined Cost Hamiltonian

Combining all the terms, the cost Hamiltonian HC is the sum of the components repre-
senting production, start-up, shut-down, power balance, generator limits, and transmis-
sion costs:

Definition 4.27 (Combined Cost Hamiltonian).

HC := Hobjective + Hbalance + Hlimits + Htrans

where HC is called the cost Hamiltonian, an operator which acts on a Hilbert space HÕ

defined through the Hilbert spaces of the individual operators.

Remark 4.38. The total Hilbert space for the entire system is the tensor product of all
individual Hilbert spaces:

HÕ = Hu ¢ HP ¢ HPl

The dimension of the total Hilbert space is therefore:

dim(HÕ) = dim(Hu) · dim(HP) · dim(HPl)
= 2|G|·|T| · 2qP ·|G|·|T| · 2nPl

= 2|G|·|T|+qP ·|G|·|T|+nPl

137

4 Methodology

4.8.2 Obtaining the Optimized Decision Variables and Cost
To obtain the cost associated with the approximate optimal parameters “̨ú and —̨ú before
performing the final measurement, we can incorporate the expectation value calculation
directly into the classical optimization routine. This will provide an estimate of the cost
for the state corresponding to “̨ú and —̨ú.

Remark 4.39. The initial state |Â0Í œ (C2)¢n is a superposition of all possible states:

|Â0Í = 1Ô
2n

ÿ

zœ{0,1}n

|zÍ

where n = |G| · |T|.

Definition 4.28 (Phase Separator). For a given parameter “ œ [“min, “max] µ R we
define:

U(HC , “) = e≠i“HC

Definition 4.29 (Mixer Hamiltonian). The mixer Hamiltonian is defined as:

HB = ≠
ÿ

j

Xj

where Xj is the Pauli-X operator acting on the j-th qubit. Its unitary operator for a given
parameter — œ [—min, —max] µ R is:

U(HB, —) = e≠i—HB

Note that this is a well-defined matrix exponential because HC is a Hermitian operator.
The matrix exponential of HB is well defined by Lemma 2.1 from Section 2.4.1.

Definition 4.30 (QAOA State). The QAOA state is constructed by alternating applica-
tions of the phase separator and mixer operators
:

|Âp(“̨, —̨)Í = U(HB, —p)U(HC , “p) · · · U(HB, —1)U(HC , “1)|Â0Í

Here, p œ N is the number of QAOA layers, “̨ = (“1, “2, . . . , “p) and —̨ = (—1, —2, . . . , —p)
are the sets of parameters to be optimized.

Definition 4.31 (Expectation Value of the Cost Hamiltonian). The expectation value
of the cost Hamiltonian HC with respect to the QAOA state |Âp(“̨, —̨)Í is calculated as
follows:

ÈHCÍ
“̨,—̨

= ÈÂp(“̨, —̨)|HC |Âp(“̨, —̨)Í

This expectation value represents the average cost for a given set of parameters “̨ and —̨.

Remark 4.40. The expectation value ÈHCÍ
“̨,—̨

in the QAOA can be computed using a
quantum circuit as follows. After preparing the QAOA state |Âp(“̨, —̨)Í, the cost Hamil-
tonian HC is measured by decomposing it into a sum of Pauli operators. Each operator’s
expectation value is estimated through repeated measurements on the quantum circuit.
The overall expectation value is then the weighted sum of these measurements, which is
used in a classical optimization loop to adjust the parameters “̨ and —̨.

138

4.8 Applying the Quantum Approximate Optimization Algorithm

The following problem is then to be solved by classical methods:

Definition 4.32 (Classical Optimization Problem). The optimization problem can be
described as:

(“̨ú, —̨ú) = arg min
“̨,—̨

ÈHCÍ
“̨,—̨

Remark 4.41 (Existence of a Solution). We can conclude that the expectation value

f(“̨, —̨) := ÈHCÍ
“̨,—̨

= ÈÂp(“̨, —̨)|HC |Âp(“̨, —̨)Í

is bounded because the Cost Hamiltonian HC operates on a finite-dimensional Hilbert
space, and its expectation values cannot exceed certain limits. Also the expectation value
f(“̨, —̨) as a function of the parameters “̨ and —̨ is continuous, because it involves ma-
trix exponentials and inner products of finite-dimensional vectors, which are continuous
operations. We also demand the parameters within bounded intervals:

“i œ [“min, “max] and —i œ [—min, —max]

for all i œ {1, 2, . . . , p} with p œ N the number of QAOA layers. Therefore:

[“min, “max]p ◊ [—min, —max]p

the parameter space is closed and bounded, thus compact. For a continuous function on a
compact set, the extreme value theorem guarantees that the function attains its minimum
values. Thus, the function f(“̨, —̨) will attain its minimum within that set. Therefore we
can assert that there exists a solution (“̨ú, —̨ú) that minimizes the expectation value of the
Cost Hamiltonian HC in the QAOA framework:

(“̨ú, —̨ú) = arg min
“̨,—̨

ÈHCÍ
“̨,—̨

This ensures that an optimal set of parameters exists, making the problem well-defined
and solvable.

Remark 4.42 (Minimal Expectation Value). The corresponding minimal expectation
value is:

Costmin = ÈHCÍ
“̨ú,—̨ú

Remark 4.43 (Steps for Classical Optimization). To obtain the cost at the optimal
parameters “̨ú and —̨ú, we follow these steps:

1. Initialize the parameters “̨ and —̨.
2. Evaluate the expectation value ÈHCÍ

“̨,—̨
using a quantum simulator or quantum hard-

ware for the current parameters “̨ and —̨.
3. Use a classical optimization algorithm (e.g., gradient descent, Nelder-Mead) to ad-

just the parameters “̨ and —̨ to minimize the expectation value (see [Sau13]).
4. Store the minimum expectation value encountered during the optimization process.

This is the cost associated with the optimal parameters “̨ú and —̨ú.

139

4 Methodology

Definition 4.33 (Optimal Quantum State). After finding the optimal parameters “̨ú and
—̨ú, the corresponding quantum state is:

|Âp(“̨ú, —̨ú)Í

Remark 4.44. As the number of layers p in QAOA increases, the algorithm’s perfor-
mance improves, with the expected value ÈHCÍ

“̨,—̨
converging to the optimal value Cmax

as p æ Œ. This implies that QAOA can theoretically reach the optimal solution with
su�ciently large p. For details, see [FH19].

Remark 4.45 (Measurement of the Optimal State). Measure this optimal quantum state
multiple times to obtain a distribution over possible solutions. Each measurement gives
a bitstring representing a specific configuration of the binary variables ui,t, which corre-
sponds to the operational state of the generators.

140

5 Results

5.1 Complexity Analysis of Individual Components
5.1.1 Complexity Analysis of the State Preparation
For our optimization problem (see Section 4.1), the state preparation (see Section 4.4.1)
involves encoding a vector �P into a quantum state and then applying a series of unitary
operations controlled by multiple qubits. The amplitude encoding operator �Penc (see
Def. 4.13) requires log2(n) qubits, where n = |B| · |T |. The circuit depth for amplitude
encoding is O(n). The amplitude encoding involves single-qubit Ry rotations. Uniformly
Controlled Unitary (UCU) operations (for a definition see [YZ23]) are used to apply a
set of unitary transformations controlled by multiple qubits. A UCU is a set of unitary
operations controlled by multiple qubits (see [YZ23]). The state preparation circuit in-
volves multiple UCUs. Consequently, we can apply the following lemma to achieve an
e�cient implementation. We utilize the following lemma from [YZ23]:

Lemma 5.1 (Lem. 11 [YZ23]). For all x œ {0, 1}q, suppose that W x can be implemented
by a standard p-qubit quantum circuit of depth d. Then for any M Ø pq, the (q, p)-
UCU

q

xœ{0,1}q |xÍ Èx| ¢ W x can be implemented by a standard quantum circuit of depth
O

1

log p + dq + dp2q

M

2

and size O(dp2q) with M ancillary qubits. In particular, if we have
su�ciently many ancillary qubits, then the circuit depth for a (q, p)-UCU is O(log p+dq).

Remark 5.1. A standard p-qubit quantum circuit refers to a quantum circuit that oper-
ates on p qubits using a sequence of quantum gates from a universal gate set, including
single-qubit gates (such as Pauli-X, Pauli-Y, Pauli-Z, Hadamard, and Ry rotations) and
two-qubit gates like CNOT. The circuit depth is defined by the number of sequential lay-
ers of operations, where each layer consists of gates that can be applied in parallel across
disjoint qubits. This structure ensures that the quantum circuit e�ciently implements the
desired unitary operations on the p qubits. A rigorous definition can be found in [YZ23].

Remark 5.2. The operator W x denotes a unitary operation applied to a set of p qubits,
conditional on the control qubits being in the state corresponding to the binary string x œ
{0, 1}q. In the context of uniformly controlled unitary (UCU) operations, W x encapsulates
the specific transformation enacted based on the control state x, thereby enabling complex
controlled operations within the quantum circuit. A rigorous definition can be found in
[YZ23].

Theorem 5.1 (Complexity Analysis of the State Preparation). The state preparation
circuit (see Section 4.4.1) for �P has the following complexity:

• Circuit depth: O(log2(|B| · |T |) + log2(|G| + 1) + log2(m))
• Qubit count: O(log2(|B| · |T |) + log2(m) + log2(|G| + 1))
• Cumulative error: O(log2(|B| · |T |)‘UCU + log2(m)‘UCU)

141

5 Results

where ‘UCU Ø 0 represents the error associated with the uniformly controlled unitary
(UCU) operations. The number of buses is m, and the index sets are defined as stated in
Def. 4.2.

Proof. We prove this by combining the complexities from the amplitude encoding and
UCU operations (see Figure 4.7). The amplitude encoding operator �Penc encodes the
vector �P into the amplitudes of a quantum state using Ry rotations. Given the vector
�P œ R|B|·|T | (see Section 4.4.1), the encoding requires, according to the construction of
the circuit following [MVBS04] and [SP18], log2(|B| · |T |) qubits. The circuit depth for
amplitude encoding is then O(|B| · |T |). This depth is linear in the number of elements
in �P because each element requires a sequence of rotations and controlled operations to
encode its amplitude. We can improve this further. With Remark 5.1, we can identify the
Uniformly Controlled Unitary (UCU) operations inside the amplitude encoding operator
�Penc and apply Lemma 5.1 from [YZ23]. Note that q = log2(|B| · |T |), p = 1 (for the
single-qubit rotations in amplitude encoding), and d = O(1). If su�cient ancillary qubits
are available (m Ø pq = log2(|B| · |T |)), the depth simplifies to O(log2(|B| · |T |)). The
amplitude encoding involves single-qubit Ry rotations. Each rotation identified as UCU
can be associated with an error ‘UCU Ø 0. We implicitly allow this error to be zero
as it will be neglected in most cases. The cumulative error for n = |B| · |T | rotations
is then O(|B| · |T |‘UCU). We utilize Lemma 5.1 from [YZ23] for the rest of the state
preparation circuit. Applying this, we consider the following parameters: q = log2(m)
(where m is the number of buses), d = log2(m) (the depth of the individual unitary
operations), and p = |G| + 1 (the number of generators + 1). According to the lemma,
the UCU operations then require log2(m) + log2(|G| + 1) qubits and a circuit depth of
O(log p + dq) = O(log2(|G| + 1) + log2(m)). Each controlled unitary operation can be
associated with an error ‘UCU Ø 0. Again, we implicitly allow this error to be zero as
it will be neglected in most cases. The cumulative error is then O(log2(m)‘UCU). By
combining the analyses for the UCU operations, we derive the overall complexity and
error metrics for the state preparation operator. The total circuit depth is:

O(log2(|B| · |T |))+O(log2(|G|+1)+log2(m)) = O(log2(|B| · |T |)+log2(|G|+1)+log2(m))

The total qubit count necessary for implementing the full state preparation circuit (see
Figure 4.7) is:

O(log2(|B| · |T |))+O(log2(m)+log2(|G|+1)) = O(log2(|B| · |T |)+log2(m)+log2(|G|+1))

The cumulative error is therefore:

O(log2(|B| · |T |)‘UCU) + O(log2(m)‘UCU) = O(log2(|B| · |T |)‘UCU + log2(m)‘UCU)

142

5.1 Complexity Analysis of Individual Components

�Penc-Operator UCU Operations

Circuit Depth O(log2(|B| · |T |)) O(log2(|G| + 1) + log2(m))
Qubit Count O(log2(|B| · |T |)) O(log2(m) + log2(|G| + 1))
Potential Errors O(log2(|B| · |T |)‘UCU) O(log2(m)‘UCU)
Total Circuit Depth O(log2(|B| · |T |) + log2(|G| + 1) + log2(m))
Total Qubit Count O(log2(|B| · |T |) + log2(m) + log2(|G| + 1))
Total Potential Errors O(log2(|B| · |T |)‘UCU + log2(m)‘UCU)

Table 5.1: Complexity Analysis for Quantum State Preparation of �P

5.1.2 Complexity Analysis of the LCU Block Encoding
In the context of the LCU block encoding (see Section 4.4.2) for the matrix B

Õ, the
parameter K represents the number of terms in the linear combination. The worst-case
scenario is when K = (|B| · |T |)2, which represents the maximum number of terms if
every element in the matrix B

Õ needs to be represented by a distinct unitary matrix. The
best-case scenario for K would be when the matrix B

Õ is highly sparse and has a very
structured form, such that it can be decomposed into a much smaller number of unitary
matrices. In the ideal best-case scenario, the number of terms K could be minimal, such
as K = O(|B| · |T |), if each row or column of B

Õ can be represented with a single unitary.

Theorem 5.2 (Complexity Analysis for LCU Block Encoding of B
Õ). The LCU block

encoding for B
Õ has the following complexity:

• Circuit depth: O(Kn)
• Qubit count: O(log2(K) + log2(|B| · |T |))
• Cumulative error: O(K(‘PREP + n‘SEL + ‘UNPREP))

where O(|B| · |T |) Æ K Æ O((|B| · |T |)2) and n = |B| · |T |. ‘PREP, ‘SEL, ‘UNPREP Ø 0 are
associated with the respective operations.

Proof. The proof involves analyzing the complexity contributions from the Prepare, Se-
lect, and Unprepare operators in the LCU block encoding process (see Section 4.4.2).
The Circuit Depth can be determined as follows:
The state preparation step involves creating the state PREPBÕ |0Í =

q

K

k=1
Ô

ak |kÍ. This
requires O(K) gates where K is the number of terms in the LCU decomposition. In the
worst case, K = (|B| · |T |)2. In the best case, K = |B| · |T |. The controlled unitary
operation SELBÕ =

q

K

k=1 |kÍÈk| ¢ Uk has a circuit depth depending on the complexity of
each Uk. If each Uk can be implemented with a depth of O(n), the total depth is O(Kn).
The unprepare operation has the same complexity as the prepare operation, O(K). Thus,
the total circuit depth for the LCU block encoding is:

O(K) + O(Kn) + O(K) = O(Kn)

The Qubit Count can be determined as follows. PREPBÕ and SELBÕ require ancillary
qubits to store the index k. This needs log2(K) qubits. For K Æ (|B| · |T |)2, we need
2 log2(|B| · |T |) qubits. The target register requires n = log2(|B| · |T |) qubits. Therefore,
the total qubit count is:

O(log2(K) + n) = O(log2((|B| · |T |)2) + log2(|B| · |T |)) = O(2 log2(|B| · |T |))

143

5 Results

Combining the operations for ‘PREP, ‘SEL Ø 0. Assuming they can as well be neglected,
we can describe the cumulative error as:

O(K‘PREP) + O(Kn‘SEL) + O(K‘PREP) = O(K(2‘PREP + n‘SEL))

PREPBÕ-Operator SELBÕ-Operator

Circuit Depth O(K) O(Kn)
Qubit Count O(log2(K)) -
Potential Errors O(K‘PREP) O(Kn‘SEL)
Total Circuit Depth O(Kn)
Total Qubit Count O(2 log2(|B| · |T |))
Total Potential Errors O(K(2‘PREP + n‘SEL))

Table 5.2: Complexity Analysis for Block Encoding of B
Õ where O(|B| · |T |) Æ K Æ

O((|B| · |T |)2) and n = |B| · |T |. The errors ‘PREP, ‘SEL, ‘UNPREP Ø 0 are
associated with the respective operations.

5.1.3 Complexity Analysis of QSVT for Matrix Inversion
The following is the Complexity Analysis for the Quantum Singular Value Transformation
(QSVT) of B

Õ (see Section 2.4.3.3):

Theorem 5.3 (Complexity Analysis of QSVT Matrix Inversion). The QSVT matrix
inversion for B

Õ has the following complexity:

• Circuit depth: O(K + Ÿ log(Ÿ/‘MI))
• Qubit count: O(log2(K) + log2(|B| · |T |))
• Cumulative error: O(‘LCU + ‘QSV T 1)

where ‘LCU Ø 0 with ‘LCU = O(K(2‘PREP + n‘SEL)) for n = |B| · |T | and ‘QSV T 1 > 0 is
related to Ÿ, ‘MI are errors assigned to the LCU and QSVT operations and O(|B| · |T |) Æ
K Æ O((|B| · |T |)2).

Proof. We prove this by combining the complexities from the LCU block encoding and
QSVT application (see Section 4.4.2 for explicit definition). For the LCU block encoding,
we decompose B

Õ as a sum of K unitary matrices, requiring O(K) for O(|B| · |T |) Æ
K Æ O((|B| · |T |)2) circuit depth and O(log2(K)) qubits. The error associated with this
block encoding is ‘LCU = O(K(2‘PREP + n‘SEL)) Ø 0 for n = |B| · |T |. For the QSVT
application, the degree of the polynomial for matrix inversion is d = O(Ÿ log(Ÿ/‘MI)),
where ‘MI > 0 is the precision of the matrix inversion polynomial approximation and Ÿ
is the condition number of BÕ which is leading to a circuit depth of O(Ÿ log(Ÿ/‘MI)) and
the qubit count needed remains O(log2(|B| · |T |)). The error associated with the QSVT
is ‘QSV T 1 Ø 0. Combining these, the total circuit depth is:

O(K) + O(Ÿ log(Ÿ/‘MI)) = O(K + Ÿ log(Ÿ/‘MI))

The total qubit count necessary is thus O(log2(K) + log2(|B| · |T |)).

144

5.1 Complexity Analysis of Individual Components

LCU Block Encoding QSVT Application

Circuit Depth O(K) O(Ÿ log(Ÿ/‘MI))
Qubit Count O(log2(K)) O(log2(|B| · |T |))
Potential Errors O(‘LCU) O(‘QSV T)
Total Circuit Depth O(K + Ÿ log(Ÿ/‘MI))
Total Qubit Count O(log2(K) + log2(|B| · |T |))
Total Potential Errors O(‘LCU + ‘QSV T 1)

Table 5.3: Complexity Analysis for QSVT Matrix Inversion where n Æ K Æ n2 for n :=
|B| · |T | and ‘LCU = O(K(2‘PREP + n‘SEL)).

5.1.4 Complexity Analysis of QSVT for Absolute Value Calculation
The following is the Complexity Analysis for Quantum Singular Value Transformation
(QSVT) of D (see Section 4.5 and Section 4.6).

Theorem 5.4 (Complexity Analysis of QSVT Absolute Value Calculation). The QSVT
for calculating |Pl,t| using the block encoding of D has the following complexity:

• Circuit depth: O(|L| · |T | ≠ |Z| + 1/‘abs)
• Qubit count: O(log2(|L| · |T | ≠ |Z|))
• Cumulative error: O(‘diag + ‘QSV T 2)

where ‘diag Ø 0 and ‘QSV T 2 > 0 is related to ‘abs are errors assigned to the block encoding
and QSVT operations respectively.

Proof. For the block encoding, we encode the diagonal matrix D using the method de-
scribed in Theorem 4.9. The preparation of the state requires O(|L| · |T | ≠ |Z|) circuit
depth and O(log2(|L| · |T | ≠ |Z|)) qubits according to the theorem. The error associated
with this block encoding is ‘diag Ø 0. Assuming it can be neglected. For the QSVT appli-
cation, the degree of the polynomial for the absolute value approximation (see Theorem
4.6) is O(Á1/fi‘absË), leading to a circuit depth of O(Á1/fi‘absË). The qubit count needed
remains O(log2(|L| · |T | ≠ |Z|)). The error associated with the QSVT is ‘QSV T 2 > 0 and
is related to ‘abs, the precision of the absolute value approximation. Combining these,
the total circuit depth is:

O(|L| · |T | ≠ |Z|) + O(Á1/fi‘absË) = O(|L| · |T | ≠ |Z| + 1/‘abs)

The total qubit count necessary is O(log2(|L| · |T | ≠ |Z|)) and the cumulative error is
therefore O(‘diag) + O(‘QSV T) = O(‘diag + ‘QSV T).

145

5 Results

Block Encoding of D QSVT Application

Circuit Depth O(|L| · |T | ≠ |Z|) O(Á1/fi‘absË))
Qubit Count O(log2(|L| · |T | ≠ |Z|)) O(log2(|L| · |T | ≠ |Z|))
Potential Errors O(‘BE) O(‘QSV T 2)
Total Circuit Depth O(|L| · |T | ≠ |Z| + Á1/fi‘absË)
Total Qubit Count O(log2(|L| · |T | ≠ |Z|))
Total Potential Errors O(‘diag + ‘QSV T 2)

Table 5.4: Complexity Analysis for QSVT Absolute Value Calculation where ‘diag is the
error from the diagonal Block Encoding

5.1.5 Complexity Analysis of the Quantum Amplitude Estimation
The following is the Complexity Analysis for Quantum Amplitude Estimation (see Section
4.7).

Theorem 5.5 (Complexity Analysis of QAE for È|Pl,t|, ClÍ). The QAE for calculating
È|Pl,t|, ClÍ has the following complexity:

• Circuit depth: O(1/‘QAE)
• Qubit count: O(log2(|G| · |T | · q))
• Cumulative error: O(‘QAE)

where ‘QAE > 0 is the desired precision.

Proof. We prove this by analyzing the steps involved in the QAE algorithm. For the
circuit depth, the most significant contribution comes from the Grover operator iterations.
Each iteration involves applying the unitary A, the di�usion operator U0, the inverse of
the unitary A†, and the phase flip operator UÂ1 . The circuit depth for each Grover
iteration is therefore dominated by the depth of A and A†, which is O(1/‘QAE). For
the qubit count, the number of qubits required to represent the states |Pl,tÍ and |ClÍ is
determined by the size of the problem. Specifically, we need n = |G|·|T |·q qubits where q is
the number of qubits needed per value. Thus, the total qubit count is O(log2(|G| · |T | ·q)).
The cumulative error of the QAE algorithm is O(‘QAE), which is determined by the
precision ‘QAE > 0 required for the scalar product estimation.

QAE Application

Circuit Depth O(1/‘QAE)
Qubit Count O(log2(|G| · |T | · q))
Potential Errors O(‘QAE)
Total Circuit Depth O(1/‘QAE)
Total Qubit Count O(log2(|G| · |T | · q))
Total Potential Errors O(‘QAE)

Table 5.5: Complexity Analysis for QAE Absolute Value Calculation where ‘QAE > 0 is
the desired precision.

146

5.1 Complexity Analysis of Individual Components

5.1.6 Complexity Analysis of the QAOA Application
This section provides a detailed complexity analysis of QAOA for optimizing the cost
Hamiltonian HC , focusing on the quantum circuit depth, qubit requirements, and classical
optimization overhead.

Theorem 5.6 (Complexity Analysis of the QAOA for Optimizing Cost Hamiltonian).
The QAOA for optimizing the cost Hamiltonian HC has the following complexity:

• Circuit depth: O(p · dHC + p · dHB)
• Qubit count: O(|G| · |T | + qP · |G| · |T | + nPl)
• Classical optimization complexity: O(ClassicalOpt(“̨, —̨))

where p is the number of QAOA layers, dHC is the depth of the cost Hamiltonian, dHB

is the depth of the mixer Hamiltonian, and ClassicalOpt(“̨, —̨) is the complexity of the
classical optimization algorithm.

Proof. We analyze the complexity in terms of circuit depth, qubit count, and considering
the classical optimization needed for optimizing the parameters. The QAOA circuit
consists of p œ N layers, each comprising one application of the cost Hamiltonian HC

and one application of the mixer Hamiltonian HB. Therefore, the total circuit depth is
O(p·dHC +p·dHB) where dHC and dHB represent the depths of applying the cost and mixer
Hamiltonians. The qubit count is determined by the number of generators |G|, time steps
|T |, and the precision qP used for power output variables. The total number of qubits
required thus is O(|G|·|T |+qP ·|G|·|T |+nPl), where nPl is from the amplitude encoding of
the power flow variables (see Remark 4.37). The classical optimization algorithm adjusts
the parameters “̨ and —̨ to minimize the expectation value of the cost Hamiltonian.
The complexity of this step depends on the specific algorithm used. Generally, if the
optimization involves evaluating the cost function multiple times, it has a complexity of
O(ClassicalOpt(“̨, —̨)), dependent on the algorithm used for optimization.

QAOA Application

Circuit Depth O(p · dHC + p · dHB)
Qubit Count O(|G| · |T | + qP · |G| · |T | + nPl)
Classical Optimization Complexity O(ClassicalOpt(“̨, —̨))
Total Circuit Depth O(p · dHC + p · dHB)
Total Qubit Count O(|G| · |T | + qP · |G| · |T | + nPl)
Classical Optimization Complexity O(ClassicalOpt(“̨, —̨))

Table 5.6: Complexity Analysis for a QAOA Application where p is the number of QAOA
layers, dHC and dHB are the depths of the cost and mixer Hamiltonians, and
ClassicalOpt(“̨, —̨) is the complexity of the classical optimization algorithm.

147

5 Results

5.2 Combined Complexity Analysis of the Quantum Algorithm

The following is the complexity analysis of the entire quantum algorithm solving the UCP
(see Def. 4.2), excluding the classical optimization, as it has no influence on the quantum
part of the algorithm.

Theorem 5.7 (Complexity Analysis of the Entire Quantum Algorithm for UCP). The
overall complexity of the quantum algorithm for solving the Unit Commitment Problem
(UCP) through state preparation, LCU block encoding, QSVT, QAE, and QAOA has the
following combined complexity. The Circuit depth for the entire algorithm is:

O(log2(|B| · |T |) + log2(|G| + 1) + log2(m) + Kn

+ Ÿ log(Ÿ/‘MI) + |L| · |T | ≠ |Z|
+ 1/‘abs + 1/‘QAE + p · dHC + p · dHB)

The Qubit count for the entire algorithm is:

O(log2(|B| · |T |) + log2(m) + log2(|G| + 1) + log2(K)
+ log2(|B| · |T |) + log2(|L| · |T | ≠ |Z|)
+ |G| · |T | + qP · |G| · |T | + nPl)

The Cumulative error for the entire algorithm is:

O(log2(|B| · |T |)‘UCU + log2(m)‘UCU + K(2‘PREP + n‘SEL)
+ ‘LCU + ‘QSV T 1 + ‘diag + ‘QSV T 2 + ‘QAE)

where the terms ‘UCU , ‘PREP, ‘SEL, ‘MI , ‘abs, ‘diag, ‘QSV T 1, ‘QSV T 2, and ‘QAE represent
the errors associated with the respective operations.

Proof. We analyze the combined complexity by summing up the contributions from each
step in the algorithm Thm. 5.1, Thm. 5.2, Thm. 5.3, Thm. 5.4, Thm. 5.5 and Thm.
5.6. By combining these complexities, we obtain the stated circuit depth, qubit count,
and cumulative error for the entire quantum algorithm.

The thorough analysis of the susceptance matrix can be found in Section 2.2. Multiple
conditions are presented under which the matrix and its condition number satisfy the
following:

Corollary 5.1 (Best-Case Scenario for Overall Complexity). In the best-case scenario,
the complexity of the quantum algorithm for UCP is significantly reduced. We make the
following assumptions:

• The matrix B
Õ is highly structured, allowing K = O(|B| · |T |).

• The condition number Ÿ of B
Õ is low, leading to Ÿ = O(1).

• The error terms are minimal or negligible.
• The power flow variables Pl,t have minimal zero entries, leading to |Z| ¥ 0.

Under these assumptions, the best-case complexity is:

148

5.2 Combined Complexity Analysis of the Quantum Algorithm

• Circuit depth: O(log2(|B| · |T |) + log2(|G| + 1) + log2(m) + |B|2 · |T |2 + 1/‘MI + |L| ·
|T | + 1/‘abs + 1/‘QAE + p · dHC + p · dHB)

• Qubit count: O(log2(|B| · |T |) + log2(m) + log2(|G| + 1) + log2(|B| · |T |) + log2(|B| ·
|T |) + log2(|L| · |T |) + |G| · |T | + qP · |G| · |T | + nPl)

Proof. The corollary follows from Theorem 5.7 under the given assumptions. In the
best-case scenario, the structured nature of B

Õ allows for K = O(|B| · |T |), reducing the
complexity of the LCU block encoding. With a low condition number Ÿ = O(1) (see
Section 2.2), the depth of QSVT for matrix inversion becomes O(log(1/‘MI)). Minimal
zero entries in Pl,t lead to |Z| ¥ 0, simplifying the block encoding for D.

Corollary 5.2 (Worst-Case Scenario for Overall Complexity). In the worst-case scenario,
the complexity of the quantum algorithm for UCP is maximized. We make the following
assumptions:

• The matrix B
Õ is unstructured, leading to K = O((|B| · |T |)2).

• The condition number Ÿ of B
Õ is high.

• The error terms are significant.
• The power flow variables Pl,t have many zero entries, leading to |Z| ¥ |L| · |T |.

Under these assumptions, the worst-case complexity is:

• Circuit depth: O(log2(|B|·|T |)+log2(|G|+1)+log2(m)+(|B|·|T |)3+Ÿ log(Ÿ/‘MI)+
|L| · |T | + 1/‘abs + 1/‘QAE + p · dHC + p · dHB)

• Qubit count: O(log2(|B| · |T |) + log2(m) + log2(|G| + 1) + 2 log2(|B| · |T |) + log2(|L| ·
|T |) + |G| · |T | + qP · |G| · |T | + nPl)

Proof. The corollary follows from Theorem 5.7 under the given assumptions. In the worst-
case scenario, the unstructured nature of B

Õ leads to K = O((|B| · |T |)2), significantly
increasing the complexity of the LCU block encoding. A high condition number Ÿ results
in a deeper QSVT circuit. Significant error terms further complicate the algorithm. Many
zero entries in Pl,t lead to |Z| ¥ |L| · |T |, increasing the complexity of the block encoding
for D.

The following provides a simplified complexity analysis that abstracts away quantum-
specific details, focusing instead on the primary factors that influence the algorithm’s
performance.

Corollary 5.3 (Simplified Best-Case Complexity with Fixed Precision). Assume the
following conditions:

• The matrix B
Õ is well-structured, minimizing decomposition complexity.

• The condition number Ÿ of B
Õ is low, ensuring e�cient matrix inversion.

• All precision-related parameters are set to a fixed machine precision ‘ > 0, such as
‘ := 10≠6.

Under these assumptions, the complexity of the quantum algorithm for solving the UCP
is given by:

• Circuit depth: O
!

log2(|B| · |T |) + |B|2 · |T |2
"

• Qubit Count: O (log2(|B| · |T |) + |G| · |T |)

149

5 Results

Proof. The corollary follows from Theorem 5.7 under the given assumptions and from
simplifying the detailed complexity analysis by focusing on the dominant factors and
with fixed ‘:

• Circuit Depth: The depth primarily depends on log2(|B| · |T |) due to the number
of buses and time steps. The quadratic term |B|2 · |T |2 reflects the complexity of
operations related to the system size. The precision term 1

‘
, which accounts for the

machine precision required in quantum operations.
• Qubit Count: The qubit requirements scale logarithmically with the system size

log2(|B| · |T |) and linearly with the number of generators and time steps |G| · |T |.

Total Complexity

Circuit Depth

O(log2(|B| · |T |) + log2(|G| + 1) + log2(m) + Kn
+Ÿ log(Ÿ/‘MI) + |L| · |T | ≠ |Z|
+ 1

‘abs
+ 1

‘QAE
+ p · dHC + p · dHB)

Qubit Count

O(log2(|B| · |T |) + log2(m) + log2(|G| + 1)
+ log2(K) + log2(|B| · |T |)
+ log2(|L| · |T | ≠ |Z|) + |G| · |T |
+qP · |G| · |T | + nPl)

Cumulative Error

O(log2(|B| · |T |)‘UCU + log2(m)‘UCU

+K(2‘PREP + n‘SEL)
+‘LCU + ‘QSV T 1 + ‘diag

+‘QSV T 2 + ‘QAE)

Table 5.7: Overall Complexity Analysis for the Entire Quantum Algorithm for UCP.

150

6 Discussion

The core objective of this research was to explore and develop a quantum simulation-
based optimization (QuSO) approach for solving the Unit Commitment Problem (UCP),
particularly within the context of energy grid management. By characterizing the UCP
as a Mixed-Integer Nonlinear Programming (MINLP) problem and utilizing Quantum
Singular Value Transformation (QSVT) and the Quantum Approximate Optimization
Algorithm (QAOA), the work aimed to reduce the computational complexity tradition-
ally associated with such problems. The application of graph theory in modeling the
energy grid is particularly advantageous. Utilizing the susceptance matrix, derived from
the Laplacian matrix, o�ers a powerful framework for analyzing the grid’s structural prop-
erties. This approach leverages algebraic connectivity and eigenvalue bounds to achieve
computational e�ciency, especially in large-scale grids. However, the reliance on the DC
power flow approximation, while necessary for tractability, introduces a limitation com-
pared to more accurate AC power flow models. QSVT plays a pivotal role by enabling
e�cient matrix inversion, crucial for optimizing the UCP. The polynomial approximation
of the inversion process, particularly through Chebyshev polynomials, ensures both ac-
curacy and e�ciency. The exponential speedup in time complexity provided by QSVT
marks a significant advancement. However, the success of QSVT depends on the condition
number of the matrix being inverted. While bounds are provided, real-world scenarios
might present challenges if these bounds are not tight enough. Furthermore, QSVT’s
e�ciency is closely tied to the e�ectiveness of the block encoding within the quantum cir-
cuits. An e�cient block encoding is essential, as it directly impacts matrix inversion and
other linear algebra operations central to UCP optimization. If the block encoding is not
optimized, the advantages of QSVT could be reduced, leading to increased circuit depth
and reduced accuracy, which are critical concerns on Noisy Intermediate-Scale Quantum
(NISQ) devices [Pre18]. The integration of QAOA with the quantum-constructed cost
function o�ers a novel hybrid quantum-classical approach to solving the UCP. Represent-
ing generator states using the Ising model and modeling constraints as penalties in the
cost Hamiltonian within the QAOA framework is an e�ective method that leverages the
discrete nature of the UCP. However, the e�ectiveness of QAOA is highly dependent on
the initial parameterization and quantum circuit depth, which may pose challenges for
near-term implementations on quantum devices.

151

7 Conclusion

This research advances the theoretical foundations of quantum computing applied to en-
ergy grid optimization. The exponential reduction in computational complexity achieved
through QSVT and the potential of QAOA to address non-linear, non-convex optimiza-
tion problems are significant contributions. These findings suggest that quantum com-
puting can theoretically provide a viable path toward solving large-scale UCPs more
e�ciently than classical methods, potentially enabling real-time optimization in complex
energy grids. From a practical standpoint, optimizing unit commitment in real-time
would substantially improve operational e�ciency and reliability, especially in grids with
high renewable energy penetration. However, the transition from theoretical models to
practical applications requires overcoming significant challenges, including the limitations
of current quantum hardware and the need for more robust algorithms capable of han-
dling real-world complexities. Future work should focus on addressing these challenges
by exploring more accurate AC power flow models, even if this increases complexity. Ad-
ditionally, optimizing the quantum algorithms, particularly the block encoding in QSVT
and the parameterization of QAOA, is crucial. Given the current limitations of NISQ
devices, research into error mitigation techniques and more e�cient quantum circuit de-
signs is necessary. Finally, collaboration with industry partners and testing on actual
power grid data will be essential in validating these algorithms in real-world scenarios.
The future of quantum computing in energy grid management is promising, but realizing
its full potential will require continued innovation in both algorithm design and quantum
hardware development.

153

List of Algorithms

2.1 Method for Finding QSP Phase Factors . 66
2.2 Quantum Approximate Optimization Algorithm 76

4.3 Rescaling Singular Values . 84
4.4 Rescaling Singular Values via Estimates . 85
4.5 Quantum State Preparation . 118
4.6 LCU-Block Encoding . 121
4.7 QSVTP MI

‘,Ÿ
Operator . 123

4.8 QSVTP abs
‘

Operator . 127
4.9 QAE for Cost Calculation . 129

155

List of Figures

2.1 IEEE 118-bus system diagram . 26
2.2 Two-bus model with impedance and current flow 33
2.3 Visualization of a single qubit state on the Bloch sphere 49

4.1 Comparison of polynomial approximation and error function 94
4.2 Comparison of polynomial approximation and sign function 96
4.3 Comparison of polynomial approximation and rectangular function 97
4.4 Comparison of polynomial approximation and 1/x function 101
4.5 Comparison of absolute value approximation polynomial and |x| function 110
4.6 Flowchart of Quantum Optimization Algorithm for UCP 113
4.7 Quantum circuit for state preparation . 117
4.8 Quantum circuit for LCU-Block Encoding 121
4.9 Quantum circuit for QSVT operator with odd degree 123
4.10 Quantum circuit for QSVT operator with even degree 126

157

List of Tables

5.1 Complexity Analysis for Quantum State Preparation 143
5.2 Complexity Analysis for Block Encoding 144
5.3 Complexity Analysis for QSVT Matrix Inversion 145
5.4 Complexity Analysis for QSVT Absolute Value Calculation 146
5.5 Complexity Analysis for QAE . 146
5.6 Complexity Analysis for the QAOA . 147
5.7 Overall Complexity Analysis . 150

159

Bibliography
[AC22] Pawe≥ Albrechtowicz and Piotr Cisek. An impact of the line resistance

on the power flow calculations with installed phase-shifting transformer in
di�erent voltage levels power systems. Electric Power Systems Research,
209:107970, 2022.

[AI21] Fahad Saleh Al-Ismail. Dc microgrid planning, operation, and control: A
comprehensive review. IEEE Access, 9:36154–36172, 2021.

[Alo22] Juan M. Alonso. Metric spaces and sparse graphs, 2022.

[Aly21] Ammar Alyousef. E-Mobility Management: Towards a Grid-friendly Smart
Charging Solution. PhD thesis, Universität Passau, 2021.

[AW05] George B. Arfken and Hans J. Weber. Mathematical Methods for Physi-
cists. Elsevier Academic Press, 6th edition, 2005.

[AY19] Akshay Ajagekar and Fengqi You. Quantum computing for energy systems
optimization: Challenges and opportunities. Energy, 179:76–89, July 2019.

[BHMT02] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum
amplitude amplification and estimation, 2002.

[Bis21] James Bisgard. Analysis and Linear Algebra: The Singular Value De-
composition and Applications, volume 94 of Student Mathematical Library.
American Mathematical Society, Central Washington University, Ellens-
burg, WA, 2021.

[BKL+13] Pietro Belotti, Christian Kirches, Sven Ley�er, Je� Linderoth, James
Luedtke, and Ashutosh Mahajan. Mixed-integer nonlinear optimization.
Acta Numerica, 22:1–131, 2013.

[Boy00] John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publica-
tions, Inc., second edition, 2000.

[Boy23] Gregory Boyd. Low-overhead parallelisation of lcu via commuting opera-
tors. arXiv preprint arXiv:2312.00696, 2023.

[BP24] Lucas Böttcher and Mason A. Porter. Complex networks with complex
weights. Physical Review E, 109(2):024314, 2024.

[Car62] J. Carpentier. Contribution a l’etude du dispatching economique. Bulletin
de la Societe Francaise des Electriciens, 8:431–447, Aug 1962.

[Che66] Elliott Ward Cheney. Introduction to Approximation Theory. International
Series in Pure and Applied Mathematics. McGraw-Hill Book Company,
1966. Original from University of Michigan, Digitized 20 Nov. 2007.

[Chr] Richard D. Christie. Ieee 118-bus test case. https://labs.ece.uw.edu/
pstca/pf118/pg_tca118bus.htm. Accessed: 2024-07-18.

161

https://labs.ece.uw.edu/pstca/pf118/pg_tca118bus.htm
https://labs.ece.uw.edu/pstca/pf118/pg_tca118bus.htm

Bibliography

[Chu97] Fan R. K. Chung. Spectral Graph Theory, volume 92. American Mathe-
matical Society, Providence, RI, 1997.

[Chu07] Fan R. K. Chung. Four proofs for the cheeger inequality and graph partition
algorithms. Mathematics, Computer Science, 2007.

[CK24] Muddu Chethan and Ravi Kuppan. A review of facts device implementa-
tion in power systems using optimization techniques. Journal of Engineer-
ing and Applied Science, 71(1):18, 2024.

[CKG16] Yongxin Chen, Sei Zhen Khong, and Tryphon T. Georgiou. On the definite-
ness of graph laplacians with negative weights: Geometrical and passivity-
based approaches. In 2016 American Control Conference (ACC), pages
2488–2493, 2016.

[Con24] Claudio Conti. Quantum Machine Learning: Thinking and Exploration in
Neural Network Models for Quantum Science and Quantum Computing.
Quantum Science and Technology. Springer, New York, NY, USA, 2024.

[CR90] Badrul Chowdhury and Saifur Rahman. A review of recent advances in
economic dispatch. Power Systems, IEEE Transactions on, 5:1248 – 1259,
12 1990.

[CSSDS+15] Lucas Cuadra, Sancho Salcedo-Sanz, Javier Del Ser, Silvia Jiménez-
Fernández, and Zong Woo Geem. A critical review of robustness in power
grids using complex networks concepts. Energies, 8(9):9211–9265, 2015.

[CW12a] Andrew M. Childs and Nathan Wiebe. Hamiltonian Simulation Using
Linear Combinations of Unitary Operations. Quantum Information and
Computation, 12:901–924, 2012.

[CW12b] Andrew M. Childs and Nathan Wiebe. Hamiltonian simulation using linear
combinations of unitary operations. Quantum Information and Computa-
tion, 12(11-12):901–924, 2012.

[dBBDD14] Kenneth Van den Bergh, Kenneth Bruninx, Erik Delarue, and William
D’haeseleer. A mixed-integer linear formulation of the unit commitment
problem. Technical Report WP EN2014-07, TME Working Paper - Energy
and Environment, 2014. Last update: February 2014. An electronic version
of the paper may be downloaded from the TME website: http://www.
mech.kuleuven.be/tme/research/.

[dBDD14] Kenneth Van den Bergh, Erik Delarue, and William D’haeseleer. Dc power
flow in unit commitment models. Technical Report WP EN2014-12, TME
Working Paper - Energy and Environment, 2014. Last update: May 2014.
An electronic version of the paper may be downloaded from the TME
website: http://www.mech.kuleuven.be/tme/research/.

[Die17] Reinhard Diestel. Graph Theory. Graduate Texts in Mathematics. Springer
Berlin, Heidelberg, 5 edition, 2017.

[DKS22] Ishanki De Mel, Oleksiy V. Klymenko, and Michael Short. Balancing accu-
racy and complexity in optimisation models of distributed energy systems
and microgrids with optimal power flow: A review. Sustainable Energy
Technologies and Assessments, 52:102066, 2022.

162

http://www.mech.kuleuven.be/tme/research/
http://www.mech.kuleuven.be/tme/research/

Bibliography

[DMWL21] Yulong Dong, Xiang Meng, K. Birgitta Whaley, and Lin Lin. E�cient
phase-factor evaluation in quantum signal processing. Phys. Rev. A,
103:042419, Apr 2021.

[Eva22] Lawrence C. Evans. Partial Di�erential Equations, volume 19 of Gradu-
ate Studies in Mathematics. American Mathematical Society, Providence,
Rhode Island, 2 edition, 2022.

[FGG14] Edward Farhi, Je�rey Goldstone, and Sam Gutmann. A quantum approx-
imate optimization algorithm, 2014.

[FH19] Edward Farhi and Aram W Harrow. Quantum supremacy through the
quantum approximate optimization algorithm, 2019.

[Fie73] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathe-
matical Journal, 23(2):298–305, 1973.

[Gai03] Zwe-Lee Gaing. Gaing, z.-l.: Particle swarm optimization to solving the
economic dispatch considering the generator constraints. ieee tans. on
power syst. 18(3), 1187-1195. Power Systems, IEEE Transactions on,
18:1187 – 1195, 09 2003.

[Gri12a] Robert B. Gri�ths. Hilbert space quantum mechanics, 2012. Lecture notes
for course qmd111, Version of 20 August 2012.

[Gri12b] Leonard L. Grigsby, editor. Electric Power Generation, Transmission, and
Distribution. CRC Press, 3 edition, 6 2012.

[GSLW18] András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum
singular value transformation and beyond: exponential improvements for
quantum matrix arithmetics. arXiv preprint arXiv:1806.01838, June 2018.

[GSO17] J. Duncan Glover, Mulukutla S. Sarma, and Thomas Overbye. Power
System Analysis and Design. Cengage Learning, 6th edition, 2017.

[HG91] M. Huneault and F.D. Galiana. A survey of the optimal power flow liter-
ature. IEEE Transactions on Power Systems, 6(2):762–770, 1991.

[HHL09] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm
for linear systems of equations. Phys. Rev. Lett., 103:150502, Oct 2009.

[HHPT23] Pascal Hal�mann, Patrick Holzer, Kai Plociennik, and Michael Trebing. A
Quantum Computing Approach for the Unit Commitment Problem, page
113–120. Springer International Publishing, 2023.

[HJ13] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, Sao Paulo, Delhi, Mexico City, second edition, 2013.

[HRP24] Morad Halihal, Tirza Routtenberg, and H. Vincent Poor. Estimation of
complex-valued laplacian matrices for topology identification in power sys-
tems. arXiv preprint arXiv:2308.03392, 2024.

[HZZG22] Jiangwei Hou, Qiaozhu Zhai, Yuzhou Zhou, and Xiaohong Guan. A fast
solution method for large-scale unit commitment based on lagrangian re-
laxation and dynamic programming, 2022.

163

Bibliography

[Int23] International Energy Agency. World Energy Outlook 2023. OECD Pub-
lishing, 2023.

[JPJL10] Yun-Won Jeong, Jong-Bae Park, Se-Hwan Jang, and Kwang Y. Lee. A new
quantum-inspired binary pso: Application to unit commitment problems
for power systems. IEEE Transactions on Power Systems, 25(3):1486–
1495, 2010.

[KGB+21] Samantha Koretsky, Pranav Gokhale, Jonathan M. Baker, Joshua Viszlai,
Honghao Zheng, Niroj Gurung, Ryan Burg, Esa Aleksi Paaso, Amin Kho-
daei, Rozhin Eskandarpour, and Frederic T. Chong. Adapting quantum
approximation optimization algorithm (qaoa) for unit commitment, 2021.

[KM78] Ravindran Kannan and Clyde L. Monma. On the computational com-
plexity of integer programming problems. In Optimization and Operations
Research, Berlin, Heidelberg, 1978. Springer Berlin Heidelberg.

[Leb72] N.N. Lebedev. Special Functions and Their Applications. Dover Publica-
tions, 1972.

[LHF24] Yidong Liao, Min-Hsiu Hsieh, and Chris Ferrie. Quantum optimization for
training quantum neural networks. Quantum Machine Intelligence, 6(1),
June 2024.

[LL01] Elliott H. Lieb and Michael Loss. Analysis: Second Edition, volume 14 of
Graduate Studies in Mathematics. American Mathematical Society, Prince-
ton, NJ, 2001.

[LN89] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method
for large scale optimization. Mathematical Programming, 45(1):503–528,
1989.

[Low17] Guang Hao Low. Quantum Signal Processing by Single-Qubit Dynamics.
Ph.d. thesis, Massachusetts Institute of Technology, Massachusetts, USA,
2017.

[LSM17] Samuel J. Ling, Je� Sanny, and William Moebs. University Physics Volume
2. OpenStax, 2017.

[Luc14] Andrew Lucas. Ising formulations of many np problems. Frontiers in
Physics, 2, 2014.

[MER21] German Morales-España and Andres Ramos. Challenges and solutions in
the integration of renewable energy sources in the electricity grid. Renew-
able Energy, 163:324–333, 2021.

[MH19] Daniel K. Molzahn and Ian A. Hiskens. A Survey of Relaxations and Ap-
proximations of the Power Flow Equations. Now Foundations and Trends,
2019.

[MKT+19] R. Muzzammel, I. Khail, M.H. Tariq, A.M. Asghar, and A. Hassan. Design
and power flow analysis of electrical system using electrical transient and
program software. Energy and Power Engineering, 11:186–199, 2019.

[Moh91] Bojan Mohar. Eigenvalues, diameter, and mean distance in graphs. Graphs
and Combinatorics, 7:53–64, 1991.

164

Bibliography

[MRTC21] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and Isaac L. Chuang.
Grand unification of quantum algorithms. PRX Quantum, 2(4), December
2021.

[MVBS04] Mikko Mottonen, Juha J. Vartiainen, Ville Bergholm, and Martti M. Sa-
lomaa. Transformation of quantum states using uniformly controlled rota-
tions, 2004.

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2010.

[NS14] T. K. Nagsarkar and M. S. Sukhija. Power System Analysis. Oxford
University Press, 2 edition, 2014.

[NZB22] Nima Nikmehr, Peng Zhang, and Mikhail A. Bragin. Quantum distributed
unit commitment: An application in microgrids. IEEE Transactions on
Power Systems, 37(5):3592–3603, 2022.

[P+21] Narayana Padhy et al. A review of optimization techniques applied to
unit commitment in modern power systems. IEEE Transactions on Power
Systems, 36(5):3896–3908, 2021.

[PPC23] Vitor Fernão Pires, Armando Pires, and Armando Cordeiro. Dc microgrids:
Benefits, architectures, perspectives and challenges. Energies, 16(3), 2023.

[Pre18] John Preskill. Quantum computing in the nisq era and beyond. Quantum,
2:79, August 2018.

[PTVF07] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P.
Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge
University Press, Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, Sao Paulo, third edition, 2007.

[RB20] Janosh Riebesell and Stefan Bringuier. Collection of standalone tikz im-
ages, 2020. Version 0.1.0, DOI: 10.5281/zenodo.7486911.

[Rem34] E. Remez. Sur le calcul e�ectif des polynomes d’approximation de
tchebichef. CR Acad. Sci. Paris, 199:337–340, 1934.

[RR23] Arthur G. Rattew and Patrick Rebentrost. Non-linear transformations of
quantum amplitudes: Exponential improvement, generalization, and ap-
plications, 2023.

[Sau13] Timothy Sauer. Numerical Analysis. Pearson Deutschland GmbH, Ger-
many, 2 edition, 2013.

[SB02] Josef Stoer and Roland Bulirsch. Introduction to Numerical Analysis, vol-
ume 12 of Texts in Applied Mathematics. Springer, 3rd edition, 2002.

[SP18] Maria Schuld and Francesco Petruccione. Supervised Learning with Quan-
tum Computers. Quantum Science and Technology. Springer Cham, 1 edi-
tion, 2018. Physics and Astronomy.

[Spi19] Daniel A. Spielman. Spectral and algebraic graph theory. Yale University
Website, 2019. Incomplete Draft.

165

Bibliography

[SR+22] David I Stern, Arthur J Ragauskas, et al. The global energy crisis: impacts
and responses. Energy Policy, 144:111710, 2022.

[SS05] Elias M. Stein and Rami Shakarchi. Real Analysis: Measure Theory, In-
tegration, and Hilbert Spaces, volume 3 of Princeton Lectures in Analysis.
Princeton University Press, Princeton and Oxford, 2005. Printed on acid-
free paper.

[ST94] J. J. Sakurai and San Fu Tuan. Modern Quantum Mechanics. Addison-
Wesley series in advanced physics. Addison-Wesley, Reading, Mas-
sachusetts, revised edition, 1994. Library of Congress Cataloging-in-
Publication Data: 93-17803 CIP.

[Tre19] Lloyd N. Trefethen. Approximation Theory and Approximation Prac-
tice, Extended Edition. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 2019.

[Uni] Texas A&M University. Ieee 118-bus system. https://electricgrids.
engr.tamu.edu/electric-grid-test-cases/ieee-118-bus-system/.
Accessed: 2024-07-18.

[Urb18] Luca Urbanucci. Limits and potentials of mixed integer linear program-
ming methods for optimization of polygeneration energy systems. Energy
Procedia, 148:1199–1205, 2018. ATI 2018 - 73rd Conference of the Italian
Thermal Machines Engineering Association.

[vM06] Alexandra von Meier. Electric Power Systems: A Conceptual Introduction.
Wiley-IEEE Press, Hoboken, NJ, 1st edition, 2006.

[Wad06] C.L. Wadhwa. Basic Electrical Engineering. New Age International, New
Delhi, India, 4th edition, 2006.

[WKKVM15] Xiangrong Wang, Yakup Koç, Robert E. Kooij, and Piet Van Mieghem. A
network approach for power grid robustness against cascading failures. In
2015 7th International Workshop on Reliable Networks Design and Model-
ing (RNDM), pages 208–214, 2015.

[WWS13] A.J. Wood, B.F. Wollenberg, and G.B. Sheblé. Power Generation, Oper-
ation, and Control. Wiley, 2013.

[YZ23] Pei Yuan and Shengyu Zhang. Optimal (controlled) quantum state prepa-
ration and improved unitary synthesis by quantum circuits with any num-
ber of ancillary qubits. Quantum, 7:956, March 2023.

[ZSMRZP21] Fco. Javier Zarco-Soto, José L. Martínez-Ramos, and Pedro J. Zarco-
Periñán. Chapter 7 - voltage control in active distribution networks. In
P. Sanjeevikumar, C. Sharmeela, Jens Bo Holm-Nielsen, and P. Sivara-
man, editors, Power Quality in Modern Power Systems, pages 193–217.
Academic Press, 2021.

[ZWC+20] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and
Mikhail D. Lukin. Quantum approximate optimization algorithm: Per-
formance, mechanism, and implementation on near-term devices. Phys.
Rev. X, 10:021067, Jun 2020.

166

https://electricgrids.engr.tamu.edu/electric-grid-test-cases/ieee-118-bus-system/
https://electricgrids.engr.tamu.edu/electric-grid-test-cases/ieee-118-bus-system/

	1 Introduction
	1.1 Optimizing Electricity Systems
	1.1.1 Introduction to Economic Dispatch
	1.1.2 Overview of Optimal Power Flow
	1.1.3 Introduction to the Unit Commitment Problem

	2 Background
	2.1 Mixed-Integer Nonlinear Programming
	2.2 Graph-Theoretical Modeling of Energy Grids
	2.2.1 Condition Number Analysis for Laplacians
	2.2.1.1 Lower Bound for the Second Smallest Eigenvalue
	2.2.1.2 Upper Bound for the Greatest Eigenvalue

	2.2.2 Summary of Graph Theory Model to Energy Grids

	2.3 Integrating Power Flow into the Model
	2.3.1 The DC Power Flow Approximation
	2.3.2 Invertibility of the Susceptance Matrix

	2.4 Introducing Quantum Algorithms
	2.4.1 Basic Notation for Quantum-Gate-Algorithms
	2.4.1.1 Operators on Finite-Dimensional Hilbert Spaces
	2.4.1.2 Qubits and Quantum Information
	2.4.1.3 From Unitary Operators to Quantum Gates

	2.4.2 Quantum Signal Processing
	2.4.2.1 Chebychev Polynomials and QSP
	2.4.2.2 Determining the QSP Phase Factors

	2.4.3 Quantum Singular Value Transformation
	2.4.3.1 Block Encoding and Linear Combination of Unitaries
	2.4.3.2 The QSVT Theorem
	2.4.3.3 Using QSVT for Matrix Inversion

	2.4.4 Quantum Approximate Optimization Algorithm

	2.5 Approximation Methods for Polynomial Construction

	3 Related work
	4 Methodology
	4.1 Formulation of the Unit Commitment Optimization Problem
	4.2 Polynomial Approximation for QSVT
	4.2.1 Overview of the Polynomial Approximations
	4.2.2 The Matrix Inversion Polynomial
	4.2.2.1 Approximation of the Step Function
	4.2.2.2 Construction of the Inversion Polynomial
	4.2.2.3 Construction of the Matrix Inversion Polynomial

	4.2.3 The Absolute Value Approximation Polynomial

	4.3 Overview of the Quantum Algorithm
	4.4 The QSVT Matrix Inversion Procedure
	4.4.1 Quantum State Preparation
	4.4.2 LCU Block Encoding of the Reduced Block Susceptance Matrix
	4.4.3 QSVT-Based Inversion of the Reduced Block Susceptance Matrix

	4.5 Block Encoding of the Load Power Vector
	4.6 Applying QSVT for Absolute Value Computation
	4.7 Applying the Quantum Amplitude Estimation
	4.8 Applying the Quantum Approximate Optimization Algorithm
	4.8.1 Constructing the Cost Hamiltonian
	4.8.1.1 QAOA Representation of the Generator States
	4.8.1.2 QAOA Representation of the Power Outputs
	4.8.1.3 Power Balance Constraint
	4.8.1.4 Generator Output Limits
	4.8.1.5 Transmission Cost
	4.8.1.6 Combined Cost Hamiltonian

	4.8.2 Obtaining the Optimized Decision Variables and Cost

	5 Results
	5.1 Complexity Analysis of Individual Components
	5.1.1 Complexity Analysis of the State Preparation
	5.1.2 Complexity Analysis of the LCU Block Encoding
	5.1.3 Complexity Analysis of QSVT for Matrix Inversion
	5.1.4 Complexity Analysis of QSVT for Absolute Value Calculation
	5.1.5 Complexity Analysis of the Quantum Amplitude Estimation
	5.1.6 Complexity Analysis of the QAOA Application

	5.2 Combined Complexity Analysis of the Quantum Algorithm

	6 Discussion
	7 Conclusion
	List of Algorithms
	List of Figures
	List of Tables
	Bibliography

