Constructive Operation Research Bridging Logic, Mathematics, Computer Science, and Philosophy

Klaus Mainzer TUM Emeritus of Excellence TUM Graduate School of Computer Science Technische Universität München (TUM) Munich Center for Technology in Society

Klaus Mainzer

William of Ockham – Early Munich Advocate of CORE

William of Ockham (Ockham 1287 – Munich 1347), Franciscan friar and scholastic philosopher, was a pioneer of *nominalism* and father of *modern epistemology*, because of his strongly argued position that *only individuals* exist, rather than supraindividual universals, essences, or forms. He denied the real existence of metaphysical universals and advocated the *reduction of ontology*.

With respect to *constructive operation research*, he argued for *efficient reasoning* with the *principle of parsimony* in explanation and theory building that came to be known as *Occam's Razor*.

This maxim, as interpreted by Bertrand Russell, states that one should always opt for an explanation in *terms of the fewest possible causes, factors, or variables*. He turned this into a concern for *ontological parsimony*.

- 1. From Turing Machines to Information Systems
- 2. Constructive Proof Mining
- 3. From Brouwer's Creative Subject to Fan Theorem
- 4. Constructive Reverse Mathematics
- 5. Constructive Foundations of Financial Mathematics
- 6. Real Computing in Numerical Analysis
- 7. Bridging Logic, Mathematics, Computer Science and Philosophy

1. From Turing Machines to Information Systems

G. W. Leibniz: Knowledge Representation and Universal Computation

In his *"mathesis universalis"* G. W. Leibniz (1646-1716) designed a *universal formal language (lingua universalis)* to *represent human thinking* by *calculation procedures* (*"algorithms"*) and to implement them on *mechanical calculating machines*.

An *"ars iudicandi"* should allow every problem to be *decided* by an *algorithm* after *representation* in *numeric symbols*. An *"ars inveniendi"* should allow users to *seek* and *enumerate desired data* and *solutions of problems*. *Struggle on preferences of values* should be decided *"by machines"* (*"ad abacos"*).

Technische Universität München

Turing's Theory of Computability

Every *computable procedure (algorithm)* can be realized by a *Turing machine (Church's thesis)*. Every *Turing program* can be simulated by a *universal Turing machine (general purpose computer)*. A *Turing machine* is a *formal procedure*, consisting of

- a) a *control box* in which a *finite program* is placed,
- b) a potential *infinite tape*, divided lengthwise into squares,
- c) a device for *scanning*, or *printing* on one square of the tape at a time, and for *moving* along the tape or *stopping*, all under the command of the *control box*.

Computability of Functions

A number-theoretical function f is computable (according to *Church's thesis*) if and only if (iff) f is computable by a *Turing machine* TM.

i.e. there is a *TM-program stopping* for *numerical inputs* $x_1, ..., x_n$ as arguments of a function f (e.g., $x_1=3, x_2 = 5$ of the additional function $f(x_1, x_2) = x_1$ + x_2) after finitely many steps and *printing* the functional value $f(x_1, ..., x_n)$ (e.g. f(3, 5) = 8).

Approximations of Computable Functionals in Information Systems

In order to describe *approximations* of *abstract objects* like *functionals* by *finite* ones, we use an *information system* with a *countable set A* of *bits* of *data* ("*tokens*") (Scott 1982, Schwichtenberg/Wainer 2012). *Approximations* need *finite sets U* of *data* which are *consistent* with each other. An "*entailment relation*" expresses the fact that the *information* of a *consistent set U* of data is *sufficient* to compute a *bit of information* (*"token"*) :

An *information system* is a *structure* (A, Con, \vdash) with a *countable set* A ("*tokens*"), *non-empty set* Con of *finite* ("*consistent*") *subsets* of A and *subset* \vdash of Con $\times A$ ("*entailment relation*") with

- *i.* $U \subseteq V \in \operatorname{Con} \Longrightarrow U \in \operatorname{Con}$
- *ii.* $\{a\} \in Con$
- *iii.* $U \vdash a \in \text{Con} \implies U \vdash a$
- *iv.* $a \in U \in \operatorname{Con} \Longrightarrow U \vdash a$
- *v.* $U, V \in \operatorname{Con} \Rightarrow \forall a \in V (U \vdash a) \Rightarrow (V \vdash b \Rightarrow U \vdash b)$

The *ideals* (*"objects"*) of an *information system* (*A*, Con, ⊢) are defined as *subjects x of A* with

- i. $U \subseteq x \Longrightarrow U \in \text{Con}$ (x is consistent)
- *ii.* $x \supseteq U \vdash a \Longrightarrow a \in x$ (x is deductively closed)

Example: The *deductive closure* $\overline{U} := \{a \in A | U \vdash a\}$ of $U \in \text{Con is an ideal.}$

Computable Partial Continuous Functionals of Finite Type

Types are built from *base types* by the formation of *function types* $\rho \to \sigma$. For every *type* ρ , the *information system* $C_{\rho} = (C_{\rho}, \operatorname{Con}_{\rho}, \vdash_{\rho})$ can be *defined*. The *ideals* $x \in |C_{\rho}|$ are the *partial continuous functionals of type* ρ . Since $C_{\rho \to \sigma} = C_{\rho} \to C_{\sigma}$, the *partial continuous functionals* of *type* $\rho \to \sigma$ will correspond to the *continuous functions* from $|C_{\rho}|$ to $|C_{\sigma}|$ with respect to the *Scott topology*.

A partial continuous functional $x \in |C_{\rho}|$ is computable iff it is recursive enumerable as set of tokens.

Partial continuous functionals of *type* ρ can be used as *semantics* of a *formal functional programming language* :

Every *closed term* of *type* ρ in the *programming language* denotes a *computable partial continuous functional* of type ρ , i.e. a *recursive enumerable consistent* and *deductively closed set* of *tokens*.

Another approach uses *recursive equations* to *define computable functionals* (Berger, Eberl, Schwichtenberg 2003).

2. Constructive Proof Mining

Pro

Proofs as Verification of Truth

<u>Theorem</u>: *There are infinitely many prime numbers*.

The predicate $P(x) \equiv 'x$ is a prime number' can be expressed in a *quantifier-free* way as *primitive recursive predicate*.

Euclid's Proof (reductio ad absurdum): Elements IX Prop. 20; M. Aigner/G.M. Ziegler 2001, pp. 3-6; U. Kohlenbach 2008, p. 15)

Assume there are finitely many prime numbers $p \le x$ construct $a \coloneqq 1 + \prod_{\substack{p \le x \\ p \text{ prime}}} p$

- \Rightarrow *a cannot* be *prime* (because a > p for all $p \le x$)
- \Rightarrow *a* contains a *prime factor* (by the decomposition of every number into prime factors) $q \le a$ with q > x (otherwise q is a prime factor $q \le x$)
- ⇒ contradiction to assumption !

Proofs are more than Verification!

"What more do we know if we have proved a theorem by restricted means than if we merely know that it is true?"

Georg Kreisel: *Unwinding of Proofs* Ulrich Kohlenbach: *Proof Mining* (cf. "Applied Proof Theory" 2008, Chapter 2)

Consider an *existential theorem* $A \equiv \exists x B(x)$ (closed):

A weaker requirement is to *construct* a *list of terms* $t_1, ..., t_n$ which are candidates for A, such that $B(t_1) \lor \cdots \lor B(t_n)$ holds. More general:

If $A \equiv \forall x \exists y B(x, y)$, then one can ask for an *algorithm p* such that $\forall x B(x, p(x))$ holds or – weaker - for a *bounding function b* that $\forall x \exists y \leq b(x) B(x, y)$.

Euclid's Proof yields a Computable Bounding Function!

Euclid's proof yields the *bound* $g(x) \coloneqq 1 + x! \ge 1 + \prod_{\substack{p \le x \\ p \text{ prime}}} p$

$$\Rightarrow g(x) \sim 1 + (2\pi x)^{\frac{1}{2}} \left(\frac{x}{e}\right)^{x} \text{ (by Stirling formula)}$$
$$= 1 + \sqrt{2\pi} \cdot e^{x \ln x - x + \frac{1}{2} \ln x}$$

We aim at an *upper bound* on the (*r*+1)-th *prime number* p_{r+1} which only depends on *r* instead of $x \ge p_r$: *Euclid's proof* yields $p_{r+1} \le p_1 \cdot ... \cdot p_r + 1$ $\Rightarrow p_r < 2^{2^r}$ for all $r \ge 1$ (by induction on *r*).

<u>Remark</u>: *Euler's proof yields a much better bound!* (cf. U. Kohlenbach 2008, p. 15)

Brouwer-Heyting-Kolmogorov (BHK) Proof Interpretation of the Intuitionistic Logical Constants

BHK interpretation explains the *meaning of logical constants* in terms of *proof constructions* : (S.C. Kleene 1945; U. Kohlenbach 2008, p. 43)

- i. There is *no proof* for \perp .
- ii. A *proof* of $A \land B$ is a pair (q, r) of proofs, where q is a proof of A and r is a *proof* of B.
- iii. A *proof* of $A \lor B$ is a pair of (n,q) consiting of an *integer n* and a *proof q* which proves A if n = 0 and resp. B if $n \neq 0$.
- iv. A proof p of $A \rightarrow B$ is a construction which transforms any hypothetical proof q of A into a proof p(q) of B.
- v. A proof p of $\forall xA(x)$ is a construction which produces for every construction c_d of an element d of the domain a proof $p(c_d)$ of A(d).
- vi. A *proof* of $\exists xA(x)$ is a pair (c_d, q) , where c_d is the *construction* of an *element d* of the *domain* and *q* is a *proof* of *A*(*d*).

Computable Functionals instead of Constructive Proofs

The *disadvantage* of the *BHK-interpretation* is the *unexplained notion* of *construction* resp. *constructive proof*. K. Gödel wanted that *constructive proofs* of *existential theorems* provide *explicit realizers*. Therefore, he replaced the notion of *constructive proof* by the more definite and less abstract concept of *computable functionals* of *finite type*.

The notion of a *computable functional of finite type* can be *mathematically defined* as an *ideal* in an *information system*.

But *Gödel's proof interpretation* is largely *independent* of a *precise definition* of *computable functionals* : One only needs certain basic functionals as computable (e.g., primitive recursion in finite types) and their closure under composition.

Following Gödel, every *formula* A is assigned with the *existential formula* $\exists xA_1(x)$ with $A_1(x) \exists$ -free. Then, a realizing term r with $A_1(r)$ must be *extracted* from a *derivation of* A (,*Dialectica-Interpretation* '1958)

Modified Realizability in $\mathcal{L}(E - HA^{\omega})$

For each formula A of $\mathcal{L}(E - HA^{\omega})$, formula $\underline{x} mrA$ (,x modified realizes A^{\prime}) is defined in $\mathcal{L}(E - HA^{\omega})$: (G. Kreisel 1959, 1962; U. Kohlenbach 2008, Chapter 5)

- *i.* $\underline{x} mr A :\equiv A$ with *empty* tuple \underline{x} and *A prime formula*
- *ii.* $\underline{x}, \underline{y} mr(A \land B) :\equiv \underline{x} mrA \land y mrB$

iii.
$$z^0, \underline{x}, y mr (A \lor B :\equiv ((z =_0 \to \underline{x} mr A) \land (z \neq_0 0 \to y mr B))$$

iv.
$$y mr (A \rightarrow B) :\equiv \forall \underline{x}(\underline{x} mr A \rightarrow \underline{y} \underline{x} mr B)$$

v.
$$\underline{x} mr (\forall y^{\rho} A(y)) \equiv \forall y^{\rho} (\underline{x} y mr A(y))$$

vi. $z^{\rho}, x mr(\exists y^{\rho}A(y)) \equiv \underline{x} mrA(z)$

Remark: $\underline{x} mr t A$ (, x modified realizes A with truth ') is defined analogously to <math>x mr Aexcept (iv)' $\underline{y} mr t (A \rightarrow B)$: $\equiv \forall \underline{x}(\underline{x} mr t A \rightarrow \underline{y}\underline{x} mr t B) \land (A \rightarrow B)$

Soundness and Characterization of Modified Realization in $\mathcal{L}(E-HA^{\omega})$

Let *A* be a *formula* in $\mathcal{L}(E - HA^{\omega})$, Δ_{ef} set of \exists -*free sentences.* Then the following rule holds:

 $\mathbf{E} - \mathbf{H}\mathbf{A}^{\omega} + \mathbf{A}\mathbf{C} + \Delta_{ef} \vdash \mathbf{A} \Rightarrow \mathbf{E} - \mathbf{H}\mathbf{A}^{\omega} + \Delta_{ef} \vdash \mathbf{t} \ mr \ \mathbf{A}$

where *t* is a tuple of *terms* of $E - HA^{\omega}$ with $FV(\underline{t}) \subseteq FV(A)$ which can be *extracted from proof of A*.

Proof: Induction on the length of A (A.S. Troelstra 1973; U. Kohlenbach 2008, p. 98)

Let *A* be a formula of $\mathcal{L}(E - HA^{\omega})$. Then $E - HA^{\omega} + AC \vdash A \leftrightarrow \exists x(x mr A)$

Proof: Induction on the logical structure of A (A.S. Troelstra 1973; U. Kohlenbach 2008, p. 100)

Program Extraction of Modified Realization

Let $\forall x^{\rho} \exists y^{\tau} A(x, y)$ be a sentence of $\mathcal{L}(E - HA^{\omega})$ with types ρ, τ, Δ_{ef} set of \exists -*free* sentences, and IP_{ef} independence-of-premise scheme. Then the following rule holds:

 $\mathbf{E} - \mathbf{H}\mathbf{A}^{\omega} + \mathbf{A}\mathbf{C} + \mathbf{I}\mathbf{P}_{ef}^{\omega} + \Delta_{ef} \vdash \forall x^{\rho} \exists y^{\tau} A(x, y) \Rightarrow$ $\mathbf{E} - \mathbf{H}\mathbf{A}^{\omega} + \mathbf{A}\mathbf{C} + \mathbf{I}\mathbf{P}_{ef}^{\omega} + \Delta_{ef} \vdash \forall x^{\rho} A(x, tx),$

where *t* is a *closed term* of $\mathcal{L}(E - HA^{\omega})$ which is *extracted from* a *proof* of the *premise* by *modified realizability*.

It follows:

 $\mathcal{L}^{\omega} \vDash \Delta_{ef} \Rightarrow \mathcal{L}^{\omega} \vDash \forall x^{\rho} A(x, tx).$

Proof: By soundness and characterization theorem (cf. U. Kohlenbach 2008, p. 100)

Automatic Program Extraction with MINLOG

MINLOG is an *interactive proof system* which is equipped with *tools* to extract *functional programs* directly from *proof terms*. The system is supported by *automatic proof search* and *normalization* by *evaluation* as an *efficient term rewriting device*.

Example: Existence proof for "list reversal"

Write vw for the result v * w of appending the list w to the list v, Write vx for the result v * x of appending one element list x: to the list v, Write xv for the result x :: v of writing one element x in front of a list vAssume Init Rev: R(nil, nil)

GenRev: $\forall v, w, x (Rvw \rightarrow R(vx, xw))$

<u>Proposition</u>: $\forall v \in T \exists w \in T Rvw$ ("Existence of list *w* with reverse order of given list *v*") <u>Proof</u>: Induction on the length of *v*

Link of Proof Mining to Computer Science: Practical Use of Soundness Proofs

Customers want *software* which *solves a problem*. Thus, they require a *proof* that it *works*. *Suppliers* answer with a *proof of the existence of a solution* to the specification of the problem. The proof has been *automatically extracted* from the *formal specification* of the problem by a *proof mining software* (e.g., MINLOG).

But, the question arises whether the *extraction mechanism of the proof* is *itself*, *in general*, *correct*. The *soundness theorem* guarantees that *every formal proof* can be realized by a *normalized extracted term*.

Application of Proof Mining to Mathematics (cf. U. Kohlenbach 1993; 2008, Chapter 15.1)

Constant solutions $x \in K$ for equations

Task:

Solution:

1) Construct approximate solutions $x_n \in K$ satisfying $A_n(x_n) :\equiv (|F(x_n)| < 2^{-n})$

2) Conclude that either $(x_n)_{n \in \mathbb{N}}$ itself or some subsequence converges to a solution of A(x), using the compactness of *K* and the continuity of *F*.

 $A(x) :\equiv (F(x) = 0)$

with *K* compact metric space and $F: K \to \mathbb{R}$ continuous function.

Proof Mining:

- a) If *F* has *exactly one root* $\hat{x} \in K$, *proof-theoretic analysis* of a given *proof of uniqueness* of \hat{x} can be applied to *extract* an *effective rate of convergence* under quite general circumstances.
- b) If the *solution* \hat{x} is *not necessary unique*, one often *cannot effectively* obtain a *solution* but weaker tasks like obtaining *effective rates* of *asymptotic regularity* might be solvable.

3. From Brouwer's Creative Subject to FanTheorem

Intuitionistic Philosophy of Creative Subject

According to Brouwer, *mathematical truth* is founded by *construction of a creative subject*. Following Kant, *mathematical construction* can only be realized in a *finite process, step by step in time* like counting in arithmetic. Thus, for Brouwer, *mathematical truth* depends on *finite stages of realization in time by a creative subject* (in a definition of Kripke and Kreisel 1967) :

Technische Universität München

The creative subject has a proof of proposition A at stage m $(\Sigma \vdash_m A)$ iff

(CS1) For any proposition A, $\Sigma \vdash_m A$ is a *decidable* function of A, i.e. $\forall x \in \mathbb{N} \ (\Sigma \vdash_x A \lor \neg \Sigma \vdash_x A)$

(CS2) $\forall x, y \in \mathbb{N} \ (\Sigma \vdash_x A \to (\Sigma \vdash_{x+y} A))$

(CS3) $\exists x \in \mathbb{N} (\Sigma \vdash_x A) \leftrightarrow A$

A weaker version of CS3 is G. Kreisel's "Axiom of Christian Charity" (1967)

(CC) $\neg \exists x \in \mathbb{N} (\Sigma \vdash_x A) \rightarrow \neg A.$

Fan Principle and Fan Theorem

The *fan principle* states that for every fan T in which every *branch* at some point satisfies a property A, there is a *uniform bound* on the depth at which this property is met. Such a property is called a *bar* of T.

FAN Principle:	$\forall \alpha \in T \exists n A(\alpha(\overline{n})) \rightarrow \exists m \forall \alpha \in T \exists n \leq m A(\alpha(\overline{n}))$ with α choice sequences and $\alpha(\overline{n})$ the <i>initial segment</i> of α with the first <i>m</i> elements.
FAN Theorem:	Every <i>continuous real function</i> on a <i>closed interval</i> is <i>uniformly continuous</i> .

Proof: Fan Principle

Brouwer's Bar Principle for the Universal Spread

The *bar principle* provides *intuitionistic mathematics* with an *induction principle* for trees. It expresses a *well-foundedness principle* for *spreads* with respect to *decidable properties* :

 $\forall \alpha \ \forall n \ A(\alpha(\overline{n})) \lor \neg A(\alpha(\overline{n}))) \land \forall \alpha \ \exists n \ A(\alpha(\overline{n})) \land \forall \alpha \ \forall n \ A(\alpha(\overline{n})) \to B(\alpha(\overline{n}))) \land \\ \forall \alpha \ \forall n(\forall m \ B(\alpha(\overline{n}) \cdot m) \to B(\alpha(\overline{n})))) \to B(\varepsilon) \\ \text{with } \varepsilon \text{ empty sequence.}$

The Fan Principle is not universally true in Classical Mathematics

The simplest form of the fan principle is the contraposition of binary König's lemma :

FAN_{KL}:

 $T(f) \land \forall b \leq_1 1 \exists x^0 (f(\overline{bx}) \neq_0 0) \rightarrow \exists x^0 \forall b \leq_1 1 \exists \widetilde{x} \leq x (f(\overline{b} \widetilde{x}) \neq_0 0)$ where T(f) expresses that f is the *characteristic function* of *binary tree* and $1 \coloneqq \lambda x^0$. 1^0

In this form, the *fan principle* is *classically valid* as WKL (Weak König's Lemma). In *intuitionistic mathematics*, there is also the much more *general form* :

FAN:

 $\forall f \leq_1 1 \exists x^0 A(f, x) \rightarrow \exists x^0 \forall f \leq_1 1 \exists \widetilde{x} \leq_0 x A(f, \widetilde{x})$ with arbitrary formula *A*.

4. Constructive Reverse Mathematics

Reverse Mathematics in Antiquity

Since Euclid (Mid-4th century – Mid 3rd century BC), axiomatic mathematics has started with axioms to deduce a theorem. But the "forward" procedure from axioms to theorems is not always obvious. How can we find appropriate axioms for a proof starting with a given theorem in a <u>"backward</u>" (reverse) procedure?

Pappos of Alexandria (290-350 AC) called the "*forward*" *procedure* as "*synthesis*" with respect to Euclid's *logical deductions* from *axioms* of geometry and *geometric constructions* (Greek: "*synthesis*") of corresponding figures. The *reverse search procedure of axioms* for a given theorem was called "<u>analysis</u>" with respect to *decomposing* a *theorem* in its *necessary* and *sufficient conditions* and the *decomposition* of the *corresponding figure* in its *building blocks*.

Classical Reverse Mathematics

Reverse mathematics is a modern *research program* to determine the *minimal axiomatic system* required to *prove theorems*. In general, it is *not possible* to start from a *theorem* τ to prove a *whole axiomatic subsystem* T_1 . A *weak base theory* T_2 is required to *supplement* τ :

If $T_2 + \tau$ can prove T_1 , this *proof* is called a *reversal*. If T_1 proves τ and $T_2 + \tau$ is a *reversal*, then T_1 and τ are said to be *equivalent over* T_2 .

Reverse mathematics allows to determine the *proof-theoretic strength* resp. *complexity* of *theorems* by *classifying* them with respect to *equivalent theorems* and *proofs*. Many *theorems* of *classical mathematics* can be *classified* by *subsystems* of *second-order arithmetic* \mathbb{Z}_2 with *variables* of *natural numbers* and *variables* of *sets of natural numbers*.

The Subsystems of Second-Order Arithmetics \mathcal{Z}_2

Arithmetical formulas can be *classified* according to the *arithmetical hierarchy* $\sum_{n}^{0} \prod_{n}^{0}$ and Δ_{n}^{0} . We can distinguish $\sum_{n}^{0} \prod_{n}^{0}$ and Δ_{n}^{0} - schemas of *induction* and *comprehension*. That is also possible for the *analytical hierarchy* $\sum_{n}^{1} \prod_{n}^{1}$ and Δ_{n}^{1}

A *structure* of an (*arithmetical*) *set M* defines its *variables* and *non-logical symbols* (constants, operations) satisfying relations between *variables* : e.g., $\mathbb{Q} = (M, +_{\mathbb{Q}}, -_{\mathbb{Q}}, \cdot_{\mathbb{Q}}, \mathbf{0}_{\mathbb{Q}}, I_{\mathbb{Q}}, <_{\mathbb{Q}}, =_{\mathbb{Q}})$ *structure* of *rational numbers*.

A *model* of a *set* of (*arithmetical*) *formulas* is a *structure* with the *same non-logical symbols* and all *formulas* in the set are in the *model* as well.

The *arithmetical* and *analytical hierarchies* yield *classifications* of *axiomatic subsystems* of Z_2 with *increasing proof-theoretic power* and corresponding *structures* of Z_2 -models.

Distinguished Z_2 -Subsystems of Reverse Mathematics

The following subsystems have increasingly proof-theoretic power starting with the weakest subsystem RCA_0 : <u>Recursive Comprehension Axiom (RCA_0)</u>:

 $RCA_0 = Peano \ axioms + \sum_{1}^{0} -induction + \Delta_1^0 - comprehension.$

 $\omega - model \ S \text{ satisfies} \qquad (1) \ S \neq \emptyset$ (2) $A \in S$ and $B \in S$ imply $A \oplus B \in S$ (3) $A \in S$ and $B \leq_T A$ (*B* Turing-reducible to *A*) imply $B \in S$

The *minimum* ω – *model* of *RCA*⁰ is the *computable sets*.

Examples of theorems provable in RCA₀:

- Intermediate value theorem
- Soundness theorem
- Gödel's completeness theorem
- Baire category theorem

Distinguished Z_2 -Subsystems of Reverse Mathematics

Technische Universität München

Arithmetical Comprehension Axiom (ACA₀):

 $ACA_0 = RAC_0 + Arithmetical Comprehension$

ACA₀ has a *comprehension scheme* for *all arithmetical formulas* of the *arithmetical hierarchy*.

Examples of theorems equivalent over RCA₀:

- ACA₀
- Sequential compactness of [0,1] and compact metric spaces
- Existence of the strong algebraic closure of a countable field
- König's lemma for subtrees of $\mathbb{N}^{\mathbb{N}}$
- Least upper bound principle for sequences of real numbers.

Distinguished Z_2 -**Subsystems of Reverse Mathematics** <u>Weak Σ_1^1 -choice (Σ_1^1 -WC)</u>:

 $\sum_{1}^{1} - WC = RCA_{0} + Weak \sum_{1}^{1} - choice$

If $\forall n \exists ! x \ \varphi(n, x)$, then $\exists \{y_n | n < \omega\} \ \forall n \ \varphi(n, y_n)$ with φ arithmetic

 Δ_1^1 – comprehension (Δ_1^1 – CA₀):

 $\Delta_1^1 - CA_0 = RCA_0 + \Delta_1^1 - comprehension$

 $\Delta_1^1 - CA_0$ has a *comprehension scheme* for all $\Delta_1^1 - formulas$ of *hyperarithmetics*

 Σ_1^1 - choice (Σ_1^1 - C):

 $\sum_{1}^{1} - C = RCA_{0} + \sum_{1}^{1} - choice$

Like \sum_{1}^{1} – WC *without assuming uniqueness*.

Arithmetic transfinite recursion (ART₀):

 $ART_0 = RCA_0 + arithmetic comprehension ($ *iterated transfinitely*)

Z_2 - Subsystems and Philosophical Research Programs

Technische Universität München

The *five* most commonly used Z_2 - *subsystems* in *reverse mathematics* correspond to *philosophical programs* in *foundations of mathematics* with *increasing prooftheoretic power* starting with the *weakest* RCA₀-*subsystem*.

RCA0:Turing's computabilityWKL0:Hilbert's finitistic reductionismACA0:Weyl's & Lorenzen's predicativityATR0:Friedman's & Simpson's predicative reductionism $\Pi_1^1 - CA_0$:impredicativity

 $\Delta_1^1 - CA_0$ yields systems of hyperarithmetic analysis (Feferman et al.) with Δ_1^1 -predicativism :

T is a theory of hyperarithmetic analysis iff

- i. its ω -models are closed under joins and hyperarithmetic reducibility
- ii. it *holds* in HYP(x) for all x

Constructive Reverse Mathematics

Classical reverse mathematics (Friedmann/Simpson) uses *classical logic* and *classification of prooftheoretic strength* with RCA₀ (Δ_1^0 -*recursive comprehension*) as *weakest subsystem*.

Constructive reverse mathematics (Ishihara et al.) uses *intuitionistic logic* and *Bishop's constructive mathematics* (BISH) as *weakest subsystem* of a *constructive classification* (Bishop/Bridges/Vita/Richman)

BISH = Z₂ + Intuitionistic Logic + Axioms of Countable, Dependent and Unique Choice

Intuitionistic Mathematics (Brouwer, Heyting et al.):

INT = BISH + *Axiom of Continuous Choice* + *Fan Theorem*

Constructive Recursive Mathematics (Markov et al.):

RUSS = BISH + *Markov's Principle* + *Church's Thesis*

Classical Mathematics (Hilbert et al.):

CLASS = BISH + Principle of Excluded Middle + Full Axiom of Choice

5. Constructive Foundations of Financial Mathematics

Fundamental Theorem of Asset Pricing in Financial Mathematics

According to the *fundamental theorem of asset pricing*, in *arbitrage-free* ("*fair*") *markets*, the "*fair*" *prices* are given by expectations under equivalent martingale measures. A *martingale* can be illustrated by a *fair game* where knowledge of past events never helps predict the mean of the future winnings.

Definition of a discrete-time martingale:

A discrete-time martingale is a discrete-time stochastic process X_1, X_2, X_3, \dots that satisfies for any time n $E(|X_n|) < \infty$ $E(X_{n+1}|X_1, \dots, X_n) = X_n$.

In short, the *fundamental theorem of asset pricing states* that there does not exist an arbitrage strategy (*arbitrage-free market*) iff there exist an *equivalent martingale measure* (Föllmer/Schied 2012).

Lemma:

There exists an *arbitrage strategy* $\xi \Leftrightarrow$ There exists a vector $\mu \in \mathbb{R}^m$ such that $\mu \cdot (C - \pi) \in \mathcal{Y}_n$

with $C - \pi \coloneqq (c_{ij} - \pi_i)_{i=2,...,m+1;j=1,...,n}$, $\pi = (\pi_1, ..., \pi_m, \pi_{m+1}) \in \mathbb{R}^{m+1}$ prices of the assets at present time 0, and price c_{ij} of the *i*-th asset in case *j* with $C = (c_{ij})$.

Therefore, excluding the existence of arbitrage strategies (arbitrage-free markets) can be formalized by $\{\xi \cdot A | \xi \in \mathbb{R}^m\} \cap \mathcal{Y}_n = \emptyset$ with $A \coloneqq C - \pi$ and $\mathcal{Y}_n \coloneqq \{(x_1, ..., x_n) \in \mathbb{R}^n | \sum_{i=1}^n x_i > 0 \text{ and } 0 \le x_i \text{ for all } i \}$.

Existence of an equivalent martingale measure means formally that there is a vector $p \in \mathcal{P}_n$ with $C \cdot p = \pi$ and $\mathcal{P}_n \coloneqq \{(x_1, \dots, x_n) \in \mathbb{R}^n | \sum_{i=1}^n x_i = 1 \text{ and } 0 < x_i \text{ for all } i \}.$

Fundamental Theorem of Asset Pricing :

FTAP

$$\{\xi \cdot A | \xi \in \mathbb{R}^m\} \cap \mathcal{Y}_n = \emptyset \Leftrightarrow \exists p \in \mathcal{P}_n \ (A \cdot p = 0)$$

Constructive Equivalence of FTAP with Markov's Principle (RUSS)

Markov's Principle :

MP

SEP

 $\neg \neg \exists n A(n) \rightarrow \exists n A(n) \text{ with quantifier-free } A(n),$ equivalently in terms of *real numbers*: $\forall x \in \mathbb{R}(\neg (x = 0) \rightarrow |x| > 0)$

Separating Hyperplane Principle :

Let (H, \langle, \rangle) be a *Hilbert space* with $C \subseteq H$ convex, closed, and located. Let $x_1, ..., x_n \in H$ with $C \cap C(x_1, ..., x_n) = \emptyset$. \Rightarrow There exists $\varepsilon > 0$ and $p \in H$ such that $\langle p, x - c \rangle \ge \varepsilon$ for all $x \in C(x_1, ..., x_n)$ and $c \in C$.

SEP \Leftrightarrow **FTAP** \Leftrightarrow **MP** (Berger/Svindland 2016)

Intuitionism and Constructivism in Financial Mathematics

Brouwer's Intuitionistic Fan Theorem :

FAN Every uniformely continuous function $f: [0, 1] \rightarrow \mathbb{R}^+$ has positive infimum.

Constructive Version of Fan Theorem :

FAN_{con} Every *uniformely continuous convex function* $f: X \to \mathbb{R}^+$ has *positive infimum* (with X convex hull of finitely many vectors).

Constructive Foundation of Fundamental Theorem of Asset Pricing :

Value of Risk in Financial Mathematics

VaR

Given some *confidence level* $\alpha \in (0, 1)$, the *Value at Risk* (VaR) of the *portfolio value X* at the *confidence level* α is given by the smallest number $m \in \mathbb{R}$ such that the probability of a loss is not larger than the *confidence level* α :

 $\operatorname{VaR}_{\alpha}(X) = \inf \{ m \in \mathbb{R} | P(X + m < 0) \le \alpha \}$.

Value at Risk (VaR) is positively homogeneous, but not in general a coherent risk measure (sub-additivity). Hence, it is not convex. An immediate consequence is that VaR might discourage diversification.

VaR is, however, *coherent*, under the *assumption of normally distributed losses* when the *portfolio* value is a *linear function of the asset* prices. In this case VaR becomes *equivalent* to a *mean-variance approach* where the risk of a *portfolio* is measured by the *variance of the portfolio's return*. The *average Value at Risk* (AVaR) is defined as

AVaR

AVaR_{λ} = $\frac{1}{\lambda} \int_0^{\lambda} VAR_{\alpha}(X) d\alpha$ at level $\lambda \in (0, 1]$

Definition of Coherent Risk Measure

A functional $\rho: L \to \mathbb{R}$ is said to be a *coherent risk measure* for *L* if it satisfies the following properties for values $X_1, X_2 \in L$ of *portfolios*:

<u>Monotonicity</u>: If $X_1, X_2 \in L$ and $X_1 \leq X_2$, then $\rho(X_1) \leq \rho(X_2)$.

<u>Sub-additivity</u>: If $X_1, X_2 \in L$, then $\rho(X_1 + X_2) \leq \rho(X_2) + \rho(X_2)$.

The risk of two portfolios together cannot get any worse than adding the two risks separately. This is the *diversification principle*.

<u>Positive homogeneity</u>: If $\alpha \ge 0$ and $X \in L$, then $\rho(\alpha X) = \alpha \rho(X)$. If you double your portfolio then you *double your risk*. <u>Translation invariance</u>: If $m \in R$ and $X \in L$, then $\rho(X + m) = \rho(X) - m$.

Sub-additivity and positive homogeneity can be replaced by the notion of convexity:

If $X_1, X_2 \in L$ and $0 \le \lambda \le 1$, then $\rho(\lambda X_1 + (1 - \lambda)X_2) \le \lambda \rho(X_1) + (1 - \lambda)\rho(X_2)$

Definition of Convex Risk Measure

A dual representation of a convex risk measure (Föllmer/Schied 2008) computes the worst case expectation taken over all models Q and penalized by $\pi(Q)$. The class M of possible probabilistic models is a set of probability measures such that the expectation $E_Q(X)$ is well defined for all models Qand portfolios X:

$$\rho(X) = \sup_{Q \in M} \left(E_Q(-X) - \pi(Q) \right)$$

The *class of models* serves as *stress tests*. One does *not rely* on a *fixed model*, but chooses the *sure side* for every position and focuses on the corresponding *worst case model*. Thus, the *model ambiguity* is explicitly considered during the procedure.

6. Real Computing in Numerical Mathematics

John von Neumann on Formal Logic, Automata, and Mathematics

"There exists today a very elaborate system of formal logic, and specifically, of logic as applied to mathematics. This is a discipline with many good sides, but also serious weakness ...

The reason for this is that it deals with rigid, all-or-none concepts, and has very little contact with the continuous concept of the real or of the complex number, that is, with mathematical analysis. Yet analysis is the technically most successful and best-elaborated part of mathematics..."

John von Neumann, Hixon Symposium Lecture 1948

Search Algorithm over Real Numbers ${\mathbb R}$ and Complex Numbers ${\mathbb C}$

Newton's method is a typical search algorithm of numerical analysis and scientific computation. It is an iterative method to approximate the roots of nonlinear equations.

Given an *initial approximation a* to a root of the polynomial equation f(z) = 0. Newton's method replaces *a* by the *exact solution a*' of the *best linear approximation* to *f* which is given by the tangent to the graph of *f* at point (a, f(a)). With *a*' the approximation is iterated to generate *a*'', etc.

The algorithm is defined by Newton's endomorphism $N_f: \mathbb{C} \to \mathbb{C}$ with $N_f(z) = z - \frac{f(z)}{f'(z)}$

Newton's method is not generally convergent.

Search Machines over Real Numbers ${\mathbb R}$ and Complex Numbers ${\mathbb C}$

Newton's machine is represented by a *finite directed graph* with *four types of nodes - input, computation, branch,* and *output -* each with associated functions and conditions on *incoming* and *outcoming edges* (L. Blum, F. Cucker, M. Shub, S. Smale 1998, Chapter 1)

For an *input* z_0 the machine generates the *orbit* $z_0, z_1 = N_f(z_0), z_2 = N_f(z_1), ..., z_{k+1} = N_f(z_k) = N_f^{k+1}(z_0), ...$ The stopping rule is "stop if $|f(z_k)| < \mathcal{E}$ and output z_k ." If $N_f(z_k)$ is *undefined* at some stage, there is no output.

The *machine* will *not* in general halt on all inputs (e.g. infinite loops). The set $\Omega \subset \mathbb{C}$ is called the *halting set of the machine* iff it contains all inputs for which the machine halts with an output. The input-output map ϕ is defined on Ω with $\phi: \Omega \to \mathbb{C}$.

Newton's machine is actually a machine over \mathbb{R} with $\mathbb{C} = \mathbb{R}^2$ as input, output and state space. Newton's endomorphism (computation node) is given by a rational function (quotient of two polynomials) $g = (g_1, g_2) : \mathbb{R}^2 \to \mathbb{R}^2$ with $g_1(x, y) = \operatorname{Re} N_f(x + iy)$ and $g_2(x, y) = \operatorname{Im} N_f(x + iy)$.

Computing Endomorphism of Graphic Machine *M* over Ring *R*

Let $\mathcal{N} = \{1, ..., N\}$ be the set of nodes of M (with 1 the input node and N the output node) and S its state space. $\mathcal{N} \times S$ is called the *full state space* of the machine with the computing endomorphism $H: \mathcal{N} \times S \longrightarrow \mathcal{N} \times S.$

that is, H maps each node/state pair (η, x) to the unique next node/state pair (η', x') determined by the graph of M and the associated maps

(Blum/ Shub/ Smale 1989).

Let $\gamma(=\gamma_x)$ be the *computation path* $\eta^0 = 1, \eta^1, ..., \eta^k, ...$ and let $\gamma(k)$ be the *initial computation path* $(\eta^0, \eta^1, ..., \eta^k) \in \mathcal{N}^{k+1}$ of γ with *length k*. We call $\mathcal{V}_{\gamma_{(k)}} = \{x' \in \mathcal{I}_M | \gamma_{x'}(k) = \gamma(k)\}$ the *initial path set* with all inputs whose computation paths coincide with γ for the first *k* steps.

Technische Universität München

Computation Paths and Branching Conditions

Initial path sets are characterized by the branching conditions along the path $\gamma(k)$ with two sets of left and right step-k branching functions

 $L_{\gamma(k)} = \{ f_{\gamma(k')} | k' < k, k' \text{ branch step in } \gamma, \text{ and } \eta^{k'+1} = \beta^-(\eta^{k'}) \}$ $R_{\gamma(k)} = \{ f_{\gamma(k')} | k' < k, k' \text{ branch step in } \gamma, \text{ and } \eta^{k'+1} = \beta^+(\eta^{k'}) \}.$

Then, in case *R* is ordered, the initial path set is

$$\mathcal{V}_{\gamma_{(k)}} = \{x \in \mathcal{I}_M | f(x) < 0, g(x) \ge 0, f \in L_{\gamma(k)}, g \in R_{\gamma(k)}\}$$

or, in case *R* is unordered,
 $\mathcal{V}_{\gamma_{(k)}} = \{x \in \mathcal{I}_M | f(x) \neq 0, g(x) = 0, f \in L_{\gamma(k)}, g \in R_{\gamma(k)}\}$

A subset S of \mathbb{R}^n is basic semi-algebraic over R in the ordered case (or basic quasi-algebraic, in the unordered case) if S is the set of elements in \mathbb{R}^n that satisfy a finite system of polynomial equalities and inequalities over R. A semi-algebraic (or quasi-algebraic) set is a finite union of basic semi-algebraic (or basic quasi-algebraic) sets.

Halting Sets as Semi-Algebraic Sets

(1) If *R* is an ordered ring or field, then the initial path set $\mathcal{V}_{\gamma_{(k)}}$ is basic semialgebraic (or basic quasi-algebraic in the unordered case).

(2) If $\gamma_1(k) \neq \gamma_2(k)$, then $\mathcal{V}_{\gamma_1(k)} \cap \mathcal{V}_{\gamma_2(k)} = \emptyset$.

Let $\Gamma_T = \{\gamma_x(T) | T_M(x) \le T \text{ for } x \in \mathcal{I}_M\}$ be the set of time-T halting paths with halting time $T_M(x)$, i.e. the least such T with $T_M: \Omega_M \to \mathbb{Z}^+$. The set of halting paths of M is $\Gamma_M = \bigcup_{T < \infty} \Gamma_T$ and the set of minimal halting paths $\Gamma'_M = \{\gamma \in \Gamma_M | N \text{ occurs only once in } \gamma\}$.

For any machine M over R the halting set $\Omega_M = \bigcup_{\gamma \in \Gamma'_M} \mathcal{V}_{\gamma}$ is a countable disjoint union of basic semi-algebraic (resp. basic quasi-algebraic) sets.

R.

Klaus Mainzer

Computability and Decidability over Ring *R*

For $l, m \leq \infty, a$ (partial) map $\varphi: \mathbb{R}^l \to \mathbb{R}^m$ is *computable* over R iff there is a *machine* M over R such that its *halting set* $\Omega_M = \Omega_{\varphi}$, the *domain* of φ , and $\phi_M(x) = \varphi(x)$ for all $x \in \Omega_{\varphi}$ and *input-output map* $\phi_M: \Omega_M \to \mathcal{O}$ (*output space*).

A set $Y \subset \mathbb{R}^n$ is called *recursive enumerable* over \mathbb{R} iff $Y = \Omega_M$ (*halting set*) for some *machine* M over \mathbb{R} . (Y is *not computable* for $\mathbb{R} = \mathbb{R}$.) It is said to be *decidable* iff it and its *complement* are *both recursive enumerable* over

Undecidability of Newton's Method

<u>Theorem</u>: The set of points that converge under Newton's method is generally undecideable over \mathbb{R} .

Proof: It is sufficient to use the *cubic* $f(x) = x^3 - 2x + 2$ to obtain the *undecidability result*. It is known that the *set of points* that do *not converge* to a *root* of *f* under *iteration by Newton's method* is exactly a *Cantor set*, i.e. *uncountable*. A *Cantor set cannot* be the *countable union of semi-algebraic sets*.

(L. Blum, F. Cucker, M. Shub, S. Smale 1998, p. 55)

7. Bridging Logic, Mathematics, Computer Science, and Philosophy

Proof Theory:

- intuitionistic/minimal logic
- functional interpretation
- information system
- proof mining

Mathematics:

- numerical analysis
- functional analysis
- mathematical physics
- financial mathematics

CORE: constructive mathematics reverse mathematics (*"degrees of constructivity"*)

Computer Science:

- functional programing
- scientific computing
- real (analog) computing
- program extraction

Philosophy:

- nominalism
- intuitionism
- predicativism
- constructivism

CORE, Ockham, and "The Name of the Rose"

Ockham's razor and plea of ontological reductionism did not only influence modern logic and science, but also literature. In Umberto Eco's novel "Il nome della rosa" (1980), the central character, the Franciscan friar William of Baskerville, alludes both to the philosopher William of Ockham and the fictional detective Sherlock Holmes (compare Conan Doyle's novel "The Hound of Baskerville").

According to Ockham's razor, William of Baskerville only follows logical rigorousness and facts, and avoids speculative hypotheses in his detective work. As philosopher, he is a nominalist in the famous debate on universals. Thus, he is a forerunner of constructive foundations in science and even politics, starting with basic individuals (in mathematics "natural numbers"), arguing step by step without circular conclusions ("predicativism"), and economical with ontological abstractions (principle of parsimony):

"Stat rosa pristina nomine, nomina nuda tenemus."

"The rose of old remains only in its name; we hold only naked names."

LENORE BLUM FELIPE CUCKER MICHAEL SHUB STEVE SMALE WITH A FOREWORD BY RICHARD M. KARP Klaus Mainzer

Thinking in Complexity

The Computational Dynamics of Matter, Mind, and Mankind

Fifth Edition

Springe

MUNICITS Munich Center for Technology in Society

Klaus Mainzer

Technische Universität München

Grundlehren der mathematischen Wissenschaften. 279 A Series of Comprehensive Studies in Mathematics

Errett Bishop Douglas Bridges

Constructive Analysis

Springer-Verlag Berlin Heidelberg New York Tokyo

HEUNDNIVERSITY PRESS

KLAUS MAINZER

INFORMATION

ALGORITHMUS - WAHRSCHEINLICHKEIT KOMPLEXITÄT - QUANTENWELT - LEBEN GEHIRN - GESELLSCHAFT

SPRINGER BRIEFS IN COMPLEXITY Klaus Mainzer · Leon O. Chua The Universe as Automaton From Simplicity and Symmetry to Complexity

Klaus Mainzer Die Berechnung der Welt Von der Weltformel zu Big Data

C.H.Beck

MUNICIS Munich Center for Technology in Society

Klaus Mainzer

ТШП

World Scientific

Hier klicken Blick ins Buch!

Klaus Mainzer + Leon Chus

LOCAL ACTIVITY PRINCIPLE

Künstliche Intelligenz — Wann übernehmen die Maschinen?

Jeder kennt sie. Smartphones, die mit uns sprechen, Armbanduhren, die unsere Gesundheitsdaten aufzeichnen, Arbeitsabläufe, die sich automatisch organisieren, Autos, Flugzeuge und Drohnen, die sich selber steuern, Verkehrs- und Energiesysteme mit autonomer Logistik oder Roboter, die ferne Planeten erkunden, sind technische Beispiele einer vernetzten Welt intelligenter Systeme. Sie zeigen uns, dass unser Alltag bereits von KI-Funktionen bestimmt ist.

Auch biologische Organismen sind Beispiele von intelligenten Systemen, die in der Evolution entstanden und mehr oder weniger selbstständig Probleme effizient lösen können. Gelegentlich ist die Natur Vorbild für technische Entwicklungen. Häufig finden Informatik und Ingenieurwissenschaften jedoch Lösungen, die sogar besser und effizienter sind als in der Natur.

Seit ihrer Entstehung ist die KI-Forschung mit großen Visionen über die Zukunft der Menschheit verbunden. Löst die "künstliche Intelligenz" also den Menschen ab? Dieses Buch ist ein Plädoyer für Technikgestaltung: KI muss sich als Dienstleistung in der Gesellschaft bewähren.

springer.com

Mainzer

Künstliche Intelligenz – Wann übernehmen die Maschinen?

Klaus Mainzer Künstliche Intelligenz – Wann übernehmen die Maschinen?

0100 0110

1010 1000 1010 0110 0110

0111 0100 1010 1010 1000 1010 D Springer

1010 1000

0111 0100

1010 1010 1000