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Suppose we start at a point ξ in the interior of a located
subset C of a normed space X and move linearly towards a
point z in the metric complement of C . Are we able to tell
when we are crossing the boundary of C?
In general, the constructive answer is no.
However, our geometric intuition suggests that when C is
convex, we might succeed in pinpointing boundary crossing
points.
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Our context is a normed space X . Note that if x , y ∈ X ,
then x 6= y (x and y are distinct) means ‖x − y‖ > 0.
A subset C of X has three types of complement:

• the logical complement

¬C = {x ∈ X : ∀y∈C ¬(x = y)} ,
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Our context is a normed space X . Note that if x , y ∈ X ,
then x 6= y (x and y are distinct) means ‖x − y‖ > 0.

A subset C of X has three types of complement:

• the logical complement

¬C = {x ∈ X : ∀y∈C ¬(x = y)} ,

• the complement

∼C = {x ∈ X : ∀y∈C (x 6= y)} ,
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Our context is a normed space X . Note that if x , y ∈ X ,
then x 6= y (x and y are distinct) means ‖x − y‖ > 0.
A subset C of X has three types of complement:

• the logical complement

¬C = {x ∈ X : ∀y∈C ¬(x = y)} ,

• the complement

∼C = {x ∈ X : ∀y∈C (x 6= y)} ,

• the metric/apartness complement

−C = {x ∈ X : ∃r>0∀y∈C (‖x − y‖ ≥ r)}
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about convexity.

Lemma 1 Let C be a convex subset of X , ξ an interior
point of C , and r a positive number such that B(ξ, r) ⊂ C.
Let z 6= ξ, and let z ′ = tξ + (1− t)z where 0 < t < 1. If
B(z , tr) intersects C , then B(z ′, t2r) ⊂ C.
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Our boundary-crossing theorem uses three geometric lemmas
about convexity.

Lemma 1 Let C be a convex subset of X , ξ an interior
point of C , and r a positive number such that B(ξ, r) ⊂ C.
Let z 6= ξ, and let z ′ = tξ + (1− t)z where 0 < t < 1. If
B(z , tr) intersects C , then B(z ′, t2r) ⊂ C.

Lemma 2 Let C be an open convex subset of X such that
C ∪−C is dense in X . Let ξ ∈ C and z ∈ −C. Then
(C ∪−C ) ∩ [ξ, z ] is dense in [ξ, z ].
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The third lemma is almost trivial, yet remarkably useful.

Lemma 3 Let x1, x2 be distinct points of X ; let
x3 = λx1 + (1− λ) x2 with λ 6= 0, 1. For all α, β > 0, if
‖x − x1‖ < α/ |λ| and ‖y − x2‖ < β/ |1− λ|, then

‖λx + (1− λ)y − x3‖ < α+ β.
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The third lemma is almost trivial, yet remarkably useful.

Lemma 3 Let x1, x2 be distinct points of X ; let
x3 = λx1 + (1− λ) x2 with λ 6= 0, 1. For all α, β > 0, if
‖x − x1‖ < α/ |λ| and ‖y − x2‖ < β/ |1− λ|, then

‖λx + (1− λ)y − x3‖ < α+ β.

One application:

Proposition 1 If C is an inhabited open convex subset of
X , then −C is dense in ∼C .
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A more significant application of Lemma 3 is in the proof of
our boundary crossing theorem:

Theorem 1 Let C be an open convex subset of a Banach
space X , such that C ∪−C is dense in X , and let ξ ∈ C.
For each z ∈ −C and each t ∈ [0, 1] write

zt = tξ + (1− t)z .

Then the following hold:
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(a) γ(ξ, z) = inf{t ∈ [0, 1] : zt ∈ C} exists, and
0 < γ(ξ, z) < 1.

(b) zγ(ξ,z ) is the unique intersection of [ξ, z ] with
the boundary ∂C of C .

(c) If γ(ξ, z) < t ≤ 1, then zt ∈ C .
(d) If 0 ≤ t < γ(ξ, z), then zt ∈ −C .

Moreover, the boundary crossing map (ξ, z) zγ(ξ,z ) of
C ×−C into ∂C is continuous.
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all x , y ∈ C and all t > 0, both x + y and tx belong to C .
In that case, C is convex.

The closure of a cone is a cone, as is the intersection of two
cones.



Boundaries and
Separation

D.S. Bridges

Crossing
Boundaries

Separation

References

A subset C of a vector space X over K is called a cone if for
all x , y ∈ C and all t > 0, both x + y and tx belong to C .
In that case, C is convex.

The closure of a cone is a cone, as is the intersection of two
cones.

If K is a convex subset of X , then the set

c(K ) = {tx : x ∈ K , t > 0}

is a cone– the cone generated by the convex set K .

If X is a normed space and K is open, then so is c(K ).
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Lemma 4 Let K be a bounded, located, convex subset of a
normed space X such that ρ(0,K ) > 0. Then c (K ) is
located.
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Lemma 4 Let K be a bounded, located, convex subset of a
normed space X such that ρ(0,K ) > 0. Then c (K ) is
located.

Proof. Given x0 ∈ X , for all x ∈ X and t > 0 we have

‖x0 − tx‖ ≥ t ‖x‖ − ‖x0‖ ,

so
ρ(x0, tK ) ≥ tρ(0,K )− ‖x0‖ → ∞ as t → ∞.

We can therefore find τ > 0 such that
ρ(x0, c(K )) = ρ(x0, τK ). �
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Lemma 5 Let K and L be open cones in a normed space X
such that K ∪ L is dense in X and K ⊂ ∼L. Then

(i) K ⊂ −L and L ⊂ −K ,
(ii) K ∪−K and L∪−L are dense in X , and
(iii) K and L have a common boundary– namely,

K ∩ L.
If also L = {−x : x ∈ K}, then ∂K is a subspace of X .
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subset K such that ∂K is a hyperplane and the set

{x ∈ X : x ∈ K ∨−x ∈ K}

is dense in X .
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By a half-space of a normed space X we mean a convex
subset K such that ∂K is a hyperplane and the set

{x ∈ X : x ∈ K ∨−x ∈ K}

is dense in X .

The Basic Separation Theorem:

Theorem 2 Let X be a separable normed space, K0 a
bounded, located, open, convex subset of X such that
ρ(0,K0) > 0, and x0 a point of X such that −x0 ∈ K0.
Then there exists an open half-space K of X such that
K0 ⊂ K , ρ(x0,K ) > 0, and the boundary of K is a located
subspace of X that is a hyperplane with associated vector x0.
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The (full) Separation Theorem:

Theorem 3 Let A and B be bounded convex subsets of a
separable normed space X such that the algebraic
difference

{y − x : x ∈ A, y ∈ B}
is located and the mutual distance

d = inf {‖y − x‖ : x ∈ A, y ∈ B}

is positive. Then for each ε > 0 there exists a normed linear
functional u on X , with norm 1, such that

Re u(y) > Re u(x) + d − ε (x ∈ A, y ∈ B) .
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The Berger-Svindland Separation Theorem:

Theorem 4 Let C ,Y be convex subsets of Rn such that

(i) C is convex and compact;

(ii) Y is convex, closed, and located;

(iii) x 6= y for all x ∈ C and y ∈ Y .
Then there exist p ∈ Rn and real α, β such that

〈p, x〉 < α < β < 〈p, y〉

for all x ∈ C and y ∈ Y .
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A crucial step in the proof is showing that

inf{‖x − y‖ : x ∈ C , y ∈ Y } > 0. (1)

Under what conditions can we show that if C ,Y are located
convex subsets of a normed space satisfying (iii), then (1)
holds?
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Recall the following:

I Bishop’s Lemma: if Y is an inhabited, complete,
located subset of a metric space X , then for each
x ∈ X such that x 6= y implies that ρ(x ,Y ) > 0.
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Recall the following:

I Bishop’s Lemma: if Y is an inhabited, complete,
located subset of a metric space X , then for each
x ∈ X such that x 6= y implies that ρ(x ,Y ) > 0.

I A convex subset C of a normed space X is uniformly
rotund if for each ε > 0 there exists δ > 0 such that if
x , x ′ ∈ C and ‖x − x ′‖ > ε, then 1

2 (x + x
′) + z ∈ C

for all z ∈ X with ‖z‖ 6 δ.
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We now have a weak generalisation of Bishop’s Lemma.

Theorem 5 Let K , L be inhabited, complete convex
subsets of a normed space X such that

(a) K is uniformly rotund,

(b) L contains at least two distinct points, and

(c) d ≡ infx∈K ρ(x , L) exists.

Then there exist x∞ ∈ K and y∞ ∈ L such that if x∞ 6= y∞,
then d is positive.
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But we should note that if K is compact and contains at
least two distinct points, then, by uniform rotundity, K
includes a ball centred at their midpoint; that ball, being
closed and located in K , is compact, so the space X is
finite-dimensional.
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