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What is Operations Research?

Since the 2nd World War, operations research has been an interdisciplinary research field of mathematics, 

computer science, and management which should optimize algorithms with economic and societal relevance.

Chair for Operations Research,Technical University of Munich
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Why Constructive Operations Research (CORE)?

Operations research aims at efficient and reliable 

algorithms to solve problems in economy and society.

Trust & security can only be guaranteed

by constructive proofs. 

Therefore, besides mathematics, computer science and 

management, also logic and philosophy come in.
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1. Basics of Computability
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C. Babbage: Computer and Operations Research

The British polymath Charles Babbage (1791-1871), 

mathematician, philosopher, inventor, and mechanical

engineer, is well-known as „father of the computer“ who

originated the concept of a digital programmable computer

with his first mechanical models (e.g., difference machine, 

analytical engine). 

Babbage also published On the Economy of Machinery and 

Manufactures (1832), on the organization of industrial 

production. It was an influential early work of operational 

research with great impact on political economy.



Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Turing’s Theory of Computability

a) a control box in which a 
finite program is placed,

b) a potential infinite tape, 
divided lengthwise into 
squares,

c) a device for scanning, 
or printing on one 
square of the tape at a 
time, and for moving
along the tape or 
stopping, all under the 
command of the control 
box.

Every computable procedure (algorithm) can 
be simulated by a Turing machine (Church’s 
thesis ). Every Turing program can be 
simulated by a universal Turing machine
(general purpose computer ).

A Turing machine is a 
formal procedure, 
consisting of
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2. Computability in Higher Types
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Approximations of Computable Functionals
in Information Systems

In order to describe approximations of abstract objects  like functionals by finite ones, we use an 

information system with a countable set A of bits of data (“tokens”) (Scott 1982, Schwichtenberg/Wainer 

2012). Approximations need finite sets U of data which are consistent with each other. An “entailment 
relation ” expresses the fact that the information of a consistent set U of data is sufficient to compute a 

bit of information (“token” ) :

An information system is a structure (𝑨, 𝐂𝐨𝐧, ⊢) with a countable set A (“tokens”), non-empty set  Con 

of finite (“consistent ”) subsets of A and subset ⊢ of 𝐂𝐨𝐧 ⨯ 𝑨 (“entailment relation”) with

i. 𝑼 ⊆ 𝑽 ∈ 𝐂𝐨𝐧 ⟹ 𝑼 ∈ 𝐂𝐨𝐧

ii. 𝒂 ∈ 𝐂𝐨𝐧

iii. 𝑼 ⊢ 𝒂 ∈ 𝐂𝐨𝐧 ⟹ 𝑼 ⊢ 𝒂

iv. a ∈ U ∈ Con ⟹ 𝑼 ⊢ 𝒂

v. 𝑼, 𝑽 ∈ 𝐂𝐨𝐧 ⟹ ∀𝒂 ∈ 𝑽 (𝑼 ⊢ 𝒂) ⟹ (𝑽 ⊢ 𝒃 ⟹ 𝑼 ⊢ 𝒃)

The ideals („objects “) of an information system (𝑨, 𝐂𝐨𝐧, ⊢) are defined as subjects x of A with

i. 𝑼 ⊆ 𝒙 ⟹ 𝑼 ∈ 𝐂𝐨𝐧 (x is consistent )

ii. 𝒙 ⊇ 𝑼 ⊢ 𝒂 ⟹ 𝒂 ∈ 𝒙 (x is deductively closed )

Example: The deductive closure ഥ𝑼 ≔ 𝒂 ∈ 𝑨 𝑼 ⊢ 𝒂 of 𝑼 ∈ 𝐂𝐨𝐧 is an ideal.
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Computable Partial Continuous Functionals of Finite Type

Types are built from base types by the formation of function types 𝝆 → 𝝈. For every type 𝝆, the 

information system 𝓒𝝆 = (𝑪𝝆, 𝐂𝐨𝐧𝝆, ⊢𝝆) can be defined.  

The ideals 𝒙 ∈ 𝓒𝝆 are the partial continuous functionals of type  𝝆 .

Since 𝓒𝝆→𝝈 = 𝓒𝝆 → 𝓒𝝈, the partial continuous functionals of type 𝝆 → 𝝈 will correspond to the 

continuous functions from 𝓒𝝆 to 𝓒𝝈 with respect to the Scott topology. 

A partial continuous functional 𝒙 ∈ 𝓒𝝆 is computable iff it is recursive enumerable as set of tokens.

Partial continuous functionals of type 𝝆 can be used as semantics of a formal functional programming 
language :
Every closed term of type 𝝆 in the programming language denotes a computable partial continuous 
functional of type 𝝆, i.e. a recursive enumerable consistent and deductively closed set of tokens.

Another approach uses recursive equations to define computable functionals (Berger, Eberl, 

Schwichtenberg 2003).
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3. Proof  Mining and Program Extraction
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Proofs as Verification of Truth

The predicate 𝑷 𝒙 ≡ ′ 𝒙 𝒊𝒔 𝒂 𝒑𝒓𝒊𝒎𝒆 𝒏𝒖𝒎𝒃𝒆𝒓′ can be expressed in 

a quantifier-free way as primitive recursive predicate.

Euclid‘s Proof (reductio ad absurdum): Elements IX Prop. 20; M. Aigner/G.M. Ziegler 

2001, pp. 3-6; U. Kohlenbach 2008, p. 15) 

Assume there are finitely many prime numbers 𝒑 ≤ 𝒙

construct 𝒂 ≔ 𝟏 + ς 𝒑≤𝒙
𝒑 𝒑𝒓𝒊𝒎𝒆

𝒑

 𝒂 cannot be prime (because 𝒂 > 𝒑 for all 𝒑 ≤ 𝒙)

 𝒂 contains a prime factor (by the decomposition of every number into prime factors) 

𝒒 ≤ 𝒂 with 𝒒 > 𝒙 ( otherwise q is a prime factor 𝒒 ≤ 𝒙 )

 contradiction to assumption !

Theorem: There are infinitely many prime numbers.
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Proofs are more than Verification!
„What more do we know if we have proved a 
theorem by restricted means than if we merely 
know that it is true?“                                                             

G. Kreisel: Unwinding of Proofs

Consider an existential theorem  𝑨 ≡ ∃𝒙 𝑩(𝒙) (closed):

A weaker requirement is to construct a list of terms 
𝒕𝟏, … , 𝒕𝒏 which are candidates for A, such that 𝑩 𝒕𝟏 ∨ ⋯ ∨

𝑩 𝒕𝒏 holds.  More general:

If 𝑨 ≡ ∀𝒙∃𝒚 𝑩(𝒙, 𝒚), then one can ask for an algorithm p such that

∀𝒙 𝑩 𝒙, 𝒑 𝒙 holds

or – weaker - for a bounding function b that  ∀𝒙 ∃𝒚 ≤ 𝒃 𝒙 𝑩(𝒙, 𝒚).

U. Kohlenbach: Proof Mining (cf. „Applied Proof Theory“ 2008, 
Chapter 2)

If 𝑨 ≡ ∀𝒙∃𝒚 𝑩(𝒙, 𝒚), then one can ask for an algorithm p such that

∀𝒙 𝑩 𝒙, 𝒑 𝒙 holds

or – weaker - for a bounding function b that  ∀𝒙 ∃𝒚 ≤ 𝒃 𝒙 𝑩(𝒙, 𝒚).
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Automatic Program Extraction with MINLOG

Example: Existence proof for “list reversal”

Write 𝒗𝒘 for the result   𝒗 ∗ 𝒘 of appending the list 𝒘 to the list 𝒗,

Write 𝒗𝒙 for the result   𝒗 ∗ 𝒙 of appending one element list 𝒙: to the list 𝒗,

Write 𝒙𝒗 for the result   𝒙 ∷ 𝒗 of writing one element 𝒙 in front of a list 𝒗

Assume Init Rev: 𝑹(nil, nil)

GenRev: ∀𝒗, 𝒘, 𝒙 (𝑹𝒗𝒘 → 𝑹 𝒗𝒙, 𝒙𝒘 )

MINLOG is an interactive proof system which is equipped with tools to 
extract functional programs directly from proof terms. The system is 
supported by automatic proof search and normalization by evaluation as 
an efficient term rewriting device.

Proposition: ∀𝒗 ∈ 𝑻 ∃𝒘 ∈ 𝑻 𝑹𝒗𝒘 („Existence of list w with reverse order of given list v “)
Proof:  Induction on the length of 𝒗
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Goal of Program Extraction in Computer Science: 

Metatheorems of Software

Customers want software which solves a problem. Thus, they require a 
proof that it works. Suppliers answer with a proof of the existence of a 
solution  to the specification of the problem. The proof has been 
automatically extracted  from the formal specification of the problem by a 
proof mining software (e.g., MINLOG).

But, the question arises whether the extraction mechanism of the proof  is 
itself, in general, correct. The metatheorem of soundness guarantees that 
every formal proof can be realized by a normalized extracted term. 
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4.  From Brouwer‘s Creative Subject to FanTheorem
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Intuitionistic Philosophy of Creative Subject
According to Brouwer, mathematical truth is founded 

by construction of a creative subject . Following Kant, 

mathematical construction can only be realized in a 

finite process, step by step in time like counting in 

arithmetic. Thus, for Brouwer, mathematical truth 
depends on finite stages of realization in time by a 
creative subject (in a definition of Kripke and Kreisel

1967) :

The creative subject has a proof of proposition A at stage m
(σ ⊢𝒎 𝑨) iff

(CS1) For any proposition A , σ ⊢𝒎 𝑨 is a decidable function of A , i.e.   ∀𝒙 ∈

ℕ (σ ⊢𝒙 𝑨 ˅ ¬ σ ⊢𝒙 𝑨)

(CS2) ∀𝒙, 𝒚 ∈ ℕ (σ ⊢𝒙 𝑨 → (σ ⊢𝒙+𝒚 𝑨)

(CS3) ∃𝒙 ∈ ℕ (σ ⊢𝒙 𝑨) ↔ 𝑨

A weaker version of CS3 is G. Kreisel’s “Axiom of Christian Charity” (1967)

(CC) ¬∃𝒙 ∈ ℕ σ ⊢𝒙 𝑨 → ¬𝑨.
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Fan Principle and Fan Theorem

∀𝜶 ∈ 𝑻 ∃𝒏 𝑨 𝜶 𝒏 → ∃𝒎 ∀𝜶 ∈ 𝑻 ∃𝒏 ≤ 𝒎 𝑨 𝜶 𝒏

with 𝜶 choice sequences and 𝜶(𝒏) the initial segment of 𝜶 with 
the first 𝒎 elements.

The fan principle states that for every fan T in which every branch at some point 

satisfies a property A, there is a uniform bound on the depth at which this property is 

met. Such a property is called a bar of T.

Proof: Fan Principle

Every continuous real function on a closed  interval  is 
uniformly continuous. 

FAN 

Principle:

FAN 

Theorem:
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Brouwer‘s Bar Principle for the Universal Spread

∀𝜶 ∀𝒏 𝑨 𝜶 𝒏 ∨ ¬𝑨 𝜶 𝒏 ) ∧ ∀𝜶 ∃𝒏 𝑨 𝜶 𝒏 ∧ ∀𝜶 ∀𝒏 𝑨 𝜶 𝒏 → 𝑩 𝜶 𝒏 ) ∧

∀𝜶 ∀𝒏(∀𝒎 𝑩 𝜶 𝒏 ∙ 𝒎 → 𝑩 𝜶 𝒏 )) → 𝑩(𝜺)

with 𝜺 empty sequence.

The bar principle provides intuitionistic mathematics with an induction principle for 

trees. It expresses a well-foundedness principle for spreads with respect to decidable 
properties :
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Intuitionism and Functional Interpretation

In functional interpretation of proofs , the intuitionistically unexplained notion 

of construction is defined by computable functionals of finite type with sets of 

finite approximations which are (primitive ) recursively enumerable.

Thus, the intuitionistically unexplained notion of a “constructive proof at a finite stage ” 

is explained by finite approximation of some computable functional at a finite stage.

As computable functionals of finite type are (mathematical) ideals of information 
systems, constructions do not depend on “mental actions of human creative subjects” 

(i.e. psychology and epistemology), but on finite processes of (mathematically definable ) 
information systems. Humans (Brouwer’s “creative subject”) and computers
(“machines”) are only epistemical resp. technical examples of information systems :

Constructivity and Computability are founded in 
Information Systems!
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5. Reverse Mathematics and Constructivity
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Reverse Mathematics in Antiquity

Since Euclid (Mid-4th century – Mid 3rd century BC), 

axiomatic mathematics has started with axioms to 

deduce a theorem. But the “forward ” procedure from 

axioms to theorems is not always obvious. How can we 

find appropriate axioms for a proof starting with a given 
theorem in a „backward “ (reverse ) procedure ? 

Pappos of Alexandria (290-350 AC) called the “forward ” 
procedure as “synthesis” with respect to Euclid’s 
logical deductions from axioms of geometry and 
geometric constructions (Greek: “synthesis ”) of 
corresponding figures. The reverse search procedure of 
axioms  for a given theorem was called “analysis ” with 
respect to decomposing a theorem in its necessary
and sufficient conditions and the decomposition of the 
corresponding figure  in its building blocks. 
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Classical Reverse Mathematics
Reverse mathematics is a modern research program to determine the minimal 
axiomatic system required to prove theorems. In general, it is not possible to 

start from a theorem 𝝉 to prove a whole axiomatic subsystem 𝑻𝟏. A weak base 
theory 𝑻𝟐 is required to supplement 𝝉:

If 𝑻𝟐 + 𝝉 can prove  𝑻𝟏, this proof is called a reversal.
If 𝑻𝟏 proves 𝝉 and 𝑻𝟐 + 𝝉 is a reversal, then 𝑻𝟏 and 𝝉 are said to be 

equivalent over 𝑻𝟐.  

Reverse mathematics allows to determine the proof-theoretic strength  resp. 

complexity of theorems by classifying them with respect to equivalent 
theorems and proofs. Many theorems of classical mathematics can be 

classified by subsystems of second-order arithmetic ℤ𝟐 with variables of 

natural numbers and variables of sets of natural numbers.
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𝓩𝟐- Subsystems and Philosophical Research Programs

𝐑𝐂𝐀𝟎:        Turing’s computability
𝐖𝐊𝐋𝟎:       Hilbert’s finitistic reductionism
𝐀𝐂𝐀𝟎:        Weyl’s & Lorenzen’s predicativity (with classical logic)

𝐀𝐓𝐑𝟎:        Friedman’s & Simpson’s predicative reductionism
ς𝟏

𝟏 − 𝐂𝐀𝟎:  impredicativity

T is a theory of hyperarithmetic analysis iff

i. its 𝝎-models are closed under joins and hyperarithmetic reducibility

ii. it holds in 𝐇𝐘𝐏(𝒙) for all x

The five most commonly used 𝓩𝟐 - subsystems in reverse mathematics correspond to 

philosophical programs in foundations of mathematics with increasing proof-
theoretic power starting with the weakest  𝐑𝐂𝐀𝟎-subsystem .

∆𝟏
𝟏 − 𝐂𝐀𝟎 yields systems of hyperarithmetic analysis (Feferman et al.) with ∆𝟏

𝟏-

predicativism : 



Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Constructive Reverse Mathematics
Classical reverse mathematics (Friedmann/Simpson) uses classical logic and classification of proof-theoretic 

strength with 𝐑𝐂𝐀𝟎 (∆𝟏
𝟎-recursive comprehension ) as weakest subsystem.

Constructive reverse mathematics (Ishihara et al.) uses intuitionistic logic and Bishop’s constructive 
mathematics (BISH) as weakest subsystem of a constructive classification (Bishop/Bridges/Vita/Richman).

BISH = 𝓩𝟐 + Intuitionistic Logic + Axioms of Countable, Dependent and Unique Choice

Intuitionistic Mathematics (Brouwer, Heyting et al.):

INT = BISH + Axiom of Continuous Choice + Fan Theorem

Constructive Recursive Mathematics (Markov et al.):

RUSS = BISH + Markov‘s Principle + Church‘s Thesis

Classical Mathematics (Hilbert et al.):

CLASS = BISH + Principle of Excluded Middle + Full Axiom of Choice



Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

6. Intuitionistic Type Theory

and Proof Assistants
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Curry-Howard Correspondance
In 1969, the logician W.A. Howard observed that Gentzen’s proof system of natural 

deduction can be directly interpreted in its intuitionistic version as a typed variant of the 

mode of computation known as lambda calculus. 

According to Church, 𝝀𝒂. 𝒃 means a function mapping an element 𝒂 onto the function 

value 𝒃 with 𝝀𝒂. 𝒃[𝒂] = 𝒃. In the following, proofs are represented by terms 𝒂, 𝒃, 𝒄, … ; 

propositions are represented by 𝑨, 𝑩, 𝑪, … . 

[A]                                                           

λ𝑎(λ𝑏. 𝑎) ⋮
𝐵 → 𝐴

(→ I)      𝐴 → (𝐵 → 𝐴)

[A]                                                           

λ𝑎. 𝑏 ⋮
𝐵

(→ I)       𝐴 → 𝐵

Examples:

A proof is a program, and the formula it proves is 

the type for the program.
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Martin-Löf‘s Intuitionistic Type Theory

In addition to the type formers of the Curry-Howard 

interpretation, the logician and philosopher P. 

Martin-Löf extended the basic intuitionistic type 

theory (containing Heyting‘s arithmetic of higher

types 𝐇𝐀𝝎and Gödel‘s system 𝐓 of primitive recursive

functions of higher type) with primitive identity types, 

well founded tree types, universe hierarchies and 

general notions of inductice and inductive–recursive

definitions.  

His extension increases the proof-theoretic strength of the

theory and its application to programming as well as to

formalization of mathematics.



Klaus Mainzer

Munich Center for Technology in Society Technische Universität München

Calculus of Constructions (CoC)
CoC is a type theory of Thierry Coquand which can serve as typed programming language

as well as constructive foundation of mathematics. With inductive types, the calculus of 

inductive constructions (CiC) removes impredicativity (cf. Weyl, Lorenzen). It extends the

Curry-Howard isomorphism to proofs in the full intuitionistic predicate calculus. Coc has

very few basic operators (e.g., λ,∀):

𝐴 ⇒ 𝐵 ≡ ∀𝑥: 𝐴. 𝐵 𝑥 ∉ 𝐵
𝐴 ∧ 𝐵 ≡ ∀𝐶: 𝑃. (𝐴 ⇒ 𝐵 ⇒ 𝐶) ⇒ 𝐶
𝐴 ∨ 𝐵 ≡ ∀𝐶: 𝑃. (𝐴 ⇒ 𝐶) ⇒ 𝐵 ⇒ 𝐶 ⇒ 𝐶
¬𝐴 ≡ ∀𝐶: 𝑃. 𝐴 ⇒ 𝐶
∃𝑥: 𝐴. 𝐵 ≡ ∀𝐶: 𝑃. (∀𝑥: 𝐴(𝐵 ⇒ 𝐶)) ⇒ 𝐶

data types: booleans:                      ∀𝑨: 𝑷. 𝑨 ⇒ 𝑨 ⇒ 𝑨
naturals:                   ∀𝑨: 𝑷. (𝑨 ⇒ 𝑨) ⇒ (𝑨 ⇒ 𝑨)
product 𝑨 × 𝑩: 𝑨 ∧ 𝑩
disjoint union 𝑨 + 𝑩: 𝑨 ∨ 𝑩

logical operators:
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The Coq Proof Assistant
Coq implements a program specification which is based on the Calculus of Inductive

Constructions (CiC) combining both a higher-order logic and a richly-typed functional

language.

The commands of Coq allow

- to define functions or predicates (that can be evaluated efficiently)

- to state mathematical theorems and software specifications

- to interactively develop formal proofs of these theorems

- to machine-check these proofs by a relatively small certification (kernel)

- to extract certified programs to languages (e.g., Objective Caml, Haskell, 

Scheme)

Coq provides interactive proof methods, decision and semi-decision algorithms. 

Connections with external theorem provers is available. 

Coq is a platform for the formalization of mathematics as well as the

development of programs.
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The Language of Proof Assistant Coq

Coq objects are sorted into the Prop sort and the Type sort:

- Prop is the sort of propositions (with type Prop):

e.g., ∀ A,B:Prop, A /\ B −> A \/ B

New predicates can be defined either inductively or by abstracting over

existing propositions: 

e.g., Definition divide (x y:N):=∃z, x ∗ z = y

- Type is the sort for datatypes and mathematical structures (with type Type):

Types can be inductive structures or types for tuples or a form for subsets (Σ-
types): 

e.g., the type of even natural numbers n: N even n

Coq implements a functional programming language supporting these types:

e.g., the pairing function of type z−>z∗z is written fun x =>(x, x)

The heart of Coq is a type-checking algorithm in the language of CiC:
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7.  Univalent Foundations of Mathematics
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From Leibniz’ Analysis Situs to Algebraic Topology

In 1679, Leibniz wrote a letter to Huygens which described his „analysis situs“:

Examples of Leibniz‘s

characteristica geometrica propria:

In modern mathematics, algebraic topology uses tools of abstract algebra to study 

topological spaces. The basic goal is to find algebraic invariants that classify topological 

spaces up to homeomorphism, though usually most classify up to homotopy equivalence.

Euler's Seven Bridges of Königsberg Problem and Polyhedron Formula are the field's 

first theorems. 

𝑨∞𝑩 (coincidence)

𝑨~𝑩 (similarity) 

𝑨 8 𝑩 (congruence)
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Since their very beginning, data types play a crucial role

in computer languages: 

How far can mathematical objects be

represented with types of computer

languages?

Homotopy theory is an outgrowth of algebraic topology 

and homological algebra with relationships to higher 

category theory which can be considered as fundamental 

concepts of mathematics.  

Type theory is a branch of mathematical logic and 

theoretical computer science.

Homotopy type theory (HoTT) interprets types as objects of abstract

homotopy theory. Therefore, HoTT tried to develop a universal 

(„univalent“) foundation of mathematics as well as computer

language with respect to the proof assistant Coq.
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Trust & Security in Mathematics

Nowadays, mathematical arguments had become so complicated that a single 

mathematician rarely can examine them in detail: They trust in the expertise of 

their colleagues. The situation is completely similar to modern industrial labor 

world: According to the French sociologist Emile Durkheim (1858-1917), modern 

industrial production is so complex that it must be organized on the principle of 

division of labor and trust in expertise, but nobody has the total survey.

On the background of critical flaws overlooked by the scientific 

community, Vladimir Voevodsky (1966-2017) no longer trusted  in the 

principle of “job-sharing”. Humans could not keep up with the ever-

increasing complexity of mathematics. Are computers the only solution? 

Thus, his foundational program of univalent mathematics is inspired 

by the idea of a proof-checking software to guarantee trust & security 

in mathematics.
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Intuitionistic Type Theory and Homotopy Theory
Intuitionistic Type Theory Homotopy Theory

types 𝑨 spaces 𝑨

terms 𝒂 points 𝒂

𝒂: 𝑨 𝒂 ∈ 𝑨

dependent type 𝒙: 𝑨 ⊢ 𝑩(𝒙) fibration 𝑩 → 𝑨

identity type 𝐈𝐝𝑨(𝒂, 𝒃) space of paths from 𝒂 to 𝒃

𝒑: 𝐈𝐝𝑨(𝒂, 𝒃) path 𝒑: 𝒂 ⟼ 𝒃

𝜶: 𝐈𝐝𝐈𝐝𝑨(𝒂,𝒃)(𝒑, 𝒒) homotopy 𝜶: 𝒑 ⇒ 𝒒

In intuitionistic type theory, a term 𝒂: 𝑨 can be understood as an element of the type 𝑨 or a 

proof of the proposition 𝑨 or, in homotopy type theory, as a point of the space 𝑨. Proofs 𝒑 of 

identity between two elements 𝒂, 𝒃 of a type 𝑨 are geometrically illustrated as paths

connecting the corresponding points. 

In intuitionistic type theory, all proofs of an identity are not forced to be equal

(Hofmann/Streicher 1998): This was shown by a model where each type is interpreted as a 

groupoid (i.e. a category, in which each morphism is invertible resp. an isomorphism).
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Provability, Constructivity, and Computability in HoTT

HoTT allows mathematical proofs to be translated into a computer programming 

language for computer proof assistants (e.g., Coq) even for advanced mathematical 

categories with “isomorphism as equality”(UA). Therefore, an essential goal of HoTT is :[

type checking ⇒ proof checking in higher categories
(„difficult proofs “)

Besides UA, HoTT is extended by higher inductively defined structures (e.g. inductively

defined spaces with collections of points, paths, higher paths et al.) which can be

characterized by appropriate induction principles. HoTT is consistent with respect to a 

model in the category of Kan complexes (V. Voevodsky). Thus, it is consistent relative to

ZFC (with as many inaccessible cardinals which are necessary for nested univalent 

universes).

But it is still an open question whether it is possible to provide a constructive justification

of the Univalence Axiom (UA).

https://en.wikipedia.org/wiki/Homotopy_type_theory#cite_note-:0-37
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Foundations of 

Mathematics

Constructive Proof Theory
(Computable functionals in information

systems, constructive reverse mathematics)

Proof Assistant
(Coq, Agda, Minlog )

Constructive

Set Theory

Intuitionistic

Type Theory

Homotopy

Type Theory
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8.  Proof-of-Work and Financial Trust
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“The root problem with conventional currency is all the trust that is required to make it work. The central 

bank must be trusted not to debase the currency, but the history of fiat currencies is full of breaches of that 

trust. Banks must be trusted to hold our money and transfer it electronically, but they lend it out in waves of 

credit bubbles with barely a fraction in reserve … With e-currency based on cryptographic proof, without 

the need to trust a third party middleman, money can be secure and transactions effortless.” 

Satoshi Nakamoto 2009

How far were shortcomings of the policy 

frameworks of the major central banks 

responsible for the financial crisis 2008?

From Financial Crisis to Crisis of Trust in Banks
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Who is Satoshi Nakamoto?
Satoshi Nakamoto is the name used by the unknown person 

or people who designed bitcoin (2008) and created its 

original reference implementation (2009). As part of the 

implementation, they also devised the first blockchain 

database. In the process they were the first to solve the 

double-spending problem for digital currency. 

Nakamoto claimed to be a man living in Japan, born on 5 April 

1975. Speculation about the true identity of Nakamoto has 

mostly focused on a number of cryptography and computer 

science experts. Thus, it reminds us of a well-known question in 

mathematics (but in this case, the mathematicians are well 

known):

Who is Niklas Bourbaki?
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Bitcoin as Decentral Currency 

The bitcoin-network is founded on a 

decentral database which is administrated by

all users with a bitcoin software which

registers all transactions of currency.  

The network is peer-to-peer and transactions take place between 

users directly, without an intermediary (e.g. central bank). The 

proof-of-work algorithm is computationally expensive and 

practically secure. 

A wallet stores the information necessary to transact bitcoins.

The exchange rate of bitcoin and other currencies depend

on  supply and demand (speculative bubbles !!!)
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From Blockchain to the Internet of Value

Blockchain is an expandable list

of records (blocks) which are

linked with cryptographic codes.

Each block contains a 

cryptographic hash pointer to a 

previous block, a timestamp and 

transaction data. New blocks are

generated by a consensus

procedure (e.g. proof-of-work

algorithm). 

A blockchain is a decentralized and distributed digital ledger that is used to record transactions of 

digital values across the nodes (computers) resp. users of a network (Internet of Values). The 

record cannot be altered retroactively without the alteration of all subsequent blocks and the 

collusion of the network.

Narayanan, A.; Bonneau, J.; Felten, E.; Miller, A.; Goldfeder, S. 2016
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Each block contains the hash of the preceding block, thus each block has a 

chain of blocks that together contain a large amount of work. Changing a 

block requires regenerating all successors and redoing the work they contain. 

This protects the block chain from tampering. 

It is easy to compute 𝒉𝒂𝒔𝒉 𝒗𝒂𝒍𝒖𝒆 𝒚 = 𝒉(𝒙) from 𝒙 but it's very 

hard to find 𝒙 given only 𝒚. 

A full hash inversion has a known computationally infeasible brute-force 

running time, being O(𝟐𝒌) where 𝒌 is the hash size  𝒌=256 in SHA256.

If a pre-image was found anyone could very efficiently verify it by 

computing one hash.

There is a an asymmetry in full pre-image mining 

(computationally infeasible) vs verification (a single hash 

invocation). 

Security of Hash Functions
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Mining and Proof-of-Work

Generating a new valid block (mining) means solving a cryptographic problem: The 

proof-of-work requires miners to find a number called a nonce, such that when the 

block content is hashed along with the nonce, the result is numerically smaller than 

the network's difficulty target. This proof is easy for any node in the network to 

verify, but extremely time-consuming to generate, as for a secure cryptographic 

hash, miners must try many different nonce values (e.g. 0, 1, 2,…)

Proof-of-Work : (threshold inversely proportional to mining-difficulty)

1. initialize block, compute root-hash from transactions

2. compute hash: h = SHA256(SHA256(block header))

3. if h >= threshold, change nonce (block header) and return to step 2

4. otherwise (h < threshold): valid block found, stop computing and 

publish block.
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Nonce in Blockchain

The nonce is a 32-bit field whose value is set so that the hash of the block 

will contain a run of leading zeros*:

•  Since it is believed infeasible to predict which combination of bits will result in

the right hash, many different nonce values are tried: The hash is recomputed

for each value until a hash containing the required number of zero bits is  found.

• The number of zero bits required is set by the mining difficulty.

• The resulting hash has to be a value less than the current mining difficulty.

•  As this iterative calculation requires time and resources, the presentation of the

block with the correct nonce value constitutes proof of work.

* The rest of the fields (with defined meaning) may not be changed.
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Mining Difficulty

Mining difficulty is a measure of how difficult it is to find a hash below 

a given target . The Bitcoin network has a global block difficulty:

difficulty = difficulty_1_target / current target

(target is a 256 bit number. )

The difficulty is adjusted every 2016 blocks based on the time it 

took to find them.

At the desired rate of one block each 10 minutes, 2016 blocks 

would take exactly two weeks to find.

time (2016 blocks) > 2 weeks ⇒ difficulty reduced

time (2016 blocks) < 2 weeks ⇒ difficulty increased
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Merkle Tree and Secure Verification of Large Data Structures

Hash trees can be used to verify any kind of data stored, handled and 

transferred in and between computers. 

They can help ensure that data blocks received from other peers in a 

peer-to-peer network are received undamaged and unaltered, and even to 

check that the other peers do not lie and send fake blocks (trusted 

computing). 

In some proof-of-work systems, users provide hash collisions as proof that 

they have performed a certain amount of computation to find them. 
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Trust & Security by Computer Power Only?

Pros:
•   Increasing difficulty of proof-of-work diminish the probability of tampering and

improves security & trust in blockchain technology. 

•   Security & trust is completely based on constructive algorithms of proof-of-work

with finitely growing binary hash trees („collision resistant“). 

With growing blockchain (one block per ten minutes), the difficulty of the proof-of-work

increases in proportion to increasing computer power: 

Cons: 

•    Exponentially increasing computer power means growing power consumption and (with

that) economic and environmental costs: e.g., Bitcoin network Nov 2017 30,14 TWh p.a.

>  power consumption of Ireland.

•   The initially democratic idea of a decentralized cryptocurrency without central control

(and failures) of banks and equal chances of clients cannot be realized: Influence of 

members depends on computer power and energy power (monopolies of states/concerns).
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9. Bridging Logic, Mathematics, 
Computer Science, and Philosophy
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Proof Theory::
- intuitionistic/minimal logic

- functional interpretation

- information system

Mathematics:
- numerical analysis

- functional analysis

- financial mathematics

Computer Science:
- functional programing

- scientific computing

- program extraction

Philosophy:
- intuitionism

- constructivism

- ethical evaluation

CORE:
„Trust & Security by Constructive

Methods in Mathematics and 

Operations Research!“
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