
THE DOUBLE SHUFFLE RELATIONS BETWEEN

MULTIPLE ZETA VALUES

SARAH CARR

1. Multiple Zeta Values

First I will introduce the real numbers known as multizeta values. The
multizeta values can be considered as multivariate functions on positive
integers and also multivariate functions on the Pn where P is the set {0, 1}.
Considered as functions on positive integers, the multizeta values satisfy the
product relation of stuffle, and considered as the other type, the multizeta
values satisfy the shuffle product relation.

Definition 1. Given a sequence of positive integers, k1, . . . , kd, we associate
a real number,

ζ(k1, . . . , kd) =
∑

n1>n2>···>nd>0

1

nk1

1 · · · nkd

d

.

This sum converges iff k1 > 1, so we put on the extra condition that k1 ≥ 2.

Definition 2. Alternative notation for a zeta value. To a sequence of in-
tegers k1, . . . , kd we associate a sequence of 0’s and 1’s as follows. To every
integer ki associate the sequence 0,0,0,...0,1 = 0ki−11. Then concatenate
all of the respective sequences to obtain a sequence of 0’s and 1’s of length
k1 + k2 + · · · + kd,

k1, . . . , kd = 0k1−110k2−11 . . . 0kd−11

and we say that

ζ(k1, . . . , kd) = ζ(0k1−110k2−11 . . . 0kd−11).

In order for the zeta value to converge, we require k1 > 1 which is equivalent
to requiring that the sequence starts with a 0. By definition, the sequence
ends in a 1. We call such sequence a convergent sequence and suppose for
the rest of the exposé that every given sequence is a convergent one.

Definition 3. The weight of a zeta value, ζ(ǫ), is the length of ǫ which is
equal to

∑

ki.

The goal of this talk is to show you firstly that if you multiply multizeta
values, you obtain a Q sum of multizeta values which is not unique. This
non-uniqueness gives relations between these otherwise mysterious numbers.
It is conjectured that these two relations give all relations on multizeta
values.
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2. The Stuffle Relation

First, I will give you an example of the stuffle relation. Consider ζ(2)ζ(3),

ζ(2)ζ(3) =
∑

i

1

i2

∑

j

1

j3
(1)

=
∑

i>j>0

1

i2j3
+

∑

j>i>0

1

j3i2
+

∑

i=j>0

1

i2j3
(2)

=
∑

i>j>0

1

i2j3
+

∑

j>i>0

1

j3i2
+

∑

i

1

i5
(3)

= ζ(2, 3) + ζ(3, 2) + ζ(5).(4)

We call this the stuffle product of the two sequences

(2) ∗ (3) = (2, 3) + (3, 2) + (5).

In general the stuffle product of two sequences of positive integers is the sum
over all of the sequences obtained by shuffling the original ones together, in
other words making a new sequence which is a permutation of the concate-
nation of the two original sequences that preserves the order of the original
sequences, and then eventually adding adjacent terms one of which comes
from the first and the other of which comes from the second, i.e. “stuffing”
integers into the same spot.

Examples 4.

(2, 1) ∗ (3) = (2, 1, 3) + (2, 3, 1) + (3, 2, 1)(5)

+ (2, 4) + (5, 1).(6)

The stuffle product is the commutative product defined recursively on two
sequences,

(a1, ..., ai) ∗ ∅ = (a1, ..., ai)

(a1, ..., ai) ∗ (b1, ..., bj) = a1 · ((a2, ..., ai) ∗ (b1, ..., bj)) + b1 · ((a1, ..., ai) ∗ (b2, ..., bj))

+ (a1 + b1) · ((a2, ..., a1) ∗ (b2, ...bj)).

The number of terms in the sum is
min{i,j}

∑

l=0

(

i + j − l

max{i, j}

)(

max{i, j}

l

)

.

If k is a term in the stuffle product of two sequences, k1 ∗ k2, we use the
notation, k ∈ k1 ∗ k2.

Theorem 5 (Euler). Let k1 and k2 be two sequences of positive integers.
Then the product of the multizeta values,

ζ(k1)ζ(k2) =
∑

k∈k1∗k2

ζ(k).



THE DOUBLE SHUFFLE RELATIONS BETWEEN MULTIPLE ZETA VALUES 3

The proof is a direct calculation.

Corollary 6. The Q vector space of multiple zeta values forms a Q algebra,
which we call Z.

3. The Shuffle Relation

To show this relation on multiple zeta values, we use a theorem of Kont-
sevich to show how multiple zeta values can be expressed as integrals.

Theorem 7. Let ǫ be a sequence of 0’s and 1’s of length (weight) n and let
∆ be the real simplex 0 < t1 < t2 < · · · < tn < 1. Then,

ζ(ǫ) = (−1)d
∫

∆

dt

Π(tn−i+1 − ǫi)
.

Proof. We will do the proof for ζ(2), and you can easily extend the method
to sequences of greater length by induction. Write ζ(2) = ζ(0, 1). Now
calculate the integral,

∫

0<t1<t2<1

dt1dt2

t2(1 − t1)
=

∞
∑

i=0

∫

0<t1<t2<1

ti1dt1dt2

t2

=
∞
∑

i=0

1

i + 1

∫

0<t2<1

ti+1
2 dt2

t2

=
∑

i

1

i + 1

∫

ti2dt2

=
∑

i

1

(i + 1)2

= ζ(2).

�

Definition 8. Given any two sequences, ǫ1, ǫ2, of combined length n, we
define the shuffle product,

ǫ1 x ǫ2 =
∑

σ∈S(n) s.t. σ preserves the order of the two original sequences

σ(ǫ1·ǫ2).

Examples 9.

(0, 1)x (0, 1) = (0, 1)x (0′, 1′)

= (0, 1, 0′, 1′) + (0, 0′, 1, 1′) + (0, 0′, 1′, 1) + (0′, 0, 1, 1′) + (0′, 0, 1′, 1) + (0′, 1′, 0, 1)

= 2(0, 1, 0, 1) + 4(0, 0, 1, 1).

This product is easier than the stuffle product. It derives it’s name from
shuffling cards.
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Theorem 10 (The shuffle product on multiple zeta values). [Kontsevich]
Given two convergent sequences, ǫ1, ǫ2, we have the following identity on the
product of zeta values,

ζ(ǫ1)ζ(ǫ2) = ζ(ǫ1 x ǫ2)

=
∑

ǫ∈ǫ1 x ǫ2

ζ(ǫ).

Example 11. By the calculation above, we have ζ(2)ζ(2) = 2ζ(2, 2) +
4ζ(3, 1).

Proof. The product

(−1)d1+d2

∫

∆1

dt

Π(tn−i+1 − ǫi)
×

∫

∆2

dt′

Π(t′m−i+1 − ǫi)

is just the differential form dtdt′

Π(tn−i+1−ǫi)Π(t′
m−i+1

−ǫi)
integrated over the prod-

uct of the simplices, ∆1 × ∆2. The product of these simplices is the shuffle
sum of simplices, since the order of ∆1 and ∆2 must be preserved. By doing
a variable change to bring each simplex in the sum back to the standard
simplex, 0 < t1 < · · · < tn < t′1 < · · · < t′m < 1, we obtain the shuffle sum
of zeta values. Let’s do this with a small weight example.
∫

0<t1<t2<1

dt1dt2

t2(1 − t1)
×

∫

0<t3<t4<1

dt3dt4

t4(1 − t3)

=

∫

0<t1<t2<1, 0<t3<t4<1

dt1dt2dt3dt4

t4(1 − t3)t2(1 − t1)

=

∫

0<t1<t2<t3<t4<1
+

∫

0<t1<t3<t2<t4<1
+

∫

0<t1<t3<t4<t2<1

+

∫

0<t3<t1<t2<t4<1
+

∫

0<t3<t1<t4<t2<1

+

∫

0<t3<t4<t1<t2<1

dt1dt2dt3dt4

t4(1 − t3)t2(1 − t1)

=

∫

0<t1<t2<t3<t4<1

dt1dt2dt3dt4

t4(1 − t3)t2(1 − t1)
+

dt1dt2dt3dt4

t4(1 − t2)t3(1 − t1)

+
dt1dt2dt3dt4

t3(1 − t2)t4(1 − t1)
+

dt1dt2dt3dt4

t4(1 − t1)t3(1 − t2)

+
dt1dt2dt3dt4

t3(1 − t1)t4(1 − t2)
+

dt1dt2dt3dt4

t2(1 − t1)t4(1 − t3)
.

= 2ζ(2, 2) + 4ζ(3, 1).

�

Now we have another relation on Z, and we can use these “quadratic”
relations to find linear relations among multizeta values.
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Examples 12. By the last theorem, we know that ζ(2)2 = 2ζ(2, 2)+4ζ(3, 1).
From the stuffle theorem, we have that ζ(2)2 = 2ζ(2, 2) + ζ(4). Therefore,
we have the linear relation,

ζ(3, 1) =
1

4
ζ(4).

The structure of this Q algebra however is somewhat of a mystery.
There are many conjectures about this.

Conjecture 13. There are no algebraic relations among multiple zeta values
of different weight. Therefore, Z forms a graded algebra.

The proof of this conjecture implies that multiple zeta values are tran-
scendental.

Conjecture 14. All relations on multizeta values come from the stuffle and
shuffle relations.

Conjecture 15 (Zagier). If we assume conjecture 13, the dimension of the
graded n part of Z, dn, is given by the recurrence formula,

dn = dn−2 + dn−3.
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