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Abstract

In this paper, we introduce cell-forms on M0,n, which are top-dimensional differential
forms diverging along the boundary of exactly one cell (connected component) of the
real moduli space M0,n(R). We show that the cell-forms generate the top-dimensional
cohomology group of M0,n, so that there is a natural duality between cells and cell-forms.
In the heart of the paper, we determine an explicit basis for the subspace of differential
forms which converge along a given cell X. The elements of this basis are called insertion
forms, their integrals over X are real numbers, called cell-zeta values, which generate a
Q-algebra called the cell-zeta algebra. By a result of F. Brown, the cell-zeta algebra is
equal to the algebra of multizeta values. The cell-zeta values satisfy a family of simple
quadratic relations coming from the geometry of moduli spaces, which leads to a natural
definition of a formal version of the cell-zeta algebra, conjecturally isomorphic to the
formal multizeta algebra defined by the much-studied double shuffle relations.

1. Introduction

Let n1, . . . , nr ∈ N and suppose that nr > 2. The multiple zeta values (MZV’s)

ζ(n1, . . . , nr) =
∑

0<k1<...<kr

1
kn1

1 . . . knr
r
∈ R , (1.1)

were first defined by Euler, and have recently acquired much importance in their relation to mixed
Tate motives. It is conjectured that the periods of all mixed Tate motives over Z are expressible
in terms of such numbers. By an observation due to Kontsevich, every multiple zeta value can be
written as an iterated integral:

∫

06t16...6t`61

dt1 . . . dt`
(ε1 − t1) . . . (ε` − t`)

, (1.2)

where εi ∈ {0, 1}, and ε1 = 1 and ε` = 0 to ensure convergence, and ` = n1 + · · ·+ nr. The iterated
integral (1.2) can be considered as a period on M0,n (with n = ` + 3), or a period of the motivic
fundamental group of M0,4 = P1\{0, 1,∞}, whose de Rham cohomology H1(M0,4) is spanned by
the forms dt

t and dt
1−t [6], [8]. One proves that the multiple zeta values satisfy two sets of quadratic

relations [5], [14], known as the regularised double shuffle relations, and it has been conjectured
that these generate all algebraic relations between MZV’s [4], [23]. This is the traditional point of
view on multiple zeta values.

On the other hand, by a general construction due to Beilinson, one can view the iterated integral
(1.2) as a period integral in the ordinary sense, but this time of the `-dimensional affine scheme

M0,n ' (M0,4)`\{diagonals} = {(t1, . . . , t`) : ti 6= 0, 1 , ti 6= tj} ,

where n = ` + 3. This is the moduli space of curves of genus 0 with n ordered marked points.
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Indeed, the open domain of integration X = {0 < t1 < . . . < t` < 1} is one of the connected
components of the set of real points M0,n(R), and the integrand of (1.2) is a regular algebraic form
in H`(M0,n) which converges on X. Thus, the study of multiple zeta values leads naturally to the
study of all periods on M0,n, which was initiated by Goncharov and Manin [3], [13]. These periods
can be written ∫

X
ω , where ω ∈ H`(M0,n) has no poles along X . (1.3)

The general philosophy of motives and their periods [16] indicates that one should study relations
between all such integrals. This leads to the following problems:

i) Construct a good basis of all logarithmic `-forms ω in H`(M0,n) whose integral over the cell
X converges.

ii) Find all relations between the integrals
∫
X ω which arise from natural geometric considerations

on the moduli spaces M0,n.

In this paper, we give an explicit solution to (1), and a family of relations which conjecturally
answers (2). Firstly, we give an explicit description of a basis of the subspace of H`(M0,n) of forms
convergent on the standard cell, in terms of the combinatorics of polygons. (Note that the idea
of connecting differential forms with combinatorial structures has previously been explored from
different aspects, in [10] and [22] for example.) The corresponding integrals are more general than
(1.2), although Brown’s theorem [3] proves that they do occur as Q-linear combinations of multiple
zeta values of the form (1.2).

For (2), we explore a new family of quadratic relations, which we call product map relations,
because they arise from products of forgetful maps between moduli spaces. To this family we add
two other simpler families; one arising from the dihedral subgroup of automorphisms of M0,n which
stabilise X, and the other from a basic identity in the combinatorics of polygons. These families
are sufficiently intrinsic and general to motivate the following conjecture, which we have verified
computationally up through n = 9.

Conjecture. The three families of relations between integrals (given explicitly in definition 2.28)
generate the complete set of relations between periods of the moduli spaces M0,n.
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1.1 Main results
We give a brief presentation of the main objects introduced in this paper, and the results obtained
using them.

Recall that Deligne-Mumford constructed a stable compactification M0,n of M0,n, such that
M0,n\M0,n is a smooth normal crossing divisor whose irreducible components correspond bijectively
to partitions of the set of n marked points into two subsets of cardinal > 2 [7], [15]. The real part
M0,n(R) of M0,n is not connected, but has n!/2n connected components (open cells) corresponding
to the different cyclic orders of the real points 0, t1, . . . , t`, 1,∞ ∈ P1(R), up to dihedral permutation
[9]. Thus, we can identify cells with n-sided polygons with edges labeled by {0, t1, . . . , t`, 1,∞}. In the
compactification M0,n(R), the closed cells have the structure of associahedra or Stasheff polytopes;
the boundary of a given cell is a union of irreducible divisors corresponding to partitions given by
the chords (cf. definition 3.3) in the associated polygon. The standard cell is the cell corresponding
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to the standard order we denote δ, given by 0 < t1 < . . . < t` < 1. We write Mδ
0,n for the space

M0,n \ {all boundary divisors of M0,n except those bounding the standard cell}.
This is a smooth affine scheme introduced in [3].

1.1.1 Polygons. Since a cell of M0,n(R) is given by an ordering of {0, t1, . . . , t`, 1,∞} up to
dihedral permutation, we can identify it as above with an unoriented n-sided polygon with edges
indexed by the set {0, t1, . . . , t`, 1,∞}.

1.1.2 Cell-forms. A cell-form is a holomorphic differential `-form on M0,n with logarithmic
singularities along the boundary components of the stable compactification, having the property
that its singular locus forms the boundary of a single cell in the real moduli space M0,n(R).

Up to sign, the cell-form diverging on a given cell is obtained by taking the successive differences
of the edges of the polygon representing that cell (ignoring ∞) as factors in the denominator. For
example the cell corresponding to the cyclic order (0, 1, t1, t3,∞, t2) is represented by the polygon
on the left of the following figure, and the cell-form diverging along it is given on the right:

←→ ± dt1dt2dt3
(t1 − 1)(t3 − t1)(−t2)

1

t

t

0

t

8

3

1

2

Let P denote the Q-vector space generated by oriented n-gons indexed by {0, 1, t1, . . . , t`, 1,∞}.
The orientation fixes the sign of the corresponding cell form, and this gives a map

ρ : P → H`(M0,n). (1.4)

In proposition 4.1 of section 4.1 we prove that this map is surjective and identify its kernel. Chapter
3 is entirely devoted to a purely combinatorial reformulation, in terms of polygons which simulta-
neously represent both cells and cell-forms on moduli space, of the familiar notions of convergence,
divergence and residues of differential forms along divisors.

1.1.3 Cell-form cohomology basis. We show that cell-forms provide a good framework for study-
ing the logarithmic differential forms on M0,n, starting with the following result (theorem 2.12),
whose proof is based on Arnol’d’s well-known construction of a different basis for the cohomology
group H`(M0,n).

Theorem. The set of 01 cell-forms (those corresponding to polygons in which 0 appears next to 1
in the indexing of the edges) forms a basis for the cohomology group H`(M0,n) of top-dimensional
differential forms on the moduli space.

In particular, this shows that the cohomology group H`(M0,n) is canonically isomorphic to the
subspace of P of polygons having 0 adjacent to 1, providing a new approach.

1.1.4 Insertion forms. Insertion forms (definition 4.8) are particular linear combinations of 01
cell-forms having the property given in the following theorem (theorem 4.9), one of the main results
of this paper.
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Theorem. The insertion forms form a basis for the space of top-dimensional logarithmic differential
forms which converge on the closure of the standard cell of M0,n(R).

In other words, insertion forms give a basis for the cohomology group H`(Mδ
0,n) of (classes of)

forms having no poles along the boundary of the standard cell of M0,n(R), so that the integral (1.3)
converges, yielding a period.

The insertion forms are defined in definition 4.8, but the definition is based on the essential
construction of Lyndon insertion words given in definition 3.16 and studied throughout section 3.3.
The proof of this theorem uses all the polygon machinery developed in chapter 3.

1.1.5 Cell-zeta values. These are real numbers obtained by integrating insertion forms over the
standard cell as in (1.3). They are a generalization of multiple zeta values to a larger set of periods
on M0,n, such as ∫

0<t1<t2<t3<1

dt1dt2dt3
(1− t1)(t3 − t1)t2

.

Note that unlike the multiple zeta values, this is not an iterated integral as in (1.2).

1.1.6 Product map relations between cell-zeta values. Via the pullback, the maps f : M0,n →
M0,r ×M0,s obtained by forgetting disjoint complementary subsets of the marked points t1, . . . , t`
yield expressions for products of cell-zeta values on M0,r and M0,s as linear combinations of cell-zeta
values on M0,n: ∫

X1

ω1

∫

X2

ω2 =
∫

f−1(X1×X2)
f∗(ω1 ∧ ω2). (1.5)

There is a simple combinatorial algorithm to compute the multiplication law in terms of cell-forms.
This is a geometric analog of the familiar quadratic relations for multiple zeta values, and is explained
in section 2.3.4.

1.1.7 Dihedral relations between cell-zeta values These relations between cell-zeta values are
given by ∫

X
ω =

∫

X
σ∗(ω) , (1.6)

where σ is an automorphism of M0,n which maps the standard cell to itself: σ(X) = X, and thus σ
is a dihedral permutation of the marked points {0, 1, t1, . . . , t`,∞}.

1.1.8 The cell-zeta value algebra C. The multiplication laws associated to product maps (1.5)
make the space of all cell-zeta values on M0,n, n > 5, into a Q-algebra which we denote by C. By
Brown’s theorem [3], which states essentially that all periods on M0,n are linear combinations of
multiple zeta values, together with Kontsevitch’s expression (1.2) of multiple zeta values, we obtain
the following result (theorem 2.25).

Theorem. The cell-zeta value algebra C is equal to the algebra of multiple zeta values Z.

1.1.9 The formal cell-zeta value algebra FC. By lifting the previous constructions to the level
of polygons along the map (1.4), we define in section 2.4 an algebra of formal cell-zeta values which
we denote by FC. It is generated by the Lyndon insertion words (see definition 3.16), which are
formal sums of polygons corresponding to the insertion forms introduced above, subject to combi-
natorial versions of the product map relations (1.5) and the dihedral relations (1.6). We consider
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this analogous to the formal multizeta algebra FZ, generated by formal symbols representing con-
vergent multiple zeta values, subject only to the convergent double shuffle and Hoffmann relations
([14]). The computer calculations in low weight described in chapter 4 motivated us to make the
following conjecture, which essentially says that the product map and dihedral relations (plus an-
other simple family coming from combinatorial identities on polygons, see definition 2.28 for the
complete definition of the three families of relations) generate all relations between periods of the
moduli space.

Conjecture. The formal cell-zeta algebra FC is isomorphic to the formal multizeta algebra FZ.

The paper is organized as follows. In §2, we introduce cell forms and polygons and define the
three familes of relations. In §3, we define Lyndon insertion words of polygons, which may be of
independent combinatorial interest. These are used to construct the insertion basis of convergent
forms in §4. In §4.4, we give complete computations of this basis and the corresponding product
map relations for M0,n, where n = 5, 6, 7.

In the remainder of this introduction we sketch the connections between the formal cell-zeta
value algebra and standard results and conjectures in the theory of multiple zeta values and mixed
Tate motives.

1.2 Relation to mixed Tate motives and conjectures

Let MT (Z) denote the category of mixed Tate motives which are unramified over Z [8]. Let δ
denote the standard cyclic structure on S = {1, . . . , n}, and let Bδ denote the divisor which bounds
the standard cell X. Let Aδ denote the set of all remaining divisors on M0,S\M0,S , so that Mδ

0,S =
M0,S \Aδ ([3]). We write:

Mδ = H`(M0,n\Aδ, Bδ\(Bδ ∩Aδ)) . (1.7)

By a result due to Goncharov and Manin [13], Mδ defines an element in MT (Z), and therefore
is equipped with an increasing weight filtration W . They show that grW

` Mδ is isomorphic to the
de Rham cohomology H`(Mδ

0,n), and that grW
0 Mδ is isomorphic to the dual of the relative Betti

homology H`(M0,n, Bδ).

Let M be any element inMT (Z). A framing for M consists of an integer n and non-zero maps

v ∈ Hom(Q(−n), grW
2nM) and f ∈ Hom(grW

0 M,Q(0)) . (1.8)

Two framed motives (M,v, f) and (M ′, v′, f ′) are said to be equivalent if there is a morphism
φ : M → M ′ such that φ ◦ v = v′ and f ′ ◦ φ = f . This generates an equivalence relation whose
equivalence classes are denoted [M,v, f ]. LetM(Z) denote the set of equivalence classes of framed
mixed Tate motives which are unramified over Z, as defined in [11]. It is a commutative, graded
Hopf algebra over Q.

To every convergent cohomology class ω ∈ H`(Mδ
0,n), we associate the following `-framed mixed

Tate motive:

m(ω) =
[
Mδ, ω, [X]

]
, (1.9)

where [X] denotes the relative homology class of the standard cell. This defines a map FC →M(Z).
The maximal period of m(ω) is exactly the cell-zeta value

∫

X
ω .

Proposition 1.1. The dihedral symmetry relation and product map relations are motivic. In other
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words,

m(σ∗(ω)) = m(ω) ,

m(ω1 · ω2) = m(ω1)⊗m(ω2) ,

for every dihedral symmetry σ of X, and for every modular shuffle product ω1 · ω2 of convergent
forms ω1, ω2 on M0,r, M0,s respectively.

The motivic nature of our constructions will be clear from the definitions. We therefore obtain
a well-defined map m from the algebra of formal cell-zeta numbers FC toM(Z). On M0,5, there is
a unique element ζ2 ∈ FC whose period is ζ(2), which maps to 0 inM(Z).

Conjecture 1.2. FC is a free Q[ζ2]-module, and the induced map

m : FC/ζ2FC −→ M̂(Z)

is an isomorphism.

Since the structure of M(Z) is known, we are led to more precise conjectures on the structure
of the formal cell-zeta algebra. To motivate this, let L = Q[e3, e5, . . . , ] denote the free Lie algebra
generated by one element e2n+1 in each odd degree. Set

F = Q[e2]⊕ L .

The underlying graded vector space is generated by, in increasing weight:

e2 ; e3 ; e5 ; e7 ; [e3, e5] ; e9 ; [e3, e7] ; [e3, [e5, e3]] , e11 ; [e3, e9] , [e5, e7] ; . . . .

Let UF denote the universal enveloping algebra of the Lie algebra F. Then, setting M̂(Z) =M(Z)⊗Q
Q[ζ2], it is known that M̂(Z) is dual to UF. From the explicit description of F given above, one can
deduce that the graded dimensions dk = dimQ grW

k M̂(Z) satisfy Zagier’s recurrence relation

dk = dk−2 + dk−3 , (1.10)

with the initial conditions d0 = 1, d1 = 0, d2 = 1.

Conjecture 1.3. The dimension of the Q-vector space of formal cell-zeta values on M0,n, modulo
all linear relations obtained from the dihedral and modular shuffle relations, is equal to d`, where
n = ` + 3.

We verified this conjecture for M0,n for n 6 9 by direct calculation (see §4.4). When n = 9,
the dimension of the convergent cohomology H6(Mδ

0,9) is 1089, and after taking into account all
linear relations coming from dihedral and modular shuffle products, this reduces to a vector space
of dimension d6 = 2.

To compare this picture with the classical picture of multiple zeta values, let FZ denote the
formal multizeta algebra. This is the quotient of the free Q-algebra generated by formal symbols
(1.2) modulo the regularised double shuffle relations. It has been conjectured that FZ is isomorphic
to M̂(Z), and proved (cf. [21]) that the dimensions d` are actually upper bounds for the dimensions
of the weight ` parts of FZ. This leads us to the second main conjecture.

Conjecture 1.4. The formal algebras FC and FZ are isomorphic.

Put more prosaically, this states that the formal ring of periods of M0,n modulo dihedral and
modular shuffle relations, is isomorphic to the formal ring of periods of the motivic fundamental
group of M0,4 modulo the regularised double shuffle relations.

By (1.2), we have a natural linear map FZ → FC. However, at present we cannot show that it
is an algebra homomorphism. Indeed, although it is easy to deduce the regularised shuffle relation
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for the image of FZ in FC from the dihedral and modular shuffle relations, we are unable to deduce
the regularised stuffle relations. For further detail on this question, see remark 2.29 below.

Remark 1.5. The motivic nature of the regularised double shuffle relations proved to be somewhat
difficult to establish [11], [12], [21]. It is interesting that the motivic nature of the dihedral and
modular shuffle relations we define here is immediate.

2. The cell-zeta value algebra associated to moduli spaces of curves

Let M0,n, n > 4 denote the moduli space of genus zero curves (Riemann spheres) with n or-
dered marked points (z1, . . . , zn). This space is described by the set of n-tuples of distinct points
(z1, . . . , zn) modulo the equivalence relation given by the action of PSL2. Because this action is triply
transitive, there is a unique representative of each equivalence class such that z1 = 0, zn−1 = 1,
zn =∞. We define simplicial coordinates t1, . . . , t` on M0,n by setting

t1 = z2 , t2 = z3 , . . . , t` = zn−2, (2.1)

where ` = n− 3 is the dimension of M0,n(C). This gives the familiar identification

M0,n
∼= {(t1, . . . , t`) ∈ (P1 − {0, 1,∞})` | ti 6= tj for all i 6= j} . (2.2)

2.1 Cell forms
Definition 2.1. Let S = {1, . . . , n}. A cyclic structure γ on S is a cyclic ordering of the elements of
S or equivalently, an identification of the elements of S with the edges of an oriented n-gon modulo
rotations. A dihedral structure δ on S is an identification with the edges of an unoriented n-gon
modulo dihedral symmetries.

We can write a cyclic structure as an ordered n-tuple γ = (γ(1), γ(2), ..., γ(n)) considered up to
cyclic rotations.

Definition 2.2. Let (z1, . . . , zn) = (0, t1, . . . , t`, 1,∞) be a representative of a point on M0,n as
above. Let γ be a cyclic structure on S, and let σ be the unique ordering of z1, . . . , zn compatible
with γ such that σ(n) = n. The cell-form corresponding to γ is defined to be the differential `-form

ωγ = [zσ(1), zσ(2), . . . , zσ(n)] =
dt1 · · · dt`

(zσ(2) − zσ(1))(zσ(3) − zσ(2)) · · · (zσ(n−1) − zσ(n−2))
. (2.3)

In other words, by writing the terms of ωγ = [zσ(1), ..., zσ(n)] clockwise around a polygon, the
denominator of a cell form is just the product of successive differences (zσ(i)− zσ(i−1)) with the two
factors containing ∞ simply left out.

Remark 2.3. To every dihedral structure there correspond two opposite cyclic structures. If these
are given by γ and τ , then we have

ωγ = (−1)nωτ . (2.4)

Example 2.4. Let n = 7, and S = {1, . . . , 7}. Consider the cyclic structure γ on S given by the
order 1635724. The unique ordering σ of S compatible with γ and having σ(n) = n, is the ordering
2416357, which can be depicted by writing the elements zσ(1), . . . , zσ(7), or 0, 1, t2, t4, ∞, t1, t3
clockwise around a circle:

γ = (zσ(1), . . . , zσ(7)) = (t1, t3, 0, 1, t2, t4,∞).
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The corresponding cell-form on M0,7 is

ωγ = [t1, t3, 0, 1, t2, t4,∞] =
dt1dt2dt3dt4

(t3 − t1)(−t3)(t2 − 1)(t4 − t2)
.

The symmetric group S(S) acts on M0,n by permutation of the marked points. It therefore acts
both on the set of cyclic structures γ, and also on the ring of differential forms on M0,n. These
actions coincide for cell forms.

For any cyclic structure γ on S, let Dγ ⊂ S(S) denote the group of automorphisms of the
dihedral structure which underlies γ, which is a dihedral group of order 2n.

Lemma 2.5. For every cyclic structure γ on S, we have the formula:

σ∗(ωγ) = ωσ(γ) for all σ ∈ S(S) . (2.5)

Proof. Consider the logarithmic n-form on (P1)S∗ defined by the formula:

ω̃γ =
dz1 ∧ . . . ∧ dzn

(zγ(1) − zγ(2)) . . . (zγ(n) − zγ(1))
. (2.6)

It clearly satisfies σ∗(ω̃γ) = ω̃σ(γ) for all σ ∈ Dγ . A simple calculation shows that ω̃γ is invariant
under the action of PSL2 by Möbius transformations. Let π : (P1)S∗ →M0,S denote the projection
map with fibres isomorphic to PSL2. There is a unique (up to scalar multiple in Q×) non-zero
invariant logarithmic 3-form v on PSL2(C) which is defined over Q. Then, by renormalising v if
necessary, we have ωγ ∧ v = ω̃γ . In fact, ωγ is the unique `-form on M0,S satisfying this equation.
We deduce that σ∗(ωγ) = ωσ(γ) for all σ ∈ Dγ .

Each dihedral structure η on S corresponds to a unique connected component of the real locus
M0,n(R), namely the component associated to the set of Riemann spheres with real marked points
(z1, . . . , zn) whose real ordering is given by η. We denote this component by XS,η or Xn,η. It is an
algebraic manifold with corners with the combinatorial structure of a Stasheff polytope, so we often
refer to it as a cell. A cyclic structure compatible with η corresponds to a choice of orientation of
this cell.

Definition 2.6. Let δ once and for all denote the cyclic order corresponding to the ordering
(1, 2, . . . , n). We call XS,δ = Xn,δ the standard cell. It is the set of points on M0,n given by real
marked points (0, t1, . . . , t`, 1,∞) in that cyclic order; in simplicial coordinates it is given by the
standard real simplex 0 < t1 < . . . < t` < 1.

The distinguishing feature of cell-forms, from which they derive their name, is given in the
following proposition.

Proposition 2.7. Let η be a dihedral structure on S, and let γ be either of the two cyclic sub-
structures of η. Then the cell form ωγ has simple poles along the boundary of the cell XS,η and no
poles anywhere else.

Proof. Let D ⊂ M0,S\M0,S be a divisor given by a partition S = S1
∐

S2 such that |Si| > 1 for
i = 1, 2. In [3], the following notation was introduced:

ID(i, j) = I({i, j} ⊂ S1) + I({i, j} ⊂ S2) ,

where I(A ⊂ B) is the indicator function which takes the value 1 if A is contained in B and 0
otherwise. Therefore ID(i, j) ∈ {0, 1}. Then we have

2 ordD(ωγ) = (`− 1)− ID(γ(1), γ(2))− ID(γ(2), γ(3))− . . .− ID(γ(n), γ(1)) . (2.7)
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To prove this, observe that ωγ = fγω0, where

fγ =
∏

i∈Z/nZ

(zi − zi+2)
(zγ(i) − zγ(i+1))

,

and

ω0 =
dt1 . . . dt`

t2(t3 − t1)(t4 − t2) . . . (t` − t`−2)(1− t`)
is the canonical volume form with no zeros or poles along the standard cell defined in [3]. The proof
of (2.7) follows on applying proposition 7.5 from [3].

Now, (2.7) shows that ωγ has the worst singularities when the most possible ID(γ(i), γ(i + 1))
are equal to 1. This happens when only two of them are equal to zero, namely

S1 = {γ(1), γ(2), . . . , γ(k)} and S2 = {γ(k + 1), γ(k + 2), . . . , γ(n)}, 2 6 k 6 n− 2.

In this case, (2.7) yields 2ordDωγ = (` − 1) − (n − 2) = −2, so ordDωγ = −1. In all other cases
we must therefore have ordDωγ > 0. Thus the singular locus of ωγ is precisely given by the set of
divisors bounding the cell XS,η.

2.2 01 cell-forms and a basis of the cohomology of M0,n

We first derive some useful identities between certain rational functions. Let S = {1, . . . , n} and let
v1, . . . , vn denote coordinates on An. For every cyclic structure γ on S, let 〈γ〉 = 〈vγ(1), . . . , vγ(n)〉
denote the rational function

1
(vγ(2) − vγ(1)) · · · (vγ(n) − vγ(n−1))(vγ(1) − vγ(n))

∈ Z
[
vi,

1
vi − vj

]
. (2.8)

We refer to such a function as a cell-function. We can extend its definition linearly to Q-linear
combinations of cyclic structures. Let X = {x1, . . . , xn} denote any alphabet on n symbols. Recall
that the shuffle product [18] is defined on linear combinations of words on X by the inductive
formula

wx e = exw and awx a′w′ = a(wx a′w′) + a′(awxw′) , (2.9)

where w,w′ are any words in X and e denotes the empty or trivial word.

Definition 2.8. Let A, B ⊂ S such that A ∩ B = C = {c1, . . . , cr} with r > 1. Let γA be a
cyclic order on A such that the elements c1, . . . , cr appear in their standard cyclic order, and let
γB be a cyclic order on B with the same property. We write γA = (c1, A1,2, c2, A2,3, . . . , cr, Ar,1)
and γB = (c1, B1,2, c2, B2,3, . . . , cr, Br,1), where the Ai,i+1, (resp. the Bi,i+1) together with C, form
a partition of A (resp. B). We denote the shuffle product of the two cell-functions 〈γA〉 and 〈γB〉
with respect to c1, . . . , cr by

〈γA〉x c1,...,cr〈γB〉
which is defined to be the sum of cell functions

〈c1, A1,2 xB1,2, c2, A2,3 xB2,3, . . . , cr, Ar,1 xBr,1〉 . (2.10)

The shuffle product of two cell-functions is related to their actual product by the following
lemma.

Proposition 2.9. Let A,B ⊂ S, such that |A ∩ B| > 2. Let γA, γB be cyclic structures on A,B
such that the cyclic structures on A∩B induced by γA and γB coincide. If γA∩B denotes the induced

9
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cyclic structure on A ∩B, we have:

〈γA〉 · 〈γB〉
〈γA∩B〉 = 〈γA〉x γA∩B〈γB〉 . (2.11)

Proof. Write the cell functions 〈γA〉 and 〈γB〉 as 〈ai1 , P1, ai2 , P2, . . . , air , Pr〉 and
〈ai1 , R1, ai2 , R2, . . . , air , Rr〉, where Pi, Ri for 1 6 i 6 r are tuples of elements in S. Let ∆ab = (b−a).
We will first prove the result for r = 2 and P2, R2 = ∅:

∆ab∆ba〈a, p1, . . . , pk1 , b〉〈a, r1, . . . , rk2 , b〉 = 〈a, (p1, . . . , pk1)x (r1, . . . , rk2), b〉. (2.12)

We prove this case by induction on k1 + k2. Trivially, for k1 + k2 = 0 we have

∆ab∆ba〈a, b〉〈a, b〉 = 〈a, b〉.

Now assume the induction hypothesis that

∆ab∆ba〈a, p2, . . . , pk1 , b〉〈a, r1, . . . , rk2 , b〉 = 〈a,
(
(p2, . . . , pk1)x (r1, . . . , rk2)

)
, b〉 and

∆ab∆ba〈a, p1, . . . , pk1 , b〉〈a, r2, . . . , rk2 , b〉 = 〈a,
(
(p1, . . . , pk1)x (r2, . . . , rk2)

)
, b〉.

To lighten the notation, let p2, . . . , pk1 = p and r2, . . . , rk2 = r. By the shuffle recurrence formula
(2.9) and the induction hypothesis:

〈a,
(
(p1, p)x (r1, r)

)
, b〉 = 〈a, p1,

(
(p)x (r1, r)

)
, b〉+ 〈a, r1,

(
(p1, p)x (r)

)
, b〉

=
∆p1b〈p1,

(
(p)x (r1, r)

)
, b〉

∆ab∆ap1

+
∆r1b〈r1,

(
(p1, p)x r)

)
, b〉

∆ab∆ar1

=
∆p1b∆bp1∆p1b〈p1, p, b〉〈p1, r1, r, b〉

∆ab∆ap1

+
∆r1b∆br1∆r1b〈r1, p1, p, b〉〈r1, r, b〉

∆ab∆ar1

Using identities such as 〈p1, p, b〉 = ∆ap1∆ba

∆bp1
〈a, p1, p, b〉, this is

[∆2
p1b∆bp1

∆ab∆ap1

∆ap1∆ba

∆bp1

∆ba∆ar1

∆bp1∆p1r1

+
∆2

r1b∆br1

∆ab∆ar1

∆ap1∆ba

∆r1p1∆br1

∆ba∆ar1

∆br1

]
〈a, p1, p, b〉〈a, r1, r, b〉

= ∆ab

[∆ar1∆bp1

∆p1r1

+
∆br1∆ap1

∆r1p1

]
〈a, p1, p, b〉〈a, r1, r, b〉 = ∆ab∆ba〈a, p1, p, b〉〈a, r1, r, b〉.

The last equality is the Plücker relation ∆ar1∆bp1 −∆br1∆ap1 = ∆p1r1∆ba. This proves the identity
(2.12). Now, using the identity

〈ai1P1ai2P2 . . . airPr〉 = ∆ai2
ai1
〈ai1P1ai2〉 ×∆ai3

ai2
〈ai2P2ai3〉 × · · · ×∆air ai1

〈airPrai1〉,

the general case follows from (2.12).

Corollary 2.10. Let X and Y be disjoint sequences of indeterminates and let e be an indetermi-
nate not appearing in either X or Y . We have the following identity on cell functions:

〈(X, e)x e(Y, e)〉 = 〈X xY, e〉 = 0. (2.13)

Proof. Write X = x1, x2, ..., xn and Y = y1, y2, ..., ym. By the recurrence formula for the shuffle
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product and proposition 2.9, we have

〈X xY, e〉 = 〈x1, (x2, ..., xn x y1, ..., ym), e〉+ 〈y1, (x1, ..., xn x y2, ..., ym), e〉
= 〈X, e〉〈x1, Y, e〉(e− x1)(x1 − e) + 〈y1, X, e〉〈Y, e〉(y1 − e)(e− y1)

=
(e− x1)(x1 − e)

(x2 − x1) · · · (e− xn)(x1 − e) (y1 − x1)(y2 − y1) · · · (e− ym)(x1 − e)

+
(y1 − e)(e− y1)

(x1 − y1)(x2 − x1) · · · (e− xn)(y1 − e) (y2 − y1) · · · (e− ym)(y1 − e)

=
(−1) + (−1)2

(x2 − x1) · · · (e− xn) (y1 − x1)(y2 − y1) · · · (e− ym)
= 0 .

By specialization, we can formally extend the definition of a cell function to the case where some
of the terms vi are constant, or one of the vi is infinite, by setting

〈v1, . . . , vi−1,∞, vi+1, . . . , vn〉 = lim
x→∞x2〈v1, . . . , vi−1, x, vi+1, . . . , vn〉

=
1

(v2 − v1) . . . (vi−1 − vi−2)(vi+2 − vi+1) . . . (vn − vn−1)(v1 − vn)
.

This is the rational function obtained by omitting all terms containing∞. By taking the appropriate
limit, it is clear that (2.11) and (2.13) are valid in this case too. In the case where {v1, . . . , vn} =
{0, 1, t1, . . . , t`,∞} we have the formula

[v1, . . . , vn] = 〈v1, . . . , vn〉 dt1dt2 . . . dt` . (2.14)

Definition 2.11. A 01 cyclic (resp. dihedral) structure is a cyclic (resp. dihedral) structure on S
in which the numbers 1 and n − 1 are consecutive. Since z1 = 0 and zn−1 = 1, a 01 cyclic (or
dihedral) structure is a set of orderings of the set {z1, . . . , zn} = {0, t1, . . . , t`, 1,∞}, in which the
elements 0 and 1 are consecutive. In these terms, each dihedral structure can be written as an
ordering (0, 1, π) where π is some ordering of {t1, . . . , t`,∞}. To each such ordering we associate a
cell-function 〈0, 1, π〉, which is called a 01 cell-function.

Since 01 cell-functions corresponding to different π are clearly different, it follows that there
exist exactly (n − 2)! distinct 01 cell-functions 〈0, 1, π〉. To these correspond (n − 2)! distinct 01
cell-forms ω(0,1,π) = 〈0, 1, π〉 dt1 . . . dt`.

Theorem 2.12. The set of 01 cell-forms ω(0,1,π), where π denotes any ordering of {t1, . . . , t`,∞},
has cardinal (n− 2)! and forms a basis of H`(M0,n,Q).

Proof. The proof is based on the following well-known result due to Arnol’d [1].

Theorem 2.13. A basis of H`(M0,n,Q) is given by the classes of the forms

Ω(ε) :=
dt1 . . . dt`

(t1 − ε1) . . . (t` − ε`)
, εi ∈ Ei , (2.15)

where E1 = {0, 1} and Ei = {0, 1, t1, . . . , ti−1} for 2 6 i 6 `.

It suffices to prove that each element Ω(ε) in (2.15) can be written as a linear combination
of 01 cell-forms. We begin by expressing a given rational function 1

(t1−ε1)···(t`−ε`)
as a product of

cell-functions and then apply proposition 2.9. To every ti, we associate its type τ(ti) ∈ {0, 1} (which

11
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depends on ε1, . . . , ε`) as follows. If εi = 0 then τ(ti) = 0; if εi = 1, then τ(ti) = 1, but if εi 6= 0, 1
then εi = tj for some j < i, and the type of ti is defined to be equal to the type of tj . Since the
indices decrease, the type is well-defined.

We associate a cell-function Fi to each factor (ti − εi) in the denominator of Ω(ε) as follows:

Fi =





〈0, 1, ti,∞〉 if εi = 1
−〈0, 1,∞, ti〉 if εi = 0
〈0, 1, εi, ti,∞〉 if εi 6= 1 and the type τ(ti) = 1
−〈0, 1,∞, ti, εi〉 if εi 6= 0 and the type τ(ti) = 0 .

(2.16)

We have

Ω(ε) = ∆
∏̀

i=1

Fi ,

where
∆ =

∏

j|εj 6=0,1

(−1)τ(εj)−1(εj − τ(εj))

is exactly the factor occurring when multiplying cell-functions as in proposition 2.9. This product
can be expressed as a shuffle product, which is a sum of cell-functions. Furthermore each one
corresponds to a cell beginning 0, 1, . . . since this is the case for all of the Fi. The 01-cell forms thus
span H`(M0,n,Q). Since there are exactly (n− 2)! of them, and since dimH`(M0,n,Q) = (n− 2)!,
they must form a basis.

2.3 Pairs of polygons and multiplication
Definition 2.14. Let S = {1, . . . , n}, and let PS denote the Q-vector space generated by the set
of cyclic structures γ on S, i.e. by planar polygons with n sides indexed by S. Let P̃S denote the
Q-vector space generated by the set of cyclic structures γ on S, modulo the relation γ = (−1)n←−γ ,
where ←−γ denotes the cyclic structure with the opposite orientation to γ. Throughout this chapter
we will study P̃S , but the full vector space PS will be studied in chapter 3.

2.3.1 Shuffles of polygons Let T1, T2 denote two subsets of Z = {z1, . . . , zn} satisfying:

T1 ∪ T2 = Z (2.17)
|T1 ∩ T2| = 3 .

Let E = {zi1 , zi2 , zi3} denote the set of three points common to T1 and T2.

Definition 2.15. Consider elements γ1 and γ2 in P̃S coming from a choice of cyclic structure on
T1 and T2 respectively. For every such pair, define the shuffle relative to the set E of three points of
intersection, γ1 xEγ2 by taking the unique liftings of γ1 and γ2 to elements γ̄1 and γ̄2 of PS such
that the cyclic order on E obtained by restricting the cyclic order γ̄1 on T1 (resp. γ̄2 on T2) is equal
to the standard cyclic order on E, and setting

γ1 xEγ2 =
∑

γ̄∈PS
γ̄|T1

=γ̄1,γ̄|T2
=γ̄2

γ, (2.18)

where γ denotes the image in P̃S of γ̄ ∈ PS .

We can write the shuffle with respect to three points using the following simple formula (compare
with (2.10)). If {z1, . . . , zn} = {0, 1,∞, t1, . . . , t`} with E = {0, 1,∞}, we write γ1 = (0, A1,2, 1, A2,3,∞, A3,1)
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where T1 is the disjoint union of A1,2, A2,3, A3,1 and 0, 1,∞, and γ2 = (0, B1,2, 1, B2,3,∞, B3,1), where
T2 is the disjoint union of B1,2, B2,3, B3,1 and 0, 1,∞. Then γ1 xEγ2 is the sum of polygons in P̃S

given by
γ = (0, A1,2 xB1,2, 1, A2,3 xB2,3,∞, A3,1 xB3,1) .

Example 2.16. Let T1 = {0, 1,∞, t1, t3} and T2 = {0, 1,∞, t2}. Let γ1 and γ2 denote the el-
ements of P̃S given by cyclic orders (0, t1, 1, t3,∞) and (0,∞, t2, 1). Then we take the liftings
γ̄1 = (0, t1, 1, t3,∞), γ̄2 = (−1)4(0, 1, t2,∞), and we find that

γ1 x γ2 = (0, t1, 1, t2, t3,∞) + (0, t1, 1, t3, t2,∞) ∈ P̃S .

We will often write, for example, (0, t1, 1, t2 x t3,∞, t4) for the right-hand side.

2.3.2 Multiplying pairs of polygons: the modular shuffle relation In this section, we consider
elements of P̃S ⊗ P̃S . We use the notation (γ, η) for γ ⊗ η where γ, η ∈ P̃S . When γ and η are
polygons (as opposed to linear combinations), we can associate a geometric meaning to a pair of
polygons as follows. The left-hand polygon γ, which we will write using round parentheses, for
example (0, t1, . . . , t`, 1,∞), is associated to the real cell Xγ of the moduli space M0,n associated
to the cyclic structure. The right-hand polygon η, which we will write using square parentheses,
for example [0, t1, . . . , t`, 1,∞], is associated to the cell-form ωη associated to the cyclic structure.
The pair of polygons will be associated to the (possibly divergent) integral

∫
Xγ

ωη. This geometric
interpretation extends in the obvious way to all pairs of elements (γ, η). In the following section we
will investigate in detail the map from pairs of polygons to integrals.

Definition 2.17. Given sets T1, T2 as in (2.17), the modular shuffle product on the vector space
P̃S ⊗ P̃S is defined by

(γ1, η1)x (γ2, η2) = (γ1 x γ2, η1 x η2), (2.19)
for pairs of polygons (γ1, η1)x (γ2, η2), where γi and ηi are cyclic structures on Ti for i = 1, 2.

Example 2.18. The following product of two polygon pairs is given by
(
(0, t1, 1,∞, t4), [0,∞, t1, t4, 1]

)(
(0, t2, 1, t3,∞), [0, t3, t2,∞, 1]

)

= −(
(0, t1 x t2, 1, t3,∞, t4), [0, t3, t2,∞, t1, t4, 1]

)
.

Let us now explain the geometric meaning of the modular shuffle product (2.19), in terms of
integrals of forms on moduli space. Recall that a product map between moduli spaces was defined
in[3] as follows. Let T1, T2 denote two subsets of Z = {z1, . . . , zn} as in (2.17), Then we can consider
the product of forgetful maps:

f = fT1 × fT2 : M0,n −→M0,T1 ×M0,T2 . (2.20)

The map f is a birational embedding because

dimM0,S = |S| − 3 = |T1| − 3 + |T2| − 3 = dimM0,T1 ×M0,T2 .

If f is a product map as above and zi, zj , zk are the three common points of T1 and T2, use an
element α ∈ PSL2 to map zi to 0, zj to 1 and zk to ∞. Let t1, . . . , t` denote the images of z1, . . . , zn

(excluding zi, zj , zk) under α. Given the indices i, j and k, the product map is then determined by
specifying a partition of {t1, . . . , t`} into S1 and S2. We use the notation Ti = {0, 1,∞} ∪ Si for
i = 1, 2.

The shuffle product formula (2.19) on pairs of polygons is motivated by the formula for multi-
plying integrals given in the following proposition.
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Proposition 2.19. Let S = {1, . . . , n}, and let T1 and T2 be subsets of S as in (2.17), of orders
r + 3 and s + 3 respectively. Let ω1 (resp. ω2) be a cell-form on M0,r (resp. on M0,s), and let γ1

and γ2 denote cyclic orderings on T1 and T2. Then the product rule for integrals is given by the
following formula, called the modular shuffle relation:

∫

Xγ1

ω1

∫

Xγ2

ω2 =
∫

Xγ1x γ2

ω1 xω2, (2.21)

where ω1 xω2 converges on the cell Xγ for each term γ in γ1 x γ2.

Proof. The subsets T1 and T2 correspond to a product map

f : M0,n →M0,r ×M0,s.

The pullback formula gives a multiplication law on the pair of integrals:
∫

Xγ1

ω1

∫

Xγ2

ω2 =
∫

Xγ1×Xγ2

ω1 ∧ ω2 =
∫

f−1(Xγ1×Xγ2 )
f∗(ω1 ∧ ω2). (2.22)

The preimage f−1(Xγ1 ×Xγ2) decomposes into a disjoint union of cells of M0,n, which are precisely
the cells given by cyclic orders of γ1 x γ2. In other words,

f−1(Xγ1 ×Xγ2) =
∑

γ∈γ1x γ2

Xγ ,

where the sum denotes a disjoint union. Now we can assume without loss of generality that T1 =
{0, 1,∞, t1, . . . , tk}, T2 = {0, 1,∞, tk+1, . . . , t`} and that δ1, δ2 are the cyclic structures on T1, T2

corresponding to ω1, ω2, respectively, where δ1, δ2 restrict to the standard cyclic order on 0, 1,∞.
Then, in cell function notation,

f∗(ω1 ∧ ω2) = 〈δ1〉〈δ2〉 dt1 . . . dt` =
〈δ1 x {0,1,∞}δ2〉
〈0, 1,∞〉 dt1 . . . dt` = ω1 xω2 ,

by proposition 2.9. Since ω1 and ω2 converge on the closed cells Xγ1 and Xγ2 respectively, ω1 ∧ ω2

has no poles on the contractible set Xγ1 ×Xγ2 , and therefore ω1 xω2 = f∗(ω1 ∧ ω2) has no poles
on the closure of f−1(Xγ1 ×Xγ2). But

∑
γ∈γ1x γ2

Xγ is a cellular decomposition of f−1(Xγ1 ×Xγ2),
so, in particular, ω1 xω2 can have no poles along the closure of each cell Xγ , where γ ∈ γ1 x γ2.

2.3.3 S(n) action on pairs of polygons The symmetric group S(n) acts on a pair of polygons
by permuting their labels in the obvious way, and this extends to the vector space P̃S ⊗ P̃S by
linearity. If τ : M0,n → M0,n is an element of S(n), then the corresponding action on integrals is
given by the pullback formula:

∫

Xγ

ωη =
∫

τ(Xγ)
τ∗(ωη) =

∫

Xτ(γ)

ωτ(η) . (2.23)

Suppose that τ belongs to the dihedral group which preserves the dihedral structure underlying a
cyclic structure γ. Let ε = 1 if τ preserves γ, and ε = −1 if τ reverses its orientation. We have the
following dihedral relation between convergent integrals:

∫

Xγ

ωη = (−1)ε

∫

Xγ

τ∗(ωη) = (−1)ε

∫

Xγ

ωτ(η). (2.24)

Both the formulas (2.23) and (2.24) extend to linear combinations of integrals of cell-forms as
long as the linear combination converges over the integration domain. This convergence is not a
consideration when working with pairs of polygons rather than integrals.
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Example 2.20. The form corresponding to ζ(2, 1) on M0,6 is

dt1dt2dt3
(1− t1)(1− t2)t3

= [0, 1, t1, t2,∞, t3] + [0, 1, t2, t1,∞, t3],

which gives ζ(2, 1) after integrating over the standard cell. By applying the rotation (1, 2, 3, 4, 5, 6),
a dihedral rotation of the standard cell, to this form, one obtains

[t1,∞, t2, t3, 0, 1] + [t1,∞, t3, t2, 0, 1] = [0, 1, t1,∞, t2, t3] + [0, 1, t1,∞, t3, t2]

=
dt1dt2dt3

(1− t1)t2t3
,

which gives ζ(3) after integrating over the standard cell. Therefore, we have the following relation
on linear combinations of pairs of polygons:

(
(0, t1, t2, t3, 1,∞), [0, 1, t1, t2,∞, t3] + [0, 1, t2, t1,∞, t3]

)

=
(
(0, t1, t2, t3, 1,∞), [0, 1, t1,∞, t2, t3] + [0, 1, t1,∞, t3, t2]

) (2.25)

which on the level of integrals corresponds to

ζ(2, 1) =
∫

X3,δ

dt1dt2dt3
t3(1− t2)(1− t1)

=
∫

X3,δ

dt1dt2dt3
t3t2(1− t1)

= ζ(3).

Remark 2.21. This identity is an example of the well-known duality relation between multiple
zeta values given as follows. Every tuple (n1, . . . , nr) of positive integers with n1 > 1 is uniquely
associated to a word xn1−1y · · ·xnr−1y in non-commutative variables x, y. Let (m1, . . . , ms) be the
tuple thus associated to the word xynr−1 · · ·xyn1−1. The duality relation is

ζ(n1, . . . , nr) = ζ(m1, . . . ,ms).

This relation follows from the dihedral relation above, using the reflection permutation correspond-
ing to the reflection of the polygon (0, 1, t1, . . . , tn−3,∞) over the symmetry axis through the side
labeled ∞.

2.3.4 Standard pairs and the product map relations A standard pair of polygons is a pair (δ, η)
where the left-hand polygon is the standard cyclic structure. Let S = {1, . . . , n}, and T1 ∪ T2 = S
with T1∩T2 = {0, 1,∞} be as above, and let γ1 and γ2 be cyclic orders on T1 and T2. In the present
section we show how for each such γ1, γ2, we can modify the modular shuffle relation to construct
a multiplication law on standard pairs.

Definition 2.22. Let δ1 and δ2 denote the standard orders on T1 and T2. Then there is a unique
permutation τi mapping δi to γi such that τi(0) = 0, for i = 1, 2. The multiplication law, denoted
by the symbol ×, and called the product map relation, is defined by

(δ1, ω1)× (δ2, ω2) = (γ1, τ1(ω1))x (γ2, τ2(ω2))
= (γ1 x γ2, τ1(ω1)x τ2(ω2))

=
∑

γ∈γ1x γ2

(δ, τ−1
γ (τ1(ω1)x τ2(ω2))),

(2.26)

where for each γ ∈ γ1 x γ2, τγ is the unique permutation such that τγ(δ) = γ and τγ(0) = 0.

Example 2.23. Let S = {0, 1,∞, t1, t2, t3, t4}, T1 = {0, 1,∞, t1, t4} and T2 = {0, 1,∞, t2, t3}. Let
the cyclic orders on T1 and T2 be given by γ1 = (0, t1, 1,∞, t4) and γ2 = (0, t2, 1, t3,∞). Applying
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the product map relation to the pairs of polygons below yields(
(0, t1, t4, 1,∞),[0, 1, t1,∞, t4]

)× (
(0, t2, t3, 1,∞), [0, 1, t2,∞, t3]

)

=
(
(0, t1, 1,∞, t4), [0,∞, t1, t4, 1]

)
x

(
(0, t2, 1, t3,∞), [0, t3, t2,∞, 1]

)

= −(
(0, t1, t2, 1, t3,∞, t4), [0, t3, t2,∞, t1, t4, 1]

)

− (
(0, t2, t1, 1, t3,∞, t4), [0, t3, t2,∞, t1, t4, 1]

)

=
(
(0, t1, t2, t3, t4, 1,∞), [0, t3,∞, t1, 1, t2, t4] + [0, t3,∞, t2, 1, t1, t4].

(2.27)

In terms of integrals, this corresponds to the relation

ζ(2)2 =
∫

X5,δ

dt1dt4
(1− t1)t4

∫

X5,δ

dt2dt3
(1− t2)t3

=
∫

X7,δ

dt1dt2dt3dt4
t4(t4 − t2)(1− t2)(1− t1)t3

+
dt1dt2dt3dt4

t4(t4 − t1)(1− t1)(1− t2)t3

(2.28)

We will show in §4.4 that the last two integrals evaluate to 7
10ζ(2)2 and 3

10ζ(2)2 respectively.

2.4 The algebra of cell-zeta values
Definition 2.24. Let C denote the Q-subvector space of R generated by the integrals

∫
Xn,δ

ω,
where Xn,δ denotes the standard cell of M0,n for n > 5 and ω is a holomorphic `-form on M0,n with
logarithmic singularities at infinity (thus a linear combination of 01 cell-forms) which converges on
Xn,δ. We call these numbers cell-zeta values. The existence of product map multiplication laws in
proposition 2.19 imply that C is in fact a Q-algebra.

Theorem 2.25. The Q-algebra C of cell-zeta values is isomorphic to the Q-algebra Z of multizeta
values.

Proof. Multizeta values are real numbers which can all be expressed as integrals
∫
Xn,δ

ω where ω is
an `-form of the form

ω = (−1)d
∏̀

i=1

dt

ti − εi
, (2.29)

where ε1 = 0, εi ∈ {0, 1} for 2 6 i 6 `− 1, ε` = 1, and d denotes the number of i such that εi = 1.
Since each such form converges on Xn,δ, the multizeta algebra Z is a subalgebra of C. The converse
is a consequence of the following theorem due to F. Brown [3].

Theorem 2.26. If ω is a holomorphic `-form on M0,n with logarithmic singularities at infinity and
convergent on Xn,δ, then

∫
Xn,δ

ω is Q-linear combination of multizeta values.

Thus, C is also a subalgebra of Z, proving the equality.

The structure of the formal multizeta algebra, generated by symbols (formally representing
integrals of the form (2.29)) subject to relations such as shuffle and stuffle relations, has been much
studied. The present article provides a different approach to the study of this algebra, by turning
instead to the study of a formal version of C.
Definition 2.27. Let |S| > 5. The formal algebra of cell-zeta values FC is defined as follows. Let
A be the vector space of formal linear combinations of standard pairs of polygons in P̃S ⊗ P̃S∑

i

ai(δ, ωi)

such that the associated `-form
∑

i aiωi converges on the standard cell Xn,δ. Let FC denote the
quotient of A by the following families of relations.
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Definition 2.28. The three families of relations defining FC are as follows:

– Product map relations. These relations were defined in section 2.3. For every choice of subsets
T1, T2 of S = {1, . . . , n} such that T1 ∪ T2 = S and |T1 ∩ T2| = 3, and every choice of cyclic
orders γ1, γ2 on T1, T2, formula (2.26) gives a multiplication law expressing the product of any
two standard pairs of polygons of sizes |T1| and |T2| as a linear combination of standard pairs
of polygons of size n.

– Dihedral relations. For σ in the dihedral group associated to δ, i.e. σ(δ) = ±δ, there is a
dihedral relation (δ, ω) = (σ(δ), σ(ω)).

– Shuffles with respect to one element. The linear combinations of pairs of polygons (δ, (A, e)x e(B, e))
where A and B are disjoint of length n− 1 are zero, as in (2.13).

With the goal of approaching the combinatorial conjectures given in the introduction, the pur-
pose of the next chapters is to give an explicit combinatorial description of a set of generators
for FC. We do this in two steps. First we define the notion of a linear combination of polygons
convergent with respect to a chord of the standard polygon δ, and thence, the notion of a linear
combination of polygon convergent with respect to the standard polygon. We exhibit an explicit
basis, the basis of Lyndon insertion words and shuffles for the subspace of such linear combinations.
In the subsequent chapter, we deduce from this a set of generators for the formal cell-zeta value
algebra FC and also, as a corollary, a basis for the subspace of the cohomology space H`(M0,n)
consisting of classes of forms converging on the standard cell.

Remark 2.29. One of the most intriguing and important questions concerning FC is the conjectural
isomorphism with the algebra of formal multizeta values FZ mentioned earlier in conjecture 1.4.
In fact, there is a very natural “candidate map” from the generators of FZ to elements of FC,
coming from simply mapping the differential forms in (1.2) to the corresponding form in the con-
vergent cohomology group H`(Mδ

0,n) (an explicit expression in terms of the basis is given in formula
(4.7) below). However, in order to yield an algebra morphism, this map would have to respect the
regularized double shuffle relations on the multizeta values. The shuffle relation is easy to obtain
on the images, using the shuffle product maps corresponding to the partition of (0, t1, . . . , t`, 1,∞)
into (0, t1, . . . , tm, 1,∞) and (0, tm+1, . . . , t`, 1,∞) for 2 6 m 6 ` − 2 (cf. [3]). Likewise, one could
hope that the stuffle relations would follow from the so-called stuffle product maps defined in [3].
These maps can be expressed very simply in terms of the cubical coordinates x1, . . . , x` defined by
t1 = x1 · · ·x`, t2 = x2 · · ·x`, . . . , t` = x`, as

(0, x1, . . . , x`, 1,∞) 7→ (0, x1, . . . , xm, 1,∞)× (0, xm+1, . . . , x`, 1,∞)

(it is easy to see that this is indeed a product map [3]). However, computing the product of two
multizeta values as a sum using this product map yields a sum of cell-zeta values which is not
obviously equal to a sum of multiple zeta values (let alone the desired stuffle sum).

By a method due to P. Cartier, the stuffle relations on multizeta values written as integrals of
the differential forms ω in (1.2) written in cubical coordinates can be proved using variable changes
of the form ∫

[0,1]`
ω =

∫

[0,1]`
σ∗(ω) (2.30)

for σ any permutation of the ` coordinates x1, . . . , x`. We could choose to forcibly add the relations
(2.30), for all forms ω such that both ω and σ∗(ω) are defined on M0,n and convergent on the
standard cell. This would ensure the validity of the stuffle relations on multiple zeta values inside
FC. However, we have abstained from doing so in the hopes that some possibly weaker conditions
may be deduced from our relations and imply the stuffle, hence giving a morphism FZ → FC with
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the definition of FC above. This certainly occurs experimentally up to n = 9. The paper [19] by I.
Soudères takes up this question in the context of motivic multiple zeta values.

Remark 2.30. By analogy with the situation for mixed Tate motives and formal multizeta values,
we expect that the formal cell-zeta value algebra will be a Hopf algebra. However, we have not yet
determined an explicit coproduct.

3. Polygons and convergence

The present chapter is devoted to redefining certain familiar geometric notions from the moduli
space situation: differential forms, divisors, convergence of forms on cells, divergence of forms along
divisors, residues, etc., in the completely combinatorial setting of polygons.

In this setting, the twin notions of cells and cell-forms are simultaneously replaced by the single
notion of a polygon, as explained in the previous chapters. Boundary divisors then correspond to
chords of polygons, and the issues of divergence become entirely symmetric, with a chord of one
polygon being “a bad chord” for another if the latter corresponds to a form which diverges along
the divisor represented by the bad chord. This language makes it much easier to discuss residue
calculations, convergence of linear combinations of polygons along bad chords, and most importantly,
convergence of linear combinations of polygons with respect to the standard polygon δ. In the main
result of this chapter, we exhibit an explicit basis for the space of linear combinations of polygons
convergent with respect to the standard polygon, consisting of linear combinations called Lyndon
insertion words and Lyndon insertion shuffles. This result will be key in the following chapter
to determining an explicit basis for the space of holomorphic differential `-forms on M0,n with
logarithmic singularities at the boundary, that converge on the standard cell δ. The integrals of
these basis elements, baptized cell-zeta values, form the basic generating set of our algebra of cell-
zeta values, and it is the polygon construction given here that allows us to define a set of formal
cell-zeta values generating the corresponding, combinatorially defined, formal cell-zeta algebra.

3.1 Bad chords and polygon convergence
For any finite set R of cardinality n, let PR denote the Q vector space of linear combinations of
polygons on R, i.e. cyclic structures on R, identified with planar polygons with edges indexed by R,
as in definition 2.14 from section 2.3.

Let V denote the free polynomial shuffle algebra on the alphabet of positive integers, and let V
be the quotient of V by the relations w = 0 if w is a word in which any letter appears more than
once (these relations imply that wxw′ = 0 if w and w′ are not disjoint). A basis for V is usually
taken to be the set of all words w, but a theorem of Radford ([17] or [18], Theorem 6.1 (i)), gives
an alternative basis for V which we use here.

Definition 3.1. Put the lexicographic ordering on the set of all words in a given ordered alphabet
A. A Lyndon word w in the alphabet is a word having the following property: for every way of
cutting the word w into two non-trivial pieces w1 and w2 (so w is the concatenation w1w2), the
word w2 is greater than w itself for the lexicographical order. The Lyndon basis for the vector space
generated by words in A is given by Lyndon words and shuffles of Lyndon words.

Consider the image of the Lyndon basis of V under the quotient map V → V . The elements of
this basis which do not map to zero remain linearly independent in V , whose basis thus consists of

18



The algebra of cell-zeta values

Lyndon words with distinct letters – such a word is Lyndon if and only if the smallest character
appears on the left – and shuffles of disjoint Lyndon words with distinct letters. Throughout this
chapter, we work in V , so that when we refer to a ‘word’, we automatically mean a word with distinct
letters, and shuffles of such words are zero unless the words are disjoint. Let VS be the subspace of V
spanned by the n! words of length n with distinct letters in the characters of S = {1, . . . , n}. Then
the Lyndon basis for VS is given by the (n− 1)! Lyndon words of degree n and the (n− 1) · (n− 1)!
shuffles of disjoint Lyndon words the union of whose letters is equal to S.

Recall from definition 2.14 that the vector space PS is generated by cyclic structures on {1, . . . , n},
identified with planar n-polygons with edges indexed by S. If we consider (n + 1)-polygons with
edges indexed by S ∪ {d} for some new letter d /∈ S, we have a natural isomorphism

VS
∼→ PS∪{d} (3.1)

given by writing each cyclic structure on S ∪{d} as a word on the letters of S followed by the letter
d.

Definition 3.2. Let IS ⊂ PS∪{d} be the subspace linearly generated by shuffles of polygons
(AxB, d), where A ∪B = S, A ∩B = ∅ and A,B 6= ∅. Here, a shuffle of polygons simply refers to
the linear combination of polygons indexed by the words in the shuffle sum (AxB, d).

Then under the isomorphism (3.1), IS is identified with the subspace of VS generated by the part
of the Lyndon basis consisting of shuffles. By a slight abuse of notation, we use the same notation
IS for the corresponding subspaces of PS∪{d} and of VS .

Definition 3.3. Let D = S1 ∪S2 denote a stable partition of S (partition into two disjoint subsets
of order > 2). Let γ be a polygon on S. We say that the partition D corresponds to a chord of γ if
the polygon γ admits a chord which cuts γ into two pieces indexed by S1 and S2. The sets S1, S2

are called blocks associated to the chord D. Thus, a chord divides γ into two blocks, and the set of
chords χ(γ) indexes the set of stable partitions which are compatible with γ in the sense that the
subsets S1 and S2 of the partition are blocks of γ.

Definition 3.4. Let γ, η denote two polygons on S. We say that η is convergent relative to γ if
there are no stable partitions of S compatible with both γ and η:

χ(γ) ∩ χ(η) = ∅ . (3.2)

In other words, there exists no block of γ having the same underlying set as a block of η. If η is a
polygon on S, then a block of η is said to be a consecutive block if its underlying set corresponds to
a block of the polygon with the standard cyclic order δ. The polygon η is said to be convergent if it
has no consecutive blocks at all, i.e., if it is convergent relative to δ. A polygon η ∈ PS∪{d} is said
to be convergent if it has no chords partitioning S ∪ {d} into disjoint subsets S1 ∪ S2 such that S1

is a consecutive subset of S = {1, . . . , n}.

Definition 3.5. We now adapt the definition of convergence for polygons in PS∪{d} to the corre-
sponding words in VS . A convergent word in the alphabet S is a word having no subword which forms
a consecutive block. In other words, if w = ai1ai2 · · · air , then w is convergent if it has no subword
aijaij+1 · · · aik such that the underlying set {aij , aij+1 , . . . , aik} = {i, i+1, . . . , i+ r} ⊂ {1, . . . , n}. A
convergent word is in fact the image in VS of a convergent polygon in PS∪{d} under the isomorphism
(3.1).

Example 3.6. When 1 6 n 6 4 there are no convergent polygons in PS . For n = 5, there is only one
convergent polygon up to sign, given by γ = (13524). The other convergent cyclic structure (14253)
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is just the cyclic structure (13524) written backwards. When n = 6, there are three convergent
polygons up to sign:

(135264) , (152463) , (142635) .

There are 23 convergent polygons for n = 7. Note that when n = 8, the dihedral structure η =
(24136857) is not convergent even though no neighbouring numbers are adjacent, because {1, 2, 3, 4}
forms a consecutive block for both η and δ.

Remark 3.7. The enumeration of permutations satisfying the single condition that no two adjacent
elements in γ should be consecutive (the case k = 2) is known as the dinner table problem and
is a classic problem in enumerative combinatorics. The more general problem of convergent words
(arbitrary k) seems not to have been studied previously. The problems coincide for n 6 7, but the
counterexample for n = 8 above shows that the problems are not equivalent for n > 8.

3.2 Residues of polygons along chords

In this section, we give a combinatorial definition on polygons generalizing the notion of the residue
of a differential form at a boundary divisor along which it diverges.

Definition 3.8. (Polygon residues) For every stable partition D of S given by S = S1 ∪ S2, we
define a residue map on polygons

Resp
D : PS −→ PS1∪{d} ⊗Q PS2∪{d}

as follows. Let η be a polygon in PS . If the partition D corresponds to a chord of η, then it cuts
η into two subpolygons ηi (i = 1, 2) whose edges are indexed by the set Si and an edge labelled d
corresponding to the chord D. We set

Resp
D(η) =

{
η1 ⊗ η2 if D is a chord of η

0 if D is not a chord of η.
(3.3)

More generally, we can define the residue for several disjoint chords simultaneously. Let S =
S1 ∪ · · · ∪ Sr+1 be a partition of S into r + 1 disjoint subsets with r > 2. For 1 6 i 6 r, let Di be
the partition of S into the two subsets (S1 ∪ · · ·Si) ∪ (Si+1 ∪ · · · ∪ Sr+1). For any polygon η ∈ PS ,
we say that η admits the chords D1, . . . , Dr if there exist r chords of η, disjoint except possibly for
endpoints, partitioning the edges of η into the sets S1, . . . , Sr+1. If η admits the chords D1, . . . , Dr,
then these chords cut η into r+1 subpolygons η1, . . . , ηr+1. Let Ti denote the set indexing the edges
of ηi, so that each Ti is a union of Si and elements of the set {d1, . . . , dr} of indices of the chords.
The composed residue map

Resp
D1,...,Dr

: PS → PT1 ⊗ · · · ⊗ PTr

is defined as follows:

Resp
D1,...,Dr

(η) =

{
η1 ⊗ · · · ⊗ ηr+1 if η admits D1, . . . , Dr as disjoint chords
0 if η does not admit D1, . . . , Dr

(3.4)

Examples 3.9. In this example, n = 12 and the partition of S given by D1, D2, D3 and D4 is
S1 = {1, 2, 3}, S2 = {4, 10, 11, 12}, S3 = {5, 9}, S4 = {6}, S5 = {7, 8}.
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We have T1 = S1∪{d1}, T2 = S2∪{d1, d2}, T3 = S3∪{d2, d3}, T4 = S4∪{d3, d4}, T5 = S5∪{d4}.
The composed residue map Resp

D1,D2,D3,D4
maps the standard polygon δ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12)

to the tensor product of the five subpolygons shown in the figure.

The definition of the residue allows us to extend the definition of convergence of a polygon to
linear combinations of polygons.

Definition 3.10. (Polygon divergence along the standard polygon: bad chords) Let E be a partition
of S ∪ {d} into two subsets, one of which is a consecutive subset T = {i, i + 1, . . . , i + j} of S for
the standard order, and let η be a polygon. We say that E is a bad chord for η, or eqiuvalently η
is a bad polygon for E, if E ∈ χ(η) (this expresses the idea that the cell-form corresponding to η
diverges along the boundary divisor, corresponding to E, of the standard cell δ). If η =

∑
i aiηi,

then we say that E is a bad chord for η if any ηi is a bad polygon for E.

Definition 3.11. (Polygon convergence along the standard polygon) The linear combination η =∑
i aiηi is said to converge along the chord E of the standard polygon (or along the corresponding

consecutive subset T ) if the residue satisfies

Resp
E(η) ∈ IT ⊗ PS\T∪{d}∪{e}, (3.5)

where IT is as in definition 3.2. A linear combination η is convergent (along the standard polygon)
if it converges along all of its bad chords.

The goal of the following section is to define a set of particular linear combinations of polygons,
the Lyndon insertion words and Lyndon insertion shuffles, which are convergent, and show that
they are linearly independent. In the section after that, we will prove that this set forms a basis for
the convergent subspace of PS∪{d}.

3.3 The Lyndon insertion subspace

Definition 3.12. Let a 1n-word be a word of length n in the distinct letters of S = {1, . . . , n} in
which the letter 1 appears just to the left of the letter n, and let WS ⊂ VS ' PS∪{d} denote the
subspace generated by these words. The space WS is of dimension (n− 1)!.

The following lemma will show that VS = WS ⊕ IS , where IS is the subspace of shuffles of
definition 3.2.

Lemma 3.13. Fix two elements a1 and a2 of S = {1, . . . , n}.
Let

τ =
∑

i

ciηi ∈ VS ,
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where the ηi run over the words of length n in VS such that a1 is the leftmost character of ηi (resp.
the ηi run over the words where a1 appears just to the left of a2 in ηi). Then τ ∈ IS if and only if
ci = 0 for all i.

Proof. The assumption τ ∈ IS means that we can write τ =
∑

i ciui x vi for non-empty words
ui and vi. Considering this in the space PS∪{d} isomorphic to VS , it is a sum of cyclic structures∑

i ci(ui, d)x (vi, d) shuffled with respect to the point d. Choose any bijection ρ : {1, . . . , n, d} →
{0, 1,∞, t1, . . . , tn−2} which maps d to 0 and a1 to 1 (resp. which maps a1 to 0 and a2 to 1).
Define a linear map from PS∪{d} to Hn−2(M0,n+1) by first renumbering the indices (1, . . . , n, d)
of each polygon η ∈ PS∪{d} as (0, 1,∞, t1, . . . , tn−2) via ρ, then mapping the renumbered polygon
to the corresponding cell-form (same cyclic order). By hypothesis, τ =

∑
i ciηi maps to a sum

ωτ =
∑

i ciωηi of 01 cell forms. Since τ is a shuffle with respect to one point, we know by (2.13)
that ωτ = 0. But the 01 cell-forms ωηi are linearly independent by theorem 2.12. Therefore each
ci = 0.

Recall that the shuffles of disjoint Lyndon words form a basis for IS ; we call them Lyndon
shuffles. A convergent Lyndon shuffle is a shuffle of convergent Lyndon words.

Definition 3.14. We will recursively define the set LS of Lyndon insertion shuffles in IS . If S = {1},
then LS = ∅. If S = {1, 2} then LS = {1x 2}. In general, if D is any (lexicographically ordered)
alphabet on m letters and S = {1, . . . , m}, we define LD to be the image of LS under the order-
preserving bijection S → D corresponding to the ordering of D.

Assume now that S = {1, . . . , n} with n > 2, and that we have constructed all of the sets L{1,...,i}
with i < n. Let us construct LS . The elements of these sets are constructed by taking convergent
Lyndon shuffles on a smaller alphabet, and making “insertions” into every letter except for the
leftmost letter of each Lyndon word in the shuffle, according to the following explicit procedure. Let
T = {a1, . . . , ak} be an alphabet with 3 6 k 6 n letters, ordered by the lexicographical ordering
a1 < · · · < ak, and choose a convergent Lyndon shuffle γ of length k in the letters of T . Write γ as
a shuffle of s > 1 convergent Lyndon words in disjoint letters:

γ = (ai1 · · · aik1
)x (aik1+1

· · · aik2
)x · · · x (aiks−1+1

· · · aiks
)

where 1 6 k1 < k2 < · · · < ks = k. Choose integers v1, . . . , vk > 1 such that
∑

i vi = n and such
that for each of the indices l = i1, ik1+1, . . . , iks−1+1 of the leftmost characters of the s convergent
Lyndon words in γ, we have vl = 1. For 1 6 i 6 k, let Di denote an alphabet {bi

1, . . . , b
i
vi
}. When

vi = 1, insert bi
1 into the place of the letter ai in γ; when vi > 1, choose any element Vi from LDi ,

and insert this Vi into the place of the letter ai.
The result is a sum of words in the alphabet ∪k

i=1Di. Note that this alphabet is of cardinal
n and equipped with a natural lexicographical ordering given by the ordering D1, . . . , Dk and the
orderings within each alphabet Di. We can therefore renumber this alphabet as 1, . . . , n. Since it is
a sum of shuffles, the renumbered element lies in IS , and we call it a Lyndon insertion shuffle on
S. The original convergent Lyndon shuffle γ on T is called the framing; together with the integers
vi, we call this the fixed structure of the insertion shuffle. We define LS to be the set of all Lyndon
insertion shuffles on S, constructed by varying the choice of 3 6 k 6 n, the convergent Lyndon
shuffle γ on k letters, the numbers v1, . . . , vk and the elements Vi for each vi > 1 in every possible
way.

In the special case where k = n, we have vi = 1 for 1 6 i 6 k and there are no non-trivial
insertions. The corresponding elements of LS are thus just convergent Lyndon shuffles.

Example 3.15. We have
L{1,2} = {1x 2}
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L{1,2,3} = {1x 2x 3, 2x 13}
L{1,2,3,4} = {1x 2x 3x 4, 13x 2x 4, 14x 2x 3, 24x 1x 3,

3x 142, 13x 24, 1(3x 4)x 2}
The last element of L{1,2,3,4} is obtained by taking T = {1, 2, 3} and γ = 13x 2. We can only insert
in the place of the character 3 since 1 and 2 are leftmost letters of the Lyndon words in 13x 2. As for
what can be inserted in the place of 3, the only possible choices are k = 1, v1 = 2, D1 = {b1, b2}, and
V1 = b1 x b2, the unique element of LD1 . The natural ordering on the alphabet {T \3}∪D1 is given by
(1, 2, b1, b2) since b1 x b2 is inserted in the place of 3, so we renumber b1 as 3 and b2 as 4, obtaining the
new element 1(3x 4)x 2 = 134x 2+143x 2 = 2134+1234+1324+1342+2143+1243+1423+1432.

For n = 5, L{1,2,3,4,5} has 34 elements. Of these, 25 are convergent Lyndon shuffles which we do
not list. The remaining nine elements are obtained by insertions into the smaller convergent Lyndon
shuffles: they are given by




2x 1(4x 35), 2x 1(3x 4x 5) insertions into 2x 13
3x 1(4x 5)2, 4x 15(2x 3) insertions into 3x 142
13x 2(4x 5), 1(3x 4)x 25 insertions into 13x 24
1(3x 4)x 2x 5 insertion into 13x 2x 4
1(4x 5)x 2x 3 insertion into 14x 2x 3
2(4x 5)x 1x 3 insertion into 24x 1x 3.

Definition 3.16. We now define a complementary set, the set WS of Lyndon insertion words.
Let a special convergent word w ∈ VS denote a convergent word of length n in S such that in the
lexicographical ordering (1, . . . , n, d), the polygon (cyclic structure) η = (w, d) satisfies χ(δ)∩χ(η) =
∅; in other words, the polygon η has no chords in common with the standard polygon. This condition
is a little stronger than asking w to be a convergent word (for instance, 13524 is a convergent word
but not a special convergent word, since 13524d has a bad chord {2, 3, 4, 5}). The first elements of
WS are given by the special convergent 1n-words. The remaining elements of WS are the Lyndon
insertion words constructed as follows. Take a special convergent word w′ in a smaller alphabet
T = {a1, . . . , ak} with k < n such that a1 appears just to the left of ak−1, and choose positive
integers v1, . . . , vk such that v1 = vk = 1 and

∑
i vi = n. As above, we let Di = {bi

1, . . . , b
i
vi
} for

1 6 i 6 k, and choose an element Di of LDi for each i such that vi > 1. For i such that vi = 1, insert
bi
1 in the place of ai in w′, and for i such that vi > 1 insert Di in the place of ai. We obtain a sum

of words w′′ in the letters ∪Di. This alphabet has a natural lexicographic ordering D1, . . . , Dk as
above, so we can renumber its letters from 1 to n, which transforms w′′ into a sum of words w ∈ VS

called a Lyndon insertion word. Note that by construction, the result is still a sum of 1n-words.
The set WS consists of the special convergent words and the Lyndon insertion words.

Remark 3.17. It follows from lemma 3.13 that the intersection of the subspace 〈WS〉 in VS with the
subspace IS of shuffles is equal to zero.

Example 3.18. We have

W{1,2} = ∅, W{1,2,3} = ∅, W{1,2,3,4} = {3142},
W{1,2,3,4,5} = {24153, 31524, (3x 4)152, 415(2x 3)}

The last two elements of W{1,2,3,4,5} are obtained by taking v1 = 1, v2 = 1, v3 = 2, v4 = 1 and
v1 = 1, v2 = 2, v3 = 1, v4 = 1 and creating the corresponding Lyndon insertion word with respect
to 3142.
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Theorem 3.19. The set WS ∪ LS of Lyndon insertion words and shuffles is linearly independent.

Proof. We will prove the result by induction on n. Since LS ⊂ IS and we saw by lemma 3.13 that
the space generated by WS has zero intersection with IS , we only have to show that that both WS

and LS are linearly independent sets. We begin with LS . Since L{1,2} contains a single element, we
may assume that n > 2.

Let W = A1 x · · · xAr be a Lyndon shuffle, with r > 1. We define its fixed structure as follows.
Replace every maximal consecutive block (not contained in any larger consecutive block) in each Ai

by a single letter. Then W becomes becomes a convergent Lyndon shuffle W ′ in a smaller alphabet
T ′ on k letters, which is equipped with an inherited lexicographical ordering. If T = {1, . . . , k},
then under the order-respecting bijection T ′ → T , W ′ is mapped to a convergent Lyndon shuffle V
in T , called the framing of W . The fixed structure is given by the framing together with the set of
integers {vi | 1 6 i 6 k} defined by vi = 1 if that letter in T does not correspond to a maximal
block, and vi is the length of the maximal block if it does. Thus we have v1 + · · ·+ vk = n. We can
extend this definition to the fixed structure of a Lyndon insertion shuffle, since by definition this
is a linear combination of Lyndon shuffles all having the same fixed structure, and we recover the
framing and fixed structure of the insertion shuffle given in the definition.

Example 3.20. If W is the Lyndon shuffle 1546x 237, we replace the consecutive blocks 23 and
546 by letters b1 and b2, obtaining the convergent shuffle W ′ = 1b2 x b17 in the alphabet T ′ =
{1, b1, b2, 7}; renumbering this as 1, 2, 3, 4 we obtain V = 13x 24 ∈ L{1,2,3,4}. The fixed structure is
given by 13x 24 and integers v1 = 1, v2 = 2, v3 = 3, v4 = 1.

The Lyndon insertion shuffles (1, (3x 4))x (2, 5) and (1, 3)x (2, (4x 5)) have the same framing
13x 24, but since (v1, v2, v3, v4) = (1, 1, 2, 1) for the first one and (1, 1, 1, 2) for the second, they
do not have the same fixed structure. The Lyndon insertion shuffles (1, (5)x (3, 4, 6))x (2, 7) and
(1, (3, 5)x (4, 6))x (2, 7) have the same associated framing 13x 24 and the same integers (v1, v2, v3, v4) =
(1, 1, 4, 1). so they have the same fixed structure.

For any fixed structure, given by a convergent Lyndon shuffle γ on an alphabet T of length k and
associated integers v1, . . . , vk with v1+ · · ·+vk = n, let L(γ, v1, ..., vk) be the subspace of VS spanned
by Lyndon shuffles with that fixed structure. Since Lyndon shuffles are linearly independent, we
have

VS =
⊕

L(γ, v1, ..., vk)

Now, as we saw above, a Lyndon insertion shuffle is a linear combination of Lyndon shuffles all having
the same fixed structure, so every element of WS ∪LS lies in exactly one subspace L(γ, v1, . . . , vk).
Thus, to prove that the elements of LS are linearly independent, it is only necessary to prove the
linear independence of Lyndon insertion shuffles with the same fixed structure. If all of the vi = 1,
then the fixed structure is just a single convergent Lyndon shuffle on S, and these are linearly
independent. So let (γ, v1, . . . , vk) be a fixed structure with not all of the vi equal to 1, and let
ω =

∑
q cqωq be a linear combination of Lyndon insertion shuffles of fixed structure γ, v1, . . . , vk.

Break up the tuple (1, . . . , n) into k successive tuples

B1 = (1, . . . , v1), B2 = (v1 + 1, . . . , v1 + v2), . . . , Bk = (v1 + · · ·+ vk−1 + 1, . . . , n).

Let i1, . . . , im be the indices such that Bi1 , . . . , Bim are the tuples of length greater than 1.
These tuples correspond to the insertions in the Lyndon insertion shuffles of type (γ, v1, . . . , vk).
For 1 6 j 6 m, let Tj = {Bij} ∪ {dj}. This element dj is the index of the chord Dj corresponding
to the consecutive subset Bij , which is a chord of the standard polygon and also of every term of ω.
The chords D1, . . . , Dr are disjoint and cut each term of ω into m + 1 subpolygons, m of which are
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indexed by Tj , and the last one of which is indexed by T ′ = S \ {Bi1 ∪ · · · ∪ Bim} ∪ {d1, . . . , dm}.
Thus we can take the composed residue map

Resp
D1,...,Dm

(ω) ∈ PT1 ⊗ · · · ⊗ PTm ⊗ PT ′ .

Let us compute this residue.
The alphabet T ′ is of length k and has a natural ordering corresponding to a bijection {1, . . . , k} →

T ′. Let γ′ be the image of γ under this bijection, i.e. the framing. Let P q
1 , . . . , P q

m be the insertions
corresponding to the m tuples Bi1 , . . . , Bim in each term of ω =

∑
q cqωq. Each P q

j lies in LBij
. The

image of the composed residue map is then

Resp
D1,...,Dm

(ω) =
∑

q

cq(P
q
1 , d1)⊗ · · · ⊗ (P q

m, dm)⊗ γ′. (3.6)

Now assume that ω =
∑

q cqωq = 0, and let us show that each cq = 0. We have
∑

q

cq(P
q
1 , d1)⊗ · · · ⊗ (P q

m, dm)⊗ γ′ = 0,

and since γ′ is fixed, we have
∑

q

cq(P
q
1 , d1)⊗ · · · ⊗ (P q

m, dm) = 0.

But for 1 6 j 6 m, the P q
j lie in LBij

and thus, by the induction hypothesis, the distinct P q
j for

fixed j and varying q are linearly independent. Since di is the largest element in the lexicographic
alphabet Ti, the sums (P q

j , dj) are also linearly independent for fixed j and varying q, because if∑
q eq(P

q
j , dj) = 0 then

∑
q eqP

q
j = 0 simply by erasing dj . The tensor products are therefore also

linearly independent, so we must have cq = 0 for all q. This proves that LS is a linearly independent
set.

We now prove thatWS is a linearly independent set. For this, we construct the framing and fixed
structure of a Lyndon insertion word of length n inWS just as above, by replacing consecutive blocks
with single letters, obtaining a word in a smaller alphabet T ′ and a set of integers corresponding
to the lengths of the consecutive blocks. For instance, replacing the consecutive block (3x 4) in the
Lyndon insertion word (3x 4)152 by the letter b1 gives a convergent word b1152 in the alphabet
(1, 2, b1, 5); renumbering this as (1, 2, 3, 4) gives the framing as 3124 and the associated integers as
v1 = 2, v2 = 1, v3 = 2, v4 = 1. For every fixed structure of this type, now given as a convergent word
γ of length k < n together with integers v1, . . . , vk, we let W (γ, v1, . . . , vk) denote the subspace of VS

generated by Lyndon insertion words with the fixed structure (γ, v1, . . . , vk). As above, the spaces
W (γ, v1, . . . , vk) do not intersect, so WS = ⊕W (γ, v1, . . . , vk), and we have only to show that the
set of Lyndon insertion words with a given fixed structure is a linearly independent set. So assume
that we have some linear combination

∑
q cqwq = 0, where the wq are all Lyndon insertion words of

given fixed structure (γ, v1, . . . , vk). If k = n, then these insertion words are just words, so they are
linearly independent and cq = 0 for all q. So assume that at least one vi > 1. We proceed exactly as
above. Breaking up the tuple (1, . . . , n) into tuples B1, . . . , Bk as above, and letting D1, . . . , Dm, Tj

and T ′ denote the same objects as before, we compute the composed residue of
∑

q cqwq and obtain
(3.6). Then because all of the insertions P q

i lie in LBij
and we know that these sets are linearly

independent, we find as above that cq = 0 for all q.

3.4 Convergent linear combinations of polygons
Definition 3.21. Let S = {1, . . . , n}. Let JS be the subspace of PS∪{d} spanned by the set LS of
Lyndon insertion shuffles, and let KS be the subspace of PS∪{d} spanned by the set WS of Lyndon
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insertion words.

We prove the main convergence results in two separate theorems, concerning the subspaces IS

and WS of VS ' PS∪{d} respectively (cf. definitions 3.2 and 3.12).

Theorem 3.22. An element ω ∈ IS ⊂ PS∪{d} is convergent if and only if ω ∈ JS .

Proof. Step 1. The easy direction. One direction of this theorem is easy. Since JS is spanned by
Lyndon insertion shuffles, which lie in IS , we only need to show that any Lyndon insertion shuffle
is convergent. If it is a shuffle of convergent Lyndon words, then there are no consecutive blocks in
any of the words. Therefore if the letters of any consecutive subset T of S appear as a block in any
term of ω, it must be because they appeared in more than one of the convergent words which are
shuffled together. So these letters appear as a shuffle, so the residue lies in IT ⊗PS\T∪{d}, which by
definition 3.11 means that ω is convergent. Now, if we are dealing with a Lyndon insertion shuffle
with non-trivial insertions, then there are two kinds of bad chords: those corresponding to these
insertions, and those corresponding to consecutive subsets of the insertion sets. For example, in the
Lyndon insertion shuffle

ω = (2x 1(4x 35, d) = 2x (1435 + 1345 + 1354) = (3.7)

21435 + 12435 + 14235 + 14325 + 14352 + 21345 + 12345 + 13245+

13425 + 13452 + 21354 + 12354 + 13254 + 13524 + 13542,

in which (4x 35) is inserted into the Lyndon shuffle 2x 13, and we write ω in VS rather than
PS∪{d} to avoid adding the index d to the end of every word above. The bad chord 345 corresponds
to the insertion, and the bad chords 34 and 45 appear in certain terms of the shuffle within the
insertion. For the latter type, since they appear inside an insertion which is itself a shuffle, their
letters only appear in shuffle combinations within the insertion (for instance 1435+1345 = 1(3x 4)5
in the example above), so the residue along these chords is a shuffle. But also, for the bad chords
corresponding to an insertion set, the insertion itself lies in LT ⊂ IT , and is precisely one factor of
the residue, which is thus also a shuffle. For example, the residue in the example above along the
chord E = 345 comes from considering only the terms in (3.7) which have {3, 4, 5} as a consecutive
subset, i.e. the terms which are polygons admitting the chord 345, namely

ω = 21435 + 12435 + 14352 + 21345 + 12345 + 13452 + 21354 + 12354 + 13542

= 21(435 + 345 + 354) + 12(435 + 345 + 354) + 1(435 + 345 + 354)2

= 21(4x 35) + 12(4x 35) + 1(4x 35)2

and the residue is thus simply

Res345(ω) = (4x 35)⊗ (21e + 12e + 1e2),

where e labels the chord E, and the insertion itself is the left-hand factor. Since insertions always
lie in LT , they are always shuffles, therefore ω converges along the corresponding chords.

Step 2. The other direction: Induction hypothesis and base case. Assume now that ω is convergent
and lies in IS , so that we can write ω =

∑
i aiωi where each ωi = (Ai

1 x · · · xAi
ri

, d) is a Lyndon
shuffle, ri > 1. We say that a consecutive block appearing in any Ai

j is maximal if the same block
does not appear in that factor or in any other factor inside a bigger consecutive block. Factors may
appear which contain more than one consecutive block, but the maximal blocks are disjoint.
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We prove the result by induction on the length of the alphabet S = {1, . . . , n}. The smallest
case is n = 3, since for n = 2, the polygons are triangles and have no chords. For n = 3, let

ω = c1(12x 3, d) + c2(13x 2, d) + c3(1x 2x 3, d) + c4(23x 1, d)

be a linear combination of all the Lyndon shuffles for n = 3. The bad chords are E = {1, 2},
F = {2, 3}. We have

Resp
E(ω) = c1(1, 2, e)⊗ (ex 3, d) + c2(1x 2, e)⊗ (e, 3, d)

+c3(1x 2, e)⊗ (ex 3, d) + c4(1x 2, e)⊗ (e, 3, d).
For this to converge means that the left-hand parts of the two right-hand tensor factors (e, 3, d) and
(ex 3, d) must lie in I{1,2}. Since three of the four left-hand parts already lie in I{1,2}, the fourth
one must as well, which must mean that c1 = 0. This is the condition for ω to converge on E. Now
let us consider F = {2, 3}. We have

Resp
F (ω) = c1(2x 3, f)⊗ (1, f, d) + c2(2x 3, f)⊗ (1, f, d)

+c3(2x 3, e)⊗ (1x f, d) + c4(2, 3, f)⊗ (1x f, d).
This gives c4 = 0 as the condition for ω to converge on F . Therefore, we find that ω is a linear
combination of 13x 2 and 1x 2x 3, which are exactly the elements of the basis L{1,2,3} of JS . This
settles the base case n = 3.

The induction hypothesis is that for every alphabet S′ = {1, . . . , i} with i < n, if ω ∈ IS′ is
convergent, then ω ∈ JS′ .

Step 3. Construction of the insertion terms (S[i], e) ∈ IT . Now let S = {1, . . . , n} and assume that
ω ∈ IS is convergent. Write ω as a linear combination of Lyndon shuffles

ω =
∑

i

ciωi =
∑

i

ci(Ai
1 xAi

2 x · · ·Ai
ri

, d).

If no consecutive block appears in any Ai
j , then ω is a linear combination of convergent Lyndon

words, so it is in JS by definition. Assume some consecutive blocks do appear, and consider a
maximal consecutive block T , corresponding to a bad chord E. Decompose ω = γ1 + γ2 where γk is
the sum

∑
i∈Ik

ciωi, with I1 the set of indices i for which T appears as a block in some Ai
j , which

by reordering shuffled pieces we may assume to be Ai
1, and I2 is the set of indices for which T does

not appear as a block in any Ai
j . Then because letters of T appear scattered in different Ai

j in each
term of γ2, any time they appear as a block in a term of γ2, they must appear in several terms as
a shuffle combination, so Resp

E(γ2) ∈ IT ⊗ PS\T∪{e}∪{d}. Thus γ2 converges along E. Since we are
assuming that ω is convergent, γ1 must then also converge, so we must have

Resp
E(γ1) ∈ IT ⊗PS\T∪{d}∪{e}. (3.8)

For each i ∈ I1, write Ai
1 = Bi

1Y
iCi

1, where Y i consists of the letters of T in some order and Bi
1

is a (possibly empty) Lyndon word.
We have

Resp
E(γ1) =

∑

i∈I1

ci(Y i, e)⊗ (Bi
1eC

i
1 xAi

2 x · · · xAi
ri

, d) (3.9)

Note that the alphabet (S \ T ) ∪ {e} corresponding to all of the right-hand factors has the lexi-
cographic ordering inherited from S by deleting the consecutive block of letters T and replacing
it with the unique character e. Thus, all of the words appearing in the shuffles of the right-hand
factors are Lyndon words. Indeed, the Ai

j , j > 1, are Lyndon by definition, the words Bi
1eC

i
1 with

non-empty Bi
1 are Lyndon because of the assumption that Ai

1 = Bi
1Y

iCi
1 is a Lyndon word and
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therefore the smallest character appears on the left of Bi
1, and the words eCi

1 which appear when
Bi

1 is empty are Lyndon because Ai
1 = Y iCi

1 is Lyndon and the characters of Y i (i.e. those of T )
are consecutive, so they are all smaller than those appearing in Ci

1; thus e is less than any character
of Ci

1 in the inherited ordering. Thus, all of the right-hand factors of (3.9) are Lyndon shuffles.
Putting an equivalence relation on I1 by letting i ∼ i′ if the right-hand factors of (3.9) are equal,

and letting [i] denote the equivalence classes for this relation, we write the residue as

Resp
E(γ1) =

∑

[i]⊂I1

(∑

i∈[i]

ci(Y i, e)
)⊗ (B[i]

1 eC
[i]
1 xA

[i]
2 x · · · xA[i]

r[i]
, d). (3.10)

Since the right-hand factors in the sum over [i] are distinct Lyndon shuffles, the set of right-hand
factors forms a linearly independent set. Therefore by (3.8), we must have

(S[i], e) =
∑

i∈[i]

ci(Y i, e) ∈ IT (3.11)

for each [i] ⊂ I1.

Let us show that (S[i], e) = 0 whenever B
[i]
1 is empty. For all i ∈ I1 such that Bi

1 is empty, we
have Ai

1 = Y iCi
1, and since these are all Lyndon words, the smallest character of T , say a, is always

on the left of Y i, so we can write Y i = aY i
0 and Ai

1 = aY i
0Ci

1 for all such i. Then for an equivalence
class [i] of such i, the (S[i], e) of (3.11) can be written

(S[i], e) =
∑

i∈[i]

ci(Y i, e) =
∑

i∈[i]

ci(aY i
0 , e) ∈ IT .

But by lemma 3.13, a sum of words all having the same character (here a) on the left and the same
character (here e) on the right cannot be a shuffle unless it is zero, so (S[i], e) = 0 if B

[i]
1 is empty.

Step 4. Proof that the insertion terms (S[i], e) lie in JT . For this, we first need to show that (S[i], e)
converges on every subchord of E, i.e. every consecutive subset inside the set T , before applying the
induction hypothesis. Let E′ be a subchord of E, corresponding to a consecutive block T ′ strictly
contained in T .

Decompose the set of indices I1 into two subsets I3 and I4, where I3 contains the indices i ∈ I1

such that T ′ appears as a consecutive block inside the block T appearing in Ai
1, and I4 contains the

indices i ∈ I1 such that the letters of T ′ do not appear consecutively inside the block T . Similarly,
partition I2, the set of indices in the sum ω =

∑
i ciωi for which T does not appear as a block in Ai

1,
into two sets I5 and I6, where I5 contains the indices i ∈ I2 such that T ′ appears as a block in some
Ai

j which we may assume to be Ai
1, and I6 contains the indices i ∈ I2 of the terms in which T ′ does

not appear as a block in any Ai
j . We have corresponding decompositions γ1 = γ3 + γ4, γ2 = γ5 + γ6.

As before, T ′ must appear as a shuffle in γ6, so γ6 converges along E′. As for γ4, since T ′

does not appear as either a block or a shuffle, the residue along E′ is 0. Since by assumption
ω = γ3 + γ4 + γ5 + γ6 converges along E′, we see that γ3 + γ5 must converge along E′. Let us show
that in fact both γ3 and γ5 converge along E′.

Write Ai
1 = RiZiSi for every i ∈ I3 ∪ I5, where Zi is a word in the letters of T ′. Note that Ri is

Lyndon, and non-empty by the identical reasoning to that used above to show that Bi
1 is non-empty.

Then for k = 3, 5, we have

Resp
E′(γk) =

∑

i∈Ik

ci(Zi, e′)⊗ (Rie′Si xAi
2 x · · · xAi

ri
, d). (3.12)

For k = 3, 5, put the equivalence relation on Ik for which i ∼ i′ if the right-hand factors of (3.12)
are equal, and let 〈i〉 denote the equivalence classes for this relation. Note that because for i ∈ I3,
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T ′ appears as a block of T , the word Bi
1 must appear as the left-hand part of Ri, and the word Ci

1

must appear as the right-hand part of Si. Therefore, in particular, the new equivalence relation is
strictly finer than the old, i.e. the equivalence class [i] breaks up into a finite union of equivalence
classes 〈i〉. The residues for k = 3, 5 can now be written

Resp
E′(γk) =

∑

〈i〉⊂Ik

(∑

i∈〈i〉
ci(Zi, e′)

)⊗ (R〈i〉e′S〈i〉xA
〈i〉
2 x · · · xA〈i〉r〈i〉). (3.13)

Then since the right-hand factors for each k are distinct Lyndon shuffles, they are linearly indepen-
dent. Furthermore, none of the right-hand factors occurring in the sum for k = 3 can ever occur
in the sum for k = 5 for the following reason: the Lyndon words Rie′Si appearing for k = 3 all
have the letters of T \ T ′ grouped around e′, whereas none of the Lyndon words Rie′Si have this
property. Therefore all the right-hand factors from the residues of γ3 and γ5 together form a linearly
independent set, so we find that all the left-hand factors

∑

i∈〈i〉⊂Ik

(Zi, e′) ∈ IT ′ , (3.14)

so that both γ3 and γ5 converge along E′. In particular, this means that both γ1 and γ2 converge
along E′.

Now, to determine that the (S[i], e) of (3.11) converge along E′, we will use (3.10) to compute
the composed residue map Resp

E,E′(γ1). We are only concerned with the set of indices I1 = I3 ∪ I4

in (3.10). For each i ∈ I3, write Y i = U iZiV i where Zi is a word in the letters of T ′, so that
Ri = BiU i, Si = V iCi, and Ai

1 = BiU iZiV iCi. Then by (3.12), we have

Resp
E(γ1) =

∑

[i]∈I3

(∑

i∈[i]

ci(U iZiV i, e)
)
⊗ (

B
[i]
1 eC

[i]
1 xA

[i]
2 x · · · xA[i]

r[i]
, d

)
+

∑

[i]∈I4

(∑

i∈[i]

ci(Y i, e)
)
⊗ (

B
[i]
1 eC

[i]
1 xA

[i]
2 x · · · xA[i]

r[i]
, d

)
.

The terms for i ∈ I4 converge along T ′, so they vanish when taking the composed residue, and we
find

Resp
E,E′(γ1) =

∑

[i]∈I3

(∑

i∈[i]

ci(Zi, e′)⊗ (U ie′V i, e)
)
⊗ (

B
[i]
1 eC

[i]
1 xA

[i]
2 x · · · xA[i]

r[i]
, d

)
.

Since for each [i] ⊂ I3, the right-hand factors are as usual distinct and linearly independent, this
means that for each [i] ⊂ I3,

Resp
E′(S[i], e) =

∑

i∈[i]

ci(Zi, e′)⊗ (U ie′V i, e) ∈ PT ′∪{e′} ⊗PT\T ′∪{e′}∪{e}.

Now, the equivalence relation on i ∈ [i] ⊂ I3 given by i ∼ i′ if U i = U i′ and V i = V i′ is the same
as the equivalence relation i ∼ i′ if Ri = Ri′ and Si = Si′ since Ri = BiU i and Si = V iCi. So the
classes 〈i〉 correspond to sets of i for which U i and V i are identical. Thus for each [i] ⊂ I3, we can
write

Resp
E′(S[i], e) =

∑

〈i〉⊂[i]

(∑

i∈〈i〉
ci(Zi, e′)

)
⊗ (U 〈i〉e′V 〈i〉, e),

where the right-hand factors are all distinct words. Then (3.14) shows that this sum lies in IT ′ ⊗
PT\T ′∪{e′}∪{e}, so in fact (S[i], e) converges along E′. For [i] ⊂ I4, we have saw that Resp

E′((S[i], e)) =
0 since T ′ never occurs as a block for i ∈ I4. Thus (S[i], e) converges along E′ for all [i] ⊂ I1.
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Since we have just shown that (S[i], e) converges along every subchord E′ of E, i.e. along the
chords corresponding to every consecutive subblock T ′ of T , we see that each term (S[i], e) is con-
vergent along all its bad chords. Thus, by the induction hypothesis, (S[i], e) ∈ JT .

Step 5. Construction of the insertions. The above construction shows that we can write ω = γ1 +γ2

with

γ1 =
∑

[i]∈I1

c[i]

(
B[i]S[i]C

[i] xA
[i]
2 x · · · xA[i]

ri
, d

)

with S[i] ∈ JT . This means that the maximal block T , which appeared only in γ1, has been replaced
by an insertion in the sense of the definition of Lyndon insertion shuffles. To conclude the proof
of the theorem, we successively replace each of the maximal blocks in ω by insertion terms in the
same way, in any order, since maximal blocks are disjoint. The final result displays ω as a linear
combination of convergent Lyndon shuffles and Lyndon insertion shuffles, so ω ∈ JS .

The following theorem is the exact analogy of the previous one, but with the actual shuffles in
IS replaced by the words in WS that have 1 just to the left of n, and the set of Lyndon insertion
shuffles replaced by Lyndon insertion words, which considerably simplifies the proof.

Theorem 3.23. Let η ∈WS ⊂ PS∪{d}. Then η is convergent if and only if η ∈ KS = 〈WS〉.
Proof. The proof that ω ∈ KS is convergent is exactly as at the beginning of the proof of the
previous theorem. So consider the other direction. Let ω ∈WS , so that we can write

ω =
∑

i

aiηi

where each ηi is a 1n-polygon (a 1n-word concatenated with d), and assume ω is convergent. The
only possible bad chords for ω are the consecutive blocks appearing in the ηi. Let T be a subset of
S corresponding to a maximal consecutive block.

Lemma 3.24. No maximal consecutive block having non-trivial intersection with {1, n} can appear
in any of the 1n-words ηi of ω.

Proof. If T is a maximal block containing both 1 and n, then T = {1, . . . , n} which does not
correspond to a chord.

Assume now that T = {m, . . . , n} with m > 1. Write ηi = (Ki, 1, n, Zi, H i, d) where Zi is an
ordering of {m, . . . , n− 1}. Let E be the chord corresponding to T . We have

Resp
E(

∑

i

aiηi) =
∑

i

ai(n,Zi, e)⊗ (Ki, 1, e,H i, d).

Convergence implies that for any constant words K, H, the sum
∑

i|Ki=K,Hi=H

ai(n,Zi, e) ∈ IT . (3.15)

But by lemma 3.13, it is impossible for a sum of words all having the same character on the left to
be equal to a shuffle.

The case where T = {1, . . . , m} with m < n is identical, except for an easy adaptation of lemma
3.13 to show that a sum of words all having the same character on the right cannot be equal to a
shuffle.

Now we can complete the proof of the theorem. Let ω =
∑

i aiηi be a sum of 1n-words which
converges, and consider a maximal consecutive block T ⊂ {2, . . . , n−1}. Let I1 be the set of indices

30



The algebra of cell-zeta values

i such that ηi contains the block T and I2 the other indices. For i ∈ I1, write ηi = (Ki, Zi,H i, d)
where Zi is an ordering of T . Then

Resp
T (ω) =

∑

i∈I1

ai(Zi, e)⊗ (Ki, e,H i, d).

Let i ∼ i′ be the equivalence relation on I1 given by Ki = Ki′ and H i = H i′ . Then

Resp
T (ω) =

∑

[i]∈I1

(∑

i∈[i]

ai(Zi, e)
)⊗ (K [i], e, H [i], d),

and the right-hand factors are all distinct (linearly independent) words, so by the assumption that
ω convergence along E, we have

(S[i], e) =
∑

i∈[i]

ai(Zi, e) ∈ IT

for each [i] ⊂ I1. Therefore we can write ω as

ω =
∑

[i]⊂I1

ai(K [i], S[i],H
[i], d) +

∑

i∈I2

aiηi,

with the maximal block T replaced by the insertion S[i]. We prove that S[i] ∈ JT exactly as in
the proof of the previous theorem: considering a maximal consecutive block T ′ ⊂ T occurring in
a factor of S[i], one shows that S[i] converges along T ′ if and only if ω converges along T ′. Since
ω does converge by assumption, S[i] also converges, and since this holds for all consecutive blocks
T ′ ⊂ T , S[i] converges on all its subdivisors and therefore S[i] ∈ JS = 〈LS〉. Finally, one deals with
the disjoint maximal blocks appearing in ω one at a time until no blocks at all remain, expressing
ω explicitly as a linear combination of Lyndon insertion words.

A summary of the results in this chapter. We introduced the following spaces, where S =
{1, . . . , n}:

– VS : the Q-vector space generated by words in S having distinct letters

– IS : the Q-vector space generated by shuffles of disjoint words of VS (definition 3.2)

– LS : the set of Lyndon insertion shuffles (definition 3.14), which are linearly independent (the-
orem 3.19)

– JS : the subspace of IS spanned by LS , which forms the set of convergent elements of IS

(theorem 3.22)

– WS : the Q-vector space generated by words in VS , so that by Radford’s theorem, we have
VS = IS ⊕WS

– WS : the set of Lyndon insertion words (definition 3.16), which are linearly independent (the-
orem 3.19)

– KS : the subspace spanned byWS , which forms the set of convergent elements of WS (theorem
3.23).

4. Explicit generators for FC and H`(Mδ
0,n)

In this chapter, we show that the map from polygons to cell-forms is surjective, and compute its
kernel. From this and the previous chapter, we will conclude that the pairs (δ, ω), where ω runs
through the set WS of Lyndon insertion words for n > 5, form a generating set for the formal
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cell-zeta algebra FC. In the final section, we show that the images of the elements of WS in the
cohomology H`(M0,n) yield an explicit basis for the convergent cohomology H`(Mδ

0,n), determine
its dimension, and compute the cohomology basis explicitly for small values of n. We recall that
Mδ

0,n is defined in section 1.1, and that by the “convergent cohomology”, we mean the cohomology
classes of `-forms with logarithmic singularities which converge on the closure of the standard cell.

4.1 From polygons to cell-forms
Let S = {1, . . . , n}. The bijection ρ : S ∪ {d} → {0, t1, . . . , t`+1, 1,∞} given by associating the
elements 1, . . . , n, d to 0, t1, . . . , t`+1, 1,∞ respectively, induces a map f from polygons to cell-forms:

η = (σ(1), . . . , σ(n), d)
f→ ωη = [ρ(σ(1)), . . . , ρ(σ(n)),∞].

The map f extends by linearity to a map from PS∪{d} to the cohomology group Hn−2(M0,n+1).
The purpose of this section is to prove that f is a surjection, and to determine its kernel.

Recall that IS ⊂ PS∪{d} denotes the subvector space of PS∪{d} spanned by the shuffles with
respect to the element d, namely by the linear combinations of polygons

(S1 xS2, d)

for all partitions S1
∐

S2 of S.

Proposition 4.1. Let S = {1, . . . , n}. Then the cell-form map

f : PS∪{d} −→ Hn−2(M0,n+1)

is surjective with kernel equal to the subspace IS .

Proof. The surjectivity is an immediate consequence of the fact that 01 cell-forms form a basis of
Hn−2(M0,n+1) (theorem 2.12), since all such cell-forms are the images under f of polygons having
the edge labelled 1 next to the one labelled n.

Now, IS lies in the kernel of f by the corollary to proposition 2.9. So it only remains to show
that the kernel of f is equal to IS . But this is a consequence of counting the dimensions of both
sides. By theorem 2.12, we know that the dimension of Hn−2(M0,n+1) is equal to (n − 1)!. As for
the dimension of PS∪{d}/IS , recall from the beginning of chapter 3 that PS∪{d} ' VS , which can
be identified with the graded n part of the quotient of the polynomial algebra on S by the relation
w = 0 for all words w containing repeated letters. Thus VS is the vector space spanned by words
on n distinct letters, so it is of dimension n!. But instead of taking a basis of words, we can take
the Lyndon basis of Lyndon words (words with distinct characters whose smallest character is on
the left) and shuffles of Lyndon words. The subspace IS is exactly generated by the shuffles, so the
dimension of the quotient is given by the number of Lyndon words on S, namely (n−1)!. Therefore
PS∪{d}/IS ' Hn−2(M0,n+1).

Remark 4.2. The above proof has an interesting consequence. Since the map from polygons to
differential forms does not depend on the role of d, the kernel cannot depend on d, and any other
element of S ∪ {d} could play the same role. Therefore IS , which is defined as the space generated
by shuffles with respect to the element d, is equal to the space generated by shuffles of elements
of S ∪ {d} with respect to any element of S; it is simply the subspace generated by shuffles with
respect to one element of S ∪ {d}.
Corollary 4.3. Let WS ⊂ PS∪{d} be the subset of polygons corresponding to 1n-words (concate-
nated with d). Then

f : WS ' Hn−2(M0,n+1).

Proof. The proof follows from the fact that PS∪{d} = WS ⊕ IS .
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4.2 Generators for FC

By definition, FC is generated by all linear combinations of pairs of polygons
∑

i ai(δ, ωi) whose
associated differential form converges on the standard cell, but modulo the relation (among others)
that shuffles are equal to zero. In other words, since PS∪{d} = WS ⊕ IS , we can redefine FC to be
generated by linear combinations

∑
i ai(δ, ωi) such that

∑
i aiωi ∈WS and such that the associated

differential form converges on the standard cell.
The following proposition states that the notion of the residue of a polygon and the residue of

the corresponding cell-form coincide. In order to state it, we must recall that one can define the
map

ρ : PS −→ Ω`(M0,S) ,

from polygons labelled by S to cell forms in a coordinate-free way (one can do this directly from
equation (2.6)). In §1, this map was defined in explicit coordinates by fixing any three marked points
at 0, 1 and ∞. This essence of lemma 2.5 is that ρ is independent of the choice of three marked
points, and is thus coordinate-free.

Proposition 4.4. Let S = {1, . . . , n} and let D be a stable partition S1∪S2 of S corresponding to
a boundary divisor of M0,n, with |S1| = r and |S2| = s. Let ρ denote the usual map from polygons
to cell-forms. Then the following diagram is commutative:

PS
ρ //

Resp
D

²²

H`(M0,n)

ResD

²²
PS1∪{d} ⊗ PS2∪{d}

ρ⊗ρ // Hr−2(M0,r+1)⊗Hs−2(M0,s+1).

In other words, the usual residue of differential forms corresponds to the combinatorial residue of
polygons.

Proof. Let η ∈ PS be a polygon, and let ωη be the associated cell-form. If D is not compatible with
ωη, then ωη has no pole on D by proposition 2.7, so ResD(ω) = 0.

We shall work in explicit coordinates, bearing in mind that this does not affect the answer, by
the remarks above. Therefore assume that η is the polygon numbered with the standard cyclic order
on {1, . . . , n}, and that D is compatible with η. The corresponding cell-form is given in simplicial
coordinates by [0, t1, . . . , t`, 1,∞]. By applying a cyclic rotation, we can assume that D corresponds
to the partition

S1 = {1, 2, 3, . . . , k + 1} and S2 = {k + 2, . . . , n− 1, n}
for some 1 6 k 6 `. In simplicial coordinates, D corresponds to the blow-up of the cycle 0 =
t1 = · · · = tk. We compute the residue of ωη along D by applying the variable change t1 =
x1 . . . x`, . . . , t`−1 = x`−1x`, t` = x` to the form ωη = [0, t1, . . . , t`, 1,∞]. The standard cell Xη is
given by {0 < x1, . . . , x` < 1}. In these coordinates, the divisor D is given by {xk = 0}, and the
form ωη becomes

ωη =
dx1 . . . dx`

x1(1− x1) . . . x`(1− x`)
. (4.1)

The residue of ωη along xk = 0 is given by

dx1 . . . dxk−1

x1(1− x1) . . . xk−1(1− xk−1)
⊗ dxk+1 . . . dx`

xk+1(1− xk+1) . . . x`(1− x`)
. (4.2)

Changing back to simplicial coordinates via x1 = a1/a2, . . . , xk−2 = ak−2/ak−1, xk−1 = ak−1, and
x` = b`, x`−1 = b`−1/b`, . . . , xk+1 = bk/bk+1 defines simplicial coordinates on D ∼= M0,r+1×M0,s+1.
The standard cells induced by η are (0, a1, . . . , ak−1, 1,∞) on M0,r+1 and (0, bk, . . . , b`, 1,∞) on
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M0,s+1. If we compute (4.2) in these new coordinates, it gives precisely

[0, a1, . . . , ak−1, 1,∞]⊗ [0, bk, . . . , b`, 1,∞] ,

which is the tensor product of the cell forms corresponding to the standard cyclic orders η1, η2 on
S1 ∪ {d} and S2 ∪ {d} induced by η. Therefore ρ(Resp

Dη) = ResDωη.
To conclude the proof of the proposition, it is enough to notice that applying σ ∈ S(n) to the

formula ResDωη = ωη1 ⊗ ωη2 yields

Resσ(D)σ
∗(ωη) = Resσ(D)ωσ(η) = σ∗(ωη1)⊗ σ∗(ωη2) = ωσ(η1) ⊗ ωσ(η2).

Here, σ(ηi) is the cyclic order induced by σ(η) on the set σ(S1) ∪ {σ(d)}, where σ(d) corresponds
to the partition S = σ(S1) ∪ σ(S2). Thus ρ(Resp

σ(D)σ(η)) = Resσ(D)ωσ(η) for all σ ∈ S(n), which
proves that ρ(Resp

Dγ) = ResDωγ for all cyclic structures γ ∈ PS , and all divisors D.

Corollary 4.5. A linear combination η =
∑

i aiηi ∈ WS ⊂ PS∪{d} converges with respect to the
standard polygon if and only if its associated form ωη converges on the standard cell.

Proof. We first show that

Resp
D(η) ∈ IS1 ⊗ PS2∪{d} + PS1∪{d} ⊗ IS2 , (4.3)

if and only if ωη converges along the corresponding divisor D in the boundary of the standard
cell. If (4.3) holds, then by proposition 4.1 together with the previous proposition, ResD(ωη) = 0.
Conversely, if ResD(ωη) = 0 for a divisor D in the boundary of the standard cell, then by the
previous proposition, Resp

D(η) ∈ Ker(ρ⊗ρ), which is exactly equal to IS1 ⊗PS2∪{d}+PS1∪{d}⊗ IS2 .
We now show that (4.3) is equivalent to the convergence of η. But since η ∈ WS , the argument

of lemma 3.24 implies that (4.3) holds automatically for any D which intersects {1, n} non-trivially.
If D intersects {1, n} trivially, then we can assume that {1, n} ⊂ S2. In that case, the fact that
WS2 ∩ IS2 = 0 (lemma 3.13) implies that (4.3) is equivalent to the apparently stronger condition

Resp
D(η) ∈ IS1 ⊗ PS2∪{d} ,

and thus η converges along S1 in the sense of definition (3.5). This holds for all divisors D and thus
completes the proof of the corollary.

Corollary 4.6. The Lyndon insertion words of WS form a generating set for FC. Furthermore,
FC is defined by subjecting this generating set to only two sets of relations (cf. definition 2.28)

– dihedral relations

– product map relations

Remark 4.7. The third relation from definition 2.28 is not needed because we have restricted at-
tention from all linear combinations of pairs of polygons to only those in the basis WS , where such
shuffles do not occur.

4.3 The insertion basis for H`(Mδ
0,n)

Definition 4.8. Let an insertion form be the sum of 01-cell forms obtained by renumbering the
Lyndon insertion words of WS via (1, . . . , n, d)→ (0, t1, . . . , t`+1, 1,∞).

Theorem 4.9. The insertion forms form a basis for Hn−2(Mδ
0,n+1).

This is an immediate corollary of all the preceding results.
It is interesting to attempt to determine the dimension of the spaces H`(Mδ

0,n). The most
important numbers needed to compute these are the numbers c0(n) of special convergent words
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(convergent 01 cell-forms) on M0,n. These can be computed by counting the number of polygons
indexed by symbols (0, t1, . . . , t`, 1,∞) (or (1, . . . , n)) which are convergent with respect to the
standard cyclic order and also have the index 0 next to 1 (or 1 next to n− 1); in other words, the
number of cyclic orders having 0 next to 1 and in which no k consecutive labels occur as a single
block of k consecutive elements of the cyclic order. By direct counting, we find c0(4) = 0, c0(5) = 1,
c0(6) = 2, c0(7) = 11, c0(8) = 64, c0(9) = 461.

Proposition 4.10. Set I1 = 1, and let Ir denote the cardinal of the set L{1,...,r} for r > 2 given in

definition 3.14. The dimensions dn =dimH`(Mδ
0,n) are given by

dn =
n∑

r=5

∑

i1+···+ir−3=n−3

Ii1 . . . Iirc0(r) , (4.4)

where the inner sum is over all partitions of (n−3) into (r−3) strictly positive integers. This formula
can be written as follows in terms of generating series. Let I(x) =

∑∞
n=1 Inxn = x+x2 +2x3 +7x4 +

· · · , and let C(x) =
∑∞

r=5 c0(r)xr−3 = x2 + 2x3 + 11x4 + 64x5 + · · · . Then if D(x) =
∑∞

n=5 dnxn−3,
we have the identity

D(x) = C
(
I(x)

)
.

Proof. This recursive counting formula is a direct consequence of the definition, counting all possible
ways of making insertions into the c0(r) convergent 01-cell forms for 5 6 r 6 n.

Remark 4.11. We have I1 = I2 = 1, I3 = 2, I4 = 7, I5 = 34, I6 = 206 (see example 3.15). The
formula gives




d5 = I2
1c0(5) = 1 ,

d6 = I1I2c0(5) + I2I1c0(5) + I3
1c0(6) = 1 + 1 + 2 = 4 ,

d7 = I1I3c0(5) + I2
2c0(5) + I3I1c0(5) + I2

1I2c0(6) + I1I2I1c0(6) + I2I
2
1c0(6) + c0(7)

= 5c0(5) + 3c0(6) + c0(7) = 5 + 6 + 11 = 22 .

The authors thank Don Zagier for the restatement of formula (4.4) in terms of generating series. In
the forthcoming preprint [2], the following remarkably simple identity concerning the dn is proven.
Let E(x) = x− x2 −∑∞

n=4 dnxn−1, and set F (x) =
∑∞

n=1(n− 1)!xn. Then

E
(
F (x)

)
= x,

in other words E(x) is the formal inversion of the power series F (x).
While the present paper was in the final stages of correction, a preprint [20] appeared in which a

sequence of numbers dn, of which the first ones are equal to the dn defined above, are discovered and
interpreted in terms of free Lie operads. In this paper, the authors give the same expression for the
generating series of their dn as the inverse of F (x), thus their result provides a new interpretation
of the dimensions dn.

Note that the formula (4.4) gives the dimensions as sums of positive terms. A very different
formula for dimH`(Mδ

0,n) is given in [2] using point-counting methods. The relations between the
proof in [20], the geometry of moduli spaces, the intermediate power series I(x) and C(x), and the
counting method in [2], will be discussed in a forthcoming paper.

4.4 The insertion basis for M0,n, 5 6 n 6 9
In this section we list the insertion bases in low weights. In the case M0,5, there is a single convergent
cell form:

ω = [0, 1, t1,∞, t2]. (4.5)
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The corresponding period integral is the cell-zeta value:

ζ(ω) =
∫

(0,t1,t2,1,∞)
[0, 1, t1,∞, t2] =

∫

06t16t261

dt1dt2
(1− t1)t2

= ζ(2) .

Here we use the notation of round brackets for cells in the moduli space M0,n introduced in section
2.3.4: the cell (0, t1, t2, 1,∞) is the same as the cell X5,δ corresponding to the standard dihedral
order on the set {0, t1, t2, 1,∞}. Since C0(5) is 1-dimensional, the space of periods in weight 2,
namely the weight 2 graded part C2 of the algebra of cell-zeta values C of section 2.4, is just the
1-dimensional space spanned by

∫
X5,δ

ω = ζ(2).

4.4.1 The case M0,6 The space C(6) is four-dimensional, generated by two 01-convergent cell-
forms (the first row in the table below) and two forms (the second row in the table below) which
come from inserting L1,2 = {1x 2} and L2,3 = {2x 3} into the unique convergent 01 cell form
on M0,5 (4.5). The position of the point ∞ plays a special role. It gives rise to another grading,
corresponding to the two columns in the table below, since ∞ can only occur in two positions.

C0(6) ω1,1 = [0, 1, t2,∞, t1, t3] ω1,2 = [0, 1, t1, t3,∞, t2]
C1(6) ω2,1 = [0, 1, t1,∞, t2 x t3] ω2,2 = [0, 1, t1 x t2,∞, t3]

We therefore have four generators in weight 3. There are no product relations on M0,6, so in order to
compute the space of cell-zeta values, we need only compute the action of the dihedral group on the
four differential forms. In particular, the order 6 cyclic generator 0 7→ t1 7→ t2 7→ t3 7→ 1 7→ ∞ 7→ 0
sends

ω1,1 7→ −ω2,1 − ω2,2, ω1,2 7→ ω1,1, ω2,1 7→ −ω1,2 − ω2,1, ω2,2 7→ ω2,1.

Thus, letting X denote the standard cell X6,δ = (0, t1, t2, t3, 1,∞), we have
∫
X ω1,1 =

∫
X ω1,2,∫

X ω2,1 =
∫
X ω2,2 and 2

∫
X ω2,2 =

∫
X ω1,2, so in fact the periods form a single orbit under the action

of the cyclic group of order 6 on H`(Mδ
0,S). We deduce that the space of periods of weight 3 is of

dimension 1, generated for instance by
∫

ω2,1. Since ω2,1 is the standard form for ζ(3), we have

ζ(0, 1, t2,∞, t1, t3) =
∫

X

dt1dt2dt3
(1− t2)(t1 − t3)t3

= 2 ζ(3) ,

ζ(0, 1, t1, t3,∞, t2) =
∫

X

dt1dt2dt3
(1− t1)(t1 − t3)t2

= 2 ζ(3) ,

ζ(0, 1, t1,∞, t2 x t3) =
∫

X

dt1dt2dt3
(1− t1)t2t3

= ζ(3) ,

ζ(0, 1, t1 x t2,∞, t3) =
∫

X

dt1dt2dt3
(1− t1)(1− t2)t3

= ζ(3) ,

Note that ω2,2 is the standard form usually associated to ζ(2, 1), so that we have recovered the
well-known identity ζ(2, 1) = ζ(3), which is normally obtained using stuffle, shuffle and Hoffmann
relations on multizetas.

4.4.2 The case M0,7 The insertion basis is listed in the following table. It consists of 22 forms,
eleven of which lie in C0(7), six of which come from making one insertion into a convergent 01
cell-form from C0(6) (using L1,2 = {1x 2} and L2,3 = {2x 3}), and five of which come from
making two insertions into the unique convergent 01 cell-form from C0(5) (which also uses L1,2,3 =
{1x 2x 3, 2x 13} and L2,3,4 = {2x 3x 4, 3x 24}).
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C0(7) [0, 1, t2,∞, t3, t1, t4] [0, 1, t1, t3,∞, t2, t4] [0, 1, t1, t4, t2,∞, t3]
[0, 1, t2,∞, t4, t1, t3] [0, 1, t1, t3,∞, t4, t2] [0, 1, t2, t4, t1,∞, t3]
[0, 1, t3,∞, t1, t4, t2] [0, 1, t2, t4,∞, t1, t3] [0, 1, t3, t1, t4,∞, t2]

[0, 1, t3, t1,∞, t2, t4]
[0, 1, t3, t1,∞, t4, t2]

C1(7) [0, 1, t2,∞, t1, t3 x t4] [0, 1, t1, t4,∞, t2 x t3] [0, 1, t1 x t2, t4,∞, t3]
[0, 1, t3,∞, t1 x t2, t4] [0, 1, t2 x t3,∞, t1, t4] [0, 1, t1, t3 x t4,∞, t2]

C2(7) [0, 1, t1,∞, t3 x (t2, t4)] [0, 1, t1 x t2,∞, t3 x t4] [0, 1, t2 x (t1, t3),∞, t4]
[0, 1, t1,∞, t2 x t3 x t4] [0, 1, t1 x t2 x t3,∞, t4]

The standard multizeta forms can be decomposed into sums of insertion forms as follows:

dt1dt2dt3dt4
(1− t1)t2t3t4

= [0, 1, t1,∞, t2 x t3 x t4]

dt1dt2dt3dt4
(1− t1)(1− t2)t3t4

= [0, 1, t1 x t2,∞, t3 x t4]

dt1dt2dt3dt4
(1− t1)t2(1− t3)t4

= [0, 1, t1, t3,∞, t2, t4] + [0, 1, t1, t3,∞, t4, t2]+

[0, 1, t3, t1,∞, t2, t4] + [0, 1, t3, t1,∞, t4, t2]
dt1dt2dt3dt4

(1− t1)(1− t2)(1− t3)t4
= [0, 1, t1 x t2 x t3,∞, t4]

(4.6)

In general, the standard multizeta form having factors (1 − ti1), . . . , (1 − tir) (with i1 = 1) and
tj1 , . . . , tjs (with js = n) in the denominator is equal to the shuffle form:

[0, 1, ti1 x · · · x tir ,∞, tj1 x · · · x tjs ], (4.7)

so to decompose it into insertion forms it is simply necessary to decompose the shuffles ti1 x · · · x tir
and tj1 x · · · x tjs into linear combinations of Lyndon insertion shuffles.

Computer computation confirms that the space of periods on M0,7 is of dimension 1 and is
generated by ζ(2)2. Indeed, up to dihedral equivalence, there are six product maps on M0,7, given
by 




(0, t1, t2, t3, t4, 1,∞) 7→ (0, t1, t2, 1,∞)× (0, t3, t4, 1,∞)
(0, t1, t2, 1, t3, t4,∞) 7→ (0, t1, t2, 1,∞)× (0, 1, t3, t4,∞)
(0, t1, t2, 1, t3,∞, t4) 7→ (0, t1, t2, 1,∞)× (0, 1, t3,∞, t4)
(0, t1, t2, 1, t3,∞, t4) 7→ (0, t1, 1, t3,∞)× (0, t2, 1,∞, t4)
(0, t1, t2, t3, 1, t4,∞) 7→ (0, t1, t2, 1,∞)× (0, t3, 1, t4,∞)
(0, t1, t2, 1, t3, t4,∞) 7→ (0, t1, 1, t3,∞)× (0, t2, 1, t4,∞)

(4.8)

Following the algorithm from section 2.3.4, we have six associated relations between the integrals of
the 22 cell-forms. Then, explicitly computing the dihedral action on the forms yields a further set
of linear equations, and it is a simple matter to solve the entire system of equations to recover the
1-dimensional solution. It also provides the value of each integral of an insertion form as a rational
multiple of any given one; for instance all the values can be computed as rational multiples of ζ(2)2.
In particular, we easily recover the usual identities

ζ(4) =
2
5
ζ(2)2, ζ(3, 1) =

1
10

ζ(2)2, ζ(2, 2) =
3
10

ζ(2)2, ζ(2, 1, 1) =
2
5
ζ(2)2.

37



Francis Brown, Sarah Carr and Leila Schneps

4.4.3 The cases M0,8 and M0,9 There are 64 convergent 01 cell-forms in on M0,8, and the
dimension of H5(Mδ

0,8) is 144. The remaining 80 forms are obtained by Lyndon insertion shuffles
as follows:

– 44 forms obtained by making the four insertions (t1 x t2, t3, t4, t5), (t1, t2 x t3, t4, t5), (t1, t2, t3 x t4, t5),
(t1, t2, t3, t4 x t5) into the eleven 01 cell-forms of M0,7

– 12 forms obtained by the six insertion possibilities (t1 x t2 x t3, t4, t5), (t2 x t1t3, t4, t5), (t1, t2 x t3 x t4, t5),
(t1, t3 x t2t4, t5), (t1, t2, t3 x t4 x t5), (t1, t2, t4 x t3t5) into the two 01 cell-forms of M0,6

– 6 forms obtained by the three insertion possibilities (t1 x t2, t3 x t4, t5), (t1 x t2, t3, t4 x t5),
(t1, t2 x t3, t4 x t5) into the two 01 cell-forms of M0,6

– 4 forms obtained by the four insertions (t1 x t2 x t3, t4 x t5), (t2 x t1t3, t4 x t5), (t1 x t2, t3 x t4 x t5),
(t1 x t2, t4 x t3t5) into the single 01 cell-form of M0,5

– 14 forms obtained by the fourteen insertions (t1t3 x t2t4, t5) (t3 x t1t4t2, t5) (t1t3 x t2 x t4, t5)
(t1t4 x t2 x t3, t5) (t2t4 x t1 x t3, t5) (t2 x t1(t3 x t4), t5) (t1 x t2 x t3 x t4, t5) (t1, t2t4 x t3t5) (t1, t4 x t2t5t3)
(t1, t2t4 x t3 x t5) (t1, t2t5 x t3 x t4) (t1, t3t5 x t2 x t4) (t1, t3 x t2(t4 x t5)) (t1, t2 x t3 x t4 x t5) into
the single 01 cell-form of M0,5.

The case of M0,9 is too large to give explicitly. There are 461 convergent 01 cell-forms, and
dimH6(Mδ

0,9) = 1089. An interesting phenomenon occurs first in the case M0,9; namely, this is the
first value of n for which convergent (but not 01) cell-forms do not generate the cohomology. The
1463 convergent cell-forms for M0,9 generate a subspace of dimension 1088.

For 5 6 n 6 9, computer computations have confirmed the main conjecture, namely: for n 6 9,
the weight n− 3 part FCn−3 of the formal cell-zeta algebra FC is of dimension dn−3, where dn is
given by the Zagier formula dn = dn−2 + dn−3 with d0 = 1, d1 = 0, d2 = 1.
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baki, (2000-01), no. 885.

5 K. T. Chen: Iterated path integrals, Bull. Amer. Math. Soc. 83, (1977), 831-879.
6 P. Deligne: Le groupe fondamental de la droite projective moins trois points, in ‘Galois groups over
Q’, Proc. Workshop, Berkeley/CA (1987), Publ. Math. Sci. Res. Inst. 16 (1989), 79-297.

7 P. Deligne, D. Mumford: The irreducibility of the space of curves of a given genus, Publ. Math.
IHES 36, (1969), 75-109.

8 Deligne, P., Goncharov, A.B.: Groupes fondamentaux motiviques de Tate mixte, Ann. Sci. Ecole
Norm. Sup., Sér. IV 38, No. 1, (2005), 1-56.

9 S. Devadoss: Tesselations of moduli spaces and the mosaic operad, in Contemp. Math. 239 (1999),
91-114.

10 H. Gangl, A. B. Goncharov, A. Levin: Multiple polylogarithms, polygons, trees and algebraic
cycles, preprint (2005) arXiv:math.NT/0508066.

11 A. B. Goncharov: Multiple polylogarithms and mixed Tate motives, preprint (2001),
arXiv:math.AG/0103059v4.

12 A. B. Goncharov: Periods and mixed motives, arXiv:math.AG/0202154 (2001).

38



The algebra of cell-zeta values

13 A. B. Goncharov, Y. I. Manin: Multiple ζ-motives and moduli spaces M0,n, Compositio Math.
140 (2004), 1-14.

14 M. E. Hoffman: Quasi-shuffle products, J. Algebraic Combin. 11, 1 (2000), 49-68.
15 F. F. Knudsen: The projectivity of the moduli space of stable curves II. The stacks M0,n, Math.

Scand. 52 (1983), 163-199.
16 M. Kontsevich, D. Zagier: Periods, in Mathematics unlimited - 2001 and beyond, Ed. Engquist

and Schmidt, pp. 771-808, Springer, 2001.
17 D. E. Radford: A natural ring basis for shuffle algebra and an application to group schemes, Journal

of Algebra 58, (1979), 432-454.
18 C. Reutenauer: Free Lie Algebras, London Math. Soc. Mono. 7, Clarendon Press, Ox. Sci. Publ.,

(1993).
19 I. Soudères: Motivic double shuffle relations, preprint 2008.
20 P. Salvatore, R. Tauraso: The Operad Lie is Free, ArXiv:0802.3010v1, February 2008.
21 T. Terasoma: Mixed Tate motives and multiple zeta values, Invent. Math. 149, No.2, 339-369 (2002).
22 T. Terasoma: Selberg integrals and multiple zeta values, Compositio Math. 133 (2002).
23 M. Waldschmidt: Valeurs zêtas multiples : une introduction, J. Théorie des Nombres de Bordeaux
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