Combinatorics of the double shuffle Lie algebra

Sarah Carr and Leila Schneps

Abstract.

In this article we give two combinatorial properties of elements
satisfying the stuffle relations; one showing that double shuffle elements
are determined by less than the full set of stuffle relations, and the other
a cyclic property of their coefficients. Although simple, the properties
have some useful applications, of which we give two. The first is a
generalization of a theorem of Thara on the abelianizations of elements
of the Grothendieck-Teichmiiller Lie algebra grt to elements of the
double shuffle Lie algebra in a much larger quotient of the polynomial
algebra than the abelianization, namely the trace quotient introduced
by Alekseev and Torossian. The second application is a proof that
the Grothendieck-Teichmiiller Lie algebra grt injects into the double
shuffle Lie algebra ds, based on the recent proof by H. Furusho of this
theorem in the pro-unipotent situation, but in which the combinatorial
properties provide a significant simplification.

§1. The cyclic property

Write Y for the alphabet {y1,y2,ys,...} and U for the alphabet
{u1,uz2,us,...}, where y; and u; are given the weight ¢, and these two
alphabets are related by the expression

(1)
1
urtug+- -+ = log(1+y1+ya+--+) = (y1+yet- - )—§(y1+y2+- )P
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with the parts of equal weight on each side identified, so that

ur =Y
U2 = Y2 — %y%
Us = Y3 — $Y1y2 — sY2u1 + 5YS ...

Let Q[U] be the polynomial ring freely generated by the w;, and Q[Y]
be that generated by the ;.

Definition 1.1. For any two sequences of strictly positive inte-
gers a = (ay,...,a,) and b = (by,...,bs), define the shuffle of a and
b, sh(a,b), to be the set of sequences obtained as follows. We write
b1 = arg1y...,bs = arps; for any permutation o € S,is such that
ol) < -~ <o(r) and o(r +1) < ... < o(r + s), we define the se-
quence (ag-1(1),---,05-1(r1s)). The shuffle sh(a,b) is the set of these
sequences.

Similarly, for any two sequences of strictly positive integers a =
(a1,...,a,) and b = (by,...,bs), define the stuffle of a and b, st(a,b),
to be the set of sequences obtained as follows. We again write by =
Urg1s -5 bs = arys as above. Following Furusho’s notation, let Sh=(r, s)
denote the set of surjective maps o : {1,...,7r+s} = {1,...,N}, N <
r+s, such that (1) < ... < o(r) and o(r +1) < ... < o(r +s). For
each o € Sh=(r, s), we define the sequence ¢’ (a,b) = (c1,...,cn) by

ag +bi—r if o7 (i) = {k,1} with k <r <l
ci = { ag if o71(i) = {k} with k <r
bi—r if o7 (i) = {k} with k > r.

The stuffle st(a,b) is given by
st(a,b) = {¢’(a,b)| o € Sh=(r,s)}.
For any sequence a = (ay,...,a,), we write u, for the associated
word Us = Uq, - Uq, € Q[U], and ya = Ya, - Ya, for the associated

word in Q[Y]. We define the shuffle of two words u, and up, in Q[U] as
the set

sh(ua, up) = {uc|c € sh(a,b)},

and the stuffle of two words y, and yp in Q[Y] as

st(Ya, Yb) = {yclc € st(a,b)}.
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For any word w and any polynomial f, we write (f|w) for the coefficient
of w in f. We say that a polynomial fU in the u; satisfies the shuffle

relations if
> () =0

wEsh(ua,up)

for all pairs of words ua, up. A polynomial f¥ in the y; is said to satisfy
the stuffie relations if

> (fMlw) =0

wEst(Ya,Yb)

Let A denote the coproduct defined on Q[U] by A(u;) = u;®@1+1Qwu;
for each 7 > 1, and setting yo = 1, let A, denote the coproduct defined
on Q[Y] by

K
(2) Adlyr) =D ¥ @ yp—s-
1=0

The following lemma is well-known (see [R] for example).

It follows easily from these definitions that for every polynomial f¥
in the y;, we have

3) A1) = AY).

Indeed, it can be checked directly for f¥ = y;, ¢ > 1, and then follows
by the multiplicativity of the coproducts.

Lemma 1. Let fU € Q[U], and write f¥ for the polynomial ob-
tained from fU by making the variable change to the y;. Then the fol-
lowing are equivalent:

(i) fU lies in the Lie algebra Lie[U] C Q[U], the free Lie algebra on
the u;.

(ii) fY satisfies the shuffle relations for all pairs of words ug,uy, €
Q[U].

(iii) A(f9) = f@1+1e fU.

(i) Ac(f) =Y @1+1e f¥.

(v) fY¥ satisfies the stuffle relations.

We do not reproduce the proof in full detail. The equivalence of (i)
and (iii) is shown for example in [Serre]. The equivalence of (ii) and (iii)
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follows from a direct computation which shows that the shuffle sums of
the coefficients of fU are equal to coefficients of the terms of A(fY), i.e.
for all non-trivial sequences a, b, we have

(4) (AfDua@up) = > (fle).

cesh(a,b)

Similarly, (iv) and (v) are equivalent because again, a direct computa-
tion shows that the stuffle sums of the coefficients of f¥ are equal to
coefficients of A, (fY), i.e. for all non-trivial sequences a, b, we have

(5) Al M) = S (o).

cest(a,b)
Finally, the equivalence between (iii) and (iv) follows from (1).

The following lemma is also well-known, but we give its short proof
here.

Lemma 2. Let f € Lie[lU] C Q[U] and d > 2. For 1 < j <d, let
wl = Wiy * o Uiy Uiy~ Uiy, SO that w! = w (note that the w? are not
necessarily all distinct if w has symmetries). Then

d

(6) > (flw?) =0.

Jj=1

Proof. By additivity, it is enough to prove the result elements of the
form f = [g,h] = gh — hg. In fact, the statement of the lemma holds
whenever f is a (linear combination of) Lie bracket(s) of monomials in
the u;. We first assume that g and h are monomials in the u;. Then the
only words to appear with non-zero coefficient in the polynomial f =
gh — hg are the words gh and hg, and we have (f|gh) = 1 and (f|hg) =
—1. All other words appear with coefficient zero, and furthermore gh is
a cyclic permutation of hg, so (1) holds for f. Then by additivity, (1)
holds for f = gh — hg for any polynomials g and h, and in particular it
holds when g and h are Lie brackets of the u;, so it holds for all Lie[U].
¢

We now come to the definition and proof of the cyclic property of
polynomials in the y; satisfying the stuffle relations. This proof is due to
J. Ecalle and was initially done in terms of moulds, a context in which it
appears very naturally (as does the equivalence of (ii) and (v) in lemma
1). We consider polynomials in the y; or the u; which are homogeneous
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of a given weight n, which means that all the monomials y;, - --y;, (or
Uiy .. u;,.) appearing with non-zero coefficients satisfy iy + - -+ + ;.

Theorem 1. Let f¥ be a polynomial in Y of homogeneous weight
n satisfying the stuffle relations, and let w = y;, - - -y, be a word in Y.
For1<j<d,letw = Yi; * YigYiy - Yi;_, be the cyclic permutations
of w=w'. Then

(fYw?) = (DT Tyn).

1

d
j=

Proof. As above, we write fU for the polynomial f¥ rewritten in the
variables U. By lemma 1, fU € Lie[U] From the expression (1), we know
that

(7) (fYun) = (¥ lyn)-

For any word w = yg, ---yi, in Y, we write |[|w|| = Yy +- 4k, Vw =
Uk, + - Uk, , and ||vy|| = Uk, 4.4k, Let [(w) denote the length of a word,
For any word w in Y, the relation between the alphabets (1) yields the
relation

®) (f|w) =
l(w)

_1\(v1)—1 (_1)\l(v2)—1 _1)l(vs)—1
> X : 11)(1)1) : 1l)(v2) - 1l)(vs) Mol sl

s=1 V=01 Vs

where the v; are non-trivial words, corresponding to composition of
power series. Set v/ = v,,; for 1 < j <d,ie. v/ =u; - ujug U
For the third equality below, we use the fact that for 1 < j < d, we have
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|[vi]] = Uiy 4otiy = Up. Using (8), we find that
d d d j j j
) (71)1(1)1)71 (71)1(1;2)71 (71)1(1;5)71 v ,
(fY ) = : — ——(fY|I[] ]
D D D S T B T R ]

Z (_1)l(v{)—l (—l)l(v% -1 (_l)l(vi)—l

il v l(v{) l(vg) l(")g)

M=
M=

(I 1

s=2 j=1

d_(_1\d-1 ,
+ 3 S0 )

(—1)ieD-1 (—p)led-1  (_p)lwd-1
Zod el () [(v3) I(vd)
+ (=1 (Y un)

CEA

d J g J
_ (_1)1(111)—1 (_1)1(1;2)—1”.(_1)l(vs)—1 U Uj
2.2 Z T o Ol
+ (=D Jyn)-

The last equality follows from (7). In order to conclude the proof, we
need to show that the complicated term

(=1)eD=1 (_)le) =1 (_)leD)-1

d d
4 Ul -- - [|od
20 X T D oy Ol el

s=2 j=1 ’Uj:’U'{'H’UZ» 1 s

from the above expression is equal to zero, leaving the desired formula

d

Do w?) = (DT ).

j=1
In fact we will show that
© | | |
1 I(v])—1 -1 1(v3)—1 -1 I(vl)—1 ) )
yoy GO CUE L EDEE g el = 0
I(v1) I(v3) 1(v3)

J=1lpi=pd . vd

for each s, 2 < s < d. The point is that this sum breaks up into smaller
sums over cyclic permutations of words, so that it is zero by lemma 2.
Let

(10) O o)

- [lwdl])

[l

e [lwdll)

SRCAD:
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be a term appearing in this sum. Then we only need to show that for
every 1 <1 < s, the term

(11) SRl CAT -y R | )
appears with the same coefficient, since these words are exactly the cyclic
permutations of the word |[v]]|- - ||[v!]], each ||v]|| being a single wuy.

The term (11) appears in the double sum (9) as

(12) NI g 11 [l 1),

with 5’ = j +1(v]) + - +1(v]_,) (where j and j/ are considered mod d

and between 1 and d), and v/ = v]

e vg/ where the grouping into pieces
vi/ is determined by l(fui )= l(v{ 1) (and i and k are considered mod
s and between 1 and s). Thus, (11) and (12) are equal. Furthermore,
the coefficients of (10) and (12) are obviously equal, because the set of
lengths of the pieces vi and the set of lengths of the pieces vi/ are equal.
Thus the double sum (9) breaks up into cyclic subsums each of which is
zero by Lemma 2. This concludes the proof. &

Our next theorem shows that if a polynomial satisfies all the “non-
trivial” stuffle relations, then it can be easily modified to obtain a stuffle
polynomial.

Theorem 2. Let f¥ be a polynomial in the y; of homogeneous
weight n satisfying the stuffle relations

(13) Y. (Ml =0

cest(a,b)

for all pairs of sequences (a,b) which are not both sequences of 1’s. Set
a=(~1)""22 f¥|y,) + (/¥ |y?) and g = f¥ — ay}'. Then g* satisfies
the stuffie relations for all pairs, and

@ 1yp) = (1" 0¥ |y

(

Proof. Assume that fY satisfies (13). Then by equation (5), we know
that the coefficients of pairs of words ya®yp in A, (fY) are zero whenever
a and b are not both sequences of 1’s. In other words, we can write

A= @141 +> ayi @y
i=1
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Making the variable change to the w; and using (3), we then have

n—1
A =AY = el+1e U+ cub @uf

i=1

Now, for any monomial u;, - - - u;,, the definition of A implies that
A(ui, -+ u;,) is a linear combination of terms of the form wj, ---u;, ®
Uj,,, - uj,, where the list w; ,...,u;, is the same as the list u;,,...,u;,
in a different order. In particular, only terms of the form u} ® ujl with
i+ j =n will appear in A(u}), but inversely, if (i1,...,4.) # (1,...,1),
then no term of that form can appear in A(uy, ...u;, ). Thus, if ¢¥ is a
homogeneous polynomial of weight 7 in the u; with (¢Y|u}) = 0, then
(A(gY)|u} ® w]) =0 for all i + j = n.

Let k = (fU|u}), and set gV = fU — ku?, so (gV|u}) = 0. Then

A(g”) = A(fY) — kA(u)"

n—1
=f'@1+10fU+) cuj@uf ™ - kA(u)"
i=1
n—1
:gU®1+1®gU+ku?®1+1®ku?—k;A(u’f)—i—Zciull®u?_’
i=1

(14)
=¢"21+1a4".

Here, the last equality follows from the fact that since as we just saw,
(A(gY)|ul ®ul) = 0, there can be no terms of the form u} ®uj in A(gY).
Therefore the terms of that form in the third line above must either be
canceled out by terms of that form in ¢V ® 1+ 1 ® ¢V, but there are no
such terms since gV does not contain a power of u;, or sum to zero. Thus
they sum to zero, yielding the last equality. Thus, gV = fY — ku?} is an
element of Lie[U], and therefore by lemma 1, g¥ = f¥ — ky? satisfies
the stuflle relations.

Let us now show that k = a and that (¢" |y}) = (71)”*1%gy|yn).

Since g¥ satisfies all the stuffle relations, in particular it satisfies the
relation for a = (1), b=(1,...,1) with n — 1 1’s. We have

st(a,b) =n(1,..., 1)+ (2,1,..., )+ (1,2,...,1) -+ (1,...,1,2),
SO

n—2

n(g¥ [y?) + (" 1y2972) + (0¥ [yryays - -91) + -+ (¥ Y7 2y2) = 0.



Combinatorics of double shuffle 9

But the sum over the words ygy{“z, Y1Y2y1 - - - y1 etc. is a sum over a
cyclic orbit of words of length d = n — 2, so by theorem 1, it is equal to
(=1)""2(g" |y,). Thus we obtain the desired identity

n(g" ly?) + (=1 *(f¥ |yn) = 0.

Plugging into this equation the identity g¥ = f¥ — ky? yields the value
k = a given in the statement. &

§2. First application: a generalization of Ihara’s abelianization
theorem

The application of theorems 1 and 2 to the double shuffle Lie al-
gebra is straightforward, though they appear to be new and quite use-
ful. At the end of this section, we use them to give a simple proof of
a quite surprising generalization of a theorem of IThara concerning the
Grothendieck-Teichmiiller Lie algebra grt.

Let Lie[z, y] denote the free Lie algebra on two generators, graded
by degree, and let Lie, [z, y] denote the subvector space of Lie[z, y] con-
sisting of Lie polynomials of homogeneous degree n.

Definition 2.1. Let Lie Ps denote the Lie algebra of the pure sphere
5-strand braid group. It is generated by x;;, 1 < 1,5 < 5, subject to
the relations x;; = 0, x;j = xj;, (X, xp) = 0 of {i,j} N {k, 1} =0,
2?21 x;j =0 for each fized j € {1,...,5}, and [z, xij + T +xj1] =0
for any triple of indices 1, j, k.

The weight n graded part grt,, of the Grothendieck-Teichmiiller Lie
algebra grt is defined to be the vector space of elements f € Lie,[x,y]
such that
(15)

f(x12,23) + f(w34,245) + f(xs51,212) + f(223, ¥34) + f(a5,251) = O,

where the defining “pentagon’relation takes place in Lie Ps.!  We set
grt = @n23grtn-

Thara proved in [I1] that grt is a Lie algebra under the Poisson
bracket

(16) {f:9} = 1,91+ Ds(9) = Dy(f),

'Note that the definition classically contained three separate conditions on
f, but H. Furusho in [F1] gave a remarkable proof that the single pentagon
condition implies both the others, making them unnecessary.
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where for every f € Lie[z,y|, D; denotes the derivation of Lie[z,y]
defined by Dy(x) = 0 and Dy(y) = [y, f].

Now let us proceed to define the double shuffle Lie algebra. Let A
denote the polynomial algebra A = Qz,y] on two non-commutative
variables z, y, and let B C A denote the subalgebra generated by
Y1,Y2, Y3, - - ., where yp = 21y, Set yo = 1.

Let A be the coproduct on A defined by A(z) =2 ® 1+ 1® z and
Aly) =y®1+1®y. Let A, be the coproduct on B defined on the
generators yi by equation (1.2). Let Lie, [z, y] denote the homogeneous
parts of weight n of Lie[z,y]. For any f € Lie,[x,y], considered as a
polynomial in z and y, we write f = f,z + f,y, and set

(-1

fe=fyy + T(f|$n71y)yno

Since f. is a polynomial ending in y, we can rewrite it in the variables
Yk, SO it lies in B.

Definition 2.2. The weight n graded part ds,, of the double shuffle
Lie algebra ds is defined by

dsp, = {f € Liex[z,y][A(fe) = fr @1+ 1® fi}.
We set ds = @y,>3ds,. It was shown in [R] that ds is a Lie algebra
under the Poisson bracket defined in (2.2).

By lemma 1, if f, satisfies A(f,) = fx®1+1® f,, then f, satisfies the
stuffle relations. Thus theorem 1 applies to the elements f, associated
to elements f € ds.

The following statement is an immediate corollary of theorem 2 and
will be used in §3. For a sequence of strictly positive integers ¢ =
(c1,...,¢), we use the notation

(fle) = (Flve) = (Tl +3e) = (Fla 2y -2 1y)
Theorem 3. Let f € Lie,[x,y], with n > 3. Then f € ds if and
only if
(17) Z (flyc) =0

cest(a,b)

for all pairs (a,b) # ((1,...,1),(1,...,1)).
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Proof. Since all the words y. end in y when considered in the variables x
and y, we have (f|yc) = (fyy|yc) whenever ¢ # (1,...,1). The sequence
of 1’s can only occur in the stuffle of a and b if both a and b are
themselves sequences of 1’s, so it never occurs in (17), and thus (17) is
equivalent to the hypothesis of theorem 2 on the polynomial f,y. Now,
because f is a Lie element, we have (f,y|y") = 0, and therefore the

a of theorem 1.4 is equal to #(fyy\yn), and theorem 2 shows that
foy+ = 31 ' (fyylyn)y™ = f« satisfies stuffle, so f € ds. The interesting
point here is that this statement makes it possible to define elements of
double shuffle via conditions on the Lie element f, making no reference
to the much-studied “regularization” f,. &

Now let us restate theorem 1 directly in the framework of the double
shuffle Lie algebra.

Theorem 4. Let f € ds C Lie[z,y], let a = (a1,...,aq) be a se-
quence of strictly positive integers, and for 1 < j <d, set

1 ag—1 a;—1

wJ:xaj_y..._rL' yx y...xajfl_l

Y.

d
(18) D (flw’) = (=) (fla"My).

Jj=1

We will use this theorem to generalize the following theorem, proved
by Ihara in [I2].

Theorem 5. (Thara) Let f € grt,, and write f = fyx + fyy. Let
X and 'Y denote the images of x and y in the abelianization of Q[z,y].
Then

1
(19) (fyy)™® = ~(Flyn) (X +Y)" = X" =Y™"),
Furthermore, if n is even, then (flyn) =0, so (f,y)*> = 0.

Our purpose in this section is to generalize Thara’s result in two
ways. To begin with, by Furusho’s theorem (of which a simplified proof
in the Lie case is given in §3), we know that grt injects into ds via the
map f(z,y) — f(x,—y). One conjectures that these two Lie algebras
are isomorphic, but this is not known. We will prove our theorem for ds
rather than grt.
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But also, instead of working in the abelianization of Q[z,y], we
prove the result in a much bigger quotient of Q[z,y], namely the trace
quotient TR introduced by Alekseev and Torossian in [AT]. The trace
space is the quotient of Q[z,y] modulo the equivalence relation uv ~
vu for every pair of monomials u,v € Q[z,y]. Although zy = yz in
TR, it is not the abelianization; for example, we have 2%y? ~ ya2y ~
y2x? ~ zyz, but these words are not equivalent to xyzy ~ yryx which
form a separate equivalence class. In fact, the equivalence classes of
words under this relation are exactly the sets of cyclic permutations of
words in z and y. The remarkable fact is that the statement of Thara’s
theorem remains identical, not just when generalized from grt to ds,
which is natural considering that one believes the two Lie algebras to
be isomorphic, but also when generalized from the abelianization to the
trace quotient; even in this large quotient, all double shuffle elements of
weight n become equal. In the following statement, we give the analog of
(19), and afterwards we show that as in Thara’s theorem, this expression
is equal to zero if n is even.

Theorem 6. Let g(x,y) € ds be a homogeneous element of weight
n, and set f(z,y) = g(x,—y). Write f = fox + f,y and let fyy denote
the image of f,y in the quotient space TR of Q[x,y]. Let T and y denote
the images of x and y in TR. Then

(20) Foy==(fly)((@+y" —2" —g").

1
n
Proof. The polynomial (x4 y)"™ — 2™ —y™ in Q[z, y] is equal to the sum
of all words of weight n in = and y except for 2™ and y". The image
of this polynomial in T'R is thus equal to a linear combination of the
cyclic equivalence classes of these words, where the coefficient of each
equivalence class is equal to the order of the cyclic class:

(21) @+y)"—-z"—y"=>_|[C|C
C

in TR, where the sum runs over the cyclic equivalences classes C of
words of weight n different from ™ and y".

Now consider the image fyy of f,y in TR. The coefficient of the
cyclic equivalence class C in f,y is exactly given by Y owee (fyylw), ie.
we have

(22) B =YX () C

C weC
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in TR. We can apply theorem 4 to compute this coefficient, paying
attention to the fact that the sum in (18) is over the n cyclic permu-
tations of w, even if some of them are repeated. If |C| = n, then the
n cyclic permutations form one copy of the class C, but if |C| < n, as
for instance the class {zyzy, yzyx} where |C| = 2 and n = 4, then the
complete list of n cyclic permutations forms n/|C| copies of C. Fix an
element w! € C ending in g, and let d be the number of 3’s in w'. Write
wl — xal—ly .. xar—ly and wj — xaj—ly . xar—lyl‘al—ly .. .xaj,l—ly
for 2 < j < d. Then by theorem 4 applied to g € ds, we obtain

d d
n
6] 2 usle) = (i) = (<1)* 3 (gylw’)
wel j=1 7j=1
—(gyylz" " y) = (fyylz"y).

From this we obtain

(23) > (fyylw) =

weC

L ).

Putting this back into (22) yields
T 1 - 1 n— AT =T - —\n
oy =—(fla" ) D_ICIC = ~(fla" ') (2" + 5" — (2 +5)")
c

by (21), proving the the theorem. &

The generalization of Thara’s statement for even n is contained in
the following proposition.

Proposition 1. Let n be even, and let f € ds,. Then (flyn) =0,
so in particular, fy,y =0 in TR.

Proof. The statement that (f|y,) = 0 when n is even has been proved in
various forms in various places (for example [Z]). The proof we give here
comes from the unpublished thesis [C], and seems worth reproducing
here for its combinatorial interest. We set y; = z'~'y and compute
in terms of z,y. An easy argument by induction on n shows that for
every n > 1, every monomial of weight n and every Lie element f &
Lie, [z, y], we have (flw) = (=1)""'(f|w), where W is the word w
written backwards. In particular, for even n, we have (f|yz" 'y) = 0.
The stuffle relation associated to the sequences (1) and (n — 1) is given
by (flyz"2y) + (f|z"2y?) + (f|l2"'y) = 0, so if n is even, we see that

(24) (fl2"~2y*) = =(fla"""y).
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Let us write [z'y] for the depth 1 Lie element [z, [z, , [z,y]---]] =
ad(z)!(y). The element [#" 1y] forms a basis for the 1-dimensional
space Liel[z,y] of depth 1 elements of Lie,[z,], and the elements
(2" 72y], [27y]], 0 < j < [251]—1, form a basis (known as the Lyndon-
Lie basis) for the [27!]-dimensional space Lie? [z, y] of Lie elements of

weight n and depth 2. Thus we can write

F= AL+ 3 ol

where A = (f|z""1y). Computing the Lie words [[x"~7~2y], [#7y]] ex-
plicitly as polynomials yields the following identity:

05 (flen Rty = S (<1, (1)

Jj=0

where binomial coefficients are considered to be zero whenever the top
entry is zero or the bottom entry is negative or greater than the top
entry, and a; = 0 if j > "774.

Now we add up the coefficients of the words of depth 2 in f, obtain-

ing
S e () (1)
(26) = —ay,

since the right-hand factor sums to zero for all j > 0. Now, the n/2
stuffle relations in depth 2 are given by (f|a" =~ 2yziy)+(f|riya"1"2y) =
—A for 0 <i < (n—4)/2 (note that when ¢ = (n — 2)/2 the relation is
2(flaz(=2/2yx(n=2/2y) = — A), and taking their sum thus yields

= n-2), A n-1

(27) ZZzg(f|»’17n_i_2f930i?/) = —TA -3 = _TA'

Comparing this with (26), we see that ap = 251 A. But (25) shows that
(flz""2y?) = ag, so since A = (f|z""ly), we finally obtain

(25) (Flam ) = " (7).
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Comparing this with (24), since n # —1, shows that (flz""ly) =

83. Second application: Furusho’s theorem

In this section we use theorem 2 to give a very simple proof of the
Lie version of an important theorem recently proved by H. Furusho [F2]
in the more general pro-unipotent setting. Of course the Lie statement
is implied by Furusho’s proof, but theorem 2 provides a significant sim-
plication of the proof in the Lie case which seems worth explaining here.

Theorem 7. (Furusho) Let f(z,y) € grt. Then f(x,—y) € ds.

3.1. Basic setup of the proof.

Furusho’s article [F] gives the complete geometric framework for his
proof, whose essential idea is to adapt the known stuffle-like relations
for double polylogarithms to imply the desired stuffle relations on an
element of Lie Ps satisfying the pentagon relation. We do not explain
this geometric background here. The purpose of the present exposition
is to show that theorem 2 yields a significant simplification of the proof
of Furusho’s theorem in the Lie situation of theorem 3.1, with respect to
the proof that he gives in the pro-unipotent situation in [F]. Therefore
our exposition is as minimal as possible and self-contained with the
exception of the main background theorem (theorem 3.2 below) following
from Chen’s theory of iterated integrals.

Let Lie P5 be the pure sphere 5-strand braid Lie algebra whose defi-
nition was recalled at the beginning of §2. Recall that it can be generated
by five of the elements x;;. Following Furusho, we fix here the choice of
T12, T23, T34, T45 and woy as generators. Let Lie Py be the dual Lie coal-
gebra, and write wys, wa3, w34, was, woy for the duals of the corresponding
Lij-

The dual V5 of the enveloping algebra ULie P is isomorphic to a
subspace of the freely generated polynomial ring Q = Q[w;;]. A word in
the w;; in this ring is written using the bar-notation [w;, ;| - - - |ws, ;,] and
called a bar-word. Multiplication in the ring € is commutative, given
by the shuffle operation on words. For example,

[wiw'] - [w"] = [w]w'|w"] + [wlw"|] + [w"w]w].

The grading on ULie Ps given by letting all x;; be of weight 1 translates
to a grading on V5 given by the lengths of the words in w;;. The w;; can
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be identified with differential 1-forms on the moduli space
Mys ~ (P'C —{0,1,00})> — {X = Y}

as follows:

Cdx dx dy
W12 = X7 W23_1_Xa w34_1_yv
ay XdY +YdX
(29) Wis = 3 W = T e

Let ©, denote the subvector space of € consisting of polynomials
in the w;; of homogeneous degree r. Then the homogeneous subspace
(V5)r C Q, is characterized by the following property:

(P) Let 0 = ((i1,41), - - -, (ir, jir)) denote the r-tuples of pairs (im, jm) €
{(L 2)7 (27 S)a (37 4)7 (4a 5)7 (27 4)}7 and let W = Za’ ad[wihjl' T |wir,jr] €
Q. Then W lies in Vj if and only if the (r — 1) sums

D olwi gyl Wiy AWigr il @i, ,]
(e

are equal to zero for 1 < k < r — 1, where the w;; are wedged as the
differential 1-forms in (29). For example, wis Awag = w3g Awys = 0 and
w12 N\ wys = —Was N\ Wag.

More specifically, (P) can be understood by separately considering
triples

T = (k. (02,00 (-1, bk-1)),s ((ars2,besz)s o (arsb) ),

where k € {1,...,r—1} and the pairs (a,, by,) all liein {(1, 2), (2, 3), (3,4),
(4,5),(2,4)}. For every such triple T, let Sp denote the set of r-
tuples of pairs ((i1,51),..., (ir,jr)) such that (im,jm) = (am,bm) for
1<m<k—-1and k42 <m < r. The condition (P) for W to lie in V5
is then that for each triple T,

E : AoWiy, g N Wik 1 Gipr = 0.
o€ST

The Lie coalgebra Lie P’ is isomorphic to the quotient of V5 modulo
(shuffle) products. In other words, every shuffle sum of bar-words in
Lie Py is equal to zero.

In [F2], Furusho introduced particular elements in Vs, called

X 7Y ;XY ;XY ;Y. X
la 7la 7la 7la7b ’la,b ’
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where X and Y are free commutative variables, and a = (aq,...,a,)
and b = (by,...,bs) are tuples of strictly positive integers. We will give
a direct recursive definition of these elements here. In order for our
notation to correspond more closely to Furusho’s, we need the following
change of notation with respect to the two previous sections.

Change of notation. Let a = (ay,...,a,) be a sequence of strictly
positive integers. We define w, to be the word in non-commutative
variables  and y given by

Wa = iCar_ly . 'LCaZ_ly(Eal_ly.

With this notation, we have wawp = Wpa.

Let us now define Furusho’s symbols, using this new notation.

Definition 3.1. For any element ¢ € Lie[x,y]|, we write (p|lwa) or
(¢la) for the coefficient of the word w in the polynomial . Define the
element l, € Lie[z,y]Y by

(30) la(p) = (=1)" (¢|wa).

e The element [ € Lie PY is the bar-word defined by replacing every x
in the word w, = 2% "'y - 2% "1y by w2 and every y by was.
e The element [} € Lie Py is the bar-word defined by replacing every x

in the word wa, by w45 and every y by wsy.

e The element [XY € Lie P is the bar-word defined by replacing every
2 in the word w, by w12 + wys and every y by way.

e The element lii)y is defined recursively according to the form of the
tuples a and b. Let a = (a1,...,a,), b = (b1,...,bs). If @, > 1, set
a’'=(ay,...,ar —1);if a, =1 but r > 1, set a’ = (ay,...,a,—1) (with
this notation, zwa = wa). Use the same notation for b. If r > 1, a, = 1
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and s > 1, set &’ = (a1,...,a,.-1,b1) and b” = (ba, ..., bs).
(31)

e Finally, the element 1Y ’b is defined by computing la b Y and then ap-
plying the order 2 automorphlsm p which exchanges the pair wys and
w12, and the pair we3 and wszy, while fixing xo4.

3

1
Figure 1

Examples. Let a = (2,1). Then w, = yzy and
l(g 1) = = [waa|wi2 + was|wad] = [waalwiz|wad] + [wad|was|waal.

This polynomial lies in V5 since it satisfies the property (P): indeed, as we

saw above, ‘f)}(( /\%—l— dy /\% = 0, which ensures that both

the first sum wos Awi2 +was Awas and the second sum wio Awag +was Awas
are zero.

[w12|l ] + [w45|la b,] ifa, >1,b5>1
[w12|la, 1+ [w34|z§b‘,”] ifa, >1,by=1,5>1
[w12|l ] + [waa]1XY] ifa, >1,bs=s=1
waslly 'y ] — [wiz + was|ldip] + [w45ujf;§] ifa, =1,7>1,by > 1,5 > 1
[w23|la, Y1 — w2 +w23|la,, 1+ [W45|la b,] ifa,=1,r>1,bs>1,s=1
15y = [w23|la, bl = [wiz +waslldi ] + [wsallo )] ifap =1r>1b,=1,5>1
[w23|la, ] [wi2 +w23|l§,y] + [wsa[1XY] ifa,=1,r>1,b,=1,s=1
[was By ] — [wiz + wasllly ) pol + [was|idi ] ifar =17 =1,b, > 16> 1
[was|lY] — [wi2 +w23|lXY] + [was o ] ifa, =1,r=1,by>1,5s=1
[waslly] — [wro + wasllly ) po] + lwsalldp ] ifap =17 =1,b,=1,s>1
[was|l] — [wiz +w23|lXY] + [wsa[IXY] ifa, =1,r=1,b,=1,5s=1.
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Now let a = (1), b = (1). We have

l()i’)),/u) = [wasllf})] — w1z + wasll(1) ] + [waall() ]

= [woz|wsa] — [wiz + waz|waa] + [wsa|waa).

If a=(2) and b = (1), we have

Xy XY XY
lg), 1) = wrzll) )] + [waallizy ]
= [wiz|waz|wsa] — [wiz|wiz + waslwaa] + [wiz|wsa|wa]

+ [wsa|wiz + was|waa].

We now introduce the fundamental “stuffle-type” relations satisfied
by these elements of Lie Py’ .

Definition 3.2. Furusho gives a generalization of st(a,b) to the
Lie P5 situation as follows. Recall from §1 the definition of the set of
maps Sh=(r,s) and the stuffle set st(a,b). Let ST(a,b) be the set of
pairs of sequences o(a,b) = ((cl, e )y (€1 cN)), where (¢c1,...,cN) =
?(a,b) € st(a,b) and j = min(o(r),o(r + s)). Also, for each o €
Sh=(r,s), set o(X,Y) = XY if o~ (N) = {r,7 + s}, 0(X,Y) = (X,Y)
ifo ™ (N)=r+sand o(X,Y) = (YV,X) if oL (N) = 1.

Furusho bases the proof of his theorem on the following fundamental
set of stuffle identities.

Theorem 8. For all tuples of strictly positive integers a = (aq, ... ,a;)
and b = (b1,...,bs), the elements Zfi)y, l:f, IXY € Lie Py defined
above satisfy the relation

o(X)Y)
(32) Z lU(a,b) =0.
o€Sh=(r,s)

Sketch of proof. The proof of this result follows from Chen’s theory
of iterated integrals. This is explained in more detail in [F2] (see also
[B] for some of the proofs), so we only sketch the situation here. This
theory identifies the dual elements w;; of the x;; with 1-forms on the
moduli space My 5 ~ (P! — {0,1,00})? — Diag to the z;;:

dx dx dy dy xdy + ydz

Wiz = —, W23 = y W34 =7T——, W45 = —, Wy =—""",
T 1—x 1—y Y 1—2xy

and linear combinations of bar-words in the w;; with iterated integrals
along a path on My 5 from (0, 0) to (X,Y"). The condition above defining
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an element of Vj is precisely the “integrability” condition of a linear com-
bination of bar-words, ensuring that the value of the integral depends
only on the homotopy class of the chosen path, and Chen’s theory (see
also [B]) shows that the map from V5 to iterated integrals is injective.
An easy computation shows that the iterated integrals associated to the
elements 1Y l;fiay and l::g( are single and double polylogarithm func-
tions Lia(XY), Liap(X,Y) and Lia (Y, X) (see [F2] for their explicit
expressions), and these are classically known to satisfy the equalities

Z Lin(a,b)(o—(xvy)) = LZa(X)LZa(Y)
o€Sh=(r,s)

Thus by injectivity of the iterated integral map from V; to functions of
X and Y, we see that

o(zy) _ XY
> lawm =k
o€Sh=(r,s)

in V5. Thus when these elements are considered in the quotient Lie Py,
we recover (32). O

3.2. Furusho’s lemma

In §4 of [F2], Furusho states and proves two lemmas in the pro-
unipotent situation, making use of a regularization defined in the body
of the paper. The statement of lemma 3 summarizes the essence of the
the Lie part of Furusho’s statements, but the lemma is slightly stronger
than the one in [F'2], in that the hypothesis on a, b in the sixth statement
is weaker than the one there. This is one of the the main points of
simplication of the Lie proof.

Apart from the sixth statement and its proof, the rest of the state-
ments and proofs are exact Lie analogs of those given in [F2]. However,
the terminology is different and the proofs there are partly left to the
reader, so in the interest of completeness, we give the full proof in detail
here.

Lemma 3. Let p3 : Bs — Fy be the map defined by p3 : 12 — x,
Toa — Y, ;3 — 0. and let the maps i, : Fo — Bs be defined by
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tik(20) = Xk, G (z1) = i We have the following siz identities:

XY =laop; for all (a,b)
l;(i)Y 04123 =0 for all (a,b)
l:’f;{ oisgg3 =0  for all (a,b)
li,[)Y 0451 = lap for all (a,b)
l:,’ff 0ig15 = lap for all (a,b)
l:’l‘;( oig =0  forall (a,b)# ((1,...,1),(1,...,1))

Proof. Recall that if a = (ay,...,a,), we set wy = x% " ly... 291~ 1y;

Then I, (w,) = 1 and l4(v) = 0 for all words v # wa,. By definition, IXY
is the bar-word obtained from w, by replacing = by w12 + wy5 and y by
way. Expand this word out as a polynomial; it contains exactly once
each word of the form W = X, x94X,,_ 24 Xo,T24, where X, is
any word of length a; —1 in x12 and z45. Thus, we see that lffy takes the
value zero on all words of length r in the generators 12, 23, T34, T45, T24
of Lie P5 except for the ones of that form. Now, z45 = x12 + T13 + Zo3
in Lie Ps, so p3(x45) = p3(x12) = = and p3(x24) = y, so p3(W) = wa.
Thus for every word of the form W, we have IXY (W) = 1 = l,(wa) =
lo(p3(W)). The words W are exactly the set of words such that ps(W) =
Wa, 50 if V is not of the form W, we have IXY (V) = 0 = la(p3(V)). This
proves the first statement.

The other statements are proved using induction on the length 7+ s
of the sequences a and b together, where r,s > 1. Let b = (by,...,bs),
and consider the second statement. It comes down to saying that for
any pair (a,b), the symbol li’by cannot contain any bar-words in the
two variables w12 and w3 only. The base case, r + s = 2, was computed
in the examples in §3.1:

(33) l(ﬁ’)},/u) = [w23\w34] - [w12|w24] - [w23|w24] + [w34\w24].
Now assume r+s > 2, make the induction hypothesis that lf&y contains

no such bar-word when the sum of the lengths of ¢ and d is less than
r+ s, and fix a pair (a,b) of lengths r and s. Consider the definition
of li;ay in (3.3). A word in wy and wez only would have to come from
the term(s) in each line of (3.3) of the form [wya] -] or [was|---]. But

for each such term, the right-hand part of the term is either one of l;{{,

lf,;?;,,, lfz();})/,b”’ none of which contain a word in only wis, wes by the
induction hypothesis, or XY, IXY or [, which do not contain any such
word by definition. This proves the second statement.
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The third statement is equivalent to the second, given the definition
of l:’l‘;( , which is obtained from lf’by by applying the automorphism p of
the bar-construction defined in figure 1, since i103 = p 0 i543.

The fifth statement also follows from the fourth by applying p, so
let us prove the fourth statement. We first note that

(34) la (ia51(w)) = 137 (i51(w)) = la(w)

for all sequences b. Indeed, I} is a bar-word in w34 and wys only, so in
computing the left hand term one can ignore all the terms containing
T3 Or X34 that appear in igs1(w). Similarly, IXY is a bar-symbol in
w12, w45 and way, so in computing the middle member of (34), one can
ignore the wis that appear there, and all the terms in 4451 that contain
X923 O I34.

We first take care of the base case a = (1), b = (1), and show that
l()i’)f/(l)(i%l(w)) = l(1,1y(w) for any word w of length 2 in  and y. We
have I(11)(2?) = la 1y (xy) = l1,1)(yz) = 0, l1,1y(y*) = 1. By observ-
ing (33) and the equality w51 = wa3 + wag + w3y in Lie Py, we see that
Y Xy
ab (1),31
1451 (2y) = [was|ws1], and i451(yx) = [ws1,was), since they all contain an
745 which doesn’t appear in (33). But in is51(y?) = [ws1|ws1], there ap-

pear three words on which lﬁ’;f(l) has non-zero value, namely [wa3, w34],

has value zero on the bar-words iss;(2?) = [was|was],

[was, wo4] and [w34,wos|. The values are 1, —1 and 1 respectively, so
l()i’)f/(l)([wm,wm}) =1=1I¢,1)(y?). This settles the base case.

Make the induction hypothesis that for any pair ¢, d of length r4s—1
and any word w’ of length r+s—1, we have lf&y (1451(v)) = lea(v). Note
that since i451(2) = @45 and i451(y) = T51 = T3 + Tag + x34, for any one
of Furusho’s symbols L, we have

. L7 v if w=uzxv
s L1 (w)) = { “4o1(2) )
0 otherwise

[was|L](ig51(w)) = é/(i451<v)) gt;l}er:vviz
[waa|L] (451 (w)) = OL(i451(U)) i)ftllfe;v?sz
L(iss1(v)) ifw=yv

Lz =
w4l L] (a5 (w) 0 otherwise.

Fix a,b of lengths r, s and consider the 10 cases of (3.3); let Q =
{wap, w3z, waq,ws4]}. Only the terms of (3.3) starting with an w € Q can
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have a non-zero value on i451(w), since ig51(w) is a polynomial in the
variables of €2 only.

Case 1. This is the term [w45|l§g,/]. By (3.7), applied to i451(w),
if w = yv, this has the value 0, which is equal to lap(yv) = 0 since
bs > 1. If w = v, it has the value lap (v) by (3.7), but lap (v) = lap(w),
completing this case.

Case 2. The only relevant term is [w34|l;fi3,/], so by (3.7), if w = zv,
we have lf’by(i%l(w)) = 0 = lap(w) in this case (since by = 1), and if

' XY
w = yv, we have I}, (v) = lab(w).
ZXY]

Case 3. There are no relevant terms since [wsy] contains way.

Case 4. There are three relevant terms:
wasliy ), —lwaslid o), lwaslisp -

If w = zv, the first two have value 0, and by (3.7) the third has value
lii},/(usl(v)) = lap (v) = lap(w), by the induction hypothesis and the
fact that bs > 1. If w = yv, the third has value 0, and by (3.7)
and induction, the sum of the first two has value la/p(v) — Lo (v) =
0, since the concatenated sequences a’b and a”’b” are both equal to
(a1y...,Gr-1,b1,...,bs) when a, = 1, so liioy(usl(w)) =0if w = yv.
But we also have lap(w) = 0 in this case, since bgs > 1.

Case 5. Here the relevant terms are

XY XY
oaaltXN], —lonallSY ], fwasltX ).

a’’

If w = zv, the first two terms take the value zero, so
L (ias1 () = 135 (ias (7)) = 125 (ia51(0)) = Labr (v) = lan(w)

by the induction hypothesis and the fact that by > 1. If w = yv, the
third term takes the value zero, so

125 (ias1(w)) = 124 (ias1(yv)) = 137 (ia51(v) — 13 (i51(v)).

But ly~ is a bar-word in wis, wys and way, so since igs1 (z) = 245, and
1451(Yy) = X23 + T24 + T34, We can ignore the wis in Iy and the xa3, 34
in i451(v), to obtain {2Y (ig51(v)) = lav(v). Using induction, we have
l;{:g(usl(v)) = lap(v) = lav(v), where the last equality follows since
the concatenation a’b = a” in this case. Thus liiay(um(v)) = 0. But
this is equal to lap(w) = lap(yv), since b = (by) with by > 1, S0 lap can
only take a non-zero value on a word starting with .
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Case 6. Here the relevant terms are
wasllpyn ], —lwaslli o], [wsallop ],

so if w = zv, we have l;fi)y(i%l(w)) = 0, but also lap(2zv) = 0 since
bs = 1, so wap begins with a y. If w = yv, we have

125 (ias1 (w)) = 1374 (51 () — 1 4 (51 () + 133 (ia51(v))

= la/b(’lj) — la”b” (’U) + lab’ (1))

by the induction hypothesis, but a’b = a”b"” = (a1,...,a,-1,b1,...,bs)
in this case, so this is equal to

lab/(’U) = lab(yv) = lab(w).

Case 7. Here the relevant terms are
[w23\l§’7§}, —[wasliZY ], [waal 2],

a’’

If w = xv, we have l;fiay(i%l(w)) = 0, but also lap(w) = 0 since b = (1).
If w = yv, we have

b (a5 () = 1 (451 (0) = 1357 (iasa (w)) + 1 (ias (w)
= lab(v) = la(w) + la(w) = larn(w)
by induction and because a’ = a in this case, as a, = 1 = b;. But

larb (V) = lab(yv) = lap(w) since a = (ay,...,a,-1,1) and b = (1), so
a’b=(ay,...,a,-1,1) and ab = (ay,...,a,-1,1,1).

Case 8. Here the relevant terms are
XY XY
[w23|l]§]7 _[w23|l(b1),b”}7 [w45|la7b/ ],
If w = zv, the first and second terms take value zero on w, so
L (ias (w) = 123 (451 (v)) = labr (v) = Lap(w)

by induction and because bs > 1. If w = yv, the third term takes value
zero, then lyp(w) = 0 since b > 1, and also

I3 (as1(w)) = 1 (ia51.(v) = 1) o (ia51(0) = Uy (v) = I (v) = 0

by (34) for the first term and induction for the second.
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Case 9. Here the relevant terms are
lwas|ty ], —[waslly ], [waslid )
If w = zv, the first and second terms take the value zero, so

12 (451 (w) = lap (1451 (1) = labr (v) = lap(w)

by induction and because by > 1. If w = yv, the third term takes value
7€ero, so we have

125 (ias1(w)) = I (ia51(v) — 1KY (i1 (v)) = 0

by (34). But also lap(yv) = 0 in this case since b = (by) with by > 1.

Case 10. Here the relevant terms are

lwaslth ], —lwasllg) pols [waallai ]

Thus, if w = zv, we have liiay(usl(w)) = 0, and also lap(w) = 0 since
bs = 1. If w = yv, we have

Iy (a5 (w)) = 1Y (a1 (w) = 7)o (as1 (W) + o (ias1 (w))

=lp(w) — lp(w) + lap (w) = lap(w)

by (34) for the left-hand term, induction for the middle term (since (b;)
concatenated with b” is just b), and because by = 1 and w begins with
y.

Case 11. This is the case a = (1),b = (1) and was already treated as
the base case for the induction.

This concludes the proof of the fourth statement, which as noted
above immediately implies the fifth by symmetry. To complete the proof
of the lemma, it thus remains only to prove the sixth statement. It is
enough to prove that if (a, b) are not all 1’s, there is no bar-word in just
wos and ws4 appearing in l:’g . Since the definition of l;/f as p applied
to (3.3), this is equivalent to proving that l;fiay 0idg34 = 0, i.e. that liiay
has no bar-words in just wss, ws4, for pairs (a,b) not all 1’s. This is
more convenient as we can stare at (3.3). The base case for the induction
here is given by lé’)ﬂ’/(l) which was computed above and contains no such
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terms, and l()i’)Y(Q), which is given by

l()i’)}’/@) = [w23|lé)] — w2 + w23|l()§)y] + [w45|l()i’))’/(1)]

= [waz|was|wsa] — [wiz + wazlwiz + was|wad] + [was|was|ws]

— [was|wiz|waa] — [was|wag|waa] + [was|wsa|waa]

and also contains no such terms. Make the induction hypothesis that
for all a, b not both sequences of 1’s with total length < r+ s, then lfi)y
has no bar-words in only was, wss. Consider a pair (a,b), not all I’S,
of length r + s. The only terms which could occur with only ws3 and
w34 would come from the terms starting with one of these two elements
in (3.3). Furthermore, those terms in (3.3) starting with wa3 or wz4 but
followed by a term

(36) Y, o Y

cannot yield bar-words with just wez and way, since [XY always contains
at least one wyy4. Thus in each of the eleven cases it is necessary to check
that the remaining “risky” terms (the ones starting with wss or wsy
followed by a term not in (36)), can never yield a bar-word in wag, ws4.
There are no risky terms in the first case. In the second case, [w34|lf”b¥] is
risky, but in fact it cannot yield a word in ws3, w34 only by the induction
hypothesis, since a, > 1 appears in the pair (a,b’). The third case
has no risky terms, and in the fourth, which contains both [was, lf,g]

and [u)gg,l;(,;?;”], we see that bad words cannot appear by induction,
since bs > 1 appears in both the pairs (a’,b) and (a”,b”). In the fifth
case, the only risky term is [w23|l§:§}, but by induction, this contains
no bad terms since b, > 1 appears. In the sixth case, there are three
risky terms, [c@;;,lf,i], [wgg,lf,;i,,] and [w34\l§’b¥}, but the induction
hypothesis works for all three again because since (a, b) are not all 1’s
and a, = by = 1, none of the sequences (a’,b), (a”,b"”) and (a,b’) can
be all 1’s.

In the seventh case, the risky term is [wgg\lf,:g} but again, (a’,b)
cannot be all 1’s since a, = 1. In the eighth case, there are two risky

terms, [wos|l} ] and —[w23|lg§’1})/7b,,]. The first term can contain only wag

and wsq only if I} = w34 |ws4, ie. if b= (1,...,1), which is impos-
sible since bs > 1. The second works by induction since the pair b” is
not all 1’s, as bs > 1. In the ninth case, the only risky term is [was|l} ],

which again can only be a word in wo3 and way if I} = [was] - |wad],
ie. b= (1,...,1), which is impossible since bs = 1 in this case. In the
tenth case, the risky terms are [wa3|l)] and [w23|l€§;§/b,,}. For either of
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these terms to have a word in ws3 and wszy4 only, the sequence b would
have to be all 1’s, which is impossible since a = (1) in this case. Finally,
the last case is excluded because a = (1), b = (1). This concludes the
proof of the sixth and final statement of the lemma.

3.3. Proof of theorem 7

The version of the statement of Furusho’s lemma given in the previ-
ous section, and the proof, are essentially just complete versions of the
Lie part of the proof sketched in [F].

It is in the application of the lemma to the proof of the Lie version
of his main theorem that the simplication is strong.

In [F], the proof of the main theorem is done in the unipotent situ-
ation, by generalizing these lemmas to that situation, defining a notion
of regularization, and using a computation on regularizations due to
Goncharov. In the Lie situation, however, thanks to theorem 2 and the
slight generalization of Furusho’s lemma given in the sixth statement of
lemma 3, none of this is necessary. The desired result stated in theorem
7 comes out immediately, as follows.

Proof of theorem 7.

Let f € grt, and let a = (ay,...,a,), b = (b1,...,bs). Then by
lemma 3, we find that as long as a and b are not both sequences of 1’s,
we have:

XY (f(was, w51) + f(212,223)) = 1

lii,y (f (@45, 251) + f(212, 23)) = 15y (f(z45,251)) = lan(f)

l:’g (f (@45, 251) + f(212,223)) = T3, 32) + f(221,215) + f (254, T43))
$21,$15)) = lab(f)~

—_ =

So applying (32) to f(xas,251) + f(212,223) € Lie Ps, we obtain the
following identities for all pairs (a, b) # ((17 D) (L 1)):

@B7) 0= > l;gi:;) (f(zas, x51) + f(212,223))

o€Sh=(r,s)
= Z lc"(a,b) (f) = Z ZC(f)

o€Sh=(r,s) cest(a,b)

Set F(x,y) = f(x,—y), and let F'¥ denote the part of F' consisting of
words ending in y, rewritten in the variables y;. Then by (30) and the
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fact that all words w, end in y, we have lo(f) = (—=1)"(flwe) = (Flwe) =
(FY|we). So (37) yields

> (F¥|lwe) =0 for (a,b)# ((1,...,1),(1,...,1)).

cest(a,b)

Thus, FY satisfies the hypothesis of theorem 2. Note also that (FY |y?) =
0 since F is a Lie polynomial. So, setting F, = FY + %(F\yn)y?,
theorem 2 shows that F, satisfies the stuffle relations for all pairs (a, b).
This means precisely that F = f(z,—y) € ds, concluding the proof of
theorem 7.
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