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Abstract.

In this article we give two combinatorial properties of elements
satisfying the stuffle relations; one showing that double shuffle elements
are determined by less than the full set of stuffle relations, and the other
a cyclic property of their coefficients. Although simple, the properties
have some useful applications, of which we give two. The first is a
generalization of a theorem of Ihara on the abelianizations of elements
of the Grothendieck-Teichmüller Lie algebra grt to elements of the
double shuffle Lie algebra in a much larger quotient of the polynomial
algebra than the abelianization, namely the trace quotient introduced
by Alekseev and Torossian. The second application is a proof that
the Grothendieck-Teichmüller Lie algebra grt injects into the double
shuffle Lie algebra ds, based on the recent proof by H. Furusho of this
theorem in the pro-unipotent situation, but in which the combinatorial
properties provide a significant simplification.

§1. The cyclic property

Write Y for the alphabet {y1, y2, y3, . . .} and U for the alphabet
{u1, u2, u3, . . .}, where yi and ui are given the weight i, and these two
alphabets are related by the expression
(1)

u1+u2+· · · = log(1+y1+y2+· · · ) = (y1+y2+· · · )−1
2
(y1+y2+· · · )2+· · · ,
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with the parts of equal weight on each side identified, so that




u1 = y1

u2 = y2 − 1
2y2

1

u3 = y3 − 1
2y1y2 − 1

2y2y1 + 1
3y3

1 . . .

Let Q[U ] be the polynomial ring freely generated by the ui, and Q[Y ]
be that generated by the yi.

Definition 1.1. For any two sequences of strictly positive inte-
gers a = (a1, . . . , ar) and b = (b1, . . . , bs), define the shuffle of a and
b, sh(a,b), to be the set of sequences obtained as follows. We write
b1 = ar+1, . . . , bs = ar+s; for any permutation σ ∈ Sr+s such that
σ(1) < · · · < σ(r) and σ(r + 1) < . . . < σ(r + s), we define the se-
quence (aσ−1(1), . . . , aσ−1(r+s)). The shuffle sh(a,b) is the set of these
sequences.

Similarly, for any two sequences of strictly positive integers a =
(a1, . . . , ar) and b = (b1, . . . , bs), define the stuffle of a and b, st(a,b),
to be the set of sequences obtained as follows. We again write b1 =
ar+1, . . . , bs = ar+s as above. Following Furusho’s notation, let Sh≤(r, s)
denote the set of surjective maps σ : {1, . . . , r + s} →→ {1, . . . , N}, N ≤
r + s, such that σ(1) < . . . < σ(r) and σ(r + 1) < . . . < σ(r + s). For
each σ ∈ Sh≤(r, s), we define the sequence cσ(a,b) = (c1, . . . , cN ) by

ci =





ak + bl−r if σ−1(i) = {k, l} with k ≤ r < l

ak if σ−1(i) = {k} with k ≤ r

bk−r if σ−1(i) = {k} with k > r.

The stuffle st(a,b) is given by

st(a,b) = {cσ(a,b)| σ ∈ Sh≤(r, s)}.

For any sequence a = (a1, . . . , ar), we write ua for the associated
word ua = ua1 · · ·uar ∈ Q[U ], and ya = ya1 · · · yar for the associated
word in Q[Y ]. We define the shuffle of two words ua and ub in Q[U ] as
the set

sh(ua, ub) = {uc|c ∈ sh(a,b)},
and the stuffle of two words ya and yb in Q[Y ] as

st(ya, yb) = {yc|c ∈ st(a,b)}.
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For any word w and any polynomial f , we write (f |w) for the coefficient
of w in f . We say that a polynomial fU in the ui satisfies the shuffle
relations if ∑

w∈sh(ua,ub)

(fU |w) = 0

for all pairs of words ua, ub. A polynomial fY in the yi is said to satisfy
the stuffle relations if

∑

w∈st(ya,yb)

(fY |w) = 0.

Let ∆ denote the coproduct defined onQ[U ] by ∆(ui) = ui⊗1+1⊗ui

for each i ≥ 1, and setting y0 = 1, let ∆∗ denote the coproduct defined
on Q[Y ] by

(2) ∆∗(yk) =
k∑

i=0

yi ⊗ yk−i.

The following lemma is well-known (see [R] for example).

It follows easily from these definitions that for every polynomial fY

in the yi, we have

(3) ∆∗(fY )U = ∆(fU ).

Indeed, it can be checked directly for fY = yi, i ≥ 1, and then follows
by the multiplicativity of the coproducts.

Lemma 1. Let fU ∈ Q[U ], and write fY for the polynomial ob-
tained from fU by making the variable change to the yi. Then the fol-
lowing are equivalent:

(i) fU lies in the Lie algebra Lie[U ] ⊂ Q[U ], the free Lie algebra on
the ui.

(ii) fU satisfies the shuffle relations for all pairs of words ua, ub ∈
Q[U ].

(iii) ∆(fU ) = fU ⊗ 1 + 1⊗ fU .
(iv) ∆∗(fY ) = fY ⊗ 1 + 1⊗ fY .
(v) fY satisfies the stuffle relations.

We do not reproduce the proof in full detail. The equivalence of (i)
and (iii) is shown for example in [Serre]. The equivalence of (ii) and (iii)
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follows from a direct computation which shows that the shuffle sums of
the coefficients of fU are equal to coefficients of the terms of ∆(fU ), i.e.
for all non-trivial sequences a,b, we have

(4)
(
∆(fU )|ua ⊗ ub

)
=

∑

c∈sh(a,b)

(fU |c).

Similarly, (iv) and (v) are equivalent because again, a direct computa-
tion shows that the stuffle sums of the coefficients of fY are equal to
coefficients of ∆∗(fY ), i.e. for all non-trivial sequences a,b, we have

(5)
(
∆∗(fY )|ya ⊗ yb

)
=

∑

c∈st(a,b)

(fY |c).

Finally, the equivalence between (iii) and (iv) follows from (1).

The following lemma is also well-known, but we give its short proof
here.

Lemma 2. Let f ∈ Lie[U ] ⊂ Q[U ] and d ≥ 2. For 1 ≤ j ≤ d, let
wj = uij · · ·uid

ui1 · · ·uij−1 , so that w1 = w (note that the wj are not
necessarily all distinct if w has symmetries). Then

(6)
d∑

j=1

(f |wj) = 0.

Proof. By additivity, it is enough to prove the result elements of the
form f = [g, h] = gh − hg. In fact, the statement of the lemma holds
whenever f is a (linear combination of) Lie bracket(s) of monomials in
the ui. We first assume that g and h are monomials in the ui. Then the
only words to appear with non-zero coefficient in the polynomial f =
gh− hg are the words gh and hg, and we have (f |gh) = 1 and (f |hg) =
−1. All other words appear with coefficient zero, and furthermore gh is
a cyclic permutation of hg, so (1) holds for f . Then by additivity, (1)
holds for f = gh− hg for any polynomials g and h, and in particular it
holds when g and h are Lie brackets of the ui, so it holds for all Lie[U ].
♦

We now come to the definition and proof of the cyclic property of
polynomials in the yi satisfying the stuffle relations. This proof is due to
J. Ecalle and was initially done in terms of moulds, a context in which it
appears very naturally (as does the equivalence of (ii) and (v) in lemma
1). We consider polynomials in the yi or the ui which are homogeneous
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of a given weight n, which means that all the monomials yi1 · · · yir (or
ui1 . . . uir

) appearing with non-zero coefficients satisfy i1 + · · ·+ ir.

Theorem 1. Let fY be a polynomial in Y of homogeneous weight
n satisfying the stuffle relations, and let w = yi1 · · · yid

be a word in Y .
For 1 ≤ j ≤ d, let wj = yij

· · · yid
yi1 · · · yij−1 be the cyclic permutations

of w = w1. Then

d∑

j=1

(fY |wj) = (−1)d−1(fY |yn).

Proof. As above, we write fU for the polynomial fY rewritten in the
variables U . By lemma 1, fU ∈ Lie[U ] From the expression (1), we know
that

(7) (fU |un) = (fY |yn).

For any word w = yk1 · · · ykr in Y , we write ||w|| = yk1+···+kr , vw =
uk1 · · ·ukr , and ||vw|| = uk1+···+kr . Let l(w) denote the length of a word,
For any word w in Y , the relation between the alphabets (1) yields the
relation

(8) (fY |w) =
l(w)∑
s=1

∑
vw=v1···vs

(−1)l(v1)−1

l(v1)
(−1)l(v2)−1

l(v2)
· · · (−1)l(vs)−1

l(vs)
(fU

∣∣||v1|| · · · ||vs||),

where the vi are non-trivial words, corresponding to composition of
power series. Set vj = vwj for 1 ≤ j ≤ d, i.e. vj = uij · · ·uid

ui1 · · ·uij−1 .
For the third equality below, we use the fact that for 1 ≤ j ≤ d, we have
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||vj || = ui1+···+id
= un. Using (8), we find that

d∑

j=1

(fY |wj) =
d∑

j=1

d∑
s=1

∑

vj=vj
1···vj

s

(−1)l(vj
1)−1

l(vj
1)

(−1)l(vj
2)−1

l(vj
2)

· · · (−1)l(vj
s)−1

l(vj
s)

(fU
∣∣||vj

1|| · · · ||vj
s||)

=
d∑

s=2

d∑

j=1

∑

vj=vj
1···vj

s

(−1)l(vj
1)−1

l(vj
1)

(−1)l(vj
2)−1

l(vj
2)

· · · (−1)l(vj
s)−1

l(vj
s)

(fU
∣∣||vj

1|| · · · ||vj
s||)

+
d∑

j=1

(−1)d−1

d
(fU |||vj ||)

=
d∑

s=2

d∑

j=1

∑

vj=vj
1···vj

s

(−1)l(vj
1)−1

l(vj
1)

(−1)l(vj
2)−1

l(vj
2)

· · · (−1)l(vj
s)−1

l(vj
s)

(fU
∣∣||vj

1|| · · · ||vj
s||)

+ (−1)d−1(fU |un)

=
d∑

s=2

d∑

j=1

∑

vj=vj
1···vj

s

(−1)l(vj
1)−1

l(vj
1)

(−1)l(vj
2)−1

l(vj
2)

· · · (−1)l(vj
s)−1

l(vj
s)

(fU
∣∣||vj

1|| · · · ||vj
s||)

+ (−1)d−1(fY |yn).

The last equality follows from (7). In order to conclude the proof, we
need to show that the complicated term

d∑
s=2

d∑

j=1

∑

vj=vj
1···vj

s

(−1)l(vj
1)−1

l(vj
1)

(−1)l(vj
2)−1

l(vj
2)

· · · (−1)l(vj
s)−1

l(vj
s)

(fU
∣∣||vj

1|| · · · ||vj
s||)

from the above expression is equal to zero, leaving the desired formula

d∑

j=1

(fY |wj) = (−1)d−1(fY |yn).

In fact we will show that
(9)

d∑

j=1

∑

vj=vj
1···vj

s

(−1)l(vj
1)−1

l(vj
1)

(−1)l(vj
2)−1

l(vj
2)

· · · (−1)l(vj
s)−1

l(vj
s)

(fU
∣∣||vj

1|| · · · ||vj
s||) = 0

for each s, 2 ≤ s ≤ d. The point is that this sum breaks up into smaller
sums over cyclic permutations of words, so that it is zero by lemma 2.

Let

(10) (fU | ||vj
1|| ||vj

2|| · · · ||vj
s||)
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be a term appearing in this sum. Then we only need to show that for
every 1 ≤ i ≤ s, the term

(11) (fU | ||vj
i || ||vj

i+1|| · · · ||vj
i−1||)

appears with the same coefficient, since these words are exactly the cyclic
permutations of the word ||vj

1|| · · · ||vj
s||, each ||vj

i || being a single uk.
The term (11) appears in the double sum (9) as

(12) (fU | ||vj′
1 || ||vj′

2 || · · · ||vj′
s ||),

with j′ = j + l(vj
1) + · · ·+ l(vj

i−1) (where j and j′ are considered mod d

and between 1 and d), and vj′ = vj′
1 · · · vj′

s where the grouping into pieces
vj′

k is determined by l(vj′

k ) = l(vj
i+k−1) (and i and k are considered mod

s and between 1 and s). Thus, (11) and (12) are equal. Furthermore,
the coefficients of (10) and (12) are obviously equal, because the set of
lengths of the pieces vj

k and the set of lengths of the pieces vj′

k are equal.
Thus the double sum (9) breaks up into cyclic subsums each of which is
zero by Lemma 2. This concludes the proof. ♦

Our next theorem shows that if a polynomial satisfies all the “non-
trivial” stuffle relations, then it can be easily modified to obtain a stuffle
polynomial.

Theorem 2. Let fY be a polynomial in the yi of homogeneous
weight n satisfying the stuffle relations

(13)
∑

c∈st(a,b)

(fY |c) = 0

for all pairs of sequences (a,b) which are not both sequences of 1’s. Set
a = (−1)n−2 n

( fY |yn) + (fY |yn
1 ) and gY = fY − ayn

1 . Then gY satisfies
the stuffle relations for all pairs, and

(gY |yn
1 ) = (−1)n−1 n

(
gY |yn).

Proof. Assume that fY satisfies (13). Then by equation (5), we know
that the coefficients of pairs of words ya⊗yb in ∆∗(fY ) are zero whenever
a and b are not both sequences of 1’s. In other words, we can write

∆∗(fY ) = fY ⊗ 1 + 1⊗ fY +
n∑

i=1

ciy
i
1 ⊗ yn−i

1 .
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Making the variable change to the ui and using (3), we then have

∆∗(fY )U = ∆(fU ) = fU ⊗ 1 + 1⊗ fU +
n−1∑

i=1

ciu
i
1 ⊗ un−i

1 .

Now, for any monomial ui1 · · ·uir
, the definition of ∆ implies that

∆(ui1 · · ·uir
) is a linear combination of terms of the form uj1 · · ·ujs

⊗
ujs+1 · · ·ujr , where the list uj1 , . . . , ujr is the same as the list ui1 , . . . , uir

in a different order. In particular, only terms of the form ui
1 ⊗ uj

1 with
i + j = n will appear in ∆(un

1 ), but inversely, if (i1, . . . , ir) 6= (1, . . . , 1),
then no term of that form can appear in ∆(ui1 . . . uir

). Thus, if gU is a
homogeneous polynomial of weight n in the ui with (gU |un

1 ) = 0, then(
∆(gU )|ui

1 ⊗ uj
1) = 0 for all i + j = n.

Let k = (fU |un
1 ), and set gU = fU − kun

1 , so (gU |un
1 ) = 0. Then

∆(gU ) = ∆(fU )− k∆(u1)n

= fU ⊗ 1 + 1⊗ fU +
n−1∑

i=1

ciu
i
1 ⊗ un−i

1 − k∆(u1)n

= gU ⊗ 1 + 1⊗ gU + kun
1 ⊗ 1 + 1⊗ kun

1 − k∆(un
1 ) +

n−1∑

i=1

ciu
i
1 ⊗ un−i

1

= gU ⊗ 1 + 1⊗ gU .

(14)

Here, the last equality follows from the fact that since as we just saw,(
∆(gU )|ui

1⊗uj
1

)
= 0, there can be no terms of the form ui

1⊗uj
1 in ∆(gU ).

Therefore the terms of that form in the third line above must either be
canceled out by terms of that form in gU ⊗ 1 + 1⊗ gU , but there are no
such terms since gU does not contain a power of u1, or sum to zero. Thus
they sum to zero, yielding the last equality. Thus, gU = fU − kun

1 is an
element of Lie[U ], and therefore by lemma 1, gY = fY − kyn

1 satisfies
the stuffle relations.

Let us now show that k = a and that (gY |yn
1 ) = (−1)n−1 n

( gY |yn).
Since gY satisfies all the stuffle relations, in particular it satisfies the
relation for a = (1), b = (1, . . . , 1) with n− 1 1’s. We have

st(a,b) = n(1, . . . , 1) + (2, 1, . . . , 1) + (1, 2, . . . , 1) · · ·+ (1, . . . , 1, 2),

so

n(gY |yn
1 ) + (gY |y2y

n−2
1 ) + (gY |y1y2y1 · · · y1) + · · ·+ (gY |yn−2

1 y2) = 0.
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But the sum over the words y2y
n−2
1 , y1y2y1 · · · y1 etc. is a sum over a

cyclic orbit of words of length d = n− 2, so by theorem 1, it is equal to
(−1)n−2(gY |yn). Thus we obtain the desired identity

n(gY |yn
1 ) + (−1)n−2(fY |yn) = 0.

Plugging into this equation the identity gY = fY − kyn
1 yields the value

k = a given in the statement. ♦

§2. First application: a generalization of Ihara’s abelianization
theorem

The application of theorems 1 and 2 to the double shuffle Lie al-
gebra is straightforward, though they appear to be new and quite use-
ful. At the end of this section, we use them to give a simple proof of
a quite surprising generalization of a theorem of Ihara concerning the
Grothendieck-Teichmüller Lie algebra grt.

Let Lie[x, y] denote the free Lie algebra on two generators, graded
by degree, and let Lien[x, y] denote the subvector space of Lie[x, y] con-
sisting of Lie polynomials of homogeneous degree n.

Definition 2.1. Let Lie P5 denote the Lie algebra of the pure sphere
5-strand braid group. It is generated by xij, 1 ≤ i, j ≤ 5, subject to
the relations xii = 0, xij = xji, [xij , xkl] = 0 if {i, j} ∩ {k, l} = ∅,∑5

i=1 xij = 0 for each fixed j ∈ {1, . . . , 5}, and [xij , xij + xik + xjk] = 0
for any triple of indices i, j, k.

The weight n graded part grtn of the Grothendieck-Teichmüller Lie
algebra grt is defined to be the vector space of elements f ∈ Lien[x, y]
such that
(15)
f(x12, x23) + f(x34, x45) + f(x51, x12) + f(x23, x34) + f(x45, x51) = 0,

where the defining “pentagon”relation takes place in Lie P5.1 We set
grt = ⊕n≥3grtn.

Ihara proved in [I1] that grt is a Lie algebra under the Poisson
bracket

(16) {f, g} = [f, g] + Df (g)−Dg(f),

1Note that the definition classically contained three separate conditions on
f , but H. Furusho in [F1] gave a remarkable proof that the single pentagon
condition implies both the others, making them unnecessary.
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where for every f ∈ Lie[x, y], Df denotes the derivation of Lie[x, y]
defined by Df (x) = 0 and Df (y) = [y, f ].

Now let us proceed to define the double shuffle Lie algebra. Let A
denote the polynomial algebra A = Q[x, y] on two non-commutative
variables x, y, and let B ⊂ A denote the subalgebra generated by
y1, y2, y3, . . . , where yk = xk−1y. Set y0 = 1.

Let ∆ be the coproduct on A defined by ∆(x) = x⊗ 1 + 1⊗ x and
∆(y) = y ⊗ 1 + 1 ⊗ y. Let ∆∗ be the coproduct on B defined on the
generators yk by equation (1.2). Let Lien[x, y] denote the homogeneous
parts of weight n of Lie[x, y]. For any f ∈ Lien[x, y], considered as a
polynomial in x and y, we write f = fxx + fyy, and set

f∗ = fyy +
(−1)n−1

n
(f |xn−1y)yn.

Since f∗ is a polynomial ending in y, we can rewrite it in the variables
yk, so it lies in B.

Definition 2.2. The weight n graded part dsn of the double shuffle
Lie algebra ds is defined by

dsn = {f ∈ Lien[x, y]|∆∗(f∗) = f∗ ⊗ 1 + 1⊗ f∗}.

We set ds = ⊕n≥3dsn. It was shown in [R] that ds is a Lie algebra
under the Poisson bracket defined in (2.2).

By lemma 1, if f∗ satisfies ∆(f∗) = f∗⊗1+1⊗f∗, then f∗ satisfies the
stuffle relations. Thus theorem 1 applies to the elements f∗ associated
to elements f ∈ ds.

The following statement is an immediate corollary of theorem 2 and
will be used in §3. For a sequence of strictly positive integers c =
(c1, . . . , cr), we use the notation

(f |c) = (f |yc) = (f |yc1 · · · ycr ) = (f |xc1−1y · · ·xcr−1y).

Theorem 3. Let f ∈ Lien[x, y], with n ≥ 3. Then f ∈ ds if and
only if

(17)
∑

c∈st(a,b)

(f |yc) = 0

for all pairs (a,b) 6= (
(1, . . . , 1), (1, . . . , 1)

)
.
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Proof. Since all the words yc end in y when considered in the variables x
and y, we have (f |yc) = (fyy|yc) whenever c 6= (1, . . . , 1). The sequence
of 1’s can only occur in the stuffle of a and b if both a and b are
themselves sequences of 1’s, so it never occurs in (17), and thus (17) is
equivalent to the hypothesis of theorem 2 on the polynomial fyy. Now,
because f is a Lie element, we have (fyy|yn) = 0, and therefore the
a of theorem 1.4 is equal to (−1)n

n (fyy|yn), and theorem 2 shows that

fyy + (−1)n−1

n (fyy|yn)yn = f∗ satisfies stuffle, so f ∈ ds. The interesting
point here is that this statement makes it possible to define elements of
double shuffle via conditions on the Lie element f , making no reference
to the much-studied “regularization” f∗. ♦

Now let us restate theorem 1 directly in the framework of the double
shuffle Lie algebra.

Theorem 4. Let f ∈ ds ⊂ Lie[x, y], let a = (a1, . . . , ad) be a se-
quence of strictly positive integers, and for 1 ≤ j ≤ d, set

wj = xaj−1y · · ·xad−1yxa1−1y · · ·xaj−1−1y.

Then

(18)
d∑

j=1

(f |wj) = (−1)d−1(f |xn−1y).

We will use this theorem to generalize the following theorem, proved
by Ihara in [I2].

Theorem 5. (Ihara) Let f ∈ grtn, and write f = fxx + fyy. Let
X and Y denote the images of x and y in the abelianization of Q[x, y].
Then

(19) (fyy)ab =
1
n

(f |yn)
(
(X + Y )n −Xn − Y n

)
,

Furthermore, if n is even, then (f |yn) = 0, so (fyy)ab = 0.

Our purpose in this section is to generalize Ihara’s result in two
ways. To begin with, by Furusho’s theorem (of which a simplified proof
in the Lie case is given in §3), we know that grt injects into ds via the
map f(x, y) 7→ f(x,−y). One conjectures that these two Lie algebras
are isomorphic, but this is not known. We will prove our theorem for ds
rather than grt.
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But also, instead of working in the abelianization of Q[x, y], we
prove the result in a much bigger quotient of Q[x, y], namely the trace
quotient TR introduced by Alekseev and Torossian in [AT]. The trace
space is the quotient of Q[x, y] modulo the equivalence relation uv ∼
vu for every pair of monomials u, v ∈ Q[x, y]. Although xy = yx in
TR, it is not the abelianization; for example, we have x2y2 ∼ yx2y ∼
y2x2 ∼ xy2x, but these words are not equivalent to xyxy ∼ yxyx which
form a separate equivalence class. In fact, the equivalence classes of
words under this relation are exactly the sets of cyclic permutations of
words in x and y. The remarkable fact is that the statement of Ihara’s
theorem remains identical, not just when generalized from grt to ds,
which is natural considering that one believes the two Lie algebras to
be isomorphic, but also when generalized from the abelianization to the
trace quotient; even in this large quotient, all double shuffle elements of
weight n become equal. In the following statement, we give the analog of
(19), and afterwards we show that as in Ihara’s theorem, this expression
is equal to zero if n is even.

Theorem 6. Let g(x, y) ∈ ds be a homogeneous element of weight
n, and set f(x, y) = g(x,−y). Write f = fxx + fyy and let fyy denote
the image of fyy in the quotient space TR of Q[x, y]. Let x̄ and ȳ denote
the images of x and y in TR. Then

(20) fyy =
1
n

(f |yn)
(
(x̄ + ȳ)n − x̄n − ȳn

)
.

Proof. The polynomial (x+y)n−xn−yn in Q[x, y] is equal to the sum
of all words of weight n in x and y except for xn and yn. The image
of this polynomial in TR is thus equal to a linear combination of the
cyclic equivalence classes of these words, where the coefficient of each
equivalence class is equal to the order of the cyclic class:

(21) (x̄ + ȳ)n − x̄n − ȳn =
∑

C

|C|C

in TR, where the sum runs over the cyclic equivalences classes C of
words of weight n different from xn and yn.

Now consider the image fyy of fyy in TR. The coefficient of the
cyclic equivalence class C in fyy is exactly given by

∑
w∈C(fyy|w), i.e.

we have

(22) fyy =
∑

C

(∑

w∈C

(fyy|w)
)
C
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in TR. We can apply theorem 4 to compute this coefficient, paying
attention to the fact that the sum in (18) is over the n cyclic permu-
tations of w, even if some of them are repeated. If |C| = n, then the
n cyclic permutations form one copy of the class C, but if |C| < n, as
for instance the class {xyxy, yxyx} where |C| = 2 and n = 4, then the
complete list of n cyclic permutations forms n/|C| copies of C. Fix an
element w1 ∈ C ending in y, and let d be the number of y’s in w1. Write
w1 = xa1−1y · · ·xar−1y and wj = xaj−1y · · ·xar−1yxa1−1y · · ·xaj−1−1y
for 2 ≤ j ≤ d. Then by theorem 4 applied to g ∈ ds, we obtain

n

|C|
∑

w∈C

(fyy|w) =
d∑

j=1

(fyy|wj) = (−1)d
d∑

j=1

(gyy|wj)

= −(gyy|xn−1y) = (fyy|xn−1y).

From this we obtain

(23)
∑

w∈C

(fyy|w) =
|C|
n

(f |xn−1y).

Putting this back into (22) yields

fyy =
1
n

(f |xn−1y)
∑

C

|C|C =
1
n

(f |xn−1y)
(
x̄n + ȳn − (x̄ + ȳ)n

)

by (21), proving the the theorem. ♦
The generalization of Ihara’s statement for even n is contained in

the following proposition.

Proposition 1. Let n be even, and let f ∈ dsn. Then (f |yn) = 0,
so in particular, fyy = 0 in TR.

Proof. The statement that (f |yn) = 0 when n is even has been proved in
various forms in various places (for example [Z]). The proof we give here
comes from the unpublished thesis [C], and seems worth reproducing
here for its combinatorial interest. We set yi = xi−1y and compute
in terms of x, y. An easy argument by induction on n shows that for
every n ≥ 1, every monomial of weight n and every Lie element f ∈
Lien[x, y], we have (f |w) = (−1)n−1(f |←−w ), where ←−w is the word w
written backwards. In particular, for even n, we have (f |yxn−1y) = 0.
The stuffle relation associated to the sequences (1) and (n− 1) is given
by (f |yxn−2y)+ (f |xn−2y2)+ (f |xn−1y) = 0, so if n is even, we see that

(24) (f |xn−2y2) = −(f |xn−1y).
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Let us write [xiy] for the depth 1 Lie element [x, [x, · · · , [x, y] · · · ]] =
ad(x)i(y). The element [xn−1y] forms a basis for the 1-dimensional
space Lie1

n[x, y] of depth 1 elements of Lien[x, y], and the elements
[[xn−j−2y], [xjy]], 0 ≤ j ≤ [n−1

2 ]−1, form a basis (known as the Lyndon-
Lie basis) for the

[
n−1

2

]
-dimensional space Lie2

n[x, y] of Lie elements of
weight n and depth 2. Thus we can write

f = A[xn−1y] +

n−4
2∑

j=0

aj [[xn−j−2y], [xjy]] + · · ·

where A = (f |xn−1y). Computing the Lie words [[xn−j−2y], [xjy]] ex-
plicitly as polynomials yields the following identity:

(25) (f |xn−i−2yxiy) =
n−2∑

j=0

(−1)i−jaj

((
j + 1
i− j

)
+

(
j

i− j − 1

))
,

where binomial coefficients are considered to be zero whenever the top
entry is zero or the bottom entry is negative or greater than the top
entry, and aj = 0 if j > n−4

2 .
Now we add up the coefficients of the words of depth 2 in f , obtain-

ing

n−2∑

i=0

(f |xn−i−2yxiy) =
n−2∑

i=0

n−2∑

j=0

(−1)i−jaj

((
j + 1
i− j

)
+

(
j

i− j − 1

))

=
n−2∑

j=0

aj

n−2∑

i=0

(−1)i−j

((
j + 1
i− j

)
+

(
j

i− j − 1

))

= −a0,(26)

since the right-hand factor sums to zero for all j > 0. Now, the n/2
stuffle relations in depth 2 are given by (f |xn−i−2yxiy)+(f |xiyxn−i−2y) =
−A for 0 ≤ i ≤ (n− 4)/2 (note that when i = (n− 2)/2 the relation is
2(f |x(n−2)/2yx(n−2)/2y) = −A), and taking their sum thus yields

(27)
n−2∑

i=0

(f |xn−i−2yxiy) = − (n− 2)
2

A− A

2
= −n− 1

2
A.

Comparing this with (26), we see that a0 = n−1
2 A. But (25) shows that

(f |xn−2y2) = a0, so since A = (f |xn−1y), we finally obtain

(28) (f |xn−2y) =
n− 1

2
(f |xn−1y).
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Comparing this with (24), since n 6= −1, shows that (f |xn−1y) =
(f |yn) = 0. ♦

§3. Second application: Furusho’s theorem

In this section we use theorem 2 to give a very simple proof of the
Lie version of an important theorem recently proved by H. Furusho [F2]
in the more general pro-unipotent setting. Of course the Lie statement
is implied by Furusho’s proof, but theorem 2 provides a significant sim-
plication of the proof in the Lie case which seems worth explaining here.

Theorem 7. (Furusho) Let f(x, y) ∈ grt. Then f(x,−y) ∈ ds.

3.1. Basic setup of the proof.

Furusho’s article [F] gives the complete geometric framework for his
proof, whose essential idea is to adapt the known stuffle-like relations
for double polylogarithms to imply the desired stuffle relations on an
element of Lie P5 satisfying the pentagon relation. We do not explain
this geometric background here. The purpose of the present exposition
is to show that theorem 2 yields a significant simplification of the proof
of Furusho’s theorem in the Lie situation of theorem 3.1, with respect to
the proof that he gives in the pro-unipotent situation in [F]. Therefore
our exposition is as minimal as possible and self-contained with the
exception of the main background theorem (theorem 3.2 below) following
from Chen’s theory of iterated integrals.

Let Lie P5 be the pure sphere 5-strand braid Lie algebra whose defi-
nition was recalled at the beginning of §2. Recall that it can be generated
by five of the elements xij . Following Furusho, we fix here the choice of
x12, x23, x34, x45 and x24 as generators. Let Lie P∨5 be the dual Lie coal-
gebra, and write ω12, ω23, ω34, ω45, ω24 for the duals of the corresponding
xij .

The dual V5 of the enveloping algebra ULie P5 is isomorphic to a
subspace of the freely generated polynomial ring Ω = Q[ωij ]. A word in
the ωij in this ring is written using the bar-notation [ωi1j1 | · · · |ωirjr ] and
called a bar-word. Multiplication in the ring Ω is commutative, given
by the shuffle operation on words. For example,

[ω|ω′] · [ω′′] = [ω|ω′|ω′′] + [ω|ω′′|ω′] + [ω′′|ω|ω′].

The grading on ULieP5 given by letting all xij be of weight 1 translates
to a grading on V5 given by the lengths of the words in ωij . The ωij can
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be identified with differential 1-forms on the moduli space

M0,5 '
(
P1C− {0, 1,∞})2 − {X = Y }

as follows:
ω12 =

dX

X
, ω23 =

dX

1−X
, ω34 =

dY

1− Y
,

(29) ω45 =
dY

Y
, ω24 =

XdY + Y dX

1−XY
.

Let Ωr denote the subvector space of Ω consisting of polynomials
in the ωij of homogeneous degree r. Then the homogeneous subspace
(V5)r ⊂ Ωr is characterized by the following property:

(P) Let σ =
(
(i1, j1), . . . , (ir, jr)

)
denote the r-tuples of pairs (im, jm) ∈

{(1, 2), (2, 3), (3, 4), (4, 5), (2, 4)}, and let W =
∑

σ aσ[ωi1,j1 | · · · |ωir,jr ] ∈
Ωr. Then W lies in V5 if and only if the (r − 1) sums

∑
σ

aσ[ωi1,j1 | · · · |ωik,jk
∧ ωik+1,jk+1 | · · · |ωir,jr ]

are equal to zero for 1 ≤ k ≤ r − 1, where the ωij are wedged as the
differential 1-forms in (29). For example, ω12 ∧ω23 = ω34 ∧ω45 = 0 and
ω12 ∧ ω45 = −ω45 ∧ ω24.

More specifically, (P) can be understood by separately considering
triples

T =
(
k,

(
(a1, b1), . . . , (ak−1, bk−1)

)
,
(
(ak+2, bk+2), . . . , (ar, br)

))
,

where k ∈ {1, . . . , r−1} and the pairs (am, bm) all lie in {(1, 2), (2, 3), (3, 4),
(4, 5), (2, 4)}. For every such triple T , let ST denote the set of r-
tuples of pairs

(
(i1, j1), . . . , (ir, jr)

)
such that (im, jm) = (am, bm) for

1 ≤ m ≤ k− 1 and k + 2 ≤ m ≤ r. The condition (P) for W to lie in V5

is then that for each triple T ,
∑

σ∈ST

aσωik,jk
∧ ωik+1,jk+1 = 0.

The Lie coalgebra Lie P∨5 is isomorphic to the quotient of V5 modulo
(shuffle) products. In other words, every shuffle sum of bar-words in
Lie P∨5 is equal to zero.

In [F2], Furusho introduced particular elements in V5, called

lXa , lYa , lXY
a , lX,Y

a,b , lY,X
a,b ,
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where X and Y are free commutative variables, and a = (a1, . . . , ar)
and b = (b1, . . . , bs) are tuples of strictly positive integers. We will give
a direct recursive definition of these elements here. In order for our
notation to correspond more closely to Furusho’s, we need the following
change of notation with respect to the two previous sections.

Change of notation. Let a = (a1, . . . , ar) be a sequence of strictly
positive integers. We define wa to be the word in non-commutative
variables x and y given by

wa = xar−1y · · ·xa2−1yxa1−1y.

With this notation, we have wawb = wba.

Let us now define Furusho’s symbols, using this new notation.

Definition 3.1. For any element ϕ ∈ Lie[x, y], we write (ϕ|wa) or
(ϕ|a) for the coefficient of the word w in the polynomial ϕ. Define the
element la ∈ Lie[x, y]∨ by

(30) la(ϕ) = (−1)r(ϕ|wa).

• The element lXa ∈ Lie P∨5 is the bar-word defined by replacing every x
in the word wa = xar−1y · · ·xa1−1y by ω12 and every y by ω23.
• The element lYa ∈ Lie P∨5 is the bar-word defined by replacing every x
in the word wa by ω45 and every y by ω34.
• The element lXY

a ∈ LieP∨5 is the bar-word defined by replacing every
x in the word wa by ω12 + ω45 and every y by ω24.

• The element lX,Y
a,b is defined recursively according to the form of the

tuples a and b. Let a = (a1, . . . , ar), b = (b1, . . . , bs). If ar > 1, set
a′ = (a1, . . . , ar − 1); if ar = 1 but r > 1, set a′ = (a1, . . . , ar−1) (with
this notation, xwa′ = wa). Use the same notation for b. If r > 1, ar = 1
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and s > 1, set a′′ = (a1, . . . , ar−1, b1) and b′′ = (b2, . . . , bs).
(31)

lX,Y
a,b =





[ω12|lX,Y
a′,b ] + [ω45|lX,Y

a,b′ ] if ar > 1, bs > 1
[ω12|lX,Y

a′,b ] + [ω34|lX,Y
a,b′ ] if ar > 1, bs = 1, s > 1

[ω12|lX,Y
a′,b ] + [ω34|lXY

a ] if ar > 1, bs = s = 1
[ω23|lX,Y

a′,b ]− [ω12 + ω23|lX,Y
a′′,b′′ ] + [ω45|lX,Y

a,b′ ] if ar = 1, r > 1, bs > 1, s > 1
[ω23|lX,Y

a′,b ]− [ω12 + ω23|lXY
a′′ ] + [ω45|lX,Y

a,b′ ] if ar = 1, r > 1, bs > 1, s = 1
[ω23|lX,Y

a′,b ]− [ω12 + ω23|lX,Y
a′′,b′′ ] + [ω34|lX,Y

a,b′ ] if ar = 1, r > 1, bs = 1, s > 1
[ω23|lX,Y

a′,b ]− [ω12 + ω23|lXY
a′′ ] + [ω34|lXY

a ] if ar = 1, r > 1, bs = 1, s = 1
[ω23|lYb ]− [ω12 + ω23|lX,Y

(b1),b′′
] + [ω45|lX,Y

a,b′ ] if ar = 1, r = 1, bs > 1, s > 1
[ω23|lYb ]− [ω12 + ω23|lXY

b ] + [ω45|lX,Y
a,b′ ] if ar = 1, r = 1, bs > 1, s = 1

[ω23|lYb ]− [ω12 + ω23|lX,Y
(b1),b′′

] + [ω34|lX,Y
a,b′ ] if ar = 1, r = 1, bs = 1, s > 1

[ω23|lYb ]− [ω12 + ω23|lXY
b ] + [ω34|lXY

a ] if ar = 1, r = 1, bs = 1, s = 1.

• Finally, the element lY,X
a,b is defined by computing lX,Y

a,b and then ap-
plying the order 2 automorphism ρ which exchanges the pair ω45 and
ω12, and the pair ω23 and ω34, while fixing x24.

51

2 4

3

ρ

Figure 1

Examples. Let a = (2, 1). Then wa = yxy and

lXY
(2,1) = [ω24|ω12 + ω45|ω24] = [ω24|ω12|ω24] + [ω24|ω45|ω24].

This polynomial lies in V5 since it satisfies the property (P): indeed, as we
saw above, dX

X ∧Y dX+XdY
1−XY + dY

Y ∧XdY +Y dX
1−XY = 0, which ensures that both

the first sum ω24∧ω12+ω24∧ω45 and the second sum ω12∧ω24+ω45∧ω24

are zero.
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Now let a = (1), b = (1). We have

lX,Y
(1),(1) = [ω23|lY(1)]− [ω12 + ω23|lXY

(1) ] + [ω34|lXY
(1) ]

= [ω23|ω34]− [ω12 + ω23|ω24] + [ω34|ω24].

If a = (2) and b = (1), we have

lX,Y
(2),(1) = [ω12|lX,Y

(1),(1)] + [ω34|lXY
(2) ]

= [ω12|ω23|ω34]− [ω12|ω12 + ω23|ω24] + [ω12|ω34|ω24]

+ [ω34|ω12 + ω45|ω24].

We now introduce the fundamental “stuffle-type” relations satisfied
by these elements of Lie P∨5 .

Definition 3.2. Furusho gives a generalization of st(a,b) to the
Lie P5 situation as follows. Recall from §1 the definition of the set of
maps Sh≤(r, s) and the stuffle set st(a,b). Let ST (a,b) be the set of
pairs of sequences σ(a,b) =

(
(c1, . . . , cj), (cj+1, . . . , cN )

)
, where (c1, . . . , cN ) =

cσ(a,b) ∈ st(a,b) and j = min
(
σ(r), σ(r + s)

)
. Also, for each σ ∈

Sh≤(r, s), set σ(X, Y ) = XY if σ−1(N) = {r, r + s}, σ(X, Y ) = (X, Y )
if σ−1(N) = r + s and σ(X,Y ) = (Y, X) if σ−1(N) = r.

Furusho bases the proof of his theorem on the following fundamental
set of stuffle identities.

Theorem 8. For all tuples of strictly positive integers a = (a1, . . . , ar)
and b = (b1, . . . , bs), the elements lX,Y

a,b , lY,X
a,b , lXY

a ∈ Lie P∨5 defined
above satisfy the relation

(32)
∑

σ∈Sh≤(r,s)

l
σ(X,Y )
σ(a,b) = 0.

Sketch of proof. The proof of this result follows from Chen’s theory
of iterated integrals. This is explained in more detail in [F2] (see also
[B] for some of the proofs), so we only sketch the situation here. This
theory identifies the dual elements ωij of the xij with 1-forms on the
moduli space M0,5 ' (P1 − {0, 1,∞})2 −Diag to the xij :

ω12 =
dx

x
, ω23 =

dx

1− x
, ω34 =

dy

1− y
, ω45 =

dy

y
, ω24 =

xdy + ydx

1− xy
,

and linear combinations of bar-words in the ωij with iterated integrals
along a path on M0,5 from (0, 0) to (X, Y ). The condition above defining
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an element of V5 is precisely the “integrability” condition of a linear com-
bination of bar-words, ensuring that the value of the integral depends
only on the homotopy class of the chosen path, and Chen’s theory (see
also [B]) shows that the map from V5 to iterated integrals is injective.
An easy computation shows that the iterated integrals associated to the
elements lXY

a , lX,Y
a,b and lY,X

a,b are single and double polylogarithm func-
tions Lia(XY ), Lia,b(X,Y ) and Lia,b(Y, X) (see [F2] for their explicit
expressions), and these are classically known to satisfy the equalities

∑

σ∈Sh≤(r,s)

Liσ(a,b)(σ(x, y)) = Lia(X)Lia(Y ).

Thus by injectivity of the iterated integral map from V5 to functions of
X and Y , we see that

∑

σ∈Sh≤(r,s)

l
σ(x,y)
σ(a,b) = lXa lYb

in V5. Thus when these elements are considered in the quotient Lie P∨5 ,
we recover (32). ♦

3.2. Furusho’s lemma

In §4 of [F2], Furusho states and proves two lemmas in the pro-
unipotent situation, making use of a regularization defined in the body
of the paper. The statement of lemma 3 summarizes the essence of the
the Lie part of Furusho’s statements, but the lemma is slightly stronger
than the one in [F2], in that the hypothesis on a,b in the sixth statement
is weaker than the one there. This is one of the the main points of
simplication of the Lie proof.

Apart from the sixth statement and its proof, the rest of the state-
ments and proofs are exact Lie analogs of those given in [F2]. However,
the terminology is different and the proofs there are partly left to the
reader, so in the interest of completeness, we give the full proof in detail
here.

Lemma 3. Let p3 : B5 → F2 be the map defined by p3 : x12 7→ x,
x24 7→ y, xi3 7→ 0. and let the maps ijkl : F2 → B5 be defined by
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ijkl(x0) = xjk, ijkl(x1) = xkl. We have the following six identities:




lXY
a = la ◦ p3 for all (a,b)
lX,Y
a,b ◦ i123 = 0 for all (a,b)
lY,X
a,b ◦ i543 = 0 for all (a,b)
lX,Y
a,b ◦ i451 = lab for all (a,b)
lY,X
a,b ◦ i215 = lab for all (a,b)
lY,X
a,b ◦ i432 = 0 for all (a,b) 6= (

(1, . . . , 1), (1, . . . , 1)
)
.

Proof. Recall that if a = (a1, . . . , ar), we set wa = xar−1y · · ·xa1−1y;
Then la(wa) = 1 and la(v) = 0 for all words v 6= wa. By definition, lXY

a

is the bar-word obtained from wa by replacing x by ω12 + ω45 and y by
ω24. Expand this word out as a polynomial; it contains exactly once
each word of the form W = Xarx24Xar−1x24 · · ·Xa1x24, where Xai is
any word of length ai−1 in x12 and x45. Thus, we see that lXY

a takes the
value zero on all words of length r in the generators x12, x23, x34, x45, x24

of Lie P5 except for the ones of that form. Now, x45 = x12 + x13 + x23

in LieP5, so p3(x45) = p3(x12) = x and p3(x24) = y, so p3(W ) = wa.
Thus for every word of the form W , we have lXY

a (W ) = 1 = la(wa) =
la(p3(W )). The words W are exactly the set of words such that p3(W ) =
wa, so if V is not of the form W , we have lXY

a (V ) = 0 = la(p3(V )). This
proves the first statement.

The other statements are proved using induction on the length r+s
of the sequences a and b together, where r, s ≥ 1. Let b = (b1, . . . , bs),
and consider the second statement. It comes down to saying that for
any pair (a,b), the symbol lX,Y

a,b cannot contain any bar-words in the
two variables ω12 and ω23 only. The base case, r + s = 2, was computed
in the examples in §3.1:

(33) lX,Y
(1),(1) = [ω23|ω34]− [ω12|ω24]− [ω23|ω24] + [ω34|ω24].

Now assume r+s > 2, make the induction hypothesis that lX,Y
c,d contains

no such bar-word when the sum of the lengths of c and d is less than
r + s, and fix a pair (a,b) of lengths r and s. Consider the definition
of lX,Y

a,b in (3.3). A word in ω12 and ω23 only would have to come from
the term(s) in each line of (3.3) of the form [ω12| · · · ] or [ω23| · · · ]. But
for each such term, the right-hand part of the term is either one of lX,Y

a′,b ,
lX,Y
a′′,b′′ , lX,Y

(b1),b′′
, none of which contain a word in only ω12, ω23 by the

induction hypothesis, or lXY
b , lXY

a′′ or lYb , which do not contain any such
word by definition. This proves the second statement.
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The third statement is equivalent to the second, given the definition
of lY,X

a,b , which is obtained from lX,Y
a,b by applying the automorphism ρ of

the bar-construction defined in figure 1, since i123 = ρ ◦ i543.
The fifth statement also follows from the fourth by applying ρ, so

let us prove the fourth statement. We first note that

(34) lYa (i451(w)) = lXY
a (i451(w)) = la(w)

for all sequences b. Indeed, lYa is a bar-word in ω34 and ω45 only, so in
computing the left hand term one can ignore all the terms containing
x23 or x34 that appear in i451(w). Similarly, lXY

a is a bar-symbol in
ω12, ω45 and ω24, so in computing the middle member of (34), one can
ignore the ω12 that appear there, and all the terms in i451 that contain
x23 or x34.

We first take care of the base case a = (1),b = (1), and show that
lX,Y
(1),(1)(i451(w)) = l(1,1)(w) for any word w of length 2 in x and y. We
have l(1,1)(x2) = l(1,1)(xy) = l(1,1)(yx) = 0, l(1,1)(y2) = 1. By observ-
ing (33) and the equality ω51 = ω23 + ω24 + ω34 in Lie P∨5 , we see that
lX,Y
a,b = lX,Y

(1),(1) has value zero on the bar-words i451(x2) = [ω45|ω45],
i451(xy) = [ω45|ω51], and i451(yx) = [ω51, ω45], since they all contain an
x45 which doesn’t appear in (33). But in i451(y2) = [ω51|ω51], there ap-
pear three words on which lX,Y

(1),(1) has non-zero value, namely [ω23, ω34],
[ω23, ω24] and [ω34, ω24]. The values are 1, −1 and 1 respectively, so
lX,Y
(1),(1)([ω51, ω51]) = 1 = l(1,1)(y2). This settles the base case.

Make the induction hypothesis that for any pair c,d of length r+s−1
and any word w′ of length r+s−1, we have lX,Y

c,d (i451(v)) = lcd(v). Note
that since i451(x) = x45 and i451(y) = x51 = x23 +x24 +x34, for any one
of Furusho’s symbols L, we have

(35)





[ω45|L](i451(w)) =

{
L(i451(v)) if w = xv

0 otherwise

[ω23|L](i451(w)) =

{
L(i451(v)) if w = yv

0 otherwise

[ω24|L](i451(w)) =

{
L(i451(v)) if w = yv

0 otherwise

[ω34|L](i451(w)) =

{
L(i451(v)) if w = yv

0 otherwise.

Fix a,b of lengths r, s and consider the 10 cases of (3.3); let Ω =
{ω45, ω23, ω24, ω34]}. Only the terms of (3.3) starting with an ω ∈ Ω can
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have a non-zero value on i451(w), since i451(w) is a polynomial in the
variables of Ω only.

Case 1. This is the term [ω45|lX,Y
a,b′ ]. By (3.7), applied to i451(w),

if w = yv, this has the value 0, which is equal to lab(yv) = 0 since
bs > 1. If w = xv, it has the value lab′(v) by (3.7), but lab′(v) = lab(w),
completing this case.

Case 2. The only relevant term is [ω34|lX,Y
a,b′ ], so by (3.7), if w = xv,

we have lX,Y
a,b (i451(w)) = 0 = lab(w) in this case (since bs = 1), and if

w = yv, we have lX,Y
a,b′ (v) = lab(w).

Case 3. There are no relevant terms since [ω34|lXY
a ] contains ω24.

Case 4. There are three relevant terms:

[ω23|lX,Y
a′,b ], −[ω23|lX,Y

a′′,b′′ ], [ω45|lX,Y
a,b′ ].

If w = xv, the first two have value 0, and by (3.7) the third has value
lX,Y
a,b′ (i451(v)) = lab′(v) = lab(w), by the induction hypothesis and the
fact that bs > 1. If w = yv, the third has value 0, and by (3.7)
and induction, the sum of the first two has value la′b(v) − la′′b′′(v) =
0, since the concatenated sequences a′b and a′′b′′ are both equal to
(a1, . . . , ar−1, b1, . . . , bs) when ar = 1, so lX,Y

a,b (i451(w)) = 0 if w = yv.
But we also have lab(w) = 0 in this case, since bs > 1.

Case 5. Here the relevant terms are

[ω23|lX,Y
a′,b ], −[ω23|lXY

a′′ ], [ω45|lX,Y
a,b′ ].

If w = xv, the first two terms take the value zero, so

lX,Y
a,b (i451(w)) = lX,Y

a,b (i451(xv)) = lX,Y
a,b′ (i451(v)) = lab′(v) = lab(w)

by the induction hypothesis and the fact that bs > 1. If w = yv, the
third term takes the value zero, so

lX,Y
a,b (i451(w)) = lX,Y

a,b (i451(yv)) = lX,Y
a′,b (i451(v))− lXY

a′′ (i451(v)).

But la′′ is a bar-word in ω12, ω45 and ω24, so since i451(x) = x45, and
i451(y) = x23 + x24 + x34, we can ignore the ω12 in la′′ and the x23, x34

in i451(v), to obtain lXY
a′′ (i451(v)) = la′′(v). Using induction, we have

lX,Y
a′,b (i451(v)) = la′b(v) = la′′(v), where the last equality follows since
the concatenation a′b = a′′ in this case. Thus lX,Y

a,b (i451(v)) = 0. But
this is equal to lab(w) = lab(yv), since b = (b1) with b1 > 1, so lab can
only take a non-zero value on a word starting with x.
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Case 6. Here the relevant terms are

[ω23|lX,Y
a′,b ], −[ω23|lX,Y

a′′,b′′ ], [ω34|lX,Y
a,b′ ],

so if w = xv, we have lX,Y
a,b (i451(w)) = 0, but also lab(xv) = 0 since

bs = 1, so wab begins with a y. If w = yv, we have

lX,Y
a,b (i451(w)) = lX,Y

a′,b (i451(v))− lX,Y
a′′,b′′(i451(v) + lX,Y

a,b′ (i451(v))

= la′b(v)− la′′b′′(v) + lab′(v)

by the induction hypothesis, but a′b = a′′b′′ = (a1, . . . , ar−1, b1, . . . , bs)
in this case, so this is equal to

lab′(v) = lab(yv) = lab(w).

Case 7. Here the relevant terms are

[ω23|lX,Y
a′,b ], −[ω23|lXY

a′′ ], [ω34|lXY
a ].

If w = xv, we have lX,Y
a,b (i451(w)) = 0, but also lab(w) = 0 since b = (1).

If w = yv, we have

lX,Y
a,b (i451(w)) = lX,Y

a′,b (i451(v))− lXY
a′′ (i451(w)) + lYa (i451(w))

= la′b(v)− la(w) + la(w) = la′b(w)

by induction and because a′′ = a in this case, as ar = 1 = b1. But
la′b(v) = lab(yv) = lab(w) since a = (a1, . . . , ar−1, 1) and b = (1), so
a′b = (a1, . . . , ar−1, 1) and ab = (a1, . . . , ar−1, 1, 1).

Case 8. Here the relevant terms are

[ω23|lYb ], −[ω23|lX,Y
(b1),b′′

], [ω45|lX,Y
a,b′ ],

If w = xv, the first and second terms take value zero on w, so

lX,Y
a,b (i451(w)) = lX,Y

a,b′ (i451(v)) = lab′(v) = lab(w)

by induction and because bs > 1. If w = yv, the third term takes value
zero, then lab(w) = 0 since bs > 1, and also

lX,Y
a,b (i451(w)) = lYb (i451(v))− lX,Y

(b1),b′′
(i451(v)) = lb(v)− lb(v) = 0

by (34) for the first term and induction for the second.
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Case 9. Here the relevant terms are

[ω23|lYb ], −[ω23|lXY
b ], [ω45|lX,Y

a,b′ ].

If w = xv, the first and second terms take the value zero, so

lX,Y
a,b (i451(w)) = la,b′(i451(v)) = lab′(v) = lab(w)

by induction and because bs > 1. If w = yv, the third term takes value
zero, so we have

lX,Y
a,b (i451(w)) = lYb (i451(v))− lXY

b (i451(v)) = 0

by (34). But also lab(yv) = 0 in this case since b = (b1) with b1 > 1.

Case 10. Here the relevant terms are

[ω23|lYb ], −[ω23|lX,Y
(b1),b′′

], [ω34|lX,Y
a,b′ ].

Thus, if w = xv, we have lX,Y
a,b (i451(w)) = 0, and also lab(w) = 0 since

bs = 1. If w = yv, we have

lX,Y
a,b (i451(w)) = lYb (i451(w))− lX,Y

(b1),b′′
(i451(w)) + lX,Y

a,b′ (i451(w))

= lb(w)− lb(w) + lab′(w) = lab(w)

by (34) for the left-hand term, induction for the middle term (since (b1)
concatenated with b′′ is just b), and because bs = 1 and w begins with
y.

Case 11. This is the case a = (1),b = (1) and was already treated as
the base case for the induction.

This concludes the proof of the fourth statement, which as noted
above immediately implies the fifth by symmetry. To complete the proof
of the lemma, it thus remains only to prove the sixth statement. It is
enough to prove that if (a,b) are not all 1’s, there is no bar-word in just
ω23 and ω34 appearing in lY,X

a,b . Since the definition of lY,X
a,b as ρ applied

to (3.3), this is equivalent to proving that lX,Y
a,b ◦ i234 = 0, i.e. that lX,Y

a,b

has no bar-words in just ω23, ω34, for pairs (a,b) not all 1’s. This is
more convenient as we can stare at (3.3). The base case for the induction
here is given by lX,Y

(2),(1) which was computed above and contains no such
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terms, and lX,Y
(1),(2), which is given by

lX,Y
(1),(2) = [ω23|lY(2)]− [ω12 + ω23|lXY

(2) ] + [ω45|lX,Y
(1),(1)]

= [ω23|ω45|ω34]− [ω12 + ω23|ω12 + ω45|ω24] + [ω45|ω23|ω34]

− [ω45|ω12|ω24]− [ω45|ω23|ω24] + [ω45|ω34|ω24]

and also contains no such terms. Make the induction hypothesis that
for all a,b not both sequences of 1’s with total length < r+s, then lX,Y

a,b

has no bar-words in only ω23, ω34. Consider a pair (a,b), not all 1’s,
of length r + s. The only terms which could occur with only ω23 and
ω34 would come from the terms starting with one of these two elements
in (3.3). Furthermore, those terms in (3.3) starting with ω23 or ω34 but
followed by a term

(36) lXY
a , lXY

a′′ or lXY
b

cannot yield bar-words with just ω23 and ω34, since lXY
a always contains

at least one ω24. Thus in each of the eleven cases it is necessary to check
that the remaining “risky” terms (the ones starting with ω23 or ω34

followed by a term not in (36)), can never yield a bar-word in ω23, ω34.
There are no risky terms in the first case. In the second case, [ω34|lX,Y

a,b′ ] is
risky, but in fact it cannot yield a word in ω23, ω34 only by the induction
hypothesis, since ar > 1 appears in the pair (a,b′). The third case
has no risky terms, and in the fourth, which contains both [ω23, l

X,Y
a′,b ]

and [ω23, l
X,Y
a′′,b′′ ], we see that bad words cannot appear by induction,

since bs > 1 appears in both the pairs (a′,b) and (a′′,b′′). In the fifth
case, the only risky term is [ω23|lX,Y

a′,b ], but by induction, this contains
no bad terms since bs > 1 appears. In the sixth case, there are three
risky terms, [ω23, l

X,Y
a′,b ], [ω23, l

X,Y
a′′,b′′ ] and [ω34|lX,Y

a,b′ ], but the induction
hypothesis works for all three again because since (a,b) are not all 1’s
and ar = bs = 1, none of the sequences (a′,b), (a′′,b′′) and (a,b′) can
be all 1’s.

In the seventh case, the risky term is [ω23|lX,Y
a′,b ] but again, (a′,b)

cannot be all 1’s since ar = 1. In the eighth case, there are two risky
terms, [ω23|lYb ] and −[ω23|lX,Y

(b1),b′′
]. The first term can contain only ω23

and ω34 only if lYb = [ω34| · · · |ω34, i.e. if b = (1, . . . , 1), which is impos-
sible since bs > 1. The second works by induction since the pair b′′ is
not all 1’s, as bs > 1. In the ninth case, the only risky term is [ω23|lYb ],
which again can only be a word in ω23 and ω34 if lYb = [ω34| · · · |ω34],
i.e. b = (1, . . . , 1), which is impossible since bs = 1 in this case. In the
tenth case, the risky terms are [ω23|lYb ] and [ω23|lX,Y

(b1),b′′
]. For either of
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these terms to have a word in ω23 and ω34 only, the sequence b would
have to be all 1’s, which is impossible since a = (1) in this case. Finally,
the last case is excluded because a = (1), b = (1). This concludes the
proof of the sixth and final statement of the lemma.

3.3. Proof of theorem 7

The version of the statement of Furusho’s lemma given in the previ-
ous section, and the proof, are essentially just complete versions of the
Lie part of the proof sketched in [F].

It is in the application of the lemma to the proof of the Lie version
of his main theorem that the simplication is strong.

In [F], the proof of the main theorem is done in the unipotent situ-
ation, by generalizing these lemmas to that situation, defining a notion
of regularization, and using a computation on regularizations due to
Goncharov. In the Lie situation, however, thanks to theorem 2 and the
slight generalization of Furusho’s lemma given in the sixth statement of
lemma 3, none of this is necessary. The desired result stated in theorem
7 comes out immediately, as follows.

Proof of theorem 7.

Let f ∈ grtn and let a = (a1, . . . , ar), b = (b1, . . . , bs). Then by
lemma 3, we find that as long as a and b are not both sequences of 1’s,
we have:




lXY
a

(
f(x45, x51) + f(x12, x23)

)
= la(f)

lX,Y
a,b

(
f(x45, x51) + f(x12, x23)

)
= lX,Y

a,b

(
f(x45, x51)

)
= lab(f)

lY,X
a,b

(
f(x45, x51) + f(x12, x23)

)
= lY,X

a,b

(
f(x43, x32) + f(x21, x15) + f(x54, x43)

)

= lY,X
a,b

(
f(x21, x15)

)
= lab(f).

So applying (32) to f(x45, x51) + f(x12, x23) ∈ LieP5, we obtain the
following identities for all pairs (a,b) 6= (

(1, . . . , 1), (1, . . . , 1)
)
:

(37) 0 =
∑

σ∈Sh≤(r,s)

l
σ(X,Y )
σ(a,b)

(
f(x45, x51) + f(x12, x23)

)

=
∑

σ∈Sh≤(r,s)

lcσ(a,b)(f) =
∑

c∈st(a,b)

lc(f).

Set F (x, y) = f(x,−y), and let FY denote the part of F consisting of
words ending in y, rewritten in the variables yi. Then by (30) and the
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fact that all words wc end in y, we have lc(f) = (−1)r(f |wc) = (F |wc) =
(FY |wc). So (37) yields

∑

c∈st(a,b)

(FY |wc) = 0 for (a,b) 6= (
(1, . . . , 1), (1, . . . , 1)

)
.

Thus, FY satisfies the hypothesis of theorem 2. Note also that (FY |yn
1 ) =

0 since F is a Lie polynomial. So, setting F∗ = FY + (−1)n

n (F |yn)yn
1 ,

theorem 2 shows that F∗ satisfies the stuffle relations for all pairs (a,b).
This means precisely that F = f(x,−y) ∈ ds, concluding the proof of
theorem 7.

References

[ 1 ] A. Alekseev, C. Torossian, The Kashiwara-Vergne conjecture and Drin-
fel’d’s associators, preprint 2007, math.arXiv:0802.4300.

[ 2 ] F. Brown, Multiple zeta values and periods of moduli spaces M0,n, Ann.
Sc. ENS 42 fasc. 3 (2009), 371-489.

[ 3 ] S. Carr, Ph.D. thesis, 2008, math.arXiv:0911.2643.

[ 4 ] H. Furusho, Pentagon and hexagon equations, preprint 2007,
math.arXiv:0702128, to appear in Annals of Math.

[ 5 ] H. Furusho, Double shuffle relation for associators, preprint 2009,
math.arXiv:0808.0319, to appear in Annals of Math.

[ 6 ] Y. Ihara, On the stable derivation algebra associated with some braid
groups, Israel J. Math. 80 (1992), no. 1-2, 135-153.

[ 7 ] Y. Ihara, Some arithmetic aspects of Galois actions in the pro-p funda-
mental group of P1 − {0, 1,∞}, in Arithmetic fundamental groups and
noncommutative algebra, Proc. Sympos. Pure. Math. 70, Amer. Math.
Soc. (2002), 247-273.

[ 8 ] G. Racinet, Doubles mélanges des polylogarithmes multiples aux racines de
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