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Goals

The following is joint work with Francis Brown

and Leila Schneps based on a combinatorial

theory of pairs of polygons.

1. Objects: Periods on M0,n

2. Method: Pairs of Polygons = Periods

3. Theorem: Hℓ(Mδ
0,n) = Insertion Polygons

4. Algebra: Polygon algebra

5. Theorem: Polygon algebra ։ Multizeta algebra
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1. Periods on Moduli Space, M0,n

Definition . M0,n = M0,n(C) is the space of

Riemann spheres with n distinct, ordered marked

points modulo isomorphism, i.e. modulo the

action of PSL2(C).

We will denote a point in M0,n by (z1, z2, ..., zn)

or by the representative in its equivalence class

(0, t1, ..., tℓ,1,∞), ℓ = n − 3.

M0,n ≃ (P1 \ {0,1,∞})n−3 \ ∆,

where ∆ is the fat diagonal

∆ = {ti = tj}.
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Stable Compactification of M0,n: M0,n

The boundary components added to M0,n to

compactify correspond to loops around r points,

2 ≤ r ≤ ⌊n
2⌋. These boundary components (di-

visors) are blowups of the regions

{zi1 = zi2 = · · · = zir | 2 ≤ r ≤ ⌊
n

2
⌋} ⊂ (P1)n−3.

=
z2z1 z3 z4 z5 z6

z1 z3z2 z5 z6z4
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M0,n(R): {(0, t1, . . . , tℓ,1,∞) s.t. ti ∈ R}.

The connected components (cells) of M0,n(R)

are given by fixed orderings of the ti.

Example

t2

1 < t2 < t1 < ∞

t1

0<t1<1<t2<∞

0<t1<t2<1

M0,5(R)

Standard Cell := δ = 0 < t1 < ... < tℓ < 1

Boundary of δ in M0,n \ M0,n = loops around

consecutive points
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Definition . We will define a period on M0,n

as a convergent integral,
∫
γ ω, over a cell γ in

M0,n(R), of a form ω which is holomorphic on

M0,n and has at most simple poles on M0,n \

M0,n.

Up to a variable change corresponding to per-

muting {0,1, t1, . . . , tℓ}, all periods can be writ-

ten as integrals over the standard cell, 0 < t1 <

... < tℓ < 1.

Proposition . Hℓ(M0,n) ≃ Vector space of dif-

ferential ℓ-forms convergent on M0,n with at

most simple poles on M0,n \ M0,n.
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2. Polygons

We can associate an n-polygon decorated by

the marked points, {0, t1, ..., tℓ,1,∞}, to the cell

in M0,n(R) defined by the clockwise order of

the marked points around the polygon.

≈

0

t3

≈

polygon, γ cell, γ

∞

t1

1

t2

(0, t1, t2, t3,1,∞) = 0 < t1 < t2 < t3 < 1 < ∞
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Definition . Let γ be a polygon decorated by

the marked points, {0, t1, ..., tℓ,1,∞}.

The cell form associated to γ, ωγ, is the vol-

ume form, dt1 · · · dtℓ, divided by the product of

successive differences of marked points around

the polygon.

Example .

Boundary = Singularity divisor

≈ cell form, ωγ

0
1

t1

t2

∞
t3

≈ [t2,0,1, t1, t3,∞] =
dt1dt2dt3

(−t2)(t3 − t1)(t1 − 1)

polygon, γ

So we have a map from pairs of polygons to

{periods} ∪ {∞}:

(γ, ω) 7→
∫
γ

ω.
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Theorem . (BCS)

The cell forms [0,1, ...], which we call 01-cell

forms, form a basis for Hℓ(M0,n).

Proof. The proof of this theorem is based on

results by Arnol’d who displayed (n−2)! explicit

linearly independent differential forms. These

forms form a basis because dim(Hℓ(M0,n)) =

(n − 2)! by induction, since M0,n → M0,n−1 is

a fibration of fiber P1 \ n − 1 points. It is easy

to express Arnol’d’s forms in terms of 01-cell

forms.

·
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Recall that the shuffle product of sequences,

a = (a1, ..., ai) and b = (b1, ..., bj) is defined as

a X b =
∑

σ∈Si+j

σ(a1, ..., ai, b1, ...bj)

over all σ that preserve the ordering of both a

and b.

Example . (1,2) X (3) = (1,2,3) + (1,3,2) +

(3,1,2).

Shuffle product of polygons

γ1 = [A1, zi1, ..., Ar, zir]

γ2 = [B1, zi1, ..., Br, zir].

We define the shuffle product of polygons with

respect to the common points as

γ1 X γ2 = [A1 X B1, zi1, ..., Ar X Br, zir].
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Let Pn be the Q-vector space generated by ori-

ented n-gons with the sides indexed by

0, t1, ..., tℓ,1,∞.

So we have a natural map,

φ : Pn → Hℓ(M0,n).

Definition . Let In ⊂ Pn be the vector sub-

space generated by shuffle products with re-

spect to one point 〈[A X B, d]〉, with d ∈ {z1, . . . , zn}

and A ∪ B = {z1, . . . , zn} \ {d}.

Lemma . In ⊂ ker(φ).

Theorem . (BCS) Pn/In ≃ Hℓ(M0,n).

Proof.

−Pn ։ Hℓ(M0,n)

− In ⊂ kernel

− dim(Pn/In) = (n − 2)! by Lyndon basis

argument

− dim(Hℓ(M0,n)) = (n − 2)!
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3. Insertion basis for Hℓ(Mδ
0,n)

Definition . Mδ
0,n := M0,n ∪ {the boundary di-

visors of δ}.

To study Hℓ(Mδ
0,n) we use the polygon struc-

ture to calculate the residues of linear combi-

nations of 01-cell forms.

Example . The residue of a polygon (or cell

form) along a divisor, d is a chord is given by

dRes =

0
1

t1

t2

t3

∞

d ⊗

t3

0

1

t1

t2

∞

d

d

··
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Example . Convergence of

ω = [0,1, t1, t2,∞, t3] + [0,1, t2, t1,∞, t3]

• Identify bad divisors as chords,

d := t1 = t2.

• Resd(ω) = [0,1, d,∞, t3] ⊗ [t1 X t2, d].

• Image in forms is 0, since the right hand

factor is a shuffle w.r.t. one element.

0
1

t1

t2

t3

∞

t3

0
1

t2

t1

∞

+d d = ω
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We write the form,

ω = [0,1, t1, t2,∞, t3] + [0,1, t2, t1,∞, t3]

= [0,1, t1 X t2,∞, t3].

It is obtained by inserting the shuffle t1 X t2 into

the smaller convergent cell form, [0,1, t1,∞, t2].

Insertion polygons are all obtained in this way

and they map to insertion forms.

Theorem . (BCS) The insertion forms form

a basis for Hℓ(Mδ
0,n) and the dimension can

be counted using a recursion formula based on

their construction.
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4. The algebra of periods, C

We define a product map,

f : M0,n → M0,r × M0,s

by specifying subsets T1, T2 of T = {z1, ..., zn}

such that if T1 = {zi1, ..., zir}, T2 = {zj1, ..., zjs},

then |T1 ∩ T2| = 3 and T1 ∪ T2 = T . We de-

fine the product map as the product of two

forgetful maps:

f : (z1, ..., zn) 7→ (zi1, ..., zir) × (zj1, ..., zjs)

such that the order of the original sequence is

preserved (ik−1<ik, jk−1<jk).
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Theorem . Given two periods, on M0,r and

M0,s and a product map f , we have ·
∫
γ1

ω1

∫
γ2

ω2 =
∫
f−1(γ1×γ2)

f∗(ω1 ∧ ω2)

=

∫
γ1 X γ2

ω1 X ω2. ·

- (BCS) Product of cellforms equals their poly-

gon shuffle product.

- Preimage of product domain is a shuffle.

Example .

f : (0, t1, t2, t3, t4,1,∞) 7→

(0, t1, t2,1,∞) × (0, t3, t4,1,∞)

(0, (t1, t2) X (t3, t4),1,∞) = (0, t1, t2, t3, t4,1,∞)

⊔ (0, t1, t3, t2, t4,1,∞) ⊔ (0, t3, t1, t4, t2,1,∞)...

7→ (0, t1, t2,1,∞) × (0, t3, t4,1,∞)
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Definition . We denote by C the algebra of

periods on M0,n with multiplication given by

the product maps.

Conjecture . All of the relations in C are given

by variable changes and relations coming from

the different product maps.

Definition . We denote by FC the formal al-

gebra of pairs of polygons, (δ, ω), decorated

by marked points where the ω is an insertion

polygon modulo the following relations :

1. (δ, ω) = (σ(δ), σ(ω)), for all σ ∈ Sn (vari-

able changes)

2. (γ, [A X B, zi]) = 0 (In 7→ 0)

3. For each product map f , a corresponding

shuffle product of polygons,

(γ1, ω1)(γ2, ω2) = (γ1 X γ2, ω1 X ω2).
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5. FC ։ C = Z

Definition . Let n1, . . . , nr ∈ N \ {0} such that

n1 ≥ 2. Multizeta values are defined by nested

sums

ζ(n1, . . . , nr) =
∑

k1>...>kr≥1

1

k
n1
1 . . . knr

r
∈ R

where the weight is ℓ = n1 + . . . + nr.

Definition . We denote by Z the algebra of

multizeta values.

Theorem . (Brown) Z = C

Proof . ·

− (Kontsevich, Zagier) Any multizeta can be

expressed as a period on Mo,n (explicitly)

− Any convergent period on Mo,n can be

written as a linear combination of multizeta

values (not explicitly)
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Since periods satisfy the three defining rela-

tions of FC, we have

FC ։ C = Z.
·

Let Zn be the Q-vector space generated by

weight n multizeta values and products of mul-

tizeta values of total weight n.

Conjecture . (Zagier) Let dn = dimQ Zn. Then

dn = dn−2 + dn−3 ,

where d0 = 1, d1 = 0, d2 = 1.

This conjecture is true for FCn+3, n = 0,1,2,3,

4,5,6. We hope that the combinatorial struc-

ture will make this conjecture accessible for

FC.
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