Cellular Multizeta Values

Sarah Carr

August, 2007

Goals

The following is joint work with Francis Brown and Leila Schneps based on a combinatorial theory of *pairs of polygons*.

- 1. Objects: Periods on $\mathfrak{M}_{0,n}$
- 2. Method: Pairs of Polygons = Periods
- 3. Theorem: $H^{\ell}(\mathfrak{M}_{0,n}^{\delta}) =$ Insertion Polygons
- 4. Algebra: Polygon algebra
- 5. Theorem: Polygon algebra ---> Multizeta algebra

1. Periods on Moduli Space, $\mathfrak{M}_{0,n}$

Definition . $\mathfrak{M}_{0,n} = \mathfrak{M}_{0,n}(\mathbb{C})$ is the space of Riemann spheres with n distinct, ordered marked points modulo isomorphism, i.e. modulo the action of $PSL_2(\mathbb{C})$.

We will denote a point in $\mathfrak{M}_{0,n}$ by $\overline{(z_1, z_2, ..., z_n)}$ or by the representative in its equivalence class $(0, t_1, ..., t_{\ell}, 1, \infty), \ \ell = n - 3.$

$$\mathfrak{M}_{0,n}\simeq (\mathbb{P}^1\setminus\{0,1,\infty\})^{n-3}\setminus\Delta,$$

where Δ is the fat diagonal

$$\Delta = \{t_i = t_j\}.$$

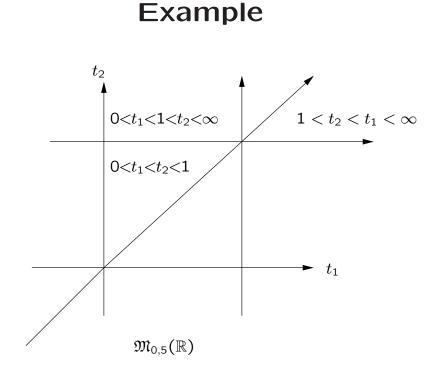
Stable Compactification of $\mathfrak{M}_{0,n}$: $\overline{\mathfrak{M}}_{0,n}$

The boundary components added to $\mathfrak{M}_{0,n}$ to compactify correspond to loops around r points, $2 \leq r \leq \lfloor \frac{n}{2} \rfloor$. These boundary components (divisors) are blowups of the regions

$$\{z_{i_1} = z_{i_2} = \dots = z_{i_r} \mid 2 \leq r \leq \lfloor \frac{n}{2} \rfloor\} \subset (\mathbb{P}^1)^{n-3}.$$

 $\mathfrak{M}_{0,n}(\mathbb{R})$: {(0, $t_1, \ldots, t_\ell, 1, \infty$) s.t. $t_i \in \mathbb{R}$ }.

The connected components (cells) of $\mathfrak{M}_{0,n}(\mathbb{R})$ are given by fixed orderings of the t_i .



Standard Cell := δ = 0 < t_1 < ... < t_ℓ < 1

Boundary of δ in $\overline{\mathfrak{M}}_{0,n} \setminus \mathfrak{M}_{0,n} = \text{loops around}$ consecutive points

4

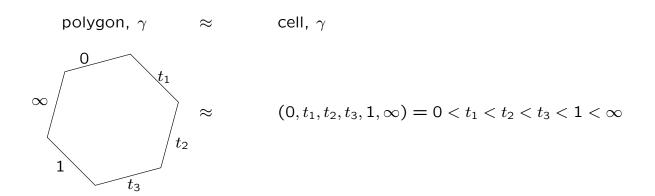
Definition. We will define a **period** on $\mathfrak{M}_{0,n}$ as a convergent integral, $\int_{\gamma} \omega$, over a cell γ in $\mathfrak{M}_{0,n}(\mathbb{R})$, of a form ω which is holomorphic on $\mathfrak{M}_{0,n}$ and has at most simple poles on $\overline{\mathfrak{M}}_{0,n} \setminus \mathfrak{M}_{0,n}$.

Up to a variable change corresponding to permuting $\{0, 1, t_1, \ldots, t_\ell\}$, all periods can be written as integrals over the standard cell, $0 < t_1 < \ldots < t_\ell < 1$.

Proposition . $H^{\ell}(\mathfrak{M}_{0,n}) \simeq$ Vector space of differential ℓ -forms convergent on $\mathfrak{M}_{0,n}$ with at most simple poles on $\overline{\mathfrak{M}}_{0,n} \setminus \mathfrak{M}_{0,n}$.

2. Polygons

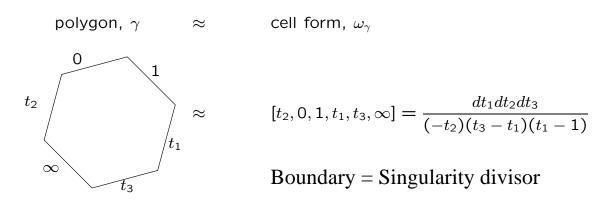
We can associate an *n*-polygon decorated by the marked points, $\{0, t_1, ..., t_\ell, 1, \infty\}$, to the cell in $\mathfrak{M}_{0,n}(\mathbb{R})$ defined by the clockwise order of the marked points around the polygon.



Definition. Let γ be a polygon decorated by the marked points, $\{0, t_1, ..., t_{\ell}, 1, \infty\}$.

The **cell form** associated to γ , ω_{γ} , is the volume form, $dt_1 \cdots dt_{\ell}$, divided by the product of successive differences of marked points around the polygon.

Example .



So we have a map from pairs of polygons to $\{\text{periods}\} \cup \{\infty\}$:

$$(\gamma,\omega)\mapsto \int_{\gamma}\omega.$$

7

Theorem . (BCS)

The cell forms [0, 1, ...], which we call 01-cell forms, form a basis for $H^{\ell}(\mathfrak{M}_{0,n})$.

Proof. The proof of this theorem is based on results by Arnol'd who displayed (n-2)! explicit linearly independent differential forms. These forms form a basis because dim $(H^{\ell}(\mathfrak{M}_{0,n})) = (n-2)!$ by induction, since $\mathfrak{M}_{0,n} \to \mathfrak{M}_{0,n-1}$ is a fibration of fiber $\mathbb{P}^1 \setminus n-1$ points. It is easy to express Arnol'd's forms in terms of 01-cell forms.

Recall that the shuffle product of sequences, $\underline{a} = (a_1, ..., a_i)$ and $\underline{b} = (b_1, ..., b_j)$ is defined as

$$\underline{a} \amalg \underline{b} = \sum_{\sigma \in \mathfrak{S}_{i+j}} \sigma(a_1, ..., a_i, b_1, ..., b_j)$$

over all σ that preserve the ordering of both \underline{a} and \underline{b} .

Example. (1,2) = (1,2,3) + (1,3,2) + (3,1,2).

Shuffle product of polygons

$$\gamma_1 = [A_1, z_{i_1}, \dots, A_r, z_{i_r}]$$

$$\gamma_2 = [B_1, z_{i_1}, \dots, B_r, z_{i_r}].$$

We define the shuffle product of polygons with respect to the common points as

$$\gamma_1 \amalg \gamma_2 = [A_1 \amalg B_1, z_{i_1}, ..., A_r \amalg B_r, z_{i_r}].$$

Let \mathcal{P}_n be the \mathbb{Q} -vector space generated by oriented *n*-gons with the sides indexed by

 $0, t_1, ..., t_\ell, 1, \infty.$

So we have a natural map,

 $\phi: \mathcal{P}_n \to H^{\ell}(\mathfrak{M}_{0,n}).$

Definition . Let $I_n \subset \mathcal{P}_n$ be the vector subspace generated by shuffle products with respect to one point $\langle [A \amalg B, d] \rangle$, with $d \in \{z_1, \ldots, z_n\}$ and $A \cup B = \{z_1, \ldots, z_n\} \setminus \{d\}$.

Lemma $I_n \subset \ker(\phi)$.

Theorem . (BCS) $\mathcal{P}_n/I_n \simeq H^{\ell}(\mathfrak{M}_{0,n}).$ Proof.

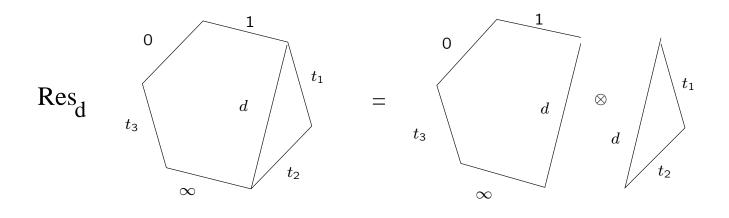
- $-\mathcal{P}_n \twoheadrightarrow H^{\ell}(\mathfrak{M}_{0,n})$
- $-I_n \subset \text{kernel}$
- $-\dim(\mathcal{P}_n/I_n) = (n-2)!$ by Lyndon basis argument
- $-\dim(H^{\ell}(\mathfrak{M}_{0,n})) = (n-2)!$

3. Insertion basis for $H^{\ell}(\mathfrak{M}_{0,n}^{\delta})$

Definition . $\mathfrak{M}_{0,n}^{\delta} := \mathfrak{M}_{0,n} \cup \{ \text{the boundary di-visors of } \delta \}.$

To study $H^{\ell}(\mathfrak{M}_{0,n}^{\delta})$ we use the polygon structure to calculate the residues of linear combinations of 01-cell forms.

Example. The residue of a polygon (or cell form) along a divisor, d is a chord is given by



11

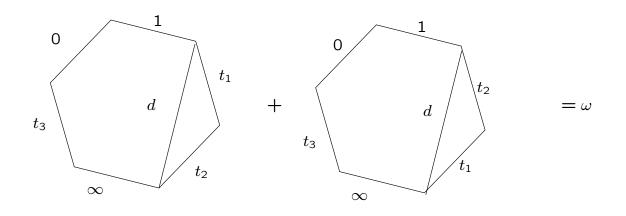
Example . Convergence of

 $\omega = [0, 1, t_1, t_2, \infty, t_3] + [0, 1, t_2, t_1, \infty, t_3]$

• Identify bad divisors as chords,

$$d := t_1 = t_2.$$

- $Res_d(\omega) = [0, 1, d, \infty, t_3] \otimes [t_1 \sqcup t_2, d].$
- Image in forms is 0, since the right hand factor is a shuffle w.r.t. one element.



We write the form,

$$\omega = [0, 1, t_1, t_2, \infty, t_3] + [0, 1, t_2, t_1, \infty, t_3]$$

= [0, 1, t_1 \lm t_2, \infty, t_3].

It is obtained by inserting the shuffle $t_1 \equiv t_2$ into the smaller convergent cell form, $[0, 1, t_1, \infty, t_2]$.

Insertion polygons are all obtained in this way and they map to **insertion forms**.

Theorem . (BCS) The insertion forms form a basis for $H^{\ell}(\mathfrak{M}_{0,n}^{\delta})$ and the dimension can be counted using a recursion formula based on their construction.

4. The algebra of periods, $\ensuremath{\mathcal{C}}$

We define a product map,

$$f: \mathfrak{M}_{0,n} \to \mathfrak{M}_{0,r} \times \mathfrak{M}_{0,s}$$

by specifying subsets T_1, T_2 of $T = \{z_1, ..., z_n\}$ such that if $T_1 = \{z_{i_1}, ..., z_{i_r}\}, T_2 = \{z_{j_1}, ..., z_{j_s}\},$ then $|T_1 \cap T_2| = 3$ and $T_1 \cup T_2 = T$. We define the product map as the product of two forgetful maps:

$$f: (z_1, ..., z_n) \mapsto (z_{i_1}, ..., z_{i_r}) \times (z_{j_1}, ..., z_{j_s})$$

such that the order of the original sequence is preserved $(i_{k-1} < i_k, j_{k-1} < j_k)$.

Theorem . Given two periods, on $\mathfrak{M}_{0,r}$ and $\mathfrak{M}_{0,s}$ and a product map f, we have \cdot

$$\int_{\gamma_1} \omega_1 \int_{\gamma_2} \omega_2 = \int_{f^{-1}(\gamma_1 \times \gamma_2)} f^*(\omega_1 \wedge \omega_2)$$
$$= \int_{\gamma_1 \amalg \gamma_2} \omega_1 \amalg \omega_2.$$

- (BCS) Product of cellforms equals their polygon shuffle product.

- Preimage of product domain is a shuffle.

Example.

$$f: (0, t_1, t_2, t_3, t_4, 1, \infty) \mapsto (0, t_1, t_2, 1, \infty) \times (0, t_3, t_4, 1, \infty)$$

 $(0, (t_1, t_2) \amalg (t_3, t_4), 1, \infty) = (0, t_1, t_2, t_3, t_4, 1, \infty)$ $\sqcup (0, t_1, t_3, t_2, t_4, 1, \infty) \sqcup (0, t_3, t_1, t_4, t_2, 1, \infty) ...$ $\mapsto (0, t_1, t_2, 1, \infty) \times (0, t_3, t_4, 1, \infty)$

Definition. We denote by C the algebra of periods on $\mathfrak{M}_{0,n}$ with multiplication given by the product maps.

Conjecture . All of the relations in C are given by variable changes and relations coming from the different product maps.

Definition. We denote by \mathcal{FC} the formal algebra of pairs of polygons, (δ, ω) , decorated by marked points where the ω is an insertion polygon modulo the following relations :

- 1. $(\delta, \omega) = (\sigma(\delta), \sigma(\omega))$, for all $\sigma \in \mathfrak{S}_n$ (variable changes)
- 2. $(\gamma, [A \amalg B, z_i]) = 0 \ (I_n \mapsto 0)$
- 3. For each product map f, a corresponding shuffle product of polygons,

$$(\gamma_1,\omega_1)(\gamma_2,\omega_2)=(\gamma_1 \amalg \gamma_2,\omega_1 \amalg \omega_2).$$

5.
$$\mathcal{FC} \twoheadrightarrow \mathcal{C} = \mathcal{Z}$$

Definition . Let $n_1, \ldots, n_r \in \mathbb{N} \setminus \{0\}$ such that $n_1 \ge 2$. **Multizeta values** are defined by nested sums

$$\zeta(n_1,\ldots,n_r) = \sum_{k_1 > \ldots > k_r \ge 1} \frac{1}{k_1^{n_1} \ldots k_r^{n_r}} \in \mathbb{R}$$

where the weight is $\ell = n_1 + \ldots + n_r$.

Definition . We denote by \mathcal{Z} the algebra of multizeta values.

Theorem . (*Brown*) $\mathcal{Z} = \mathcal{C}$

Proof.

- (Kontsevich, Zagier) Any multizeta can be expressed as a period on \$\mathbb{M}_{o,n}\$ (explicitly)
- Any convergent period on \$\mathbb{M}_{o,n}\$ can be written as a linear combination of multizeta values (not explicitly)

Since periods satisfy the three defining relations of \mathcal{FC} , we have

$$\mathcal{FC} \twoheadrightarrow \mathcal{C} = \mathcal{Z}.$$

Let \mathcal{Z}_n be the Q-vector space generated by weight *n* multizeta values and products of multizeta values of total weight *n*.

Conjecture. (*Zagier*) Let $d_n = \dim_{\mathbb{Q}} \mathcal{Z}_n$. Then

$$d_n = d_{n-2} + d_{n-3} ,$$

where $d_0 = 1, d_1 = 0, d_2 = 1$.

This conjecture is true for \mathcal{FC}_{n+3} , n = 0, 1, 2, 3, 4, 5, 6. We hope that the combinatorial structure will make this conjecture accessible for \mathcal{FC} .