Moulds and Multiple Zeta Values

1 Moulds

Definition 1. The standard definition is that a mould is a function on “a variable number of variables”. To
flesh out this definition, in the general case, let A, B be sets and K be an algebra. A mould, M* = (M*, A, K),
is a map from the free monoid A* into K and a bimould is defined as a function on the free monoid of the

Cartesian product of two sets, (A x B)*:
Mould M* A" - K
w = (wy, ..., wy) — M™
Bimould ~ N*®*:(AxB)" - K
we (M )
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1.1 Examples
Ze? is the bimould defined by
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(Ze2,Q/Z x N*,C) = zelA ) > Ikt
ni>ng>-n,>0
with s; > 2. If we take ¢, = 0 Vi then we obtain the usual multiple zeta values. Sometimes people say that
elements in the image of this mould are “colored multiple zeta values”.
Wa? is the mould defined by
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(Was, {e"™ k € Q} U{0},C) := WaS

Hence we require that the first term be a root of unity and the last term be 0.



1.2 Operations on Moulds

Given two moulds (resp. bimoulds) (M*®, A(resp. x B), K) and (N°®, A(resp. x B), K) addition and multi-
plication are given by

M*+N*=C*: CV=MY+N"
1 2
M® x N* =mu(M®*,N*) =C*: C¥= > M -N".

W:wl.WQ
Swap
swap : (M*, Ax B,K) — (M*,Bx A, K)
swap(M-)@},...,ZI) — M(uﬁ.fﬂr,ulliﬁrrﬂ,m’ 1 2)
Negation,/Parity
nepar () — (1 pgeme)
Flexions
A-semi-group, B-abelian group
w=_.w - -w2.
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1.3 Symmetries

Definition 2. A mould/bimould A® is symmetral (resp. alternal) if

vw! w2, Z AY = AV A (resp. =0),

wesha(wl ,w?2)

where sha(w', w?) denotes the shuffle product of sequences. We say such a mould is “as” (resp. “al”). Wa?
15 as.
A mould/bimould A*® is symmetrel (resp. alternel) if

vw! w2, Z AV = AV AV (resp. =0),

weshe(wl ,w?)

where she(w', w?) denotes the “contracting shuffle” or “stuffle” product of sequences, which is given by the
recursion relation,

she(w', w?) = ay - she((as, ..., a,), W?) U ayp1 - she(W', (aria, ..., aris)) U (a1 + i) - she((ag, ..., ar), (@rig, ..., Grgs))-

Such a mould is called es (resp. el). Zeg is es.



1.4 More Examples

The following examples of moulds define two generating series for multiple zeta values, and provide a method
of regularization of multiple zeta values.

Regularization
There exists a unique mould, Ze®, such that

- Ze®* = Ze} wherever Ze} is defined,

- Ze® is defined on all of (Q/Z x N*)*

0

- ze(V) =,
- Ze® is symmetrel

Likewise, there exists a unique mould, Wa®, such that

- Wa®* = Wa? wherever Wa? is defined,

- Wa* is defined on all {e*™*: k € Q} U {0},
- Wa™ =Wa® =0,

- Wa® is symmetral.

Generating Series
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Zag® is symmetral, whereas Zig® satifies another symmetry, symmetril, closely related to symmetrel.



Conversion

€1 €r
:= 0 whenever R
S1 Sy

€r

(mini.7 @[ul] X Q/Z7 C) = mmz(ii " ’”T) = mono(ell""’ 1
Proposition 3. mini® x swap(Zag®) = Zig®

We say then that Zag® is as/is, since it’s symmetral and its swap is symmetril (up to multiplication by
a commutative bimould).



2 Key Results
2.1 ARI/GARI

In order to keep simplicity for this talk, we take the following definition, which is more restricted than the
usual general definition.

Definition 4. Let AR,/ be the Lie algebra with the following definition.

o As a vector space over Q,

(ARIy/i, Qui] x Q/Z,Cl[w]]) := (M* : M® =0, M is al, swap(M*) is alternil™),

e The Lie bracket is given by

ari(M®, N*)" = AVBY BV AV 4 Y MM NIV N i
w=wlw? w=w2w3w?
+ ]\4w1 [w?3 NWQJ . ]\fw1 (WSMW2J
WZWIZWQW3

(** The alternil condition means “up to a multiplication by a commutative bimould”.)
Remarks

e The ari bracket is equal to the Lie-Poisson bracket {, }, up to a variable change, on the usual Lie algebra
of multizeta values (dm). However, the ari bracket can be defined on a more general set of vector spaces,
which is a tool Ecalle uses in his proofs.

e The flexions ([, |,],[) in the definition of the “ari” bracket correspond to the derivations, Ds(x) =
0, D¢(y) = [y, f], which give the definition of the above mentioned Poisson bracket.



Definition 5. By taking the ari-exponential of the Lie algebra, ARy, we obtain a Lie group, GARI ;s
which has the following presentation.

e As a set,

(GARI,q)is, Qui] x Q/Z, Cl[wi]]) := {M*: M® =1, M is as, swap(M*) is symmetril™*},

e The group law is given by

1

gari(A®, B*)Y = Z AlPTT gl gat] L gattt(ptylet

w=alblcl.-bscsast1

(B,

where s > 0,bl # 0 (V1 <i<s) c-aft £0 V1l <i<s—1)and (B denotes the inverse for
standard mould multiplication.

e invgari(M®) is inverse of a mould M* for the gari product,

gari(invgari(A®), A®) = gari(A®, invgari(A)®) = 1°, where 1°=1,1v=0.

IMPORTANT FACT
The mould Zag® is an element of the Lie group, GARI.



2.2 Canonical Decomposition into Irreductibles

Theorem 6. The mould Zag® may be decomposed into three factors,
Zag® = gari(Zagy, Zagyy, Zagyy)

such that:

e The even/odd length components of Zagj ;; are even/odd functions of w, while the even/odd legth
components of Zag};; are odd/even functions of w;

e Each component is decomposed as a series in a basis of ARl y, which when evaluated at ¢; = 0 are
irreducible elements of the Q algebra of multiple zeta values, Zeta;

e The irreducibles appearing as coefficients in the factors give us a factorization for the multiple zeta value

algebra,
Zeta := Zetay @ Zetarr Q Zetayyy.



2.3 Zagi;

- The factor Zagy};; is the most simple to express explicitly,
gari(Zagy, Zagy; ;) = gari(nepar(invgari(Zag®)), Zag®).

By linearizing, you can see that indeed this provides an odd/even function on components of even/odd
length.

- The length 1 component is given by

Zag ) = 3 (s

s>3, odd

- The associated factor in the multiple zeta value algebra, Zetay;y, is generated by irreducibles of odd depth,
i.e. linear combinations of {(sy,...,s,) where r is odd. The mould of such irreducibles is denoted by
Irryy.

- We get an explicit expression for the set of irreducible multiple zeta values in factor Zagj;; in terms of a
mould loma®, which is a generating mould which (vaguely speaking) forms a basis of rational polynomials
for ARI,; (the explicit construction is out of the scope of this talk). We have

Zagy = E Iy lomay, - - - lomay |
s;>1, r odd

where lomay, is the restriction of loma® to the weight s; terms.
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2.4 Zag;

- Zagy € Q[[u;, 7%]] (when ¢; = 0), which in the language of zetas, means that the corresponding factor in
the Zeta algebra, Zetay, is generated by 6((2) = 72.

- The explicit factorization of Zag} from Zag® is a very costly analytic contruction, whose difficulty comes
from getting rid of unwanted singularities. The formula is the following:

Zagy = gari(tal®,invgari(pal®), expari(roma®)),

and again the definition of pal and roma go out of the scope, since they are very long.

2.5 Zagy;
- Zagy; is explicitly calculated by factoring Zag® by Zag; and Zagyj,;.

- Zagj; may be factored as a generating series for the irreducible multiple zeta values of even depth in the
same manner as Zagi;;, providing a set of “canonical” irreducibles for Zeta;r,

Zagy; = E Irryy ™ lomag, - - - lomas .

s;i>1, r even
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