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Introduction

Contemporary ordinal-theoretic proof theory (i.e., the part of proof theory concerned with ordinal analysises
of strong impredicative theories) suffers from the extreme (and as it seems unavoidable) complexity and
opacity of its main tool, the ordinal notation systems. This is not only a technical stumbling block which
prevents most proof-theorists from a closer engagement in that field, but it also calls the achieved results
into question, at least as long as these results do not have interesting consequences, such as e.g. foundational
reductions or intuitively graspable combinatorial independence results. The question is, what have we gained
by having shown that the proof-theoretic ordinal of a certain formal theory S equals the ordertype || < ||
of some specific term ordering < (disregarding for the moment possible applications of the abovementioned
kind). I would say, as long as the ordering is simple and natural (as e.g. the standard orderings of order
type €9 or I'g) or occurs already elsewhere in mathematics or theoretical computer science, we have obtained
a result of pure mathematics which is interesting and noteworthy by itself. But I’'m not sure if the latter
can (already) be said about Rathjen’s ([Ra95])and Arai’s ([Ar96],[Ar97]) most impressive and admirable
work on I1}-CA and beyond. Rather I think, that extensive efforts should be made aiming at a substantial
simplification and deeper understanding of that work, especially of the used ordinal notation systems (term
orderings, resp.). The purpose of the present paper is to present as an example a particularly nice piece
of ordinal-theoretic, impredicative proof theory (far below I1}-CA) where such a simplification and deeper
understanding has already been achieved. The paper is more or less a condensation and improved presentation
of parts of [Bu81], [Bu86], [Bu87] providing an ordinal analysis “from above” for the theories ID, of iterated
inductive definitions by means of the so-called €2, -rule. Special efforts have been made to let the assignment
of ordinals to derivations not appear as an ad hoc approach but as a quite natural and perspicuous procedure.

61 Ordinal functions and ordinal notations

Around the early seventies Feferman suggested the following definition of ordinal functions 6, for generating
large segments of recursive ordinals, which was intended to replace the extremely complex Bachmann-Pfeiffer-
Isles definition procedure for hierarchies of normal functions. This definition brought a new impetus into proof
theory and was the starting point of a rather successful development.

Definition (Feferman 1970)

Let vp be a fixed countable ordinal.

By transfinite recursion on « one defines sets C'(a, 3) and ordinal functions 6,:

C(a,B) :=least set X D fU{Q, : 0 < 0 < 1y} such that V¢, n € X (£ +n € X)
and V€, n € X({<a = B¢(n) € X),

0, enumerates {8 > 0: C(a,8) N BT C B} where BT := min{Qy11: B < Qpi1} and Q, := R,

Dedicated to Solomon Feferman on the occasion of his 70th birthday. I am deeply indebted to Sol for the
encouragement and stimulation he gave me over many years through his interest in my work.



A simple cardinal argument shows that C'(«, 8) has essentially the same cardinality as 8 (namely card(C(«, 3))
= max{Ry, card(f)}), no matter how large « is. This yields V8 < Qy41(0a(8) < Qpy1) , for any a (see
Lemma 1.1 below). Hence the function Aa.0,(2,) maps On into Q,41, i.€., it is a so-called collapsing function.
Important contributions to the further investigation of the #-functions were made by Weyhrauch, Aczel and
(most important) Jane Bridge. Aczel generalized the definition and conjectured relationships between the 6, ’s
and the Pfeiffer/Isles functions. These conjectures were established by Jane Bridge in her Ph.D. thesis. She
also obtained partial results on the recursiveness of the notation system associated with 6, [Br75]. Starting
from Bridge’s thesis, recursiveness of the full f-notation system was established in [Bu75]. There also a variant
8, of 8, was introduced which has the advantage that the <-relation between #-terms can be characterized in
a particularly simple way. This opened the way to a successful use of these ordinal functions in proof-theory.
Later it turned out that in proof-theoretic applications actually only the values of f, at initial ordinals Q,
are used, which led to the idea to define directly functions v, corresponding to Aa.f4(Q,)

Definition (Buchholz 1981)

Let vp be a fixed countable ordinal.

Yo(a) =min{ > Q_,, : C(a, ) N Qi1 C B} (0 < 10)

C(a, B) := closure of g under + and all ¥, [a (o0 < vp).
_ 1 ifo=0

Do { Q, ifo>0

Remark C(a, 9, (a)) N Qi1 = Y, ()

Before we start to prove some basic facts about these ordinal functions 1,, we establish a general Lemma
which also applies to stronger systems of ordinal functions.

Definition

Given a countable set F of ordinal functions and an ordinal 3 let
CI(F; B8) := the closure of § under + and all functions in F.

Let & be the class of all uncountable regular cardinals.

Lemma 1.1

If F is a countable set of ordinal functions, then for each k € &

the set {8 <k : CI(F; ) Nk C B} is closed unbounded in .

Proof:

unbounded: Let fy < k be given. We set 3,41 := min{n : CI(F;f,) N & C n}, B := sup, ., Bn. Since
Vn < k(card(C1(F;n)) < k), we obtain (by induction on n) 8, < &, and then 8y < 8 < xk and C1(F;8) Nk C
Uncw CUF; Bn) N & C U, cp, Brnsr C B

closed: If 3 = sup(X) & VneX (CL(F;n) Nk C n) then CU(F;8) Nk C U, cx CUFin) NK& C U, exn =B

Theorem 1.2 (Basic properties of ¢,)

(a) Yo (a) < Q,H (collapsing property)

(b) ¥5(0) = Q,,,, and ¥, () is closed under +

(c) o < a & ap € Clag, ¥y(ag)) = Yr(ap) < Yy(a)

(d) o (a0) = Y1) & i€ C(az,%(m)) (i=0,1) = a=m

normalform condition

Proof:
(a) Obviously C(a, ) = Cl({tpsla : 0 < vp};3). Hence {8 < Qpy1 : 3> Q7 & C(a, ) NQoyys C B} #0
(by Lemma 1.1), and therefore ¢, (o) = min{8 > Q" ; : C(a, 8) N Q41 C B} < Qoy1.



(b) Obviously C'(0,9Q,,,) = Q,,, and therefore 1, (0) = Q.

Yo (@) is closed under +, since () = C(a, ¥y () N Qpi1.

(c) Clao, Yo (@) NQyy1 C C(a, 96 () N Qpi1 C ¢Ypa and therefore ¢, (o) < 1y () which implies
C(ao, Vs (an)) C Cla, by (a)). From ap < a & ap € C(a,,(a)) we conclude 1), (ag) € C(a, 1)y ()).
By (a) we have 9, (ag) < Q41 and thus ¢, (ap) € C(a, Yo (@) N Qi1 C Py ().

(d) If ap < ay then the assumption ag € C(ap, ¥, (o)) together with (c) yields ¢, (ag) < ¥y (ar1).

Lemma 1.3

Cla,iho(a)) = Cla, 1)

Proof by induction on a:

Let us assume that C(&,v¢0(€)) = C(&,1), for all £ < a (IH). We have to prove ppa C C(a,1). Let a > 0
(otherwise () =1 C C(a,1)). As we will show below the IH implies that 8 := C(a,1) N Q4 is in fact an
ordinal. Obviously ; =1(0) € C(a, ) and C(a, 8) N C C(a, 1) NQ; = B and thus () < .

Claim: v € C(a,1) Ny = v C C(a,1).

Proof by side induction on the definition of C(«,1):

1.y=4o(f) with éE <a & &€ C(a,1):

By the above TH we have C(£,10(£)) = C(&,1). Hence v = 9(€) C C(&,1) C C(a, 1).

2. v =90 +v with v9,71 € C(a,1) N Qy:

Then by SIH 70,71 C C(a,1) which (together with 79 € C(a, 1)) yields v + v C C(a, 1).

Disgression

Of course the above definition of ¢, can be generalized in the same way as Aczel [Acz] generalized Feferman’s
definition, namely by incorporating a countable set G of cardinal valued ordinal functions into the definition of
C(a, ). For the simple case G = {\z.Q2,.} this is equivalent to setting, for any o, € On, ¥, (a) := min{s >
Q0 C(a, ) NQyq1 C B} where Ca, ) := Cl(¥[a; B) with ¢la: On x a = On, (p,§) — 1, (£).

A more substantial extension of the 8/¢-approach was developed by Schiitte (unpublished), Pohlers [Po87]
and, most important, Jager [Ja84]. In addition to the t,’s which are collapsing functions for successor
regulars, now also collapsing functions for limit regulars, i.e. weakly inaccessible cardinals, are introduced.
In order to be able to treat both kinds of collapsing functions uniformly Jager denoted the ¢-function for a
regular cardinal k, i.e. one with values below &, by 1. In this notation the former ¢, becomes g
Definition (Jager 1984):

Yi(a) :=min{f >k~ : C(a,B) Nk C B}

Cla, B) :== Cl(Azy.- I (y),¥la; B) with ¢Yla: R x a— On, (7,8) = ¥ (€)

I, := ordering function of cl({x € N : V¢ < p(I¢(k) = k)}),

where cl(A) := {sup(X) : X nonempty subset of A} (topological closure of A)

__ o0 if Kk =1,(0)
o= I,(0) if k=1I,(0+1) with p,o0 < K’

o41"

Later Rathjen developed further extensions up to the use of large large cardinals ([Ra90], [Ra94], [Ra95]). In
the first of these extensions Rathjen assumed the existence of a weakly Mahlo cardinal M and utilized the
fact that the regular cardinals are stationary in M.
Definition (Rathjen 1990)

_ min{feR:a € C(a,B) & C(a,B)Nc C B} if=M
V() = { min{f € On : k € C(a,B) & C(a, B)N C B} it <M
C(a,B) := ClAz.wM*® ¢la; B) with ([a)(m, &) == (&) for € RN (M+1) and € < a.



Let us see how the “Mahloness” of M is used for obtaining the crucial property Vo < epr1(¢¥m(a) < M).
According to Lemma 1.1 the set {8 < M : C(a,3) " M C (3} is closed unbounded in M. If & < epr4; then
a € C(a, B) for sufficiently large 8 < M. Hence also X := {8 < M :a € C(e,8) & C(a, )N M C 8} is club
in M (if @ < epra1). Since R is stationary in M, we obtain X NR # (), and thus ¥/(a) = min(X NR) < M.

The general strategy behind these extensions is that one tries to produce notations for more and more regular
cardinals , which in turn gives more and more collapsing functions . In Jéger’s definition the regulars are
provided by the hierarchy (I,),con. In defining this hierarchy one already assumes the existence of a weakly
Mabhlo cardinal M, but one does not exploit this assumption to the same extent as it is done in Rathjen’s
approach. Actually the limit ordinal ¢, (sup,, dn) (do := 0, dp41 := I5, (0)) of [J&484] is “much” smaller then
the limit ordinal ¥q, (epr41) of [Ra90].

Now we return to the simple system of ¢-functions 9, (0 < vp) defined above. In order to avoid some
technical complications we will even assume vy = w. But we want to stress that no essential new difficulties

would emerge when in all what follows the assumption “vy = w” would be replaced by “vo < WK,

From now on o, p, u, v range over numbers < w.

Below we will introduce a system of ordinal notations based on the ordinal functions 1,. The canonical way for
that is to consider the set T of all terms which are generated from the constant 0 by means of function symbols
o, Do, Dy, ... for the ordinal functions +, g, %1, .... Then one looks for a (primitive) recursive characterization
of the relation <,:= {(a,b) € TxT : o(a) < o(b)}, where o(a) € On is the canonical interpretation of a € T.
It turns out that the relation <, has a particularly simple characterization when it is restricted to the subset
OT C T of those terms a € T which are in “normalform” (i.e. o(b) € C(o(b), %, (0(b))) for each subterm D b
of a, and o(a,) < ... < o(ag) for each subterm ape ... ea, of a).

Definition 6(a) := ordertype of ({z € OT : 2 <, a},<,), OTy:={a € OT:a <, D;0}.
It can be proved that every a € T has a (unique) normalform a* € OT such that o(a*) = o(a) which yields
(&) {o(a):a €T} ={o(a):aec OT}.

Obviously {o(a) : a € T} = C(Qy, 1), and thus by Lemma 1.3 {o(a) : a € T & a <, D10} = ¢9(Q,). So,
{o(a) :a € T & a <, D10} is a segment of On, and the equation ({) implies o(a) = 5(a) for each a € OT,.
(Of course we will never have o(a) = 6(a) for all a € OT, since T is countable and thus 6(a) < @ < o(a) for
any a € OT \ OTy.) The proof of () itself is rather tedious (cf. [BS88] or [Se98]) and we will not discuss it
here. Having a closer look one will realize that actually () is not of great importance, since in all (existing)
proof theoretic applications of the 1,’s one can confine to terms from OT, and the only drawback when one
dispenses with ({) is that e.g. instead of saying “the proof theoretic ordinal of ID,, is ¢(q,+1)” one has to
say “the proof theoretic ordinal of ID,, is the ordertype of DoD,4+10 in (OTy, <,)”. Usually one avoids the
trouble with having to distinguish between o(a) and 6(a) (for a € OTy) by following Schiitte and incorporating

the normalform condition into the definition of C(«, ), i.e., by closing C(a, 8) only under 120 la (instead of

Vo la) where (1, ) (€) = {w”(f) if £ <aand £ € C(&Y () Then {o(a) : a € OT} = C(Qy,1) is

undefined otherwise
easy to prove and together with Lemma 1.3 it yields o(a) = 5(a) for all a € OTj.

Now we define the set T of terms, a linear ordering < on T, for any @ € T and ¢ < w a set G,a of subterms
of a, and the set OT of ordinal terms (i.e. terms in normalform) in such a way that, for all a,c € OT,

(a) c<a & ofc)<o(a) [& c<,a]and (b) Gye <a & ofc) € C(o(a), ,0(a)).

(Here G,a < ¢ abbreviates Vo € G,a(z < ¢).)



Inductive definition of T
1.0€T.
2. If a € T and 0 < w, then D,a € T; we call D,a a principal term.
3. If ag, ..., a, are principal terms and n > 1, then (age...0a,) € T.
0 ifn=0
Notation For principal terms ag, -..,a,—1 and n > 0 we set age...0a,—1 := { ap ifn=1
(ago...0an,_1) ifn>1

So every a € T can be uniquely written as a = Dy ape...9D,, ,an_1 with n > 0 and ag, ...,an—1 € T.
Further we define: (age...0a,,_1) @ (bpo...0b,—1) := ap6...0a,_10bg®...0by,_1,
and a - n := ae...eqa for principal terms a;, b;, a.

——

n

Definition of 0 : T — On

o(Dyyape ...0D, _an_1) :=s0(a0) + ...+ Vs, ,0(Gn_1)

Definition of a < b for a,b € T

1. 0<b :<= b#0

2. Dpa®a<Db®b:= o<por(o=p&a<b)or(oc=p&a=b&a=<b)

Remark. < is a linear ordering on T, but it’s not a wellordering (e.g. ... < DgDoD10 < DgD10 < D10).
Definition of G,a
. _ JH{alUGsa fo<u
L. Gy(age...0an 1) := U, Gsai, 2. G,D,a:= {0 <o
Inductive definition of OT
1. 0€OT.
2. a€c 0T & Gya<a = Dyae OT.
3. ag,...,a, € OT (n > 1) principal terms with a,=<...<ay = (ape...sa,) € OT.

The elements of OT are called ordinal terms. We identify n € IN with the ordinal term Dg0e...0Dg0.
————

n

Abbreviation. Qg :=w := Dgl, Q, := D,0 for ¢ > 0.

Theorem 1.4 For a,c € OT we have

(a) c<a & ofc)<o(a), [ie,c<a & c<,al

(b) Goc < a < o(c) € C(o(a),,0(a))

Proof by induction on the length of ¢ simultaneous for (a),(b):

We only prove “=”. The reverse implication of (a) follows from “=" since < is total. The reverse direction
of (b) is more difficult to obtain, but since it is not needed for the proof of (a) nor for any proof in this paper,
we omit it here.

(a) Let ¢ = Dycp 9¢19...9¢m, a = D,yag 0ar0...0a, with principal terms ci, ..., ¢, @1, ..., Gn.-

1. 0 < p: From ¢, <X ... < ¢1 X Dyeg we get by TH o(c,) < ... < o(ey) < o(Dyep) = ¥0(cn) < Qpiq and
thus o(c) < Qp41 < Q, <o0o(D,ap) < o(a).

2. 0 = pand ¢y < ap: By IH o(cy) < o(ag). Since D,cqp € OT, we have G,c9 < ¢o and thus by TH
o(cg) € C(o(co),%s0(co)). Hence ¢,0(co) < ¥s0(ap) by Theorem 1.2(c). Now o(e) < o(a) follows as in 1.
(using that ¥,0(a) is additively closed).

.o=p&cy=ap & cre..0c, < ae...0a,: Immediate by TH.

(b) 1. ¢ = ¢po...0cp_1 with k # 1: Then G,¢; < a and thus (by IH) o(c;) € C := C(o(a), Ys0(a)) for i < k.
This yields o(¢) = o(co) + ...+ o(ck—1) € C.

2. ¢ = D,co with 4 < 0: Then o(c) € Q41 CQ, CC.

3. ¢ = D,co with 0 < p: Then {co} UGrco = Gyco < a and therefore by IH o(co) < o(a) & o(co) € C' which
yields o(c) = ¢,0(co) € C.

Corollary (OT, <) is a well ordering.



Fundamental sequences

In order to get a better insight into the structure (T, <) and a better understanding of the collapsing functions
1y we now present an assignment of (fundamental) sequences to the elements of T. For each term a € T we
define its (cofinality) type tp(a) € {0,1,w} U {Q,11 : u < w} and a family (a[z]),¢|ep(a) of terms, such that
the following holds, where |0 := 0, |1| := {0}, |w| := N, |Qu41| :={Dyb: b€ T}:

Theorem 1.5

(a) x € [tp(a)] = afa] < a

(b) z, 2" € |tp(a)| & x < ' = a[z] < a[z']

(c)tp(a) =1 = a=al0]®1

(d) a,c e OT & c<a & tpla) #1 = Jz € OT N |tp(a)|(c < az])

(e) a,z € OT & z € |tp(a)] = a[z] € OT

Note that, according to Theorem 1.5, only for @ € OT and only relative to (OT, <) is the family (a[z])zetp(a)|
a fundamental sequence of a in the proper sense. But in §3 we will give a natural interpretation of the terms
a € T as wellfounded trees (so-called tree ordinals) t(a) which harmonizes with the assignment (a, z) — a[z].
For example we will have t(a) = (t(ali])),_ if tp(a) = w.

I think, one can well say that all clauses of the following definition are canonical (modulo some minor
variations, such as setting (Dya)[i] := (Dsa[0])-i instead of (D,a[0])-(i+1) in clause 4.), and therefore it
seems reasonable to call (a[z])zetp(a)| the canonical fundamental sequence of a € OT. Only clause 6. requires
some explanation which will be given below in the proof of Theorem 1.5.

Definition of tp(a) and a[z] for a € T, z € |tp(a)|

1. tp(0) := 0.

2. tp(Do0) := 1, (Dy0)[0] := 0.

3. tp(Dp410) := Qyup1, (Dpa0)[z] ==z

4. tp(a) =1 = tp(Dya) :=w, (Dya)li] := (Dyal0]) - (i+1).

5. tp(a) € {w} U{Qut1:p <o} = tp(Dsa) :=tpla), (Dya)[z] := Dsalz].

6. tp(a) = Qup1 & >0 = tp(Dya) :=w, (Dya)[i] :== Dyalx;] with zo := Q, zip1 := Dyalz;].
7. tp(ape...0a,) ;= tp(a,), (age...0a,)[z] := (age...0an_1) ® a,|z] (n>1).

For technical reasons we also set a[n] := a[0], if tp(a) = 1.

Proof of Theorem 1.5:
(a),(b),(c) are easily verified by induction on £(a) (length of the string a).
For a proof of (e) see [BS88, §5] or [Bu86, Lemma 3.3].
(d) is proved by induction on £(a). All cases except 6. are straightforward. So let us assume D,c® ¢ < D, a.
Then ¢ < a, and by IH ¢ < a[z] for some z € OTN|tp(a)|. Hence D,yc® ¢ < Dyaz]. If tp(a) € {w}U{Q,41 :
u < o}, it can be proved that D,a[z] € OT. Therefore in that case D,az] is the canonical choice for
(Do),
Now let us assume that tp(a) = Q41 with p > 0.
Then “D,af[z] € OT” does no longer hold for arbitrary z € OT N [tp(a)|.
But by induction on ¢(a) one can prove
(1) tp(a) = Quy1 & c€ OT & a[,] Rc<a = Jz =D, (b+1) € OT(be Guc& c < az])
from which we conclude
(2) tp(a) = Q41 & c€ OT & a[Q,] R c& {c} UG c<a =
= b€ OT(L(b) < l(c) & {b} UG,b < a & ¢ < a[D,(b+1)])
Obviously (2) suggests to define zg := Q,, Zn+1 := Dyalx,] in order to obtain by induction on ¢(c)
(3) tp(a) = Q41 & c€ OT & {c} UG, c < a = In(c < a[zy)]).
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(Induction step: ¢ < a[D,(b+1)] & b < alz,] = ¢ < a[D,(b+1)] R a[D,a[z,]] = alznii1] )

Now In(D,c® ¢ < (Dya)[n]) is obtained as follows:

OT 3 Dye®& < Dya =2 GoeCGoe<c<a D In(Dye®E < Dyalzn] = (Dya)[n]).

Proof of (1):

1. a=Qu41: Then ¢ = Dyco & ¢ < Dy, (cobl). Let b:= cp.

2. a =ap ® a1 with tp(a1) = Quya1:

Then ¢ = ag ® ¢1 with a1[Q,] < ¢1 < a1, and the claim follows immediately from the IH.

3. a = D,ap with u < p: Then tp(ag) = Qu+1 and a[z] = D,ap[z]. Further ¢ = D,co ® & with b[Q,] < ¢o < b.
By IH we get ¢g < aplz] for some z = D,(b®1) € OT with b € G,co. Since p < p, Gpeo C Gue. From
co < aplz] we get ¢ < D,ag[z] = alz].

Lemma 1.6

0 if tp(a) =0
a € 0Ty = tp(a) € {0,1,w} and 5(a) = ¢ o(a[0]) + 1 if tp(a) =1
P, cn(O(afn])+1)  if tp(a) = w

Proof of the last claim:

Let a € OTy with tp(a) = w. Then a[n] < a & a[n] € OTy (by Theorem 1.5a,e) and 6(a[n]) < o(a) (by
Theorem 1.4a). Now let v < ©(a). Then v = 8(c) for some ¢ € OTy with ¢ < a. Theorem 1.5d yields ¢ < a[n]
for some n. Hence v < 5(a[n]).

§2 Collapsing of infinitary derivations

In this section we take a fresh start and introduce systems IDS° of infinitary derivations together with cut-
elimination £ and collapsing operations D, by which every ID;°-derivation of an arithmetical formula A can
be transformed into a cut-free derivation of A in IDg® (i.e. w-arithmetic). ID;° is so to speak an infinitary
version of the formal theory ID, of v-times iterated inductive definitions; every ID,-derivation h can be
translated into an IDS°-derivation h* of the same formula (or sequent). We will establish an upper bound
n, for the proof-theoretic ordinal |ID,| in terms of the operations h — h*°, £, D,, namely we will prove
[ID, | < ny = sup{||Do(E™(h>))|| : m € IN and h an ID,-derivation with endsequent of level 0 }, where ||d||
denotes the length (or depth) of an infinitary derivation d.

As we will see below, the operations £ and D, are closely related to the assignment of fundamental sequences
(a[z])ze|tp(a)) Given in §1. In §3 we will exploit this observation and prove || Do(E™(h™))|| < oy +2(0),
which yields |ID,| < 1, < o(eq,+1)-

Syntax

Let £ be an arbitrary 1st order language (i.e. set of function and predicate symbols). Atomic L-formulas
are Rt;...t, where R is an m-ary predicate symbol (of £), and ti,...,t, are L-terms. Expressions of the
shape A or —A, where A is an atomic L-formula, are called literals. L-formulas are built up from literals by
means of A,V,Vz,3z. FV(A) denotes the set of free variables of A. A formula or term A is called closed if
FV(A) = . The negation —A of a non-atomic formula A is defined via de Morgan’s laws. The rank rk(A)
of a formula A is defined by: rk(A) := 0 if A4 is a literal, rk(A A B) := rk(A V B) := max{rk(4),rk(B)} + 1,
rk(VzA) := rk(3zA) := rk(A) + 1. By A(z/t) we denote the result of substituting ¢ for (every free occurrence
of) z in A (renaming bound variables if necessary). Expressions Az.F' are called predicates and denoted by
F. For F = Az.F we set F[t] := F(z/t). If P is a unary predicate symbol then B(P/F) denotes the result
of substituting F for P in B, i.e. the formula resulting from B be replacing every atom Pt by F[t].
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Let X be unary predicate symbol not in £. A positive operator form in L is an £ U {X }-formula 2l in which
X occurs only positively (i.e. 2 has no subformula —=Xt) and which has at most one free variable z.

We use the following abbreviations: A(F,t) := A(X/F,z/t), UF) C F :=Vz(AU(F,z) — Flz]).

For each positive operator form 2l we introduce a (new) unary predicate symbol Py.

Finite sets of formulas are called sequents. They are denoted by I',T';A. We mostly write Ay, ..., A, for
{Ay,.., An}, and A, T, A for {A}UT U A, etc.

Definition of the languages £, (0 < o < w)

Let Lo be the language consisting of the constant 0 (zero), the unary function symbol S (successor), and
predicate symbols R for primitive recursive relations.

Lot1 := Lo U {Py : A positive operator form in L, }

Lew=Uyew Lo

The only closed Ly-terms are the numerals 0,50,S550, ... which we identify with the corresponding natural
numbers (elements of IN). Arbitrary Lo-terms will be denoted by ¢,%1, ..., and (number) variables by z,y.
TRUEg := set of all closed Lo-literals which are true in the standard model 1.

Definition of lev(A)

lev(A) :=0if A is an Lo[X]-literal

lev(Pyt) := lev(21), lev(=Pyt) :=lev(A) + 1
lev(AA B) :=lev(AV B) := max{lev(A),lev(B)}
lev(VzA) :=lev(dzA) :=lev(A4)

lev(Py) :=1lev(A) , lev(T) := max{lev(4): A eI}
Remark

lev(Pg) < o for each predicate symbol Py in L,
lev(A) < o for each L,-formula A.

From now on A, B, C denote L. ,-formulas.

Proof systems

We will work in a Tait-style calculus with a somewhat unusual notion of derivation which is especially useful

for the purposes of this paper.

A proof system & is given by

— a set of formal expressions called inference symbols (syntactic variable 7)

— for each inference symbol 7 a set |Z| (the arity of 7), a sequent A(Z) and a family of sequents (A,(Z)),¢|z/-
The elements of A(Z) [ U,¢7j Au(Z) ] are called the principal formulas [ minor formulas ] of Z.

— for each inference symbol Z a set Eig(Z) which is either empty or a singleton {z} with z a variable not in
FV(A(Z)); in the latter case x is called the eigenvariable of T.

NOTATION

By writing

AL (D)
A

we declare Z as an inference symbol with |Z| = I, A(Z) = A, A,(Z) = A,, and Eig(Z) = 0 [ Eig(Z) = {u},

resp.].

(7) [tul]

Ay Ay oo A
A

L instead of ==/ AZ' (L€l .

If 1 ={0,..,n—1} we write



Inductive definition of G-derivations
If 7 is an inference symbol of &, and (d,),¢|z| is a family of &-derivations such that Eig(Z) NFV([') = 0
where I' := A(Z) UU,¢7)(T'(d,) \ Al(Z)), then d:=Z(d,),ez) is an &-derivation with T'(d) :=T' (endsequent
of d) and last(d) := T (last inference of d).

coudy .. T
Instead of Z(d,),e|z) we also write w

Abbreviation: 6 >dFT :<= dis an G-derivation with I'(d) CT.

do

or Tdy...d,_y or % if |Z) = {0, ...,n—1}.

Remark

Our notion of derivations differs from the usual one in so far as our derivations have inferences (inference
symbols) and not sequents assigned to their nodes. The sequent “belonging” to a node 7 of a derivation d is
not explicitly displayed, but can be computed by tree recursion from d (similarly for the free assumptions in
a natural deduction style derivation).

LDLA(D) ..
The Tait-style inference rules in their traditional form A (T) are reobtained here as follows:

I, A(Z)
If 7 € G and Eig(Z) N FV(T) = 0, then

from ...63d, FT,A(Z)... (Ve €|Z]) we conclude & > Z(d,),¢z) =T, A(T) .

The proof system ID,
The language of ID, is £,.

The inference symbols of 1D, are

(Axa) N it A € Ax(v)

All we need to know about Ax(v) is that it is a set of £,-sequents such that

(i) A € Ax(v) = A(Z/1) € Ax(v)

(i) A € Ax(v) & FV(A) =0 = ANTRUEy # 0 or {=P, P} C A for some P = Pyn.

(Nagra) i Via) T (k€ (01D
(W) S U
-C ‘
(Cute) ——5— 0d) 0]~ (Fla] = Z15a]), 7T
Ql(’P 7t) st
(Cpolt) Pijl[t (Ind? ) _I(Ql(j:)gj:)’_‘/’)mt,j_‘[t]



The infinitary proof systems ID)° (0 < w)
The language of ID}° consists of all closed £,-formulas A.
We use P [P,, resp.] as syntactic variable for formulas of the form Pyn [with lev(2) = y, resp.].

The inference symbols of IDS° are

(Axa) N if A ={A} with A € TRUE; or A = {=P, P} with lev(P) <o
Ao A k A
(Aagna,) TANAL (Viagva,) AV A, (k€ {0,1})
L A(z/i) ... (i€IN) k A(z/k)
(/\Va:A) VA (VEIxA) Jr A (k € ]N)
C -C
(Cute) —
A(Py, t ~ P AP (ge P
() 228D ey () < o) (ip) o WEIP) o) < o)
ot 0
|P| := set of all cutfree ID,°-derivations, where y := lev(P)

Ay =T(@\{P}

An ID;-derivation d is called cutfree if c-rk(d) = 0 where c-rk(d) is the least number greater than the ranks
of all cut-formulas occurring in d, i.e.,

c-rk(Z(d, ) e 1) = sup({c-rk(Z)} U {c-rk(d,) : 1 € I}) with c-rk(Z) := {(r)k(C) +1 i)ftierzwicszto

Abbreviation
ID®5dF, T & IDX5d-T & crk(d) <m
dbn T e IDY 5 dE,, T for some 0 < w.

The set, IDS° of all IDS°-derivations is introduced by an inductive definition (as given above for arbitrary proof
systems &) under the assumption that the sets ID;” for u < ¢ are already defined.
We set IDZ, := J, ., ID,;".
The (Qp)-rule can be motivated as follows (with y := lev(P) < o):
Imitating the constructive interpretation of implication we start by saying;:
“An ID° -derivation of P — B is an operation q — dg transforming every
cutfree ID°-derivation of P into an ID;°-derivation of B ”.
This may be replaced by the stricter version:
“An IDy°-derivation of P — B is an operation q v« d, transforming every
cutfree 1D -derivation of A — P into an ID.°-derivation of A — B (for any formula A)”.
In terms of the Tait-calculus used here this amounts to the following rule:
(Q2p) If for each A and each cutfree 1D -derivation q of A, P,
dy is an ID°-derivation of A, T, then (dy).c|p| is an ID;°-derivation of -P,T" 7.

Now (€p) is just a combination of (Qp) and (Cutp).

o0
v

The following definitions and Theorem 2.1 are needed for the embedding of ID,, into ID
—(A(F)CF), ~Pan, Fn] by means of (Qp, ).

i.e., for deriving
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Definitions (Substitution)
For each closed L,-formula A let d—4 4 be the canonical cutfree ID°-derivation of -4, A

(e.g. d-pp := AX{_,p7p}, d-a,4 = AX{A} if A € TRUE,, d-veA,ved = /\va (Vivad_‘A(x/i)’A(x/i))ielN)'

—A(F,n),A(F,n)  =F[n], Fln]
et 7 = Vi cm AaEmamrim d-2F.m) 2(Fnd-Fn), 7] & AF, n)A-Fn], -A(F,n), Fn]
—(A(F) C F),~A(F,n), Fln]

Given P = Pg, a predicate F, and a sequent Il we define an operation S%}- : IDﬁfV(P) — IDZ,, which
transforms any derivation d € IDi,(p) of T,II into a derivation d* := Sp x(d) of ~(U(F)CF),T,II(P/F).
Roughly speaking d* results from d by substituting certain occurrences of P by F. In doing so, some inferences

A(P,n) A(F,n)
Clpp, —_—

are turned into which is not an inference of IDZ,,

d; eﬁ,f
WA(F,n) —~(AF)CF),-A(F,n), Fn]

C
Therefore those inferences (Clp,,) are replaced by A C_ 7). 7[1]

(C'ut)

The precise definition of S} x(d) runs as follows
Cuty(r, n)SH fo) (dO)ng__ if Z = Clp,, with Pn € II
Sp 7 (Z(dy)er) = I (SHU}_A () (d)),e; if =\, or V¥ with A e TI

I(SPJ-( L))LEI otherwise

* . ks . \/k
where (A )" := /\A(P/]—‘) » (V)™= VA(P/]-‘)'
The following theorem is easily verified. Note that the axioms Ax;_p, p,} do not belong to Ing’v(p) !

Theorem 2.1
IDﬁfV(p) 5dbo I & tk(U(F,z)) <m = Sg7f(d) Fm —(A(F)CF), T, I(P/F).

Embedding of ID, into ID}°

An ID,-derivation h is called closed if every number variable occurring free in h is the eigenvariable of an
inference below that occurrence. Especially FV(T'(h)) = 0 for closed h.

For each closed ID,-derivation h we define an ID°-derivation h> such that h*> F,, I'(h) for some m € IN.
0. (Axa)® := Axas with a suitable A’ C A

L (AVpal0)> := Aypa(ho(y/i)) o » Where ho(y/i) is defined as expected

2. (Ind%)> :=d, with do:= d- o), Flo) dit1 == V;m(}'[z]/\—'}'[Sz])/\]—'[i]/\—u}'[Si]di d- 751, F(51]

Payo . AXPnpny - Sy @) (g € [Pr])
3. (Indz")> =
Qpn
4. Otherwise: (Zhg...hp—1)® :=Th5° ... h3>

Theorem 2.2 (Embedding)
ID,>hFT & hclosed = ID° 5 h%® b, T for some m € IN.

Proof: straightforward.
Especially (Ind?”)Oo Fm —(A(F)CF),=Pn, F[n] (where P = Py) is obtained from:

q € [Pn| = ID5p) dato Af”,Pn Theorgm 2.1 Sjp?}?-%}(Q) Fm “(Q[(}—)Q}—),Afn,}—[n]-

11



Abbreviations
/\-For := set of all formulas of the shape A A B or VzA.
A" -For := TRUE, U A-For U set of all formulas Pgn.

C[k‘] o Ch if C = CoXCl and k € {0,1}
" | A(z/k) ifC=JzAand k€N

Theorem 2.3

By tree recursion one can define operations .7(’/3, Re, €, Dy on IDZ, with the following properties:
(\-Inversion) db,, T,C & C € \-For = Jk(d) b, Clk]

(Reduction) ebm 0,C&db, T,-C & C e ANT-For & rk(C) <m = Re(e,d) b T
(Elimination) db,1 T = &£(d)F, T

(Collapsing) dbFoT &lev(T) <o = ID° 3 Dy(d) Fo T

Proof:
For d =Z(d,).er € IDZ, and e € IDZ, we define
jg(dk) ifZ = Ao
k(d) = C e \-F
Jod) I(j (d,)),; otherwise (7€ A-For)
CuterJE(e)Re (e, do) if T=\"
(e,d) e if 7= Axi-c,0n (C e N*-For)
Z(Re(e,d,) otherwise (i.e., if =C ¢ A(Z))
E(dy)) if T = Cute with C € AT-For
E(d) = ﬁc(é‘(dl),é‘(do)) if 7 = Cute with =C € A*-For.
Z(£(d,)) e otherwise

@ {Dg(dpu(do)) if 7= Qp with p:=lev(P) > o

Z(D,(d,)) ,er Otherwise

One easily verifies that the so defined operations have the asserted properties.

Let us look at D,(d) for d = ﬁp(dq)qe{o}ulp‘ Fo T with lev(T) < o < p :=lev(P).

Then do o T', P and d, o T, Al for all ¢ € |P] (f).

By IH ID;° 5 qo := Dy (do) o T, P. Hence qo € |P| and A} CT.

Now (f) yields dy, Fo I', and by IH we get ID5” 5 Dy (dy,) Fo T

Remark: The definition of D,(d) almost automatically arises if one pursues the goal to eliminate from d all

Qp-inferences with lev(P) > o.

Definition

For 2 with lev(A) = 0 let 5 := {n : A(®3%,n)}, where &3 := U, _, @g[ (e € On) .
In|a :=min{a:n € &y} (if n € Uycon PH)

[ID, | := sup{|n|y : lev(A) = 0 & ID, - Pyn}  (proof-theoretic ordinal of ID,,)

By (M, ®<%) we denote the expansion of the standard model 9N where
each predicate constant Py of level 0 is interpreted by @ja.

IZ(d,).er| := sup,cr(||d.]|+1)  (length or depth of d)

12



Theorem 2.4 (Boundedness)
IDP3dreT & lev(T) =0 = (M, d<ldl) =T
Proof by induction on ||d||.

Theorem 2.5

If h is a closed ID,-derivation of I with lev(I") = 0 then
M, <) =T with a = ||Do(E™(h>°))|| for some m € IN.
Proof:

D, > h T P24 poo 5 peo b T for some m

Cutelim  ypyo0 o em(pooy | T

Collapging ypyco 5 py(£m(h)) o T

Boundedness ( §<a) = T with a := || Do (™ (b))

Definition
Ny = sup{||Do(E™(h*))|| : m € IN and h a closed ID,-derivation with endsequent of level 0 }

Then Theorem 2.5 shows that [ID,| < n,. In what follows we will prove 1, < sup o9 (0) = ¥o(eq, +1)-
meIN

Remark

Note the similarity between

“Dy(d) = Dy (dp, (ay)) if d=Qp(d,)
and

“(Dya)[1] = Dya[D,a[,]] if a € T and tp(a) = Qu41 with >0 7.

Le{0}U|P| with g =lev(P) >0 ”

This observation will be pursued in §3.

83 Majorization of infinitary derivations by tree ordinals

We are now going to relate infinitary derivations d € ID;° to ordinals (ordinal notations) a € OT. Here we
heavily utilize the assignment of fundamental sequences from §1, which so to speak turns each a € OT into
a wellfounded tree, a so-called tree ordinal o(a), namely o(a) := (a(a[m]))xeltp(a)l. On the other side, from

every derivation d € IDJ° one obtains a tree ordinal o(d) essentially by deleting all inference symbols (and
possibly other data) assigned to the nodes of d (namely o(Z(d,),cr) := (o(db))bez)' Now the first idea which
comes into mind is that o(d) should equal o(a) for suitable a € OT (at least if d = h> with h € ID,). But
this doesn’t work; instead one can establish a weaker relation between o(d) and o(a), namely that in a certain
sense o(d) is “embeddable” into o(a). Below we will define a relation d < a (d is majorized by a) between
infinitary derivations d and tree ordinals a, which corresponds to this informal notion of embeddability. The
main properties of < will be: (i) d<a & d € IDy" = ||d|| < |lall, (ii) d<a & d € ID;” = £(d) <«D,(a),
(iii) daa = D,(d) <D, (a). Here D, is a collapsing function on tree ordinals defined in close analogy to D,;
at the same time ®, is closely related to v, it is so to speak the “tree version” of 1,, which becomes clear by
comparing the definition of D, (see below) with the corresponding clauses in the definition of the fundamental
sequences in §1. Mainly by means of (i)-(iii) we will establish that || Do(E™ (h*°))|| < ||DeD™2(0)|| and thus
Ny < sup [|DoD}(0)]|. Finally we will show that ||Do(D}(0))|| = vot](0) which then yields |ID,| < 5, <
melN

sup Yo, (0) = Yo (eq, +1)-
meIN
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Inductive definition of classes T, of tree ordinals

1.0:=()e%,

2.0€%, = a+l:=(a) €%,

3. Vn € N(ap, € %,) = (an)neN € %o

4. p<o&VreTula €%y) = (ap)et, € T

Tew:=U %5 . The elements of T, are called tree ordinals (denoted by a, b, ¢).

o<w T
Note
Every a € T, is of the form (a,),cr with I € {0,{0},IN}U{%,: p < o}.
We define ||(a,).ezll := sup,e([la.]] + 1).

Abbreviations
0:=0,n+l:=n+1, 1:=1, Qp:= (@)ne~, Lut1 := ()ex

tp
Definition of a+ b and a-n
a+0:=a,a+ (b)eer := (a4 by)eer if I #0,
a-0:=0,a-(n+l):=(a-n)+a
Proposition. a)a,be¥, =>a+beT,, bya+(b+c¢)=(a+b)+c

Definition of ©, : ¥, — %,

The definition of D, (a) proceeds by transf. rec. on a simultaneously for all ¢ < w.
Dp(0):=1,9,(0):=Q, ifc#0

D, (a+1) := (D, (a) - (n+1))

nelN
(90(%));61 if I € (IN}JU{%, : pu<o}
Do ((ap)rer) = (Z)(,(azfn))ne]N ifI=%, withp>o0

with yo 1= Q, tny1 = Qu(arn)

Remark

1. For a = (a:)es € T, \ {0} we have D, (a) = { (Do (a0) - (n+1)), oy if I =10}

(Q”(ar));el otherwise ’
This means that on ¥, the function ©, behaves like the ordinal function
a = w T (if 0 > 0) or a > W (if 0 = 0).
2. The canonical analogue to the collapsing function D, from §2 would be
D09, (ag) ifI =%, withp>0o
Do ((ap)rer) = { (D (au))0 otherwise
oA\ el
But we have chosen the above version of ®,,, since this precisely corresponds to 1, and at the same time
is not to far removed from D,.

The following definition and lemma are auxiliary.

Definition of a©, «° and <«

4 = ] 00 ifa=ap+1ora=(a;)ien
T o, ifa= (a;);efu

b<a:<= (a£0&b=10a°)or (a=(a;)iew & FEN(b = a;))
< (K, resp.) is the transitive (transitive and reflexive, resp.) closure of <.

Lemma 3.1
(@) a#0 = (c+a)°=c+a° & D,(a)° =D,(a°)
(b)1Laifa#0
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b<gKa = c+b<Kc+a
db<ga = D,6<KD,a
(e) 1 K Ry K Qyy1

Definition of d < a (Majorization)

d < a if one of the following clauses holds:

(«1) d =Z(d;)ie|z| with T # Qp and a = b+1 with d; < b for all i € |Z|

(42) d = Qp, (dy)geqoruip, & 0 = (ap)eex, & Vg € {0}U|P,|Vr € Tp(gar = dy<ay)
(«3) dab & b<Ka

(By convention 0 < a for any a.)

Lemma 3.2 d<a& ae %y = ||d|| < ||q]l.

Theorem 3.3

a)d<a = Jk(d)<a

b)d<aa = SP 5(d) 49, + a for each o
c)edb& daa = Re(e,d)<b+a
d)d<ae®, = &(d)1D,(a)

(e) d<a = D,(d) 1D, (a)

Proof by induction on a:

(
(
(
(

We only carry out the essential cases of (c),(d),(e).
(c) 1. d = Ax{-c,cy: Rle,d) =e<b<b+a.
2.d= \/’iodo & a=ag+1 & dy < ag:

Rie,do) 5 b+a0 & J() 5 bt +ap — R(e,d) = Cut T(e)R(e,do) < (b+ao) +1 = b +a.

3.d= ﬁpﬂ (dg)ger & a = (ap)ex, & Ve IVr€ Ty(qar = d;aay):
TH = Vg € IVr € Ty(g<ar = Rle,dy) ab+a;) = Rle,d) = p, (Rle, dy)) ;< (b+ar)er, = b +a.

(d) 1. d = Cutcdpdy, with C € /\+—FOI', and a = aqo+1 & do,dy; < ag: IV = E(dl) <1®,,(a0) g g(d) =

Re(E(do), E(dr)) 4Dy (ag) + Dy(ao) = Dy(ag) -2 = E(d) < (Dy(ag) - (n+1))n€]N =9,(a).

2. d=Qp,(dy)eioroipy & 0 = (ap)rex, & Vg € {0}U|P,|Vr € Tu(qar = dy<ay):
Since a € T,,, we have y < v and D, (a) = (@V(a;))xe,f .

IH = Vq € {0}U|P,|Vr € Ty(gar = E(dy) 9Dy (ay)) £ E(d) = QPM (E(dq))qe{o}um‘\ q (Qu(ax))xer;u-

(e) 1. d = Z(d;)ier with T # Qp and a = b+1 with d; < b for all i € I: TH = Vi(D,(d;) D, (b)) =
= D,(d) =Z(D,(d;i))icr 49,(0) + 1 K D,(b) + Q, LD, (b) + D, (b) KD, (b +1).

2.d=0p, (dg)ger & a=(ar)ex, & VgeIVr € Ty (qar = d;aay):

21. p<o: IH= Vge IVr € ¥,(q¢<ar = Dy(dy) <Dy(a;)) =

= Dcr(d) = qu (Do(dq))qEI d (ch(a.r)).re‘fu = ch(a)-

2.2. p > 0: Then Dy (d) = Dy(dp, (4,)) and Dy (a) = (Dy (ag,))new With vo = @y, tnr1 = Dylay, ).

Odaxp = dp<ay, %q = Du(dy) <D y(ay) =11 = dy<ay, 1L
Dy (d) = Dy (dy) 4Dy (ay,) K (ga(ari))iem =D, (a).

Theorem 3.4 (Embedding)

For each closed ID,-derivation h we have h* <« €2,-2 + n(h),
where n(Zhg...hm—_1) := max{0,n(hg), ..., n(hm_1)} +1
Proof:
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By definition (Indz’n)oo = AX{=Pn.Pn} %{Dpﬁ}(q) - (g € [Pnl) .

Qpn
By Theorem 3.3b we have Vg € |P,|Vr € T, (g1 = S})?}L}(q) <€, + 1) which together
with Vi € T, (Ax(apn pny 2 +1) yields (Ind7")® 9, + ey ()11 K Q0 + Q@ = Q, 2.
The other cases are easy.

Theorem 3.5
Let v > 0. If h is a closed ID,-derivation of I' with lev(I') = 0 then
(M, <) =T with a = ||De(D7*(0)|| for some m € IN.

Proof:

Theorem 2.5 = (M, ®<*) =T with a = ||De(E™(h>))|| for some m < w.
3 L.3.1c, Def 1.3.1b,d 3.

Jo0 Th<13 4 Q,2+n <<c e Q,3 <2 @,,(1) < @,,@,,(0) Thgde

Do (£ (h)) a DD 2(0) =2 [|Do(£7 (h))]] < DD +2(0)])

Corollary
IDy | < sup,pen [[Do(D7(0)]]

Now we are going to prove that [|Do(D7(0)|| equals ¢p1(0). By comparing the definition of D, with the
assignment of fundamental sequences in §1 and taking Theorem 1.5 and ({) into consideration this should be
more or less clear. In order to obtain a rigorous proof we introduce the canonical interpretation t : T — T,
and show that this respects the fundamental sequences (a[z])ze|p(a)-

Definition of t: T — T,
t(Dyya0e...0Dy, an_1) = Dpot(ar) + ... + Dy, t{(an_1)

Theorem 3.6 For each a € T we have

(i) tp(a) =1 = t(a) = t(a[0]) + 1,

(ii) tp(a) =w = t(a) = (t(a[n]))nem,

(i) tp(a) = Qusr = Ha) = (a)eex, with Va € | |(talz]) = aa)

Proof:

Let FS(a) abbreviate the claim (1)&(ii)&(iii). Then in a straightforward way one proves
(1) FS(a) & FS(b) = FS(b®a), (2) FS(a) = FS(D,a) ,

from which one obtains (Va € T)FS(a) by induction on the build up of a.

Theorem 3.7 a € OTy = 0d(a) = ||t(a)]|

Proof by induction on t(a):

By L.1.6 tp(a) € {0,1,w}. If tp(a) = 0 then a = 0 and t(a) = 0. If tp(a) = w then t(a) = (t(a[n]))new and

H _ L.1.6 _
therefore [[t(@)]] = supcps (It(aln])[1+1) 2 sup,cne(3(afn]) + 1) £ 5(a)
The case “tp(a) = 17 is treated in the same way.

[=2]

Corollary
(a) [1P0D7(0)]| = voty (0)
(b) ID,| < sup oy (0) = Yo(eq, +1)

meIN
Proof: We have |ID,| < sup,,en [D0(@F(0)] and 0502 (0)] % l(DoDp0)| ¥ o(DyDy0) '€
o(DoD70) = 1oty (0). This yields (b), and (a) with < in place of =. To get = in (a) we have to use
(¢) which implies 5(a) = o(a) for all a € OT (cf. §1, pg.4).
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¢4 Two Applications

Let T := {a € T : a principal term } and OT:=0TNT.
As one easily sees, the set T can be inductively generated by

g, ..y @p_1 €T (n>0)& o <w = D,(age...0a,_1) € T.

Hence T is nothing other than the set of all finite, ordered trees with labels ¢ < w, and each term a =
ao®...0a,_1 € T can be considered as a tree with immediate subtrees ag, ...,a,_1 € T and an unlabeled root.
The assignment of (fundamental) sequences (a[r]),¢|tp(a)| can then be seen as the definition of a reduction
procedure (or rewriting relation) a <, a[z] on T. In [Bu87] this reduction procedure (restricted to Ty :=
{Dyage...oDya, 1 : ag,....,a,_1 € T}) had been cooked up as a so-called hydra game, where in the i*” round
of the game (or battle) the hydra a transforms itself into a new hydra a[n;]. Using Theorem 3.6 and Theorem
3.5 one easily concludes that the hydra game terminates (i.e., Va € ToV(n;)iew3k( a[no][ni] ... [ne] = 0) ),
and that this fact is not provable in ID,:

Let Wy be inductively defined by the rule: a € Tp & [a # 0 = Vn(a[n] € Wy)] = a € Wh.

Then “a € Wy” says that each <»-reduction sequence starting with a terminates. Hence “Va € To(a € Wp)”
expresses termination of the hydra game. Now using Theorem 3.6 by induction on t(a) we get

Va € To(a € Wo & |alw, = [[t(a)]]).

The unprovability result is obtained as follows

ID, F V2(DoD20 € Wy) =2° ImVn(|DoD0|w, < ||[DeD™(0)]|) =

= dAm(|DoD™0|w, < [[t(DoD™0)|| = |DoD™0|w, ). Contradiction.

Another interesting observation about the system (OT, <) is due to Okada [Ok88] and provides a rather
short proof of H. Friedman’s result that the extended Kruskal Theorem on finite labeled trees implies the
wellfoundedness of (OT, <) (provably in ACAg). This runs as follows.

First we define a binary relation C on T such that a C b is equivalent to “there exists a homeomorphic
embedding f : a — b satisfying Friedman’s gap condition (including the gap condition for the root)”.

Definition of a C b for a,b € T

Let a = D,(ap®...2am—1) and b = D, (boe...0bp_1).

a C b iff one of the following two clauses holds

(i) p =0 and Finjective ¢ : {0,...,m—1} — {0,...,n—1} such that a; C b, for i <m,
(ii) p<oand Jj <n(abd;).

Then we define a relation <* C < and prove Va,b € OAT(a Cb = a=x*bh).

Definition

a<*b & a<b&Vp(Gya X G,b) (with X {Y & Vee XqyeY(z<y))

Lemma 4.1

(a) a <*b = Dsa <* Db

(b) Dya <*b& p< 0 & Gob<b = D,a <* Db

Proof:

(a)a<*b& GyDya# 0 = G,D,a={a}UG,a < {b}UG,b=G,D,b.

(b) 1. Dya=x*b& u<p<o = G,D,a XG,bC G,D,b. Hence Vu(G,D,a < G, Dyb).

2. Proof of D,a < D,b: Let p = o (otherwise the claim is trivial). Then a € G,(D,a) <X G,b < b.

Theorem 4.2
a,be OT&alb = a=<D

17



Proof: By induction on £(b) we prove the stronger statement a <* b.

Let a = D,(ap®...0am—1) and b = D, (boe...0b,_1).

(i) p=o0 & Vi <m(a; C byy)) & Vi,j <m(i # j = q(i) # q(j)): By IH we have a; <* by(;) for i < m. From
this we get (age...0am—1) <* (bpe...0b,—1) and then by L.4.1a a = D, (age...ea;,m—1) <* Dy (bge...0b,—1) = b.
(ii) p <o and 3j < n(a C b;): By IH we have a <* b; <* (bps...8b,—1) =: c. Since b = D,c € OT, we also
have G,c < ¢. By L.4.1b this yields a = D,(age...6am—1) <* Dyc =b.
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Appendix (Proof of (1), (2) in the proof of Theorem 3.6)

(1) FS(a) & FS(b) = FS(b®a),

(2) FS(a) = FS(Dsa).

Proof:

(1)0. a=0: b®a=0b.

1. tp(a) = w: Then tp(b® a) = w and t(b ® a) = t(b) + t(a)
(t(b @ a[n])new = (L(b @ a)[n]))nen-

2. tp(a) = Quq1: By assumption t(a) = (ap)cex, with Vo € |Q,11|(t(alz]) = aya))-

Hence t(b®a) = t(b) + (ar)rex, = (4(b) + ap)rex, with t((b® a)[z]) = t(b® alz]) = t(b) + t(a[z]) = t(b) + ag).

(2)0. a=0& 0 =0: tp(Dya) =1 & (D,a)[0] =0 and hence t(Dya) = Do(0) = t((D,a)[0]) + 1.
l.a=0& o =p+1: tp(Dya) = Quq1 and t(Dsa) = (r)ex, with t((Dya)[z]) = t(z).

2. tp(a) = 1: tp(Dya) = w & (Dya)[n] = (Dyal0]) - (n+1).

By assumption t(a) = t(a[0]) + 1. Hence

t(Dya) = Dpt(a) = (D (t(a[0])) - (n+1)),, oy = (HDoa[0]) - (n41)),, g = (H(Doa)[n])) -

3. tp(a) = w: tp(Dya) = w & (Dya)[n] = Dyaln).

By assumption t(a) = (t(a[n]))nE]N. Hence

(D) = Dt(a) = (D, (t(aln])), . = UDGM)%N=
4. tp(a) = Q1 with p < o0 tp(Dya) = Quy1 & (Dya)(z]
By assumption t(a) = (a;)rex, with t(a[z]) = Ai(z)-

Hence t(Dya) = (D"(a‘))xe’fu with t((Dga)[z]) = (Dgalz]) = Dy (t(alz])) = Do (ay(z))-

5. tp(a) = Q1 with g > o0 tp(Dya) = w & (Dsa)[n] = Dyalzy,] with 2o := Q, and 2,41 = Dyalz,].
By assumption t(a) = (a;)rez, with Vo € [Q,11](t(alr]) = ay,)) (7F).

Hence t(D,a) = D, (t(a)) = (i)g(apn))nglN with ro 1= Q, tnt1 = Dplay,).

It remains to prove: t((D,a)[n]) = Dy (a,, ).

Since t((Dya)[n]) = D, (t(a]z,])), this amounts to t(a[z,]) = ay, .

Due to (**) it remains to prove t(z,) = tp.

t(zo) = () = Ry = 10,

t(zn) = 1n (g) t(a[zy,]) = ap, = t(rng1) = Du(t(a[wn])) = Qu(axn) = In+1-

P2 4(0) + (tafn]) e = (40) + afn)new =

( D,a)[n]) )nEIN

calz].
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