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hen.deIntrodu
tionContemporary ordinal-theoreti
 proof theory (i.e., the part of proof theory 
on
erned with ordinal analysisesof strong impredi
ative theories) su�ers from the extreme (and as it seems unavoidable) 
omplexity andopa
ity of its main tool, the ordinal notation systems. This is not only a te
hni
al stumbling blo
k whi
hprevents most proof-theorists from a 
loser engagement in that �eld, but it also 
alls the a
hieved resultsinto question, at least as long as these results do not have interesting 
onsequen
es, su
h as e.g. foundationalredu
tions or intuitively graspable 
ombinatorial independen
e results. The question is, what have we gainedby having shown that the proof-theoreti
 ordinal of a 
ertain formal theory S equals the ordertype k � kof some spe
i�
 term ordering � (disregarding for the moment possible appli
ations of the abovementionedkind). I would say, as long as the ordering is simple and natural (as e.g. the standard orderings of ordertype "0 or �0) or o

urs already elsewhere in mathemati
s or theoreti
al 
omputer s
ien
e, we have obtaineda result of pure mathemati
s whi
h is interesting and noteworthy by itself. But I'm not sure if the latter
an (already) be said about Rathjen's ([Ra95℄)and Arai's ([Ar96℄,[Ar97℄) most impressive and admirablework on �12-CA and beyond. Rather I think, that extensive e�orts should be made aiming at a substantialsimpli�
ation and deeper understanding of that work, espe
ially of the used ordinal notation systems (termorderings, resp.). The purpose of the present paper is to present as an example a parti
ularly ni
e pie
eof ordinal-theoreti
, impredi
ative proof theory (far below �12-CA) where su
h a simpli�
ation and deeperunderstanding has already been a
hieved. The paper is more or less a 
ondensation and improved presentationof parts of [Bu81℄, [Bu86℄, [Bu87℄ providing an ordinal analysis \from above" for the theories ID� of iteratedindu
tive de�nitions by means of the so-
alled 
�+1-rule. Spe
ial e�orts have been made to let the assignmentof ordinals to derivations not appear as an ad ho
 approa
h but as a quite natural and perspi
uous pro
edure.x1 Ordinal fun
tions and ordinal notationsAround the early seventies Feferman suggested the following de�nition of ordinal fun
tions �� for generatinglarge segments of re
ursive ordinals, whi
h was intended to repla
e the extremely 
omplex Ba
hmann-Pfei�er-Isles de�nition pro
edure for hierar
hies of normal fun
tions. This de�nition brought a new impetus into prooftheory and was the starting point of a rather su

essful development.De�nition (Feferman 1970)Let �0 be a �xed 
ountable ordinal.By trans�nite re
ursion on � one de�nes sets C(�; �) and ordinal fun
tions ��:C(�; �) := least set X � � [ f
� : 0 < � < �0g su
h that 8�; � 2 X(� + � 2 X)and 8�; � 2 X( � < � =) ��(�) 2 X ),�� enumerates f� > 0 : C(�; �) \ �+ � �g where �+ := minf
�+1 : � < 
�+1g and 
� := ��.Dedi
ated to Solomon Feferman on the o

asion of his 70th birthday. I am deeply indebted to Sol for theen
ouragement and stimulation he gave me over many years through his interest in my work.1



A simple 
ardinal argument shows that C(�; �) has essentially the same 
ardinality as � (namely 
ard(C(�; �))= maxf�0; 
ard(�)g), no matter how large � is. This yields 8� < 
�+1( ��(�) < 
�+1 ) , for any � (seeLemma 1.1 below). Hen
e the fun
tion ��:��(
�) maps On into 
�+1, i.e., it is a so-
alled 
ollapsing fun
tion.Important 
ontributions to the further investigation of the �-fun
tions were made by Weyhrau
h, A
zel and(most important) Jane Bridge. A
zel generalized the de�nition and 
onje
tured relationships between the ��'sand the Pfei�er/Isles fun
tions. These 
onje
tures were established by Jane Bridge in her Ph.D. thesis. Shealso obtained partial results on the re
ursiveness of the notation system asso
iated with �� [Br75℄. Startingfrom Bridge's thesis, re
ursiveness of the full �-notation system was established in [Bu75℄. There also a variant�� of �� was introdu
ed whi
h has the advantage that the <-relation between �-terms 
an be 
hara
terized ina parti
ularly simple way. This opened the way to a su

essful use of these ordinal fun
tions in proof-theory.Later it turned out that in proof-theoreti
 appli
ations a
tually only the values of �� at initial ordinals 
�are used, whi
h led to the idea to de�ne dire
tly fun
tions  � 
orresponding to ��:��(
�)De�nition (Bu
hholz 1981)Let �0 be a �xed 
ountable ordinal. �(�) := minf� � 
��+1 : C(�; �) \ 
�+1 � �g (� < �0)C(�; �) := 
losure of � under + and all  ��� (� < �0).
��+1 := � 1 if � = 0
� if � > 0Remark C(�;  �(�)) \ 
�+1 =  �(�)Before we start to prove some basi
 fa
ts about these ordinal fun
tions  � , we establish a general Lemmawhi
h also applies to stronger systems of ordinal fun
tions.De�nitionGiven a 
ountable set F of ordinal fun
tions and an ordinal � letCl(F ;�) := the 
losure of � under + and all fun
tions in F .Let < be the 
lass of all un
ountable regular 
ardinals.Lemma 1.1If F is a 
ountable set of ordinal fun
tions, then for ea
h � 2 <the set f� < � : Cl(F ;�) \ � � �g is 
losed unbounded in �.Proof:unbounded: Let �0 < � be given. We set �n+1 := minf� : Cl(F ;�n) \ � � �g, � := supn<! �n. Sin
e8� < �( 
ard(Cl(F ; �)) < � ), we obtain (by indu
tion on n) �n < �, and then �0 � � < � and Cl(F ;�)\� �Sn<! Cl(F ;�n) \ � � Sn<! �n+1 � �.
losed: If � = sup(X)&8�2X(Cl(F ; �) \ � � �) then Cl(F ;�) \ � � S�2X Cl(F ; �) \ � � S�2X � = �.Theorem 1.2 (Basi
 properties of  �)(a)  �(�) < 
�+1 (
ollapsing property)(b)  �(0) = 
��+1, and  �(�) is 
losed under +(
) �0 < � & �0 2 C(�0;  �(�0)) =)  �(�0) <  �(�)(d)  �(�0) =  �(�1) & �i 2 C(�i;  �(�i))| {z }normalform 
ondition (i = 0; 1) =) �0 = �1Proof:(a) Obviously C(�; �) = Cl(f ��� : � < �0g;�). Hen
e f� < 
�+1 : � � 
��+1 & C(�; �) \ 
�+1 � �g 6= ;(by Lemma 1.1), and therefore  �(�) = minf� � 
��+1 : C(�; �) \ 
�+1 � �g < 
�+1.2



(b) Obviously C(0;
��+1) = 
��+1, and therefore  �(0) = 
��+1. �(�) is 
losed under +, sin
e  �(�) = C(�;  �(�)) \ 
�+1.(
) C(�0;  �(�)) \ 
�+1 � C(�;  �(�)) \ 
�+1 �  �� and therefore  �(�0) �  �(�) whi
h impliesC(�0;  �(�0)) � C(�;  �(�)). From �0 < � & �0 2 C(�;  �(�)) we 
on
lude  �(�0) 2 C(�;  �(�)).By (a) we have  �(�0) < 
�+1 and thus  �(�0) 2 C(�;  �(�)) \ 
�+1 �  �(�).(d) If �0 < �1 then the assumption �0 2 C(�0;  �(�0)) together with (
) yields  �(�0) <  �(�1).Lemma 1.3C(�;  0(�)) = C(�; 1)Proof by indu
tion on �:Let us assume that C(�;  0(�)) = C(�; 1), for all � < � (IH). We have to prove  0� � C(�; 1). Let � > 0(otherwise  0(�) = 1 � C(�; 1)). As we will show below the IH implies that � := C(�; 1) \ 
1 is in fa
t anordinal. Obviously 
1 =  1(0) 2 C(�; �) and C(�; �) \ 
1 � C(�; 1) \ 
1 = � and thus  0(�) � �.Claim: 
 2 C(�; 1) \ 
1 ) 
 � C(�; 1).Proof by side indu
tion on the de�nition of C(�; 1):1. 
 =  0(�) with � < � & � 2 C(�; 1):By the above IH we have C(�;  0(�)) = C(�; 1). Hen
e 
 =  0(�) � C(�; 1) � C(�; 1).2. 
 = 
0 + 
1 with 
0; 
1 2 C(�; 1) \ 
1:Then by SIH 
0; 
1 � C(�; 1) whi
h (together with 
0 2 C(�; 1)) yields 
0 + 
1 � C(�; 1).DisgressionOf 
ourse the above de�nition of  � 
an be generalized in the same way as A
zel [A
z℄ generalized Feferman'sde�nition, namely by in
orporating a 
ountable set G of 
ardinal valued ordinal fun
tions into the de�nition ofC(�; �). For the simple 
ase G = f�x:
xg this is equivalent to setting, for any �; � 2 On,  �(�) := minf� �
��+1 : C(�; �) \ 
�+1 � �g where C(�; �) := Cl( �� ; �) with  �� : On� �! On; (�; �) 7!  �(�).A more substantial extension of the �= -approa
h was developed by S
h�utte (unpublished), Pohlers [Po87℄and, most important, J�ager [J�a84℄. In addition to the  � 's whi
h are 
ollapsing fun
tions for su

essorregulars, now also 
ollapsing fun
tions for limit regulars, i.e. weakly ina

essible 
ardinals, are introdu
ed.In order to be able to treat both kinds of 
ollapsing fun
tions uniformly J�ager denoted the  -fun
tion for aregular 
ardinal �, i.e. one with values below �, by  �. In this notation the former  � be
omes  
�+1 .De�nition (J�ager 1984): �(�) := minf� > �� : C(�; �) \ � � �gC(�; �) := Cl(�xy:Ix(y);  �� ; �) with  �� : <� �! On; (�; �) 7!  �(�)I� := ordering fun
tion of 
l(f� 2 < : 8� < �(I�(�) = �)g),where 
l(A) := fsup(X) : X nonempty subset of A g (topologi
al 
losure of A)�� := � 0 if � = I�(0)I�(�) if � = I�(�+1) with �; � < � .Later Rathjen developed further extensions up to the use of large large 
ardinals ([Ra90℄, [Ra94℄, [Ra95℄). Inthe �rst of these extensions Rathjen assumed the existen
e of a weakly Mahlo 
ardinal M and utilized thefa
t that the regular 
ardinals are stationary in M .De�nition (Rathjen 1990) �(�) := � minf� 2 < : � 2 C(�; �) & C(�; �)\� � �g if � =Mminf� 2 On : � 2 C(�; �) & C(�; �)\� � �g if � < MC(�; �) := Cl(�x:!M+x;  ��;�) with ( ��)(�; �) :=  �(�) for � 2 < \ (M+1) and � < �.3



Let us see how the \Mahloness" of M is used for obtaining the 
ru
ial property 8� < "M+1( M (�) < M ).A

ording to Lemma 1.1 the set f� < M : C(�; �) \M � �g is 
losed unbounded in M . If � < "M+1 then� 2 C(�; �) for suÆ
iently large � < M . Hen
e also X := f� < M : � 2 C(�; �) & C(�; �) \M � �g is 
lubin M (if � < "M+1). Sin
e < is stationary in M , we obtain X \< 6= ;, and thus  M (�) = min(X \<) < M .The general strategy behind these extensions is that one tries to produ
e notations for more and more regular
ardinals �, whi
h in turn gives more and more 
ollapsing fun
tions  �. In J�ager's de�nition the regulars areprovided by the hierar
hy (I�)�2On. In de�ning this hierar
hy one already assumes the existen
e of a weaklyMahlo 
ardinal M , but one does not exploit this assumption to the same extent as it is done in Rathjen'sapproa
h. A
tually the limit ordinal  
1(supn Æn) (Æ0 := 0, Æn+1 := IÆn(0)) of [J�a84℄ is \mu
h" smaller thenthe limit ordinal  
1("M+1) of [Ra90℄.Now we return to the simple system of  -fun
tions  � (� < �0) de�ned above. In order to avoid somete
hni
al 
ompli
ations we will even assume �0 = !. But we want to stress that no essential new diÆ
ultieswould emerge when in all what follows the assumption \�0 = !" would be repla
ed by \�0 < !CK1 ".From now on �; �; �; � range over numbers < !.Below we will introdu
e a system of ordinal notations based on the ordinal fun
tions  � . The 
anoni
al way forthat is to 
onsider the set T of all terms whi
h are generated from the 
onstant 0 by means of fun
tion symbols�; D0; D1; ::: for the ordinal fun
tions +;  0;  1; :::. Then one looks for a (primitive) re
ursive 
hara
terizationof the relation <o:= f(a; b) 2 T�T : o(a) < o(b)g, where o(a) 2 On is the 
anoni
al interpretation of a 2 T.It turns out that the relation <o has a parti
ularly simple 
hara
terization when it is restri
ted to the subsetOT � T of those terms a 2 T whi
h are in \normalform" (i.e. o(b) 2 C(o(b);  �(o(b))) for ea
h subterm D�bof a, and o(an) � : : : � o(a0) for ea
h subterm a0� : : : �an of a).De�nition o(a) := ordertype of (fx 2 OT : x <o ag; <o), OT0 := fa 2 OT : a <o D10g.It 
an be proved that every a 2 T has a (unique) normalform a� 2 OT su
h that o(a�) = o(a) whi
h yields(}) fo(a) : a 2 Tg = fo(a) : a 2 OTg.Obviously fo(a) : a 2 Tg = C(
! ; 1), and thus by Lemma 1.3 fo(a) : a 2 T & a <o D10g =  0(
!). So,fo(a) : a 2 T & a <o D10g is a segment of On, and the equation (}) implies o(a) = o(a) for ea
h a 2 OT0.(Of 
ourse we will never have o(a) = o(a) for all a 2 OT, sin
e T is 
ountable and thus o(a) < 
1 � o(a) forany a 2 OT nOT0.) The proof of (}) itself is rather tedious (
f. [BS88℄ or [Se98℄) and we will not dis
uss ithere. Having a 
loser look one will realize that a
tually (}) is not of great importan
e, sin
e in all (existing)proof theoreti
 appli
ations of the  � 's one 
an 
on�ne to terms from OT, and the only drawba
k when onedispenses with (}) is that e.g. instead of saying \the proof theoreti
 ordinal of ID� is  0("
�+1)" one has tosay \the proof theoreti
 ordinal of ID� is the ordertype of D0D�+10 in (OT0; <o)". Usually one avoids thetrouble with having to distinguish between o(a) and o(a) (for a 2 OT0) by following S
h�utte and in
orporatingthe normalform 
ondition into the de�nition of C(�; �), i.e., by 
losing C(�; �) only under e ��� (instead of ���) where ( e ���)(�) := n �(�) if � < � and � 2 C(�;  �(�))unde�ned otherwise . Then fo(a) : a 2 OTg = C(
! ; 1) iseasy to prove and together with Lemma 1.3 it yields o(a) = o(a) for all a 2 OT0.Now we de�ne the set T of terms, a linear ordering � on T, for any a 2 T and � < ! a set G�a of subtermsof a, and the set OT of ordinal terms (i.e. terms in normalform) in su
h a way that, for all a; 
 2 OT,(a) 
 � a , o(
) < o(a) [, 
 <o a ℄ and (b) G�
 � a , o(
) 2 C(o(a);  �o(a)).(Here G�a � 
 abbreviates 8x 2 G�a(x � 
).) 4



Indu
tive de�nition of T1. 0 2 T.2. If a 2 T and � < !, then D�a 2 T; we 
all D�a a prin
ipal term.3. If a0; :::; an are prin
ipal terms and n � 1, then (a0�:::�an) 2 T.Notation For prin
ipal terms a0; :::; an�1 and n � 0 we set a0�:::�an�1 :=8<: 0 if n = 0a0 if n = 1(a0�:::�an�1) if n > 1So every a 2 T 
an be uniquely written as a = D�0a0� : : :�D�n�1an�1 with n � 0 and a0; :::; an�1 2 T.Further we de�ne: (a0�:::�an�1)� (b0�:::�bm�1) := a0�:::�an�1�b0�:::�bm�1,and a � n := a�:::�a| {z }n for prin
ipal terms ai; bi; a.De�nition of o : T �! Ono(D�0a0� : : : �D�n�1an�1) :=  �0o(a0) + : : :+  �n�1o(an�1)De�nition of a � b for a; b 2 T1. 0 � b :() b 6= 02. D�a � ~a � D�b � ~b :() � < � or ( � = � & a � b ) or ( � = � & a = b & ~a � ~b )Remark. � is a linear ordering on T, but it's not a wellordering (e.g. : : : � D0D0D10 � D0D10 � D10).De�nition of G�a1. G�(a0�:::�an�1) := Si<nG�ai, 2. G�D�a := � fag [G�a if � � �; if � < �Indu
tive de�nition of OT1. 0 2 OT.2. a 2 OT & G�a � a ) D�a 2 OT.3. a0; :::; an 2 OT (n � 1) prin
ipal terms with an� : : :�a0 =) (a0�:::�an) 2 OT.The elements of OT are 
alled ordinal terms. We identify n 2 IN with the ordinal term D00�:::�D00| {z }n .Abbreviation. 
0 := ! := D01, 
� := D�0 for � > 0.Theorem 1.4 For a; 
 2 OT we have(a) 
 � a , o(
) < o(a), [i.e., 
 � a , 
 <o a ℄(b) G�
 � a , o(
) 2 C(o(a);  �o(a))Proof by indu
tion on the length of 
 simultaneous for (a),(b):We only prove \)". The reverse impli
ation of (a) follows from \)", sin
e � is total. The reverse dire
tionof (b) is more diÆ
ult to obtain, but sin
e it is not needed for the proof of (a) nor for any proof in this paper,we omit it here.(a) Let 
 = D�
0 �
1�:::�
m, a = D�a0 �a1�:::�an with prin
ipal terms 
1; :::; 
m; a1; :::; an.1. � < �: From 
m � : : : � 
1 � D�
0 we get by IH o(
m) � : : : � o(
1) � o(D�
0) =  �o(
0) < 
�+1 andthus o(
) < 
�+1 � 
� � o(D�a0) � o(a).2. � = � and 
0 � a0: By IH o(
0) < o(a0). Sin
e D�
0 2 OT, we have G�
0 � 
0 and thus by IHo(
0) 2 C(o(
0);  �o(
0)). Hen
e  �o(
0) <  �o(a0) by Theorem 1.2(
). Now o(
) � o(a) follows as in 1.(using that  �o(a) is additively 
losed).3. � = � & 
0 = a0 & 
1�:::�
m � a1�:::�an: Immediate by IH.(b) 1. 
 = 
0�:::�
k�1 with k 6= 1: Then G�
i � a and thus (by IH) o(
i) 2 C := C(o(a);  �o(a)) for i < k.This yields o(
) = o(
0) + : : :+ o(
k�1) 2 C.2. 
 = D�
0 with � < �: Then o(
) 2 
�+1 � 
� � C.3. 
 = D�
0 with � � �: Then f
0g [G�
0 = G�
0 � a and therefore by IH o(
0) < o(a) & o(
0) 2 C whi
hyields o(
) =  �o(
0) 2 C.Corollary (OT;�) is a well ordering. 5



Fundamental sequen
esIn order to get a better insight into the stru
ture (T;�) and a better understanding of the 
ollapsing fun
tions � we now present an assignment of (fundamental) sequen
es to the elements of T. For ea
h term a 2 T wede�ne its (
o�nality) type tp(a) 2 f0; 1; !g [ f
�+1 : � < !g and a family (a[x℄)x2jtp(a)j of terms, su
h thatthe following holds, where j0j := ;, j1j := f0g, j!j := IN, j
�+1j := fD�b : b 2 Tg:Theorem 1.5(a) x 2 jtp(a)j =) a[x℄ � a(b) x; x0 2 jtp(a)j & x � x0 =) a[x℄ � a[x0℄(
) tp(a) = 1 =) a = a[0℄� 1(d) a; 
 2 OT & 
 � a & tp(a) 6= 1 =) 9x 2 OT \ jtp(a)j( 
 � a[x℄ )(e) a; x 2 OT & x 2 jtp(a)j =) a[x℄ 2 OTNote that, a

ording to Theorem 1.5, only for a 2 OT and only relative to (OT;�) is the family (a[x℄)x2jtp(a)ja fundamental sequen
e of a in the proper sense. But in x3 we will give a natural interpretation of the termsa 2 T as wellfounded trees (so-
alled tree ordinals) t(a) whi
h harmonizes with the assignment (a; x) 7! a[x℄.For example we will have t(a) = �t(a[i℄)�i2IN if tp(a) = !.I think, one 
an well say that all 
lauses of the following de�nition are 
anoni
al (modulo some minorvariations, su
h as setting (D�a)[i℄ := (D�a[0℄)�i instead of (D�a[0℄)�(i+1) in 
lause 4.), and therefore itseems reasonable to 
all (a[x℄)x2jtp(a)j the 
anoni
al fundamental sequen
e of a 2 OT. Only 
lause 6. requiressome explanation whi
h will be given below in the proof of Theorem 1.5.De�nition of tp(a) and a[x℄ for a 2 T, x 2 jtp(a)j1. tp(0) := 0.2. tp(D00) := 1, (D00)[0℄ := 0.3. tp(D�+10) := 
�+1, (D�+10)[x℄ := x.4. tp(a) = 1 ) tp(D�a) := !, (D�a)[i℄ := (D�a[0℄) � (i+1).5. tp(a) 2 f!g [ f
�+1 : � < �g ) tp(D�a) := tp(a), (D�a)[x℄ := D�a[x℄.6. tp(a) = 
�+1 & � � � ) tp(D�a) := !, (D�a)[i℄ := D�a[xi℄ with x0 := 
�, xi+1 := D�a[xi℄.7. tp(a0�:::�an) := tp(an), (a0�:::�an)[x℄ := (a0�:::�an�1)� an[x℄ (n � 1).For te
hni
al reasons we also set a[n℄ := a[0℄, if tp(a) = 1.Proof of Theorem 1.5:(a),(b),(
) are easily veri�ed by indu
tion on `(a) (length of the string a).For a proof of (e) see [BS88, x5℄ or [Bu86, Lemma 3.3℄.(d) is proved by indu
tion on `(a). All 
ases ex
ept 6. are straightforward. So let us assume D�
� ~
 � D�a.Then 
 � a, and by IH 
 � a[x℄ for some x 2 OT\ jtp(a)j. Hen
e D�
� ~
 � D�a[x℄. If tp(a) 2 f!g[f
�+1 :� < �g, it 
an be proved that D�a[x℄ 2 OT. Therefore in that 
ase D�a[x℄ is the 
anoni
al 
hoi
e for(D�a)[x℄.Now let us assume that tp(a) = 
�+1 with � � �.Then \D�a[x℄ 2 OT" does no longer hold for arbitrary x 2 OT \ jtp(a)j.But by indu
tion on `(a) one 
an prove(1) tp(a) = 
�+1 & 
 2 OT & a[
�℄ � 
 � a =) 9x = D�(b+1) 2 OT( b 2 G�
 & 
 � a[x℄ )from whi
h we 
on
lude(2) tp(a) = 
�+1 & 
 2 OT & a[
�℄ � 
 & f
g [G�
 � a =)=) 9b 2 OT( `(b) < `(
) & fbg [G�b � a & 
 � a[D�(b+1)℄)Obviously (2) suggests to de�ne x0 := 
�, xn+1 := D�a[xn℄ in order to obtain by indu
tion on `(
)(3) tp(a) = 
�+1 & 
 2 OT & f
g [G�
 � a =) 9n(
 � a[xn℄).6



(Indu
tion step: 
 � a[D�(b+1)℄ & b � a[xn℄ ) 
 � a[D�(b+1)℄ � a[D�a[xn℄℄ = a[xn+1℄ )Now 9n(D�
� ~
 � (D�a)[n℄) is obtained as follows:OT 3 D�
� ~
 � D�a ���=) G�
 � G�
 � 
 � a (3)) 9n(D�
� ~
 � D�a[xn℄ = (D�a)[n℄).Proof of (1):1. a = 
�+1: Then 
 = D�
0 � ~
 � D�(
0�1). Let b := 
0.2. a = a0 � a1 with tp(a1) = 
�+1:Then 
 = a0 � 
1 with a1[
�℄ � 
1 � a1, and the 
laim follows immediately from the IH.3. a = D�a0 with � < �: Then tp(a0) = 
�+1 and a[x℄ = D�a0[x℄. Further 
 = D�
0� ~
 with b[
�℄ � 
0 � b.By IH we get 
0 � a0[x℄ for some x = D�(b�1) 2 OT with b 2 G�
0. Sin
e � < �, G�
0 � G�
. From
0 � a0[x℄ we get 
 � D�a0[x℄ = a[x℄.Lemma 1.6a 2 OT0 =) tp(a) 2 f0; 1; !g and o(a) = 8<: 0 if tp(a) = 0o(a[0℄) + 1 if tp(a) = 1supn2IN(o(a[n℄)+1) if tp(a) = !Proof of the last 
laim:Let a 2 OT0 with tp(a) = !. Then a[n℄ � a & a[n℄ 2 OT0 (by Theorem 1.5a,e) and o(a[n℄) < o(a) (byTheorem 1.4a). Now let 
 < o(a). Then 
 = o(
) for some 
 2 OT0 with 
 � a. Theorem 1.5d yields 
 � a[n℄for some n. Hen
e 
 < o(a[n℄).x2 Collapsing of in�nitary derivationsIn this se
tion we take a fresh start and introdu
e systems ID1� of in�nitary derivations together with 
ut-elimination E and 
ollapsing operations D� by whi
h every ID1� -derivation of an arithmeti
al formula A 
anbe transformed into a 
ut-free derivation of A in ID10 (i.e. !-arithmeti
). ID1� is so to speak an in�nitaryversion of the formal theory ID� of �-times iterated indu
tive de�nitions; every ID�-derivation h 
an betranslated into an ID1� -derivation h1 of the same formula (or sequent). We will establish an upper bound�� for the proof-theoreti
 ordinal jID� j in terms of the operations h 7! h1, E , D� , namely we will provejID� j � �� := supfkD0(Em(h1))k : m 2 IN and h an ID�-derivation with endsequent of level 0 g, where kdkdenotes the length (or depth) of an in�nitary derivation d.As we will see below, the operations E and D� are 
losely related to the assignment of fundamental sequen
es(a[x℄)x2jtp(a)j given in x1. In x3 we will exploit this observation and prove kD0(Em(h1))k �  0 m+2� (0),whi
h yields jID� j � �� �  0("
�+1).SyntaxLet L be an arbitrary 1st order language (i.e. set of fun
tion and predi
ate symbols). Atomi
 L-formulasare Rt1:::tn where R is an n-ary predi
ate symbol (of L), and t1; :::; tn are L-terms. Expressions of theshape A or :A, where A is an atomi
 L-formula, are 
alled literals. L-formulas are built up from literals bymeans of ^;_;8x; 9x. FV(A) denotes the set of free variables of A. A formula or term A is 
alled 
losed ifFV(A) = ;. The negation :A of a non-atomi
 formula A is de�ned via de Morgan's laws. The rank rk(A)of a formula A is de�ned by: rk(A) := 0 if A is a literal, rk(A ^ B) := rk(A _ B) := maxfrk(A); rk(B)g+ 1,rk(8xA) := rk(9xA) := rk(A) +1. By A(x=t) we denote the result of substituting t for (every free o

urren
eof) x in A (renaming bound variables if ne
essary). Expressions �x:F are 
alled predi
ates and denoted byF . For F = �x:F we set F [t℄ := F (x=t). If P is a unary predi
ate symbol then B(P=F) denotes the resultof substituting F for P in B, i.e. the formula resulting from B be repla
ing every atom Pt by F [t℄.7



Let X be unary predi
ate symbol not in L. A positive operator form in L is an L [ fXg-formula A in whi
hX o

urs only positively (i.e. A has no subformula :Xt) and whi
h has at most one free variable x.We use the following abbreviations: A(F ; t) := A(X=F ; x=t) , A(F) � F := 8x(A(F ; x)! F [x℄).For ea
h positive operator form A we introdu
e a (new) unary predi
ate symbol PA.Finite sets of formulas are 
alled sequents. They are denoted by �;�0;�. We mostly write A1; :::; An forfA1; :::; Ang, and A;�;� for fAg [ � [�, et
.De�nition of the languages L� (0 � � < !)Let L0 be the language 
onsisting of the 
onstant 0 (zero), the unary fun
tion symbol S (su

essor), andpredi
ate symbols R for primitive re
ursive relations.L�+1 := L0 [ fPA : A positive operator form in L� gL<! := S�<! L�The only 
losed L0-terms are the numerals 0; S0; SS0; ::: whi
h we identify with the 
orresponding naturalnumbers (elements of IN). Arbitrary L0-terms will be denoted by t; t1; :::, and (number) variables by x; y.TRUE0 := set of all 
losed L0-literals whi
h are true in the standard model N.De�nition of lev(A)lev(A) := 0 if A is an L0[X ℄-literallev(PAt) := lev(A), lev(:PAt) := lev(A) + 1lev(A ^ B) := lev(A _ B) := maxflev(A); lev(B)glev(8xA) := lev(9xA) := lev(A)lev(PA) := lev(A) , lev(�) := maxflev(A) : A 2 �gRemarklev(PA) < � for ea
h predi
ate symbol PA in L� ,lev(A) � � for ea
h L�-formula A.From now on A;B;C denote L<!-formulas.Proof systemsWe will work in a Tait-style 
al
ulus with a somewhat unusual notion of derivation whi
h is espe
ially usefulfor the purposes of this paper.A proof system S is given by{ a set of formal expressions 
alled inferen
e symbols (synta
ti
 variable I){ for ea
h inferen
e symbol I a set jIj (the arity of I), a sequent �(I) and a family of sequents (��(I))�2jIj.The elements of �(I) [ S�2jIj��(I) ℄ are 
alled the prin
ipal formulas [ minor formulas ℄ of I.{ for ea
h inferen
e symbol I a set Eig(I) whi
h is either empty or a singleton fxg with x a variable not inFV(�(I)); in the latter 
ase x is 
alled the eigenvariable of I.NOTATIONBy writing(I) : : :�� : : : (�2I)� [ !u! ℄we de
lare I as an inferen
e symbol with jIj = I , �(I) = �, ��(I) = ��, and Eig(I) = ; [ Eig(I) = fug,resp.℄.If I = f0; :::; n�1g we write �0 �1 : : : �n�1� , instead of : : :�� : : : (�2I)� .
8



Indu
tive de�nition of S-derivationsIf I is an inferen
e symbol of S, and (d�)�2jIj is a family of S-derivations su
h that Eig(I) \ FV(�) = ;where � := �(I)[S�2jIj(�(d�) n��(I)), then d := I(d�)�2jIj is an S-derivation with �(d) := � (endsequentof d) and last(d) := I (last inferen
e of d).Instead of I(d�)�2jIj we also write : : : d� : : : (�2jIj)I or Id0:::dn�1 or d0 : : : dn�1I if jIj = f0; :::; n�1g.Abbreviation: S 3 d ` � :() d is an S-derivation with �(d) � �.RemarkOur notion of derivations di�ers from the usual one in so far as our derivations have inferen
es (inferen
esymbols) and not sequents assigned to their nodes. The sequent \belonging" to a node � of a derivation d isnot expli
itly displayed, but 
an be 
omputed by tree re
ursion from d (similarly for the free assumptions ina natural dedu
tion style derivation).The Tait-style inferen
e rules in their traditional form : : :�;��(I) : : :�;�(I) are reobtained here as follows:If I 2 S and Eig(I) \ FV(�) = ;, thenfrom : : :S 3 d� ` �;��(I) : : : (8� 2 jIj) we 
on
lude S 3 I(d�)�2jIj ` �;�(I) .The proof system ID�The language of ID� is L� .The inferen
e symbols of ID� are(Ax�) � if � 2 Ax(�)All we need to know about Ax(�) is that it is a set of L� -sequents su
h that(i) � 2 Ax(�)) �(~x=~t) 2 Ax(�)(ii) � 2 Ax(�) & FV(�) = ; ) � \ TRUE0 6= ; or f:P; Pg � � for some P = PAn.(VA0^A1) A0 A1A0^A1 (WkA0_A1) AkA0_A1 (k 2 f0; 1g)(Vy8xA) A(x=y)8xA !y! (Wt9xA) A(x=t)9xA(CutC) C :C; (IndtF ) :F [0℄;:8x(F [x℄! F [Sx℄);F [t℄(ClPAt) A(PA; t)PAt (IndPA;tF ) :(A(F)�F);:PAt;F [t℄

9



The in�nitary proof systems ID1� (� < !)The language of ID1� 
onsists of all 
losed L<!-formulas A.We use P [P�, resp.℄ as synta
ti
 variable for formulas of the form PAn [with lev(A) = �, resp.℄.The inferen
e symbols of ID1� are(Ax�) � , if � = fAg with A 2 TRUE0 or � = f:P; Pg with lev(P ) < �(VA0^A1) A0 A1A0^A1 (WkA0_A1) AkA0_A1 (k 2 f0; 1g)(V8xA) : : : A(x=i) : : : (i2IN)8xA (Wk9xA) A(x=k)9xA (k 2 IN)(CutC) C :C;(ClPAt) A(PA; t)PAt (lev(PA) � �) (e
P ) P : : :�Pq : : : (q 2 jP j); (lev(P ) < �)jP j := set of all 
utfree ID1� -derivations, where � := lev(P )�Pq := �(q) n fPgAn ID1� -derivation d is 
alled 
utfree if 
-rk(d) = 0 where 
-rk(d) is the least number greater than the ranksof all 
ut-formulas o

urring in d, i.e.,
-rk(I(d�)�2I) := sup(f
-rk(I)g [ f
-rk(d�) : � 2 Ig) with 
-rk(I) := n rk(C) + 1 if I = CutC0 otherwiseAbbreviationID1� 3 d `m � :, ID1� 3 d ` � & 
-rk(d) � md `m � :, ID1� 3 d `m � for some � < !.The set ID1� of all ID1� -derivations is introdu
ed by an indu
tive de�nition (as given above for arbitrary proofsystems S) under the assumption that the sets ID1� for � < � are already de�ned.We set ID1<! := S�<! ID1� .The (e
P )-rule 
an be motivated as follows (with � := lev(P ) < �):Imitating the 
onstru
tive interpretation of impli
ation we start by saying:\An ID1� -derivation of P ! B is an operation q 7! dq transforming every
utfree ID1� -derivation of P into an ID1� -derivation of B ".This may be repla
ed by the stri
ter version:\An ID1� -derivation of P ! B is an operation q 7! dq transforming every
utfree ID1� -derivation of A! P into an ID1� -derivation of A! B (for any formula A)".In terms of the Tait-
al
ulus used here this amounts to the following rule:(
P ) If for ea
h � and ea
h 
utfree ID1� -derivation q of �; P ,dq is an ID1� -derivation of �;�, then (dq)q2jP j is an ID1� -derivation of :P;� ".Now (e
P ) is just a 
ombination of (
P ) and (CutP ).The following de�nitions and Theorem 2.1 are needed for the embedding of ID� into ID1� , i.e., for deriving:(A(F)�F);:PAn;F [n℄ by means of (e
PA). 10



De�nitions (Substitution)For ea
h 
losed L�-formula A let d:A;A be the 
anoni
al 
utfree ID1� -derivation of :A;A(e.g. d:P;P := Axf:P;Pg, d:A;A := AxfAg if A 2 TRUE0, d:8xA;8xA := V8xA�Wi:8xAd:A(x=i);A(x=i)�i2IN).enA;F := Wn:(A(F)�F)VA(F ;n)^:F [n℄d:A(F ;n);A(F ;n)d:F [n℄;F [n℄ � :A(F ; n);A(F ; n) :F [n℄;F [n℄A(F ; n)^:F [n℄;:A(F ; n);F [n℄:(A(F) � F);:A(F ; n);F [n℄Given P = PA, a predi
ate F , and a sequent � we de�ne an operation S�P;F : ID1lev(P) ! ID1<! whi
htransforms any derivation d 2 ID1lev(P) of �;� into a derivation d� := S�P;F(d) of :(A(F)�F);�;�(P=F).Roughly speaking d� results from d by substituting 
ertain o

urren
es of P by F . In doing so, some inferen
es(ClPn)A(P ; n)Pn are turned into A(F ; n)F [n℄ whi
h is not an inferen
e of ID1<!.Therefore those inferen
es (ClPn) are repla
ed by d�0A(F ; n) enA;F:(A(F)�F);:A(F ; n);F [n℄ (Cut):(A(F)�F);F [n℄The pre
ise de�nition of S�P;F(d) runs as followsS�P;F�I(d�)�2I� := 8>>><>>>:CutA(F ;n)S�[�0(I)P;F (d0)enA;F if I = ClPn with Pn 2 �I��S�[��(I)P;F (d�)��2I if I = VA or WkA with A 2 �I�S�P;F(d�)��2I otherwisewhere (VA)� := VA(P=F) , (WkA)� := WkA(P=F).The following theorem is easily veri�ed. Note that the axioms Axf:Pn;Png do not belong to ID1lev(P) !Theorem 2.1ID1lev(P) 3 d `0 �;� & rk(A(F ; x)) < m =) S�P;F(d) `m :(A(F)�F);�;�(P=F).Embedding of ID� into ID1�An ID�-derivation h is 
alled 
losed if every number variable o

urring free in h is the eigenvariable of aninferen
e below that o

urren
e. Espe
ially FV(�(h)) = ; for 
losed h.For ea
h 
losed ID�-derivation h we de�ne an ID1� -derivation h1 su
h that h1 `m �(h) for some m 2 IN.0. (Ax�)1 := Ax�0 with a suitable �0 � �1. (Vy8xAh0)1 := V8xA�h0(y=i)1�i2IN , where h0(y=i) is de�ned as expe
ted2. (IndnF )1 := dn with d0 := d:F [0℄;F [0℄, di+1 := Wi9x(F [x℄^:F [Sx℄)VF [i℄^:F [Si℄di d:F [Si℄;F [Si℄3. (IndP;nF )1 := Axf:Pn;Png : : :SfPngP;F (q) : : : (q 2 jPnj)e
Pn4. Otherwise: (Ih0:::hn�1)1 := Ih10 : : : h1n�1Theorem 2.2 (Embedding)ID� 3 h ` � & h 
losed =) ID1� 3 h1 `m � for some m 2 IN.Proof: straightforward.Espe
ially (IndP;nF )1 `m :(A(F)�F);:Pn;F [n℄ (where P = PA) is obtained from:q 2 jPnj ) ID1lev(P) 3 q `0 �Pnq ;Pn Theorem2:1) SfPngP;F (q) `m :(A(F)�F);�Pnq ;F [n℄.11



AbbreviationsV-For := set of all formulas of the shape A ^ B or 8xA.V+-For := TRUE0 [V-For [ set of all formulas PAn.C[k℄ := �Ck if C = C0 _̂C1 and k 2 f0; 1gA(x=k) if C = 98xA and k 2 INTheorem 2.3By tree re
ursion one 
an de�ne operations J kC ; RC ; E ; D� on ID1<! with the following properties:(V-Inversion) d `m �; C & C 2 V-For =) J kC(d) `m C[k℄(Redu
tion) e `m �; C & d `m �;:C & C 2 V+-For & rk(C) � m =) RC(e; d) `m �.(Elimination) d `m+1 � =) E(d) `m �.(Collapsing) d `0 � & lev(�) � � ) ID1� 3 D�(d) `0 �.Proof:For d = I(d�)�2I 2 ID1<! and e 2 ID1<! we de�neJ kC(d) := (J kC(dk) if I = VCI�J kC(d�)��2I otherwise (C 2 V-For)RC(e; d) :=8>><>>:CutC[k℄J kC(e)RC(e; d0) if I = Wk:Ce if I = Axf:C;CgI�RC(e; d�)��2I otherwise (i.e., if :C 62 �(I)) (C 2 V+-For)E(d) := 8><>:RC(E(d0); E(d1)) if I = CutC with C 2 V+-ForR:C(E(d1); E(d0)) if I = CutC with :C 2 V+-ForI�E(d�)��2I otherwise .D�(d) := (D�(dD�(d0)) if I = e
P with � := lev(P ) � �I�D�(d�)��2I otherwiseOne easily veri�es that the so de�ned operations have the asserted properties.Let us look at D�(d) for d = e
P (dq)q2f0g[jP j `0 � with lev(�) � � � � := lev(P ).Then d0 `0 �; P and dq `0 �;�Pq for all q 2 jP j (y).By IH ID1� 3 q0 := D�(d0) `0 �; P . Hen
e q0 2 jP j and �Pq0 � �.Now (y) yields dq0 `0 �, and by IH we get ID1� 3 D�(dq0) `0 �.Remark: The de�nition of D�(d) almost automati
ally arises if one pursues the goal to eliminate from d alle
P -inferen
es with lev(P ) � �.De�nitionFor A with lev(A) = 0 let ��A := fn : A(�<�A ; n)g, where �<�A := S�<� ��A (� 2 On) .jnjA := minf� : n 2 ��Ag (if n 2 S�2On ��A)jID� j := supfjnjA : lev(A) = 0 & ID� ` PAng (proof-theoreti
 ordinal of ID�)By (N;�<�) we denote the expansion of the standard model N whereea
h predi
ate 
onstant PA of level 0 is interpreted by �<�A .kI(d�)�2Ik := sup�2I(kd�k+1) (length or depth of d)12



Theorem 2.4 (Boundedness)ID10 3 d `0 � & lev(�) = 0 =) (N;�<kdk) j= �Proof by indu
tion on kdk.Theorem 2.5If h is a 
losed ID�-derivation of � with lev(�) = 0 then(N;�<�) j= � with � = kD0(Em(h1))k for some m 2 IN.Proof:ID� 3 h ` � Embedding=) ID1� 3 h1 `m � for some mCutelim=) ID1� 3 Em(h1) `0 �Collapsing=) ID10 3 D0(Em(h1)) `0 �Boundedness=) (N;�<�) j= � with � := kD0(Em(h1))kDe�nition�� := supfkD0(Em(h1))k : m 2 IN and h a 
losed ID�-derivation with endsequent of level 0 gThen Theorem 2.5 shows that jID� j � �� . In what follows we will prove �� � supm2IN 0 m� (0) =  0("
�+1).RemarkNote the similarity between\ D�(d) = D�(dD�(d0)) if d = e
P �d���2f0g[jP j with � = lev(P ) � � "and\ (D�a)[1℄ = D�a[D�a[
�℄℄ if a 2 T and tp(a) = 
�+1 with � � � ".This observation will be pursued in x3.x3 Majorization of in�nitary derivations by tree ordinalsWe are now going to relate in�nitary derivations d 2 ID1� to ordinals (ordinal notations) a 2 OT. Here weheavily utilize the assignment of fundamental sequen
es from x1, whi
h so to speak turns ea
h a 2 OT intoa wellfounded tree, a so-
alled tree ordinal o(a), namely o(a) := �o(a[x℄)�x2jtp(a)j. On the other side, fromevery derivation d 2 ID1� one obtains a tree ordinal o(d) essentially by deleting all inferen
e symbols (andpossibly other data) assigned to the nodes of d (namely o(I(d�)�2I) := �o(d�)��2I). Now the �rst idea whi
h
omes into mind is that o(d) should equal o(a) for suitable a 2 OT (at least if d = h1 with h 2 ID�). Butthis doesn't work; instead one 
an establish a weaker relation between o(d) and o(a), namely that in a 
ertainsense o(d) is \embeddable" into o(a). Below we will de�ne a relation d / a (d is majorized by a) betweenin�nitary derivations d and tree ordinals a, whi
h 
orresponds to this informal notion of embeddability. Themain properties of / will be: (i) d / a & d 2 ID10 ) kdk � kak, (ii) d / a & d 2 ID1� ) E(d) / D�(a),(iii) d / a ) D�(d) /D�(a). Here D� is a 
ollapsing fun
tion on tree ordinals de�ned in 
lose analogy to D�;at the same time D� is 
losely related to  �, it is so to speak the \tree version" of  � , whi
h be
omes 
lear by
omparing the de�nition of D� (see below) with the 
orresponding 
lauses in the de�nition of the fundamentalsequen
es in x1. Mainly by means of (i)-(iii) we will establish that kD0(Em(h1))k � kD0Dm+2� (0)k and thus�� � supm2IN kD0Dm� (0)k. Finally we will show that kD0(Dm� (0))k =  0 m� (0) whi
h then yields jID� j � �� �supm2IN 0 m� (0) =  0("
�+1). 13



Indu
tive de�nition of 
lasses T� of tree ordinals1. 0 := ( ) 2 T�2. a 2 T� ) a+1 := (a) 2 T�3. 8n 2 IN(an 2 T�) ) (an)n2IN 2 T�4. � < � & 8x 2 T�(ax 2 T�) ) (ax)x2T� 2 T�T<! := S�<! T� . The elements of T<! are 
alled tree ordinals (denoted by a; b; 
).NoteEvery a 2 T� is of the form (a�)�2I with I 2 f;; f0g; INg [ fT� : � < �g.We de�ne k(a�)�2Ik := sup�2I(ka�k+ 1).Abbreviations0 := 0, n+1 := n+1 , 1 := 1 , 
0 := (n)n2IN, 
�+1 := (x)x2T�De�nition of a+ b and a � na+ 0 := a , a+ (bx)x2I := (a+ bx)x2I if I 6= ;,a � 0 := 0, a � (n+1) := (a � n) + aProposition. a) a; b 2 T� ) a+ b 2 T�, b) a+ (b+ 
) = (a+ b) + 
De�nition of D� : T<! �! T�The de�nition of D�(a) pro
eeds by transf. re
. on a simultaneously for all � < !.D0(0) := 1 , D�(0) := 
� if � 6= 0D�(a+1) := �D�(a) � (n+1)�n2IND�((ax)x2I) := 8><>:�D�(ax)�x2I if I 2 fINg [ fT� : �<�g�D�(axn)�n2IN if I = T� with � � �with x0 := 
�; xn+1 := D�(axn)Remark1. For a = (ax)x2I 2 T� n f0g we have D�(a) = (�D�(a0) � (n+1)�n2IN if I = f0g�D�(ax)�x2I otherwise .This means that on T� the fun
tion D� behaves like the ordinal fun
tion� 7! !
�+� (if � > 0) or � 7! !� (if � = 0).2. The 
anoni
al analogue to the 
ollapsing fun
tion D� from x2 would beD��(ax)x2I� := �D�aD�(a0) if I = T� with � � ��D�(ax)�x2I otherwiseBut we have 
hosen the above version of D� , sin
e this pre
isely 
orresponds to  � and at the same timeis not to far removed from D� .The following de�nition and lemma are auxiliary.De�nition of a	, �0 and �a	 := � a0 if a = a0+1 or a = (ai)i2INa
� if a = (ax)x2T�b�0 a :() (a 6= 0 & b = a	) or (a = (ai)i2IN & 9i2IN(b = ai))� (� , resp.) is the transitive (transitive and re
exive, resp.) 
losure of �0.Lemma 3.1(a) a 6= 0 ) (
+ a)	 = 
+ a	 & D�(a)	 = D�(a	)(b) 1� a if a 6= 0 14



(
) b� a ) 
+ b� 
+ a(d) b� a ) D�b� D�a(e) n� 
� � 
�+1De�nition of d / a (Majorization)d / a if one of the following 
lauses holds:(/ 1) d = I(di)i2jIj with I 6= e
P and a = b+1 with di / b for all i 2 jIj(/ 2) d = e
P�(dq)q2f0g[jP�j & a = (ax)x2T� & 8q 2 f0g[jP�j 8x 2 T�(q / x) dq / ax)(/ 3) d / b & b� a(By 
onvention 0 / a for any a.)Lemma 3.2 d / a & a 2 T0 =) kdk � kak.Theorem 3.3(a) d / a =) J kC(d) / a(b) d / a =) S�P;F (d) /
� + a for ea
h �(
) e / b & d / a =) RC(e; d) / b+ a(d) d / a 2 T� =) E(d) /D�(a)(e) d / a =) D�(d) /D�(a)Proof by indu
tion on a:We only 
arry out the essential 
ases of (
),(d),(e).(
) 1. d = Axf:C;Cg: R(e; d) = e / b� b+ a.2. d = Wk:Cd0 & a = a0+1 & d0 / a0:R(e; d0) IH/ b+ a0 & J (e) (a)/ b� b+ a0 =) R(e; d) = CutJ (e)R(e; d0) / (b+ a0) + 1 = b+ a.3. d = e
P�(dq)q2I & a = (ax)x2T� & 8q 2 I8x 2 T�(q / x) dq / ax):IH ) 8q 2 I8x 2 T�(q / x) R(e; dq) / b+ ax) ) R(e; d) = e
P��R(e; dq)�q2I / (b+ ax)x2T� = b+ a.(d) 1. d = CutCd0d1 with C 2 V+-For, and a = a0+1 & d0; d1 / a0: IV ) E(di) / D�(a0) (
)) E(d) =RC(E(d0); E(d1)) /D�(a0) +D�(a0) = D�(a0) � 2 ) E(d) / �D�(a0) � (n+1)�n2IN = D�(a).2. d = e
P�(dq)q2f0g[jP�j & a = (ax)x2T� & 8q 2 f0g[jP�j 8x 2 T�(q / x) dq / ax):Sin
e a 2 T� , we have � < � and D�(a) = �D�(ax)�x2T� .IH ) 8q 2 f0g[jP�j 8x 2 T�(q / x) E(dq) /D�(ax)) Def) E(d) = e
P�(E(dq))q2f0g[jP�j / �D�(ax)�x2T� .(e) 1. d = I(di)i2I with I 6= e
P and a = b+1 with di / b for all i 2 I : IH ) 8i(D�(di) /D�(b) ) )) D�(d) = I(D�(di))i2I /D�(b) + 1� D�(b) +
��D�(b) +D�(b)�D�(b+ 1).2. d = e
P�(dq)q2I & a = (ax)x2T� & 8q 2 I8x 2 T�(q / x) dq / ax):2.1. � < �: IH ) 8q 2 I8x 2 T�(q / x) D�(dq) /D�(ax)) )) D�(d) = e
P�(D�(dq))q2I / (D�(ax))x2T� = D�(a).2.2. � � �: Then D�(d) = D�(dD�(d0)) and D�(a) = (D�(axn))n2IN with x0 = 
�, xn+1 = D�(axn).0 / x0 ) d0 / ax0 IH=) q := D�(d0) /D�(ax0) = x1 =) dq / ax1 IH=)D�(d) = D�(dq) /D�(ax1)� �D�(axi)�i2IN = D�(a).Theorem 3.4 (Embedding)For ea
h 
losed ID�-derivation h we have h1 /
� �2 + n(h),where n(Ih0:::hm�1) := maxf0; n(h0); :::; n(hm�1)g+ 1Proof: 15



By de�nition (IndP;nF )1 = Axf:Pn;Png : : :SfPngP;F (q) : : : (q 2 jPnj)e
Pn .By Theorem 3.3b we have 8q 2 jP�j8x 2 T�(q / x) SfPngP;F (q) /
� + x) whi
h togetherwith 8x 2 T�(Axf:Pn;Png /
� + x) yields (IndP;nF )1 /
� +
lev(P)+1�
� +
� = 
� �2.The other 
ases are easy.Theorem 3.5Let � > 0. If h is a 
losed ID�-derivation of � with lev(�) = 0 then(N;�<�) j= � with � = kD0(Dm� (0)k for some m 2 IN.Proof:Theorem 2.5 ) (N;�<�) j= � with � = kD0(Em(h1))k for some m < !.h1 Th:3:4/ 
� �2 + n L:3:1
;e� 
� �3 Def� D�(1) L:3:1b;d� D�D�(0) Th:3:3d;e=)D0(Em(h1)) /D0Dm+2� (0) L:3:2=) kD0(Em(h1))k � kD0Dm+2� (0)k.CorollaryjID� j � supm2IN kD0(Dm� (0)kNow we are going to prove that kD0(Dm� (0)k equals  0 m� (0). By 
omparing the de�nition of D� with theassignment of fundamental sequen
es in x1 and taking Theorem 1.5 and (}) into 
onsideration this should bemore or less 
lear. In order to obtain a rigorous proof we introdu
e the 
anoni
al interpretation t : T �! T<!and show that this respe
ts the fundamental sequen
es (a[x℄)x2jtp(a).De�nition of t : T �! T<!t(D�0a0�:::�D�n�1an�1) := D�0 t(a1) + : : :+D�n�1t(an�1)Theorem 3.6 For ea
h a 2 T we have(i) tp(a) = 1 ) t(a) = t(a[0℄) + 1,(ii) tp(a) = ! ) t(a) = (t(a[n℄))n2IN,(iii) tp(a) = 
�+1 ) t(a) = (ax)x2T� with 8x 2 j
�+1j(t(a[x℄) = at(x))Proof:Let FS(a) abbreviate the 
laim (i)&(ii)&(iii). Then in a straightforward way one proves(1) FS(a) & FS(b) =) FS(b� a), (2) FS(a) =) FS(D�a) ,from whi
h one obtains (8a 2 T)FS(a) by indu
tion on the build up of a.Theorem 3.7 a 2 OT0 =) o(a) = kt(a)kProof by indu
tion on t(a):By L.1.6 tp(a) 2 f0; 1; !g. If tp(a) = 0 then a = 0 and t(a) = 0. If tp(a) = ! then t(a) 3:6= (t(a[n℄))n2IN andtherefore kt(a)k = supn2IN(kt(a[n℄)k+1) IH= supn2IN(o(a[n℄) + 1) L:1:6= o(a)The 
ase \tp(a) = 1" is treated in the same way.Corollary(a) kD0Dm� (0)k =  0 m� (0)(b) jID� j � supm2IN 0 m� (0) =  0("
�+1)Proof: We have jID� j � supm2IN kD0(Dm� (0)k and kD0Dm� (0)k Def= kt(D0Dm� 0)k 3:7= o(D0Dm� 0) Def�o(D0Dm� 0) =  0 m� (0). This yields (b), and (a) with � in pla
e of =. To get = in (a) we have to use(}) whi
h implies o(a) = o(a) for all a 2 OT (
f. x1, pg.4).16



x4 Two Appli
ationsLet bT := fa 2 T : a prin
ipal term g and ObT := OT \ bT.As one easily sees, the set bT 
an be indu
tively generated bya0; :::; an�1 2 bT (n � 0) & � < ! =) D�(a0�:::�an�1) 2 bT.Hen
e bT is nothing other than the set of all �nite, ordered trees with labels � < !, and ea
h term a =a0�:::�an�1 2 T 
an be 
onsidered as a tree with immediate subtrees a0; :::; an�1 2 bT and an unlabeled root.The assignment of (fundamental) sequen
es (a[x℄)x2jtp(a)j 
an then be seen as the de�nition of a redu
tionpro
edure (or rewriting relation) a ,!x a[x℄ on T. In [Bu87℄ this redu
tion pro
edure (restri
ted to T0 :=fD0a0�:::�D0an�1 : a0; ::::; an�1 2 Tg) had been 
ooked up as a so-
alled hydra game, where in the ith roundof the game (or battle) the hydra a transforms itself into a new hydra a[ni℄. Using Theorem 3.6 and Theorem3.5 one easily 
on
ludes that the hydra game terminates (i.e., 8a 2 T08(ni)i2IN9k( a[n0℄[n1℄ : : : [nk℄ = 0 ) ),and that this fa
t is not provable in ID<!:Let W0 be indu
tively de�ned by the rule: a 2 T0 & [ a 6= 0) 8n(a[n℄ 2W0) ℄ =) a 2 W0.Then \a 2 W0" says that ea
h ,!-redu
tion sequen
e starting with a terminates. Hen
e \8a 2 T0(a 2 W0)"expresses termination of the hydra game. Now using Theorem 3.6 by indu
tion on t(a) we get8a 2 T0( a 2W0 & jajW0 = kt(a)k ).The unprovability result is obtained as followsID� ` 8x(D0Dx�0 2W0) Th:3:5=) 9m8n( jD0Dn� 0jW0 < kD0Dm� (0)k ) =)=) 9m( jD0Dm� 0jW0 < kt(D0Dm� 0)k = jD0Dm� 0jW0 ). Contradi
tion.Another interesting observation about the system (OT;�) is due to Okada [Ok88℄ and provides a rathershort proof of H. Friedman's result that the extended Kruskal Theorem on �nite labeled trees implies thewellfoundedness of (OT;�) (provably in ACA0). This runs as follows.First we de�ne a binary relation v on bT su
h that a v b is equivalent to \there exists a homeomorphi
embedding f : a! b satisfying Friedman's gap 
ondition (in
luding the gap 
ondition for the root)".De�nition of a v b for a; b 2 bTLet a = D�(a0�:::�am�1) and b = D�(b0�:::�bn�1).a v b i� one of the following two 
lauses holds(i) � = � and 9 inje
tive q : f0; :::;m�1g ! f0; :::; n�1g su
h that ai v bq(i) for i < m,(ii) � � � and 9j < n( a v bj ).Then we de�ne a relation ���� and prove 8a; b 2 ObT( a v b ) a �� b ).De�nitiona �� b :, a � b & 8�(G�a � G�b) (with X � Y :, 8x 2 X9y 2 Y (x � y) )Lemma 4.1(a) a �� b =) D�a �� D�b(b) D�a �� b & � � � & G�b � b =) D�a �� D�bProof:(a) a �� b & G�D�a 6= ; ) G�D�a = fag [G�a � fbg [G�b = G�D�b.(b) 1. D�a �� b & � � � � � ) G�D�a � G�b � G�D�b. Hen
e 8�(G�D�a � G�D�b).2. Proof of D�a � D�b: Let � = � (otherwise the 
laim is trivial). Then a 2 G�(D�a) � G�b � b.Theorem 4.2a; b 2 ObT & a v b =) a � b 17



Proof: By indu
tion on `(b) we prove the stronger statement a �� b.Let a = D�(a0�:::�am�1) and b = D�(b0�:::�bn�1).(i) � = � & 8i < m(ai v bq(i)) & 8i; j < m(i 6= j ) q(i) 6= q(j)): By IH we have ai �� bq(i) for i < m. Fromthis we get (a0�:::�am�1) �� (b0�:::�bn�1) and then by L.4.1a a = D�(a0�:::�am�1) �� D�(b0�:::�bn�1) = b.(ii) � � � and 9j < n( a v bj ): By IH we have a �� bj �� (b0�:::�bn�1) =: 
. Sin
e b = D�
 2 OT, we alsohave G�
 � 
. By L.4.1b this yields a = D�(a0�:::�am�1) �� D�
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Appendix (Proof of (1), (2) in the proof of Theorem 3.6)(1) FS(a) & FS(b) =) FS(b� a),(2) FS(a) =) FS(D�a).Proof:(1) 0. a = 0: b� a = b.1. tp(a) = !: Then tp(b� a) = ! and t(b� a) = t(b) + t(a) FS(a)= t(b) + (t(a[n℄))n2IN = (t(b) + t(a[n℄))n2IN =(t(b� a[n℄))n2IN = (t((b� a)[n℄))n2IN.2. tp(a) = 
�+1: By assumption t(a) = (ax)x2T� with 8x 2 j
�+1j(t(a[x℄) = at(x)).Hen
e t(b�a) = t(b)+ (ax)x2T� = (t(b)+ ax)x2T� with t((b�a)[x℄) = t(b�a[x℄) = t(b)+ t(a[x℄) = t(b)+ at(x).(2) 0. a = 0 & � = 0: tp(D�a) = 1 & (D�a)[0℄ = 0 and hen
e t(D�a) = D0(0) = t((D�a)[0℄) + 1.1. a = 0 & � = �+ 1: tp(D�a) = 
�+1 and t(D�a) = (x)x2T� with t((D�a)[x℄) = t(x).2. tp(a) = 1: tp(D�a) = ! & (D�a)[n℄ = (D�a[0℄) � (n+1).By assumption t(a) = t(a[0℄) + 1. Hen
et(D�a) = D�t(a) = �D�(t(a[0℄)) � (n+1)�n2IN = �t(D�a[0℄) � (n+1)�n2IN = �t((D�a)[n℄)�n2IN.3. tp(a) = !: tp(D�a) = ! & (D�a)[n℄ = D�a[n℄.By assumption t(a) = �t(a[n℄)�n2IN. Hen
et(D�a) = D�t(a) = �D�(t(a[n℄))�n2IN = �t(D�a[n℄)�n2IN = �t((D�a)[n℄)�n2IN.4. tp(a) = 
�+1 with � < �: tp(D�a) = 
�+1 & (D�a)[x℄ = D�a[x℄.By assumption t(a) = (ax)x2T� with t(a[x℄) = at(x).Hen
e t(D�a) = �D�(ax)�x2T� with t((D�a)[x℄) = t(D�a[x℄) = D�(t(a[x℄)) = D�(at(x)).5. tp(a) = 
�+1 with � � �: tp(D�a) = ! & (D�a)[n℄ = D�a[xn℄ with x0 := 
� and xn+1 := D�a[xn℄.By assumption t(a) = (ax)x2T� with 8x 2 j
�+1j(t(a[x℄) = at(x)) (**).Hen
e t(D�a) = D�(t(a)) = �D�(axn)�n2IN with x0 := 
�, xn+1 := D�(axn).It remains to prove: t((D�a)[n℄) = D�(axn).Sin
e t((D�a)[n℄) = D�(t(a[xn℄)), this amounts to t(a[xn℄) = axn .Due to (**) it remains to prove t(xn) = xn.t(x0) = t(
�) = 
� = x0,t(xn) = xn (��)) t(a[xn℄) = axn ) t(xn+1) = D�(t(a[xn℄)) = D�(axn) = xn+1.
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