Another reduction of classical ID_{ν} to constructive ID_{ν}^{i}

Wilfried Buchholz

Dedicated to Wolfram Pohlers on his retirement

Introduction.

One of the major problems in reductive proof theory in the early 1970s was to give a proof-theoretic reduction of classical theories of iterated arithmetical inductive definitions to corresponding constructive systems. This problem was solved in [BFPS] in various ways which all where based on the method of cut-elimination (normalization, reps.) for infinitary Tait-style sequent calculi (infinitary systems of natural deduction, resp.). Only quite recently Avigad and Towsner [AT09] succeeded in giving a reduction of classical iterated ID theories to constructive ones by the method of functional interpretation. For a thorough exposition and discussion of all this cf. [Fef].

In the present paper we give yet another reduction of classical ID_{ν} to $ID^{i}_{\nu}(\mathcal{W})$ based on cut-elimination arguments. W is a particularly simple accessibility ID; its corresponding operator form $\mathcal{W}(P, Q, y, x)$ (cf. [BFPS]) has the shape $A(x,y) \wedge \forall z(Q(t(x),z) \to Pq(x,z))$ with primitive recursive A, t, q, and $Q(u,z) :\equiv$ $u \geq 1 \land (u \geq 2 \rightarrow Q(u-2,z))$. There are two reasons which, as we hope, justify a publication of this additional proof. First, it is considerably more direct then all the existing ones. Second, the method used here stems to a great extent from [Ge36] and therefore may be interesting for historical reasons too. Actually I have already used a variant of this method under the label "notations for infinitary derivations" in several papers (e.g. [Bu91], [Bu97], [Bu01]) without mentioning its close relationship to [Ge36]. When writing [Bu91] I was definitely not aware of this connection; but cf. [Bu95]. The method from [Ge36] can be roughly described as follows: By (primitive) recursion on the build-up of h, for each derivation h in a suitably designed finitary proof system Z of first order arithmetic a family $(h[i])_{i \in I_h}$ of Z-derivations is defined such that $\frac{\ldots \Gamma(d[i]) \ldots (i \in I_h)}{\Gamma(I)}$ (where $\Gamma(h)$ denotes the endsequent of h) forms an inference $\Gamma(h)$ in cutfree ω -arithmetic (with repetition-rule). Then the consistency of Z is obtained by quantifierfree transfinite induction over the relation $\prec := \{(h[i], h) : h \in Z \& i \in I_h\}$. In the present paper we proceed similarly. Let ID_{ν} be the finitary Tait-style system of ν -fold iterated inductive definitions as introduced in [Bu02]. We extend ID_{ν} by certain inferences E , D_{σ} , $\mathsf{S}_{\mathcal{P},\mathcal{F}}^{\Pi}$ (which do not alter the set of derivable sequents) to a finitary system ID_{ν}^{*} . This step corresponds very much to the passage from BI_{1}^{-} to BI_{1}^{*} in [Bu01]. Then by primitive recursion on the height of h, for each closed ID_{ν}^{*} -derivation h we define a family $(h[\iota])_{\iota \in I_h}$ of closed ID_{ν}^* -derivations such that $\frac{\ldots \Gamma(h[\iota]) \ldots (\iota \in I_h)}{\Gamma(h)}$ is an inference in the infinitary system $\Gamma(h)$ $\mathrm{ID}_{\nu}^{\infty}$. Formulated more technical, we assign to h an inference symbol $\mathsf{tp}(h)$ of $\mathrm{ID}_{\nu}^{\infty}$, and for each $\iota \in |\mathsf{tp}(h)|$ a closed ID_{ν}^{*} -derivation $h[\iota]$ such that $\frac{\ldots \Gamma(h[\iota]) \ldots (\iota \in |\mathsf{tp}(h)|)}{\Gamma(h)}$ is a $\mathsf{tp}(h)$ -inference (Lemma 1). On first sight the present system ID_{ν}^{∞} looks exactly like the system ID_{ν}^{∞} in [Bu02] (which itself is the Tait-style version of the natural deduction system ID_{ν}^{∞} from [Bu81]), but there is some subtle difference concerning the index sets $|\tilde{\Omega}_P|$ of instances of the Ω -rule. In [Bu02], $|\tilde{\Omega}_P|$ is a set of infinitary derivations while in the present paper $|\tilde{\Omega}_P|$ is a set of finite derivations, namely $|\tilde{\Omega}_P| = \mathbf{I}_{\mu}$ = set of all closed ID_{ν}^* -derivations h with $\deg(h) = 0$ and $\Gamma(h) \subseteq \operatorname{Pos}_{\mu}$, where $\mu := \operatorname{lev}(P)$. Now let \mathcal{W}_{σ} be the accessible part of the relation $\{(h[\iota], h) : h \in \mathbf{I}_{\sigma} \& \iota \in |\mathsf{tp}(h)|_{\mathcal{W}}\}, \text{ where } |\mathcal{I}|_{\mathcal{W}} := \mathcal{W}_{\mu} \text{ if } \mathcal{I} = \widetilde{\Omega}_{P} \text{ with } \mu := \mathrm{lev}(P) < \sigma, \text{ and } |\mathcal{I}|_{\mathcal{W}} := |\mathcal{I}|$ otherwise. The proof-theoretic reduction of ID_{ν} to $ID_{\nu}^{i}(\mathcal{W})$ will be established by a proof of transfinite induction over the relation $\{(h[i], h) : h \in \mathbf{I}_0 \& i \in |\mathsf{tp}(h)|\}$ which can be locally formalized in $\mathrm{ID}^i_{\nu}(\mathcal{W})$. The difficulty here is to come along without the uppermost set \mathcal{W}_{ν} , which would be available in $\mathrm{ID}_{\nu+1}^{i}(\mathcal{W})$ but not in $\mathrm{ID}^{i}_{\mu}(\mathcal{W})$. We overcome this difficulty by using (a generalization of) Gentzen's technique (cf. [Ge43]) for proving transfinite induction up to ordinals $< \varepsilon_0$ within Z.

In order to avoid some annoying but inessential technicalities we restrict our treatment to $\nu < \omega$. So in the whole paper ν is a fixed natural number > 0.

For the reader's convenience we repeat some basic definitions and abbreviations from Preliminaries. [Bu02] (with some minor deviations). Let \mathcal{L} be an arbitrary first order language (i.e. set of function and predicate symbols). Atomic \mathcal{L} -formulas are $Rt_1...t_n$ where R is an n-ary predicate symbol (of \mathcal{L}), and t_1, \ldots, t_n are \mathcal{L} -terms. Expressions of the shape A or $\neg A$, where A is an atomic \mathcal{L} -formula, are called *literals*. \mathcal{L} -formulas are built up from literals by means of $\wedge, \vee, \forall x, \exists x$. FV(A) denotes the set of free variables of A. A formula or term A is called *closed* if $FV(A) = \emptyset$. The negation $\neg A$ of a non-atomic formula A is defined via de Morgan's laws. The rank rk(A) of a formula A is defined by: rk(A) := 0 if A is a literal, $\operatorname{rk}(A \wedge B) := \operatorname{rk}(A \vee B) := \max{\operatorname{rk}(A), \operatorname{rk}(B)} + 1, \operatorname{rk}(\forall xA) := \operatorname{rk}(\exists xA) := \operatorname{rk}(A) + 1.$ By A(x/t) we denote the result of substituting t for (every free occurrence of) x in A (renaming bound variables if necessary). Expressions $\lambda x.F$ (where F is a formula) are called *predicates* and denoted by \mathcal{F} . For $\mathcal{F} = \lambda x.F$ we set $\mathcal{F}(t) := F(x/t)$. If \mathcal{P} is a unary predicate symbol then $B(\mathcal{P}/\mathcal{F})$ denotes the result of substituting \mathcal{F} for \mathcal{P} in B, i.e. the formula resulting from B be replacing every atom $\mathcal{P}t$ by $\mathcal{F}(t)$. Let X be unary predicate symbol not in \mathcal{L} . A positive operator form in \mathcal{L} is an $\mathcal{L} \cup \{X\}$ -formula \mathfrak{A} in which X occurs only positively (i.e. \mathfrak{A} has no subformula $\neg Xt$ and which has at most one free variable x. We use the following abbreviations: $\mathfrak{A}(\mathcal{F},t) := \mathfrak{A}(x/t)(X/\mathcal{F}), \ \mathfrak{A}(\mathcal{F}) \subseteq \mathcal{F} := \forall x(\mathfrak{A}(\mathcal{F},x) \to \mathcal{F}(x)).$ For each positive operator form \mathfrak{A} we introduce a new unary predicate symbol $\mathcal{P}_{\mathfrak{A}}$. Finite sets of formulas are called *sequents*. They are denoted by Γ, Δ, Π . We mostly write $A_1, ..., A_n$ for $\{A_1, ..., A_n\}$, and A, Γ, Δ for $\{A\} \cup \Gamma \cup \Delta$, etc.

Definition (\mathcal{L}_{σ} , $\operatorname{Pos}_{\sigma}$, level).

Let \mathcal{L}_0 be a language consisting of the constant 0 (zero), the unary function symbol S (successor), and some predicate symbols R for primitive recursive relations, such that the set TRUE_0 of all true closed \mathcal{L}_0 -literals is itself primitive recursive (under some canonincal arithmetization of syntax). The only closed \mathcal{L}_0 -terms are the numerals 0, S0, SS0, ... which we identify with the corresponding natural numbers (elements of \mathbb{N}). Arbitrary \mathcal{L}_0 -terms will be denoted by $t, t_1, ...,$ and (number) variables by x, y.

 $\mathcal{L}_{\sigma+1} := \mathcal{L}_0 \cup \{\mathcal{P}_{\mathfrak{A}} : \mathfrak{A} \text{ positive operator form in } \mathcal{L}_{\sigma} \} \quad (\sigma < \omega)$

 $\operatorname{Pos}_{\sigma} :=$ set of all $\mathcal{L}_{\sigma+1}$ -formulas C such every $\mathcal{P}_{\mathfrak{A}}$ occurring negatively in C belongs to \mathcal{L}_{σ} .

 $\operatorname{lev}(\mathcal{P}_{\mathfrak{A}}) := \operatorname{lev}(\mathcal{P}_{\mathfrak{A}}t) := \min\{\sigma : \mathcal{P}_{\mathfrak{A}}t \in \operatorname{Pos}_{\sigma}\} \quad (\operatorname{level})$

Note that this "level" is not exactly the same as "level" in [Bu02].

Proposition.

(1) \mathcal{L}_{σ} -formulas $\subseteq \operatorname{Pos}_{\sigma} \subseteq \mathcal{L}_{\sigma+1}$ -formulas

(2) $\mathcal{P}_{\mathfrak{A}}t \in \operatorname{Pos}_{\sigma} \Rightarrow \mathfrak{A}(\mathcal{P}_{\mathfrak{A}}, t) \in \operatorname{Pos}_{\sigma}.$

Abbreviations.

 \mathcal{L}_0 -lit := set of all \mathcal{L}_0 -literals.

 \bigwedge -for := set of all formulas of the shape $A \land B$ or $\forall xA$.

$$C \in \bigwedge^{+}\text{-for} \iff C \in \bigwedge^{-}\text{-for} \quad \text{or} \quad C \text{ has the shape } \mathcal{P}_{\mathfrak{A}}t$$
$$C[k] := \begin{cases} C_k & \text{if } C = C_0 \stackrel{\vee}{\scriptscriptstyle \wedge} C_1 \text{ and } k \in \{0,1\}\\ A(x/k) & \text{if } C = \stackrel{\exists}{\scriptscriptstyle \forall} xA \text{ and } k \in \mathbb{N} \end{cases}$$

Definition (Inference symbols).

An *inference symbol* is a formal expression \mathcal{I} for which the following entities are given

- a set $|\mathcal{I}|$ (the arity of \mathcal{I}),
- a sequent $\Delta(\mathcal{I})$ (principal formula(s)),
- for each $\iota \in |\mathcal{I}|$ a sequent $\Delta_{\iota}(\mathcal{I})$ (minor formula(s)),

An inference symbol is called *(in)finitary* if its arity is (in)finite.

Notation. By writing $(\mathcal{I}) \quad \frac{\dots \Delta_{\iota} \dots (\iota \in I)}{\Delta}$ we declare \mathcal{I} as an inference symbol with $|\mathcal{I}| = I$, $\Delta(\mathcal{I}) = \Delta$, $\Delta_{\iota}(\mathcal{I}) = \Delta_{\iota}$. If $I = \{0, ..., n-1\}$ we write $\frac{\Delta_0 \quad \Delta_1 \ \dots \ \Delta_{n-1}}{\Delta}$, instead of $\frac{\dots \Delta_{\iota} \dots (\iota \in I)}{\Delta}$. Inference symbols \mathcal{I} with $|\mathcal{I}| = \emptyset$ are called *axioms*.

Definition (Proof systems).

A proof system is given by a language \mathcal{L} and a set of inference symbols in this language, where " \mathcal{I} in \mathcal{L} " means that all elements of $\Delta(\mathcal{I}) \cup \bigcup_{\iota \in |\mathcal{I}|} \Delta_{\iota}(\mathcal{I})$ are \mathcal{L} -formulas. A proof system is called *finitary* if all its inference symbols are finitary; otherwise it is called *infinitary*.

From now on the letters A, B, C always denote \mathcal{L}_{ν} -formulas, and \mathcal{P} ranges over predicate symbols $\mathcal{P}_{\mathfrak{A}} \in \mathcal{L}_{\nu}$.

Definition (The finitary proof systems ID_{ν} and ID_{ν}^{*}). The language of ID_{ν} is \mathcal{L}_{ν} , and the inference symbols of ID_{ν} are

$$\begin{aligned} (\mathsf{Ax}_{\Gamma}) & \overline{\Gamma} & \text{if } \Gamma \in \mathsf{Ax}(\nu) \\ & \text{where } \mathsf{Ax}(\nu) \text{ is a set of } \mathcal{L}_{\nu}\text{-sequents such that} \\ & (\text{i) } \Gamma \in \mathsf{Ax}(\nu) \Longrightarrow \Gamma(\vec{x}/\vec{t}) \in \mathsf{Ax}(\nu) \\ & (\text{ii) } \Gamma \in \mathsf{Ax}(\nu) \And \Gamma(\Gamma) = \emptyset \Longrightarrow \Gamma \cap \mathsf{TRUE}_0 \neq \emptyset \text{ or } \Gamma = \{\neg \mathcal{P}n, \mathcal{P}n\} \text{ or } \Gamma = \{n \neq n, \neg \mathcal{P}n, \mathcal{P}n\} \\ & (\text{iii) } \{\neg A, A\} \in \mathsf{Ax}(\nu) \text{ for each atomic } \mathcal{L}_{\nu}\text{-formula } A \end{aligned}$$
$$(\bigwedge_{A_0 \land A_1}) \quad \frac{A_0}{4_0 \land A_1}, \qquad (\bigvee_{A_0 \lor A_1}^k) \quad \frac{A_k}{4_0 \lor A_1} \quad (k \in \{0, 1\}), \qquad (\bigwedge_{\forall xA}^y) \quad \frac{A(x/y)}{\forall xA}, \qquad (\bigvee_{\exists xA}^t) \quad \frac{A(x/t)}{\exists xA} \end{aligned}$$

$$\begin{array}{ccc} (\bigwedge_{A_0 \wedge A_1}) & \frac{\mathcal{H}_0}{A_0 \wedge A_1} & , & (\bigvee_{A_0 \vee A_1}^k) & \frac{\mathcal{H}_k}{A_0 \vee A_1} & (k \in \{0,1\}) & , & (\bigwedge_{\forall xA}^y) & \frac{\mathcal{H}(x/y)}{\forall xA} & , & (\bigvee_{\exists xA}^t) & \frac{\mathcal{H}(x/t)}{\exists xA} & , \\ (\mathsf{Cut}_C) & \frac{\mathcal{C}}{\emptyset} & (C \in \bigwedge^+ \text{-for} \cup \mathcal{L}_0 \text{-lit}) & , & (\mathsf{Ind}_{\mathcal{F}}^t) & \frac{\neg \mathcal{F}(0), \neg \forall x (\mathcal{F}(x) \to \mathcal{F}(Sx)), \mathcal{F}(t)}{\neg \mathcal{F}(x)} & , \\ (\mathsf{Cl}_{\mathcal{P}_{\mathfrak{A}}t}) & \frac{\mathfrak{A}(\mathcal{P}_{\mathfrak{A}}, t)}{\mathcal{P}_{\mathfrak{A}}t} & , & (\mathsf{Ind}_{\mathcal{F}}^{\mathcal{P}_{\mathfrak{A}}t}) & \frac{\neg}{\neg (\mathfrak{A}(\mathcal{F}) \subseteq \mathcal{F}), \neg \mathcal{P}_{\mathfrak{A}}t, \mathcal{F}(t)} & . \end{array}$$

The inference symbols Ax_{Γ} , $\bigwedge_{A \wedge B}$, $\bigvee_{A \vee B}^{k}$, $\bigvee_{\exists xA}^{t}$, $Cl_{\mathcal{P}_{\mathfrak{A}}t}$, and Cut_{C} with $C \in \mathcal{L}_{0}$ -lit are called *simple*.

The proof system ID_{ν}^{*} is obtained from ID_{ν} by adding the following inference symbols $(\mathsf{J}_{\forall xA}^{t}) \quad \frac{\forall xA}{A(x/t)}, \qquad (\mathsf{J}_{A_{0}\wedge A_{1}}^{k}) \quad \frac{A_{0}\wedge A_{1}}{A_{k}},$ $(\mathsf{S}_{\mathcal{P},\mathcal{F}}^{\Pi}) \quad \frac{\Pi}{\neg(\mathfrak{A}(\mathcal{F})\subseteq \mathcal{F}), \Pi(\mathcal{P}/\mathcal{F})} \quad \text{with } \mathcal{P} = \mathcal{P}_{\mathfrak{A}} \text{ and } \Pi \subseteq \mathrm{Pos}_{\mathrm{lev}(\mathcal{P})},$ $(\mathsf{E}) \quad \frac{\emptyset}{\emptyset}, \qquad (\mathsf{D}_{\sigma}) \quad \frac{\emptyset}{\emptyset} \ (\sigma < \nu).$

The role of E and D_{σ} will become clear in the definition of h^+ below.

Inductive Definition of ID_{ν}^{*} -derivations

If \mathcal{I} is an inference symbol of ID_{ν}^{*} of arity l and h_{0}, \ldots, h_{l-1} are ID_{ν}^{*} -derivations such that for $\Gamma := \Delta(\mathcal{I}) \cup \bigcup_{i < l} (\Gamma(h_{i}) \setminus \Delta_{i}(\mathcal{I}))$ we have

- $\mathcal{I} = \bigwedge_{\forall xA}^{y} \Rightarrow y \notin \mathrm{FV}(\Gamma),$
- $\mathcal{I} = \mathsf{Cut}_C \Rightarrow \mathrm{FV}(C) \subseteq \mathrm{FV}(\Gamma),$
- $\mathcal{I} = \bigvee_C^t \Rightarrow \mathrm{FV}(t) \subseteq \mathrm{FV}(\Gamma),$
- $\mathcal{I} = \mathsf{S}_{\mathcal{P},\mathcal{F}}^{\Pi} \Rightarrow \mathrm{FV}(\Pi) \subseteq \mathrm{FV}(\Gamma) \text{ and } h_0 = \mathsf{D}_{\sigma} h_{00} \text{ with } \sigma := \mathrm{lev}(\mathcal{P}),$
- $\mathcal{I} = \mathsf{D}_{\sigma} \Rightarrow \Gamma(h_0) \subseteq \operatorname{Pos}_{\sigma} \& \operatorname{deg}(h_0) = 0,$

then
$$h := \mathcal{I}h_0 \dots h_{l-1}$$
 is an ID_{ν}^* -derivation and
 $\Gamma(h) := \Gamma$ (endsequent of h), $\deg(h) := \begin{cases} \deg(h_0) \doteq 1 & \text{if } \mathcal{I} = \mathsf{E} \\ \max\{\mathrm{rk}(C), \deg(h_0), \deg(h_1)\} & \text{if } \mathcal{I} = \mathsf{Cut}_C \\ \sup_{i < l} \deg(h_i) & \text{otherwise} \end{cases}$

An ID_{ν}-derivation h is called *closed* if its endsequent $\Gamma(h)$ is closed, i.e. if $FV(\Gamma(h)) = \emptyset$.

Abbreviations.

$$\begin{split} & \mathsf{ID}_{\nu}^{*} := \text{set of all closed } \mathsf{ID}_{\nu}^{*}\text{-derivations.} \\ & h \vdash_{m} \Gamma : \Leftrightarrow \ h \in \mathsf{ID}_{\nu}^{*} \text{ with } \Gamma(h) \subseteq \Gamma \text{ and } \deg(h) \leq m. \\ & h \vdash_{m}^{\sigma} \Gamma : \Leftrightarrow \ h \vdash_{m} \Gamma \text{ and } \Gamma \subseteq \operatorname{Pos}_{\sigma}. \\ & \mathbf{I}_{\sigma} := \{\mathsf{D}_{\sigma}h : h \vdash_{0}^{\sigma} \Gamma(h)\} \ (= \{\mathsf{D}_{\sigma}h : h \in \mathsf{ID}_{\nu}^{*} \& \ \deg(h) = 0 \& \Gamma(h) \subseteq \operatorname{Pos}_{\sigma}\}) \ (\sigma < \nu) \\ & \mathbf{Definition \ of } h(y/k) \ (\text{Substitution of numerals}). \\ & \text{For } h = \mathcal{I}h_{0} \dots h_{n-1} \ \text{let} \\ & h(y/k) := \begin{cases} h & \text{if } \mathcal{I} = \bigwedge_{\forall xA}^{y} \\ \mathcal{I}(y/k)h_{0}(y/k) \dots h_{l-1}(y/k) & \text{otherwise} \end{cases} \\ & \text{where } \mathcal{I}(y/k) \ \text{is defined as expected, i.e., in such a way that the following holds:} \\ & h \vdash_{m} \Gamma \ \Rightarrow \ h(y/k) \vdash_{m} \Gamma(y/k). \end{split}$$

Convention.

From now on we use h as syntactic variable for closed ID^*_{ν} -derivations (i.e., elements of ID^*_{ν}).

Definition (The infinitary proof system ID_{ν}^{∞}).

The language of $\mathrm{ID}_{\nu}^{\infty}$ consists of all *closed* \mathcal{L}_{ν} -formulas.

We use P as syntactic variable for formulas of the form $\mathcal{P}_{\mathfrak{A}}n$ with $\mathcal{P}_{\mathfrak{A}} \in \mathcal{L}_{\nu}$.

The inference symbols of ID_{ν}^{∞} are

• All simple inference symbols of ID_{ν} (restricted to closed formulas)

where $\Delta(\mathsf{Ax}_{\Gamma})$ is slightly modified, namely $\Delta(\mathsf{Ax}_{\Gamma}) := \begin{cases} \Gamma \cap \mathsf{TRUE}_0 & \text{if } \Gamma \cap \mathsf{TRUE}_0 \neq \emptyset \\ \Gamma & \text{otherwise} \end{cases}$.

•
$$(\bigwedge_{\forall xA}) \quad \frac{\dots A(x/i)\dots(i\in\mathbb{N})}{\forall xA}, \qquad (\mathsf{Cut}_C) \quad \frac{C \quad \neg C}{\emptyset} \quad (C \in \bigwedge^+\text{-for}), \qquad (\mathsf{Rep}) \quad \frac{\emptyset}{\emptyset},$$

•
$$(\widetilde{\Omega}_P) \quad \frac{P \quad \dots \Gamma(q) \setminus \{P\} \dots (q \in \mathbf{I}_{\mu})}{\emptyset} \quad \text{with } \mu := \text{lev}(P).$$

Definition of h^+ , tp(h), $h[\iota]$

To each $h \in \mathsf{ID}^*_{\nu}$ we assign

- an inference symbol tp(h) of ID^{∞}_{ν} ,
- for each $\iota \in |\mathsf{tp}(h)|$, a derivation $h[\iota] \in \mathsf{ID}^*_{\nu}$.

For the sake of conciseness we write $h^+ = \mathcal{I}(h_\iota)_{\iota \in I}$ for $\mathsf{tp}(h) = \mathcal{I} \& |\mathcal{I}| = I \& \forall \iota \in I(h[\iota] = h_\iota).$

The definition proceeds by (primitive) recursion on the height of h.

In clause 3. we make use of the following abbreviation: $\mathsf{Cut}_C^\circ(h_0,h_1) := \begin{cases} \mathsf{Cut}_C(h_0,h_1) & \text{if } C \in \bigwedge^+\text{-for} \cup \mathcal{L}_0\text{-lit} \\ \mathsf{Cut}_{\neg C}(h_1,h_0) & \text{otherwise} \end{cases}$

Further we denote by \mathbf{d}_A the canonical cutfree ID_{ν} -derivation of $\{\neg A, A\}$.

1.1. $(\mathcal{I}h_0...h_{l-1})^+ := \mathcal{I}(h_i)_{i < l}$ if \mathcal{I} is simple.

1.2.
$$\left(\bigwedge_{\forall xA}^{y}\tilde{h}\right)^{+} := \bigwedge_{\forall xA} \left(\tilde{h}(y/i)\right)_{i \in \mathbb{N}}$$

1.3.
$$(\operatorname{Ind}_{\mathcal{F}}^{\mathcal{P}n})^+ := \widetilde{\Omega}_{\mathcal{P}n} \operatorname{Ax}_{\{\neg \mathcal{P}n, \mathcal{P}n\}} (S_{\mathcal{P}, \mathcal{F}}^{\{\mathcal{P}n\}}q)_{q \in \mathbf{I}_{\mu}} \text{ with } \mu := \operatorname{lev}(\mathcal{P}).$$

2. $(\operatorname{Ind}_{\mathcal{F}}^{n})^{+} := \operatorname{Rep}(d_{n}) \text{ with } d_{0} := \mathbf{d}_{\mathcal{F}(0)}, d_{i+1} := \bigvee_{\exists x(\mathcal{F}(x) \land \neg \mathcal{F}(Sx))}^{i} \bigwedge_{\mathcal{F}(i) \land \neg \mathcal{F}(Si)} d_{i} \mathbf{d}_{\mathcal{F}(Si)}$

3. If
$$C \in \bigwedge^+$$
-for and $h_1^+ = \mathcal{I}(h_{1\iota})_{\iota \in I}$ then:

$$(\operatorname{Cut}_C h_0 h_1)^+ := \begin{cases} \mathcal{I}(\operatorname{Cut}_C h_0 h_{1\iota})_{\iota \in I} & \text{if } \neg C \notin \Delta(\mathcal{I}) \\ \operatorname{Cut}_{C[k]}^\circ (\mathsf{J}_C^k h_0, \operatorname{Cut}_C h_0 h_{10}) & \text{if } \mathcal{I} = \bigvee_{\neg C}^k \\ \operatorname{Rep}(h_0) & \text{if } \neg C \in \Delta(\mathcal{I}) \text{ and } C = \mathcal{P}n \end{cases}$$

4. If $h^+ = \mathcal{I}(h_\iota)_{\iota \in I}$ then $(\mathsf{E}h)^+ := \begin{cases} \mathsf{Rep}(\mathsf{Cut}_C \mathsf{E}h_0 \mathsf{E}h_1) & \text{if } \mathcal{I} = \mathsf{Cut}_C \text{ with } C \in \bigwedge^+\text{-formula} \\ \mathcal{I}(\mathsf{E}h_\iota)_{\iota \in I} & \text{otherwise} \end{cases}$

5. If
$$C \in \bigwedge$$
-for and $h^+ = \mathcal{I}(h_\iota)_{\iota \in I}$ then $(\mathsf{J}^k_C h)^+ := \begin{cases} \mathsf{Rep}(\mathsf{J}^k_C h_k) & \text{if } \mathcal{I} = \bigwedge_C \\ \mathcal{I}(\mathsf{J}^k_C h_\iota)_{\iota \in I} & \text{otherwise} \end{cases}$

6. If
$$\mathcal{P} = \mathcal{P}_{\mathfrak{A}}, \mu := \operatorname{lev}(\mathcal{P}) \ (<\nu)$$
, and $d \in \mathbf{I}_{\mu}$ with $d^{+} = \mathcal{I}(d_{\iota})_{\iota \in I}$ then
 $(\mathbf{S}_{\mathcal{P},\mathcal{F}}^{\Pi}d)^{+} := \begin{cases} \bigvee_{\neg(\mathfrak{A}(\mathcal{F})\subseteq\mathcal{F})}^{n} (\bigwedge_{\mathfrak{A}(\mathcal{F},n)\wedge\neg\mathcal{F}(n)}(\mathbf{S}_{\mathcal{P},\mathcal{F}}^{\Pi\cup\Delta_{0}(\mathcal{I})}d_{0})\mathbf{d}_{\mathcal{F}(n)}) & \text{if } \mathcal{I} = \operatorname{Cl}_{\mathcal{P}n} \text{ with } \mathcal{P}n \in \Pi \\ \mathcal{I}^{*}(\mathbf{S}_{\mathcal{P},\mathcal{F}}^{\Pi\cup\Delta_{\iota}(\mathcal{I})}d_{\iota})_{\iota \in I} & \text{if } \mathcal{I} = \bigwedge_{A}, \bigvee_{A}^{k} \text{ with } A \in \Pi \\ \mathcal{I}(\mathbf{S}_{\mathcal{P},\mathcal{F}}^{\Pi}d_{\iota})_{\iota \in I} & \text{otherwise} \end{cases}$
where $(\bigwedge_{A})^{*} := \bigwedge_{A(\mathcal{P}/\mathcal{F})}, (\bigvee_{A}^{k})^{*} := \bigvee_{A(\mathcal{P}/\mathcal{F})}^{k}.$

7. If
$$h^+ = \mathcal{I}(h_\iota)_{\iota \in I}$$
 then $(\mathsf{D}_\sigma h)^+ := \begin{cases} \mathsf{Rep}(\mathsf{D}_\sigma h_{\mathsf{D}_\mu h_0}) & \text{if } \mathcal{I} = \Omega_P \text{ with } \mu := \operatorname{lev}(P) \ge \sigma \\ \mathcal{I}(\mathsf{D}_\sigma h_\iota)_{\iota \in I} & \text{otherwise} \end{cases}$

Definitions.

$$\begin{aligned} \mathrm{ID}_{\nu}^{\infty} \lceil \sigma &:= \mathrm{ID}_{\nu}^{\infty} \setminus \{\Omega_{P} : \mathrm{lev}(P) \geq \sigma \} \\ \mathrm{deg}(\mathcal{I}) &:= \begin{cases} \mathrm{rk}(C) + 1 & \text{if } \mathcal{I} = \mathsf{Cut}_{C} \text{ with } C \in \bigwedge^{+} \text{-for} \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Lemma 1.

If $h \vdash_m^{\sigma} \Gamma$ & $h^+ = \mathcal{I}(h_{\iota})_{\iota \in I}$ then $\mathcal{I} \in \mathrm{ID}_{\nu}^{\infty} [\sigma \& \Delta(\mathcal{I}) \subseteq \Gamma \& \deg(\mathcal{I}) \leq m \& \forall \iota \in I(h_{\iota} \vdash_m^{\sigma} \Gamma, \Delta_{\iota}(\mathcal{I})).$ The proof of this lemma is routine and can be left to the reader (cf. Theorem 3 in [Bu97] and Theorem 5 in [Bu01]).

Iterated Inductive Definition of W_{σ} ($\sigma < \nu$)

1. If $h \in \mathbf{I}_{\sigma}$ with $|\mathsf{tp}(h)| \subseteq \mathbb{N}$ and $\forall i \in |\mathsf{tp}(h)|(h[i] \in \mathcal{W}_{\sigma})$ then $h \in \mathcal{W}_{\sigma}$. 2. If $h \in \mathbf{I}_{\sigma}$ with $\mathsf{tp}(h) = \widetilde{\Omega}_{P}$, $\operatorname{lev}(P) < \sigma$ and $\forall \iota \in \mathcal{W}_{\operatorname{lev}(P)}(h[\iota] \in \mathcal{W}_{\sigma})$ then $h \in \mathcal{W}_{\sigma}$.

Note that (according to Lemma 1) if $h \in \mathbf{I}_{\sigma}$ and $\mathsf{tp}(h) = \widetilde{\Omega}_P$ then $\operatorname{lev}(P) < \sigma$.

Note further that \mathcal{W}_{σ} is by definition a subset of \mathbf{I}_{σ} .

Our goal is now to show that ID_{ν} is Π_2^0 -conservative over $ID_{\nu}^i(\mathcal{W})$ (where \mathcal{W} denotes the operator form corresponding to the iterated inductive definition of $(\mathcal{W}_{\sigma})_{\sigma < \nu}$). We will achieve this goal by giving an informal proof of

(1) "If h is an ID_{ν} -derivation of a Π_2^0 -sentence A and if h has height and degree $\leq m$ then A holds." which for each fixed $m \in \mathbb{N}$ can be formalized in $ID_{\nu}^i(\mathcal{W})$.

Abbreviations.

 $\mathcal{W}^* := \{h : \forall \sigma < \nu(h \vdash_0^{\sigma} \Gamma(h) \Rightarrow \mathsf{D}_{\sigma} h \in \mathcal{W}_{\sigma})\},\$ $\mathsf{FALSE}_0 := \{\neg A : A \in \mathsf{TRUE}_0\},\$ $\mathsf{E}^m h := \underbrace{\mathsf{E} \dots \mathsf{E}}_{m \text{ times}} h.$

Lemma 2.

Let R be a binary relation symbol of \mathcal{L}_0 .

(a) If \tilde{h} is an ID_{ν} -derivation of $\exists y R(x, y)$ with $\deg(\tilde{h}) = m$, then for all n we have: $\mathsf{E}^{m}\tilde{h}(x/n) \in \mathcal{W}^{*} \Rightarrow \mathcal{W}_{0} \ni \mathsf{D}_{0}\mathsf{E}^{m}\tilde{h}(x/n) \vdash \exists y R(n, y).$

(b)
$$\mathcal{W}_0 \ni h \vdash \Gamma, \exists y R(n, y) \text{ with } \Gamma \subseteq \mathsf{FALSE}_0 \Rightarrow \text{there exists } k \text{ with } R(n, k).$$

Proof:

(a) Obviously $\mathsf{E}^m h(x/n) \vdash_0^0 \exists y R(n, y)$ which yields the claim.

- (b) Induction over \mathcal{W}_0 : We have $h^+ = \mathcal{I}(h_i)_{i \in I}$ with $h_i \in \mathcal{W}_0$ for all $i \in I$.
- By Lemma 1 one of the following cases holds:
- 1. $\mathcal{I} = \mathsf{Rep} \text{ and } h_0 \vdash \Gamma, \exists y R(n, y).$
- 2. $\mathcal{I} = \mathsf{Cut}_C$ with $C \in \mathsf{FALSE}_0$ and $h_0 \vdash \Gamma, C, \exists y R(n, y)$.
- 3. $\mathcal{I} = \mathsf{Cut}_C$ with $\neg C \in \mathsf{FALSE}_0$ and $h_1 \vdash \Gamma, \neg C, \exists y R(n, y)$.
- 4. $\mathcal{I} = \bigvee_{\exists y R(n,y)}^{k}$ with $R(n,k) \in \mathsf{FALSE}_0$ and $h_0 \vdash \Gamma, R(n,k), \exists y R(n,y).$
- 5. $\mathcal{I} = \bigvee_{\exists y R(n,y)}^{k}$ and $R(n,k) \in \mathsf{TRUE}_0$.

In cases 1-4 the claim follows immediately from the IH (induction hypothesis). In case 5 we are done.

Now for establishing (1) it remains to prove

(2) $\mathsf{E}^m h \in \mathcal{W}^*$ holds for each closed ID_{ν} -derivation h and each $m \in \mathbb{N}$.

Definitions.

For $\mathcal{I} \in \mathrm{ID}_{\nu}^{\infty}$ let $|\mathcal{I}|_{\mathcal{W}} := \begin{cases} \{0\} \cup \mathcal{W}_{\mu} & \text{if } \mathcal{I} = \widetilde{\Omega}_{P} \text{ and } \mu = \mathrm{lev}(P) \\ |\mathcal{I}| & \text{if } \mathcal{I} \text{ is not of the form } \widetilde{\Omega}_{P} \end{cases}$. Note that $|\mathcal{I}|_{\mathcal{W}} \subseteq |\mathcal{I}|$ (since $\mathcal{W}_{\mu} \subseteq \mathbf{I}_{\mu}$).

 $\Phi(\mathcal{X}) := \{h : \forall \iota \in |\mathsf{tp}(h)|_{\mathcal{W}}(h[\iota] \in \mathcal{X})\} \text{ and } \operatorname{Prog}(\mathcal{X}) :\Leftrightarrow \Phi(\mathcal{X}) \subseteq \mathcal{X},$ where \mathcal{X} ranges over subsets of ID_{ν}^* .

Then \mathcal{W}_{σ} (for $\sigma < \nu$) satisfies the following "axioms":

 $(W_{\sigma}.1)$ $\mathbf{I}_{\sigma} \cap \Phi(\mathcal{W}_{\sigma}) \subseteq \mathcal{W}_{\sigma},$

 $(W_{\sigma}.2)$ $\mathbf{I}_{\sigma} \cap \Phi(\mathcal{X}) \subseteq \mathcal{X} \Rightarrow \mathcal{W}_{\sigma} \subseteq \mathcal{X}.$

Lemma 3. $\operatorname{Prog}(\mathcal{W}^*)$.

Proof:

Let $\mathcal{H}_{\sigma} := \{h : \deg(h) = 0 \& \Gamma(h) \subseteq \operatorname{Pos}_{\sigma}\}$. Then $\mathcal{W}^* = \{h : \forall \sigma < \nu(h \in \mathcal{H}_{\sigma} \Rightarrow \mathsf{D}_{\sigma}h \in \mathcal{W}_{\sigma})\}$. Suppose $h \in \Phi(\mathcal{W}^*) \& \sigma < \nu \& h \in \mathcal{H}_{\sigma}$. To prove: $\mathsf{D}_{\sigma}h \in \mathcal{W}_{\sigma}$. Trivially $\mathsf{D}_{\sigma}h \in \mathbf{I}_{\sigma}$. 1. $\mathsf{tp}(h) = \widetilde{\Omega}_P$ with $\sigma \leq \mu := \operatorname{lev}(P)$:

From $h \in H_{\sigma}$ by Lemma 1 we get $h[0] \in H_{\sigma} \subseteq H_{\mu}$. Together with $h \in \Phi(\mathcal{W}^*)$ this yields $q := \mathsf{D}_{\mu}h[0] \in \mathcal{W}_{\mu}$. From $q \in \mathcal{W}_{\mu}$ and $h \in H_{\sigma} \cap \Phi(\mathcal{W}^*)$ we conclude $h[q] \in H_{\sigma} \cap \mathcal{W}^*$. Hence $\mathsf{D}_{\sigma}h[q] \in \mathcal{W}_{\sigma}$ which yields $\mathsf{D}_{\sigma}h \in \mathcal{W}_{\sigma}$, since $(\mathsf{D}_{\sigma}h)^+ = \mathsf{Rep}(\mathsf{D}_{\sigma}h[q])$.

2. Otherwise: Then $\operatorname{tp}(\mathsf{D}_{\sigma}h) = \operatorname{tp}(h)$, $|\operatorname{tp}(h)|_{\mathcal{W}} \subseteq |\operatorname{tp}(h)|$ and $(\mathsf{D}_{\sigma}h)[\iota] = \mathsf{D}_{\sigma}h[\iota]$ for all $\iota \in |\operatorname{tp}(h)|$ (*). From $h \in \operatorname{H}_{\sigma} \cap \Phi(\mathcal{W}^*)$ by L.1 we get $\forall \iota \in |\operatorname{tp}(h)|_{\mathcal{W}}(h[\iota] \in \operatorname{H}_{\sigma} \cap \mathcal{W}^*)$, and then $\forall \iota \in |\operatorname{tp}(h)|_{\mathcal{W}}(\mathsf{D}_{\sigma}h[\iota] \in \mathcal{W}_{\sigma})$. Together with (*) this yields $\mathsf{D}_{\sigma}h \in \mathcal{W}_{\sigma}$.

Remark.

Now for establishing (2) it remains to prove

(3) $\operatorname{Prog}(\mathcal{X}) \Rightarrow h \in \mathcal{X}$, for each closed ID_{ν} -derivation h and each \mathcal{X} ,

and to find a *jump* operation $\mathcal{X} \mapsto \overline{\mathcal{X}}$ (á la [Ge43]) such that

(4) $h \in \overline{\mathcal{X}} \Rightarrow \mathsf{E}h \in \mathcal{X}$ and $\operatorname{Prog}(\mathcal{X}) \Rightarrow \operatorname{Prog}(\overline{\mathcal{X}})$.

Lemma 4. $\operatorname{Prog}(\mathcal{X}) \& \operatorname{lev}(\mathcal{P}) = \sigma < \nu \& d \in \mathcal{W}_{\sigma} \Rightarrow \mathsf{S}_{\mathcal{P},\mathcal{F}}^{\Pi} d \in \mathcal{X}.$ Proof by induction on " $d \in \mathcal{W}_{\sigma}$ ": Assume $d \in \mathcal{W}_{\sigma}$ with $d^+ = \mathcal{I}(d_{\iota})_{\iota \in |\mathcal{I}|}$. Then $d \in \mathbf{I}_{\sigma}$ and $\forall \iota \in |\mathcal{I}|_{\mathcal{W}}(d_{\iota} \in \mathcal{W}_{\sigma})$. We have to prove: $h := \mathsf{S}_{\mathcal{P},\mathcal{F}}^{\Pi} d \in \mathcal{X}$. 1.1. $\mathcal{I} = \mathsf{Cl}_{\mathcal{P}n}$ with $\mathcal{P}n \in \Pi$: Then $h^+ = \bigvee_{\neg(\mathfrak{A}(\mathcal{F})\subseteq \mathcal{F})}^n (\bigwedge_{\mathfrak{A}(\mathcal{F},n) \land \neg \mathcal{F}(n)} (\mathsf{S}_{\mathcal{P},\mathcal{F}}^{\Pi \cup \Delta_0(\mathcal{I})} d_0) \mathbf{d}_{\mathcal{F}(n)})$ (*). By IH from $d_0 \in \mathcal{W}_{\sigma}$ we get $\mathsf{S}_{\mathcal{P},\mathcal{F}}^{\Pi \cup \Delta_0(\mathcal{I})} d_0 \in \mathcal{X}$. Further, the premise $\operatorname{Prog}(\mathcal{X})$ yields $\mathbf{d}_{\mathcal{F}(n)} \in \mathcal{X}$. From $S_{\mathcal{P},\mathcal{F}}^{\Pi\cup\Delta_0(\mathcal{I})}d_0 \in \mathcal{X} \& \mathbf{d}_{\mathcal{F}(n)} \in \mathcal{X}$ by (*) and $\operatorname{Prog}(\mathcal{X})$ we get $h \in \mathcal{X}$. 1.2. $\mathcal{I} = \bigwedge_A, \bigvee_A^k \text{ with } A \in \Pi$: Then $h^+ = \mathcal{I}^* \left(\mathsf{S}_{\mathcal{P},\mathcal{F}}^{\Pi \cup \Delta_i(\mathcal{I})} d_i \right)_{i \in |\mathcal{I}|} (*).$ By IH we get $\forall i \in |\mathcal{I}|(\mathsf{S}_{\mathcal{P},\mathcal{F}}^{\Pi \cup \Delta_i(\mathcal{I})}d_i \in \mathcal{X})$, and then $h \in \mathcal{X}$ by (*) and $\operatorname{Prog}(\mathcal{X})$. 1.3. otherwise: Then $h^+ = \mathcal{I}(\mathsf{S}_{\mathcal{P},\mathcal{F}}^{\Pi}d_{\iota})_{\iota \in |\mathcal{I}|}$ (*). By IH we get $\forall \iota \in |\mathcal{I}|_{\mathcal{W}}(\mathsf{S}_{\mathcal{P}}^{\Pi} \mathcal{I}_{\ell} \in \mathcal{X})$, and then $h \in \mathcal{X}$ by (*) and $\operatorname{Prog}(\mathcal{X})$. **Lemma 5.** $\operatorname{Prog}(\mathcal{X}) \& C \in \bigwedge \operatorname{-for} \Rightarrow \operatorname{Prog}(\{h_0 : \mathsf{J}_C^k h_0 \in \mathcal{X}\}).$ Proof: Left to the reader. **Definition.** $\mathcal{X}^{C,h_0} := \{h_1 : \mathsf{Cut}_C h_0 h_1 \in \mathcal{X}\}$ **Lemma 6.** Assume $\operatorname{Prog}(\mathcal{X})$. (a) $C \in \bigwedge$ -for & $\forall k(\mathsf{J}_C^k h_0 \in \mathcal{X}) \Rightarrow \operatorname{Prog}(\mathcal{X}^{C,h_0})$ (b) $h_0 \in \mathcal{X} \Rightarrow \operatorname{Prog}(\mathcal{X}^{P,h_0}).$ Proof: (a) Assume $C \in \bigwedge$ -for & $\forall k (\mathsf{J}_C^k h_0 \in \mathcal{X}) \& h_1 \in \Phi(\mathcal{X}^{C,h_0}).$ To prove: $h_1 \in \mathcal{X}^{C,h_0}$, i.e. $h := \operatorname{Cut}_C h_0 h_1 \in \mathcal{X}$. Assume $h_1^+ = \mathcal{I}(h_{1\iota})_{\iota \in I}$. Then $\forall \iota \in |\mathcal{I}|_{\mathcal{W}}(h_{1\iota} \in \mathcal{X}^{C,h_0})$ and thus $\forall \iota \in |\mathcal{I}|_{\mathcal{W}}(\mathsf{Cut}_C h_0 h_{1\iota} \in \mathcal{X})$. 1. $\neg C \notin \Delta(\mathcal{I})$: From $h^+ = \mathcal{I}(\mathsf{Cut}_C h_0 h_{1\iota})_{\iota \in I}$ and $\forall \iota \in |\mathcal{I}|_{\mathcal{W}}(\mathsf{Cut}_C h_0 h_{1\iota} \in \mathcal{X})$ we get $h \in \Phi(\mathcal{X}) \subseteq \mathcal{X}$. 2. $\mathcal{I} = \bigvee_{\neg C}^{k}$: Then $h^{+} = \operatorname{Cut}_{C[k]}^{\circ}(\mathsf{J}_{C}^{k}h_{0}, \operatorname{Cut}_{C}h_{0}h_{10})$ with $\mathsf{J}_{C}^{k}h_{0} \in \mathcal{X}$ (by assumption) and $\operatorname{Cut}_{C}h_{0}h_{10} \in \mathcal{X}$ as shown above. Hence $h \in \Phi(\mathcal{X}) \subseteq \mathcal{X}$. (b) is proved in the same way as (a).

Lemma 7. For each closed ID_{ν} -derivation h and each \mathcal{X} we have: $Prog(\mathcal{X}) \Rightarrow h \in \mathcal{X}$. Proof by induction on the height of h: Assume Prog(X).

1. $h = \mathcal{I}h_0...h_{l-1}$ with simple \mathcal{I} : Then $h^+ = \mathcal{I}(h_i)_{i < l}$ and, by IH, $h_0, \ldots, h_{l-1} \in \mathcal{X}$. Hence $h \in \Phi(\mathcal{X}) \subseteq \mathcal{X}$. 2. $h = \bigwedge_{\forall x,A}^y \tilde{h}$: Then $h^+ = \bigwedge_{\forall x,A} (\tilde{h}(y/i))_{i \in \mathbb{N}}$ and, by IH, $\forall i \in \mathbb{N}(\tilde{h}(y/i) \in \mathcal{X})$, i.e. $h \in \Phi(\mathcal{X}) \subseteq \mathcal{X}$. 3. $h = \mathsf{Cut}_C h_0 h_1$ with $C \in \bigwedge^+$ -for: By IH we get $h_0 \in \mathcal{X}$.

3.1. $C \in \bigwedge$ -for: By Lemma 5 we get $\forall k. \operatorname{Prog}(\{d : \mathsf{J}_C^k d \in \mathcal{X}\})$ and then, by IH, $\forall k(h_0 \in \{d : \mathsf{J}_C^k d \in \mathcal{X}\})$, i.e. $\forall k(\mathsf{J}_C^k h_0 \in \mathcal{X})$. From $\operatorname{Prog}(\mathcal{X}) \& h_0 \in \mathcal{X} \& \forall k(\mathsf{J}_C^k h_0 \in \mathcal{X})$ by Lemma 6a we conclude $\operatorname{Prog}(\mathcal{X}^{C,h_0})$ and then, by IH, $h_1 \in \mathcal{X}^{C,h_0}$, i.e. $h \in \mathcal{X}$.

3.2.
$$C = P$$
:

From $\operatorname{Prog}(\mathcal{X}) \& h_0 \in \mathcal{X}$ by Lemma 6b we conclude $\operatorname{Prog}(\mathcal{X}^{P,h_0})$ and then, by IH, $h_1 \in \mathcal{X}^{P,h_0}$, i.e. $h \in \mathcal{X}$. 4. $h = \operatorname{Ind}_{\mathcal{F}}^n$: Then $h^+ = \operatorname{Rep}(d_n)$ with $d_0 := \mathbf{d}_{\mathcal{F}(0)}, d_{i+1} := \bigvee_{\exists x(\mathcal{F}(x) \land \neg \mathcal{F}(Sx))}^i \bigwedge_{\mathcal{F}(i) \land \neg \mathcal{F}(Si)} d_i \mathbf{d}_{\mathcal{F}(Si)}$. Using $\operatorname{Prog}(\mathcal{X})$ one easily shows $d_i \in \mathcal{X}$ by induction on i.

5. $h = \operatorname{Ind}_{\mathcal{F}}^{\mathcal{P}n}$: Then $h^+ = \widetilde{\Omega}_P \operatorname{Ax}_{\{\neg P, P\}} \left(\mathsf{S}_{\mathcal{P}, \mathcal{F}}^{\{P\}} d \right)_{d \in \mathbf{I}_{\sigma}}$ with $\sigma := \operatorname{lev}(\mathcal{P})$ and $P := \mathcal{P}n$.

 $\operatorname{Prog}(\mathcal{X}) \text{ yields } \mathsf{Ax}_{\{\neg P, P\}} \in \mathcal{X}, \text{ and by Lemma 4 we have } \forall d \in \mathcal{W}_{\sigma}(\mathsf{S}_{\mathcal{P}, \mathcal{F}}^{\{P\}} d \in \mathcal{X}). \text{ Hence } h \in \Phi(\mathcal{X}) \subseteq \mathcal{X}.$

Now we come to the last part of our proof, which begins with the definition of the jump operation $\mathcal{X} \mapsto \overline{\mathcal{X}}$ mentioned in (4) above.

Preliminary remark.

 ID_{ν}^{*} -derivations have been introduced as terms in polish (prefix) notation build up from inference symbols each of which as a fixed finite arity. So every ID_{ν}^{*} -derivation is finite sequence of inference symbols.

In the following we use \mathfrak{a} , \mathfrak{a}' as syntactic variables for arbitrary finite sequences of inference symbols – including the empty sequence ε . Concatination is expressed by juxtaposition. Example: If $\mathfrak{a} = \operatorname{Cut}_{C}h_0 J_D^k \operatorname{Cut}_B h_1$ then $\mathfrak{a}h_2$ is the derivation $\operatorname{Cut}_C h_0 h$ with $h := J_D^k \operatorname{Cut}_B h_1 h_2$.

Finitary Inductive Definition of $\mathbf{Q}(\mathcal{X})$ (Q1) $\varepsilon \in \mathbf{Q}(\mathcal{X})$. (Q2) $\mathfrak{a} \in \mathbf{Q}(\mathcal{X}) \& C \in \bigwedge$ -for $\Rightarrow \mathfrak{a} \mathsf{J}_C^k \in \mathbf{Q}(\mathcal{X})$. (Q3) $\mathfrak{a} \in \mathbf{Q}(\mathcal{X}) \& C \in \bigwedge$ -for $\& \forall k(\mathfrak{a} \mathsf{J}_C^k h \in \mathcal{X}) \Rightarrow \mathfrak{a} \mathsf{Cut}_C h \in \mathbf{Q}(\mathcal{X})$. (Q4) $\mathfrak{a} \in \mathbf{Q}(\mathcal{X}) \& \mathfrak{a} h \in \mathcal{X} \Rightarrow \mathfrak{a} \mathsf{Cut}_P h \in \mathbf{Q}(\mathcal{X})$. Note that $\mathbf{Q}(\mathcal{X})$ is arithmetical in \mathcal{X} .

Definition. $\overline{\mathcal{X}} := \{h : \forall \mathfrak{a} \in \mathbf{Q}(\mathcal{X}) (\mathfrak{a} \mathsf{E} h \in \mathcal{X}) \}.$

Remark.

(i) $h \in \overline{\mathcal{X}} \Rightarrow \mathsf{E}h \in \mathcal{X}.$ (ii) $h \in \overline{\mathcal{X}} \& \mathfrak{a} \in \mathbf{Q}(\mathcal{X}) \& C \in \bigwedge^+\text{-for} \Rightarrow \mathfrak{a}\mathsf{Cut}_C\mathsf{E}h \in \mathbf{Q}(\mathcal{X}).$

Lemma 8. Let $\mathfrak{a} \in \mathbf{Q}(\mathcal{X})$. (a) $h^+ = \operatorname{Cut}_A(h_0, h_1) \Rightarrow (\mathfrak{a}h)^+ = \operatorname{Cut}_A(\mathfrak{a}h_0, \mathfrak{a}h_1)$. (b) $h^+ = \operatorname{Rep}(h_0) \Rightarrow (\mathfrak{a}h)^+ = \operatorname{Rep}(\mathfrak{a}h_0)$.

Proof by induction on " $\mathfrak{a} \in \mathbf{Q}(\mathcal{X})$ ".

Lemma 9. $\operatorname{Prog}(\mathcal{X}) \& \mathfrak{a} \in \mathbf{Q}(\mathcal{X}) \& h^+ = \mathcal{I}(h_\iota)_{\iota \in I} \& \forall \iota \in |\mathcal{I}|_{\mathcal{W}}(\mathfrak{a}h_\iota \in \mathcal{X}) \Rightarrow \mathfrak{a}h \in \mathcal{X}.$ Proof by induction on " $\mathfrak{a} \in \mathbf{Q}(\mathcal{X})$ ":

1. $\mathfrak{a} = \varepsilon$: In this case the premises immediately yield $h \in \Phi(\mathcal{X}) \subseteq \mathcal{X}$. 2. $\mathfrak{a} = \mathfrak{a}' \mathsf{J}_C^k$ with $\mathfrak{a}' \in \mathbf{Q}(\mathcal{X})$: 2.1. $\mathcal{I} = \bigwedge_C$: Then $(\mathsf{J}_C^k h)^+ = \mathsf{Rep}(\mathsf{J}_C^k h_k)$ and $(\mathfrak{a}h)^+ = (\mathfrak{a}' \mathsf{J}_C^k h)^+ \stackrel{\text{L.8b}}{=} \mathsf{Rep}(\mathfrak{a}' \mathsf{J}_C^k h_k) = \mathsf{Rep}(\mathfrak{a}h_k)$. From $\operatorname{Prog}(\mathcal{X}) \& (\mathfrak{a}h)^+ = \mathsf{Rep}(\mathfrak{a}h_k) \& \mathfrak{a}h_k \in \mathcal{X}$ we get $\mathfrak{a}h \in \Phi(\mathcal{X}) \subseteq \mathcal{X}$. 2.2. otherwise: Then $(\mathsf{J}_C^k h)^+ = \mathcal{I}(\mathsf{J}_C^k h_\iota)_{\iota \in I}$ (*).

 $\operatorname{Prog}(\mathcal{X}) \& \mathfrak{a}' \in \mathbf{Q}(\mathcal{X}) \& (*) \& \forall \iota \in |\mathcal{I}|_{\mathcal{W}}(\mathfrak{a}'\mathsf{J}_{C}^{k}h_{\iota} = \mathfrak{a}h_{\iota} \in \mathcal{X}) \stackrel{\mathrm{IH}}{\Rightarrow} \mathfrak{a}h = \mathfrak{a}'\mathsf{J}_{C}^{k}h \in \mathcal{X}.$ 3. $\mathfrak{a} = \mathfrak{a}'\operatorname{Cut}_{C}h' \text{ with } \mathfrak{a}' \in \mathbf{Q}(\mathcal{X}) \& C \in \bigwedge \operatorname{-for } \& \forall k(\mathfrak{a}'\mathsf{J}_{C}^{k}h' \in \mathcal{X}):$ 3.1. $\neg C \notin \Delta(\mathcal{I}): \operatorname{Then} (\operatorname{Cut}_{C}h'h)^{+} = \mathcal{I}(\operatorname{Cut}_{C}h'h_{\iota})_{\iota \in I} (*).$

 $\operatorname{Prog}(\mathcal{X}) \& \mathfrak{a}' \in \mathbf{Q}(\mathcal{X}) \& (*) \& \forall \iota \in |\mathcal{I}|_{\mathcal{W}}(\mathfrak{a}'\operatorname{Cut}_{C}h'h_{\iota} = \mathfrak{a}h_{\iota} \in \mathcal{X}) \stackrel{\mathrm{IH}}{\Rightarrow} \mathfrak{a}h = \mathfrak{a}'\operatorname{Cut}_{C}h'h \in \mathcal{X}.$ 3.2. $\mathcal{I} = \bigvee_{\neg C}^{k}$: Then $(\operatorname{Cut}_{C}h'h)^{+} = \operatorname{Cut}_{C[k]}^{\circ}(\mathsf{J}_{C}^{k}h', \operatorname{Cut}_{C}h'h_{0})$ and

 $(\mathfrak{a}h)^{+} = (\mathfrak{a}'\mathsf{Cut}_{C}h'h)^{+} \stackrel{\mathrm{L.8a}}{=} \mathsf{Cut}_{C[k]}^{\circ}(\mathfrak{a}'\mathsf{J}_{C}^{k}h', \mathfrak{a}'\mathsf{Cut}_{C}h'h_{0}) = \mathsf{Cut}_{C[k]}^{\circ}(\mathfrak{a}'\mathsf{J}_{C}^{k}h', \mathfrak{a}h_{0}).$

Further $\mathfrak{a}' \mathsf{J}_C^k h' \in \mathcal{X}$ and $\mathfrak{a} h_0 \in \mathcal{X}$. Hence $\mathfrak{a} h \in \Phi(\mathcal{X}) \subseteq \mathcal{X}$.

4. $\mathfrak{a} = \mathfrak{a}' \operatorname{Cut}_P h'$ with $\mathfrak{a}' \in \mathbf{Q}(\mathcal{X})$ & $\mathfrak{a}' h' \in \mathcal{X}$:

4.1. $\neg P \notin \Delta(\mathcal{I})$: As 3.1.

4.2. $\neg P \in \Delta(\mathcal{I})$: Then $(\operatorname{Cut}_P h'h)^+ = \operatorname{Rep}(h')$ and thus $(\mathfrak{a}h)^+ = (\mathfrak{a}'\operatorname{Cut}_C h'h)^+ \stackrel{\text{L.8b}}{=} \operatorname{Rep}(\mathfrak{a}'h')$. Together with $\mathfrak{a}'h' \in \mathcal{X}$ this yields $\mathfrak{a}h \in \Phi(\mathcal{X}) \subseteq \mathcal{X}$.

Lemma 10. $\operatorname{Prog}(\mathcal{X}) \Rightarrow \operatorname{Prog}(\overline{\mathcal{X}}).$

Proof:

Assume $\operatorname{Prog}(\mathcal{X})$ & $h \in \Phi(\overline{\mathcal{X}})$ & $\mathfrak{a} \in \mathbf{Q}(\mathcal{X})$. To prove $\mathfrak{a}\mathsf{E}h \in \mathcal{X}$. For this it suffices to prove $\mathfrak{a}\mathsf{E}h \in \Phi(\mathcal{X})$. Let $h^+ = \mathcal{I}(h_{\iota})_{\iota \in I}$. Then $\forall \iota \in |\mathcal{I}|_{\mathcal{W}}(h_{\iota} \in \overline{\mathcal{X}})$ and thus $\forall \iota \in |\mathcal{I}|_{\mathcal{W}}(\mathfrak{a}\mathsf{E}h_{\iota} \in \mathcal{X})$. 1. $\mathcal{I} = \operatorname{Cut}_C$ with $C \in \bigwedge^+$ -for: Then $(\mathsf{E}h)^+ = \operatorname{Rep}(\operatorname{Cut}_C \mathsf{E}h_0 \mathsf{E}h_1)$ and therefore, by Lemma 8b, $(\mathfrak{a}\mathsf{E}h)^+ = \operatorname{Rep}(\mathfrak{a}\operatorname{Cut}_C \mathsf{E}h_0 \mathsf{E}h_1)$. From $h_0, h_1 \in \overline{\mathcal{X}}$ & $\mathfrak{a} \in \mathbf{Q}(\mathcal{X})$ we get (by Remark (ii)) $\mathfrak{a}\operatorname{Cut}_C \mathsf{E}h_0 \in \mathbf{Q}(\mathcal{X})$ & $h_1 \in \overline{\mathcal{X}}$, and then $\mathfrak{a}\operatorname{Cut}_C \mathsf{E}h_0 \mathsf{E}h_1 \in \mathcal{X}$. Hence $\mathfrak{a}\mathsf{E}h \in \Phi(\mathcal{X}) \subseteq \mathcal{X}$. 2. otherwise: From $(\mathsf{E}h)^+ = \mathcal{I}(\mathsf{E}h_{\iota})_{\iota \in I}$ & $\forall \iota \in |\mathcal{I}|_{\mathcal{W}}(\mathfrak{a}\mathsf{E}h_{\iota} \in \mathcal{X})$ we conclude $\mathfrak{a}\mathsf{E}h \in \mathcal{X}$ by Lemma 9.

References

- [AT09] J. Avigad and H. Towsner, Functional interpretation and inductive definitions, JSL 74 (2009), pp. 1100-1120
- [BFPS] W. Buchholz, S. Feferman, W. Pohlers and W. Sieg, Iterated Inductive Definitions and Subsystems of Analysis: Recent proof-theoretical studies, LNM 897, Springer (1981).
- [Bu81] W. Buchholz: The $\Omega_{\mu+1}$ -rule, in Buchholz et al. (1981), 188-233.
- [Bu91] W. Buchholz: Notation systems for infinitary derivations, Arch. Math. Logic 30, pp. 277-296 (1991)
- [Bu95] W. Buchholz: On Gentzen's consistency proofs for arithmetic. Oberwolfach 1995.
- [Bu97] W. Buchholz, Explaining Gentzen's Consistency Proof within Infinitary Proof Theory, in G. Gottlob, A. Leitsch and D. Mundici (eds.) Computational Logic and Proof Theory. KGC'97, Lecture Notes in Computer Science 1289, pp. 4-17 (1997)
- [Bu01] W. Buchholz, Explaining the Gentzen-Takeuti reduction steps: a second order system, Arch. Math. Logic 40, pp. 255–272 (2001)
- [Bu02] W. Buchholz, Assigning ordinals to proofs in a perspicious way, in W. Sieg, R. Sommer and C. Talcott (eds.), Reflections on the Foundations of Mathematics: Essays in honor of Solomon Feferman, Lecture Notes in Logic 15, pp. 37-59 (2002)
- [Fef] S. Feferman, The proof theory of classical and constructive inductive definitions. A 40 year saga, 1968-2008. This volume.
- [Ge36] G. Gentzen, Die Widerspruchsfreiheit der reinen Zahlentheorie, Math. Ann. 112 (1936), pp. 493-565
- [Ge43] G. Gentzen, Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie, Math. Ann. 119 (1943), pp. 149-161