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1 Ising Model

We discuss first a concrete example of a spin system, the Ising model. This is a simple
model for ferromagnetism, i.e. the phenomenon that certain materials (e.g. iron) are can
stay permanently magnetized even in the absence of an external magnetic field. We can
think of such materials consisting of elementary magnetic moments, residing in atoms
located at a crystal lattice. A magnetic moment m € R? interacts with a magnetic field
B € R? with energy

E=-m-B

(- is the scalar product). Energy is minimized by having m parallel to B.

In Ising model one simplifies by letting each m take only two values, parallel or an-
tiparallel to the field: m = u%a, o € {1,-1} and p > 0 a constant. The variable
o is called "spin" where the terminology comes from the fact that the atomic magnetic
moments often come from the spin degree of freedom of electrons.

The crystal lattice is modeled by a regular lattice which for definiteness we take to be
Z%ie. x = (11, -+ ,24) € Z% with x; € Z. To each x € Z%, we associate a spin variable
o, € {—1,1}. We call 0 = {{0,} | z € Z} a spin configuration on Z?. The set of all spin
configurations is denoted by Q = {—1,1}%",

Physical lattices are finite and so we consider also spin configurations on finite subsets
A C Z%, |A| < oo where |A| be the number of elements in A. . We denote by Q = {—1, 1}*
the spin configurations in A. In practice |A| is very large (> 10% ) so we need to study
the |[A| — oo limit, so-called thermodynamic limit. For simplicity we mostly take A a
cube centered at origin: for L € Nlet Ay :={zx € Z¢ | |x;| < L, i = 1,--- ,d} “cube of
side 2L + 1"



Definition 1.1 Let |A| < co. The Ising Hamiltonian in A is H, : 25 — R given by
Ha(o) =—J Z JIUy—hZOx (1.1)
{z,y}eBA TEN

where J > 0, h € R and B, denotes the set of nearest neighbor pairs!

By = {{.ﬁll',y} ‘ z,y € A, ‘iL‘ - Z/‘ = 1}' (1'2)

Remarks. 1. The constant h equals p|B| in the previous discussion.

2. The nearest neighbor interaction favors spins being parallel: if h = 0, H takes its

smallest value when o, = 1 for all x or 0, = —1 for all x. This models ferromagnetism.

If A # 0 then H has a unique minimum at o, = sign h = %
Since the spins interact with their neighbors it will be necessary to discuss boundary
conditions for the model. Indeed, (1.1) is the so called free boundary condition Hamiltonian

where only o, with x € A enter. Important examples of other boundary conditions are:

1. 4+ boundary condition. Take H as above, but demand that x or y is in A. For x &€ A
let o, = 1.
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2. — boundary condition is similar with o, = —1 for x ¢ A.

3. Periodic boundary condition. Take A = (Zy)? where Z, = {0,1,--- , L —1} and let By
be as in (1.2) where we replace |x — y| =1 by dp(x,y) = 1 where dy(x,y) is the periodic
distance

dp(z,y)* = Z | — y; mod LJ? (1.3)
i.e. we view Zj, as the cyclic group of order L. We can also consider Zy, X Zy,, X - -+ X Zr,,.

More generally we define:

Definition 1.2 Let & € {1, —1}%* be arbitrary. The Ising Hamiltonian with & as boundary
condition is defined as

H (o) = —J Z 0p0y — hZO’x (1.4)

{Z‘,y}EBA zeA

'We use the norm |z| = (Zd x2)1/2,
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where
By={{z,y} |zoryeA, |z—yl =1} (1.5)

and it is understood in the sum that o, = &, if © ¢ A (resp. y).

/\U o A°

Note that the + boundary conditions are special cases where 7, = +1, Vx. Also note
that H? depends on 7, only for z € 9A = {y € A°|dist(y, A) = 1}. Indeed,

E Ox0y = E 00y + g 030y

{z,y}eBa {z,y}eBa zeA,yeAe,lz—y|=1

Denote by H5¢(h, o) the Ising Hamiltonian in A with given b.c. as above. We also set
J = 1 since it will play no role below.
In statistical mechanics we view the the spin configurations o € Q5 random variables

whose probability distribution is determined by the Hamiltonian.

Remark. Recall some definitions from probability theory. A measure u be of total mass
one on a o-algebra ¥ of subsets of some set M is a probability measure. A € 3. is called
an event and p(A) is the probability of A. Let f : M — R be measurable, where R is
equipped with the Borel o-algebra, the smallest o-algebra containing open sets in R. We
say that f is a random variable. The distribution of f is the probability measure v on R
with v(B) = u(f~*(B)). For the mean of f we use the following notations

[tin=in=Es

and the variance of f is [ f*du — ([ fdp)?.

Definition 1.3 The Ising measure on 2, is the measure (note : €, is a finite set,

9] = 21)
be. 1 —sge(no)
Mﬂ,h,/\(o-) = Zb'c' € A
(B,h,\)
where Z&fh’ A) is the partition function:

= 3 0

gENA

so u is a probability measure, 1(2y) = Z (o) = 1.

oEQA



Remark. In physics, § = % where £ = Boltzman’s constant and T = temperature : (3
is the “inverse temperature”. Note that for § — oo (7" — 0) the minima of A dominate :

at low temperatures we expect magnetism.
In the real world |A| ~ 10%, so we inquire

1° What happens as A — Z< ? Is there a limit measure p = limd i on €27 This is called
A—=Z

the thermodynamic limit.
2° Does p depend on b.c. 7 How does it depend on 3, h 7
We will study pp via its correlation functions :

Definition 1.4 Let A C Z%,|A| < co. Denote

gpA = HO’I.

z€A

The correlation function of spins in A is (let A C A)

1 s
<UA>,%2,A = Z O-A/L%,CH,A<O-) = E Z e B’H?\ (h, )O-A_

gEQA o€

We often drop 3, h in the notation and write (o 4)5¢.

b.c.

Examples. For A = {z}, (0,)% b.c.

is the magnetization at x. For A = {z,y}, (0,0,)%" is

the pair correlation or 2-point function.

2 Infinite volume limit

Suppose we succeed proving that hmATzd<O'A>%'7CH’ A exists for all finite sets A C Z<¢ where
the limit is taken e.g. along the sequence of cubes Ay. It is then natural to inquire whether
these numbers actually are correlation functions of some probability measure ,u%f,’t on (some
sigma-algebra on) €. Unlike 4, 2 is not a finite set (indeed, it is uncountable). Thus we
need some measure theory to describe it. Intuitively the "density" of ,u%'f,i is proportional
to exp(—pHYS (h, o)) but this factor is ill defined since H5%(h, o) is proportional to |Al.
We will later explain how to make sense of this intuition, but for the time being we will
just show that the limits of correlation functions indeed are moments of some measure.
Let us drop b.c., § and h from the notation and suppose

Iim <UA>AL (2'1)

L—oo
exists for all A C Z4, |A| < oo. Let

Co(2) ={f : Q2 — R | f depends on finitely many o, }.
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Every f € Cy(Q2) is a linear combination of the functions o4 with |A| < oo with the
convention oy = 1. Indeed, if g : {1, =1} — R we may write g(0) = 1(g(1) + g(—1)) +
20(g(1) — g(—1)). Letting PFf := %(f|%:1 + f‘%:_l) the desired representation follows
by expanding the product in

=11k +o0.P)f
€A

where A is the set of x s.t. f depends on o,. From this and (2.1) we conclude

((f) == lim (f)a, (2.2)

L—oo

exists for all f € Cy(Q2). Co(Q) is a vector space and ¢ defines a linear map Cy(2) — R.
Clearly we have

/(1) =1 (2.3)
and
((f) >0 forall feCy(Q), f>0. (2.4)

Moreover, since |[(f)a| < supyeq |f(0)| (where we take A to be large enough to include

the support A of f; the sup is actually a max) we conclude
() < sgglf(a)l = I£ll (2.5)

where the RHS defines a norm in the vector space Cp(2).
Generally, let M be a compact metric space, and C(M) = {f : M — R| f continuous}.
C(M) is a Banach space (= vector space with norm which is complete i.e. Cauchy

sequences have limits), with the norm:
/]l = sup [f(z)].
xeM

A linear map ¢ : C(M) — R is called a state on C(M) if (2.3)-(2.5) hold. To get into this
setup we need to discuss the topology of €.

() is a compact metric space: {—1,1} is compact, so Q@ = {—1, 1}Zd is also compact
in the product topology by the Tychonov theorem (see [35] chap. 4 or [25] chap. 5). A
metric compatible with this topology is e.g.

d(o,0') = Z 271l g, — 0’|
z€Z4

i.e. two spin configurations are close if they agree in a big box around origin. Using the
Stone-Weierstrass theorem (see [35] chap. 4) one then shows that Cy(£2) is dense in C'(£2).

Thus our linear functional ¢ extends to C'(€2) and defines a state there.
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Homework : Check all this !

We may now use the basic real analysis to get our infinite volume measure. Recall
that on a compact metric space we may consider the g-algebra of Borel sets of M i.e.
the smallest o-algebra containing the open sets and Borel measures which are measures

defined on this algebra. Given a Borel probability measure p on M the linear map

6l5) = [ fn

on C'(M) satisfies clearly the conditions (2.3)-(2.5) and defines a a state on C'(M). Con-
versely:

Theorem 2.1 (Riesz Representation Theorem) Given a state { on C(M) there is
a Borel probability measure y on M such that

(f) = / fdp
Proof See Rudin, Real and Complex Analysis, chap 2 [37] or Reed-Simon, vol. 1, chap. 4
[35] O
Exercise Prove this directly for M = Q, !

We have thus obtained the following

Corollary 2.2 Suppose that for all finite A C Z2 the limit limL_m(oA)iL exists. Then

there is a probability measure u° such that this limit equals
(4)° ::/aAd/f.

We call (—)? (or u%) infinite volume state and the question of thermodynamic limit
is : find all infinite-volume states by taking different b.c. We'll see that for all b.c. the

A — Z4 limit exists (at least, through subsequences), but there can be many different p/'s.

3 d=1 Ising Model : Transfer Matrix

Consider the Ising model above for d = 1. Let first h = 0 and consider H°

L+1

57‘12 =0 Z 0i—10;

i=—L

where 0 1 =d_p 1 =0 and o141 = dr41 = 0" (note that these may vary with L).
Consider first the partition function:

L+1

Zg — Z H ePoi-19i

O',L,'”,O'L::l:l i=—L
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Let T'= (Tpo')s.0=+1 be the 2 x 2 matrix:

’ 65 Giﬁ
(Taa’) = (6600 ) = ( B_B 65 > .

Then,

Zi= Y LTI g = (T

O’,L,O'L::tl

where we use the scalar product (f,g) =>__ f,g, and f* are the vectors (eP7*, ePo™).
T is a symmetric matrix with has eigenvalues the roots of (e — \)? — e727 ie.
2coshf := Ay and 2sinh 3 := A;. The corresponding orthonormal eigenvectors are

e = \%(1, DT ey = \/ig(l, —1)T and introducing the corresponding orthogonal projec-

111 1 1 -1
Plz_ ; P2:_
2\ 11 2\ -1 1

T = MP,+ APy

tions

we may write

Since PP, = 0 and P? = P,

T?" = (2cosh B)**(Py, + (tanh B)**P,)

and
Z7 = (2cosh B)* [(f~, Puf ™) + (tanh B)*"(f~, Pof )] . (3.1)
We have (f=, Puft) = (f,e1)(f*, e1). Since
(FE e1) = (P +¢#) > 0

V2

for all # > 0 the leading term is non vanishing and we get
_ 1
Z7 =exp2L |log(2cosh 5) + O (E) + (’)(e‘aL)]

where o« = —2log(tanh /) > 0 for all g.

Definition 3.1 The free energy in volume A is
F& 1 1 Zb c
= — og Zx“.
oAt

We get for the 1d Ising and A = [—L, L]:

1

F} = —% log(2 cosh ) + (’)(L

)+ O(e™h).



It has the L — oo limit )
F7 = 5 log(2 cosh 3)

which is independent on &. Note that log Z;, is extensive i.e., once divided by |A|, it has
the thermodynamic limit.

Let us next consider the magnetization:
R e A
<O—:c>L = ﬁ Z (& Og.
L g
Proceeding as with the partition function we have

O S

0—L,0,0L

= (2cosh B)*~ ((f_, PioPf) + O(e“"(L”)) + (f)(e—a(L—w)))

where in the last formula ¢ denotes the diagonal matrix ¢d,,. But PioP; = 0 so the first

term in the numerator vanishes and combining with (3.1) we obtain
[(02)5] < Cem@EF®) 4 emell=2)y (0 as [ — oo.

Hence the magnetization vanishes.

For the 2-point function with z < y we get in the same way

_ 1
(0a0y) = —= (7, T o T g T 7V f7)
L
(f~, (P, + e 2UA) P))g(P) + e W) Py) o (P, + e 2LV Py) f1)

) (f7, Pift) + Ofemek) . (3.2)

Using again PioP; = 0 and P,o P, = 0, we get

<0’O‘>6: (f_:P10P20P1f+)
e (fiapler)

e—oc(y—x) + O(G—a(L+:U)) + O(e—a(L—y)) + O<e—aL)

Since 0 Pyo = P, and PP = P, we obtain

lim (0,0,)5 = (0,0,) =e ¥l o= —logtanh B >0 J < o0.

L—oo

The limit is again independent on &.
We thus obtained

(0,0,) = (02) (o) = e | = 0

i.e. 2-point correlation function decays exponentially (here we had (o,) = 0). £ = i is

called the correlation length. Note that £ — oo as § — oo. At low temperatures, the 1d
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model gets more correlated.

It is easy to show now (exercise) : let 21 < xg < -+ < xg,. Then

2n n
<H Ou;) i €Xp <—Oé Z(@z - $2i—1)>
=1 =1

i.e. all the correlation functions have a limit which is independent on & and equals

o

n

<H Ou;) = H<O-1'2i—10-3’52i>' (3.3)

We get

Theorem 3.2 For the 1d Ising model the thermodynamic limit exists and is independent
on b.c. (for all 5 € [0,00)). The correlation functions of the co-volume state are given by
(3.3) with

(0,0,) = (tanh )=~V

Exercise. Calculate Z%(8,h) and F(S,h) = —limL%oowLLlog Zb%<(B,h). Show the

limit is independent of b.c. and analytic in 3, h.

Remark. T is called the transfer matriz. What was important above was that
(f%,e1) > 0. This is a general fact, following from the Perron-Frobenius theorem (see e.g.

[39] and [21], Theorem 3.3.2, for an extension to compact operators).

Exercise. Consider the d-dimensional Ising model in the cylinder [~L, L] x ZJ " i.e.
we have periodic boundary conditions in d — 1 dimensions with period ¢ and & boundary
conditions in the two ends of the cylinder. Write the partition function and the correlations
in terms of a transfer matrix and using the Perron-Frobenius theorem show the limits exist
as L — oo (but ¢ fixed) and are independent on . We'll see later the last statement is

not true in low temperatures if we took ¢ = L.

Remark : What is shown above means that the 1d Ising model has no phase transition

i.e. there is a unique infinite volume state. We’ll discuss this later.

4 d > 2. High and Low Temperature Expansions

Ising model in two dimensions. Onsager succeeded calculating the free energy F'(53)
in closed form in 1944 [32|. The result is not an analytic function of 5. At the positive
real axis F(f) has a point of non analyticity at § = (. given by tanh(28,) = 1/v/2
where the second derivative of ' (the specific heat) diverges logarithmically 03F () ~

const. log |3 — B.|. Subsequently he showed the existence of phase transition (see below)



by computing the magnetization m(f3) = (o)™ in closed form. It vanishes if § < 5, and
is nonzero for 8 > By. Furthermore as 3 | 3. m(B) ~ (8—3.)"/%. He also calculated the 2-
point correlation function which has exponential decay for 3 # 3, and at 3. (coo,) ~ |z|'/*
as © — 0o. These results were revolutionary. It was the first proof of phase transitions
from first principles. The critical exponents (1/8 and 1/4 above and others) were different
form naive expectations (mean field theory) and called for explanation. This was finally
achieved with Wilson’s renormalization group theory 30 years later [44].

Other exactly solvable models exist in d = 2 (see Baxter’s book [4]). However, this
is very exceptional and, in d > 2, there are practically none so other methods are called
for. We will first develop methods to study (o4) for 5 small (high temperature) and /8
large (low temperature). These methods work for all d and for much more general models
than the Ising model. The high and low temperature expansions are still the best ways

to numerically to study the critical point.

Recall our setup: Q = {—1, 1}Zd and the boundary condition on the boundary of
A C 74, |A| < 00, is given by a configuration & € Q.

Note that to say ¢ = +1 means that we have on the boundary of A a positive magnetic

field that tends to force o, to be +1. The question is : can this result in a positive (o)
as A1t Z%7

Theorem 4.1 (a) There exists By > 0 such that if 8 < [y then (04)G, 4 has a limit as
A — Z2 (via cubes say), independent on G.

(b) Let h =0, d > 2. There ezists 51 < 0o such that if § > (51 then there are at least two
different infinite-volume (pure) states (=) # (=)~.

Remarks. 1. (a) means uniqueness of the Gibbs state, see below.
2. (b) means phase transition. See next section.
3. In d = 2 there are only 2 (pure) Gibbs states [1], in d > 3 there are many more [12].

4. Finally, it can be proved, see [3] that Sy = (.
We prove (a) in this section and (b) in section 4.3. The result is due to Peierls,
Dobrushin and Griffiths [33, 9, 22].

4.1 High Temperature Expansion

We use an expansion due to M. Fischer [16]. When J =0, in (1.4) (and 8 = 1), p% is a

product measure

hoy
b.c. _ e _
pa (o) = I I eh e h I I v (0z).
TEA TEA
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Thus
]
(oa)he = (Z ayh(0)> = (tanh h)M“
o==1
factorizes and is A-independent. We wish to show that for small 5 our measure approxi-

mately factorizes. Let h = 0 for simplicity. Write (since 0,0, € {—1,1})
7% = cosh 3 + 0,0, sinh 3 = cosh B(1 + o,0,tanh 3).

Note that for § small tanh § is small. Consider e.g.

Z azaye_m{
(0,07 = T
P
Notation. A bond is a nearest neighbour pair {z,y},z,y € Z% |r — y| = 1. We may
picture a bond by a line between the points ME— It is a special subset of Z<.
Let us first discuss the free b.c. case. With this notation

H[{ree(o_> _ Z o)

beBx

where we recall By denotes the set of all bonds b C A. Thus (with |Ba| the cardinality of
Ba)

—BHT (o) _ (cosh 3)/Bal H (1 + oy tanh B3).
beBA

Insert this in (0,0,)a, cancel (cosh 3)BAl in numerator and denominator and expand the

Z Z UxayHab(tanhﬂ)lB‘

>free o oeQp BCBy beB

v Z Z Hab(tanhﬁ)|3|

oc€Q) BCBp beB

product over b:

Definition. Given B C B,, a family of bonds, let 0B denote the set of sites x € A that

occur an odd number of times in the bonds in B.

11



Example.

Y
T o—o B =
s—o— l . 0 {z,y,z,w}
z B
Since Z o" =0if n is odd, we get
o==1
Z (tanh )P/
ree B:0B={z,y}
<0w0y>f\ = -

Z (tanh )P/

B:0B=0

This is the starting point of the high temperature expansion. We use it to prove the

existence of a finite correlation length.

Theorem 4.2 There exists 5y > 0 such that for 5 < By
(oao, )] < Celovle

uniformly in A (i.e. C, £ < oo are A-independent).

Proof Each B with 0B = {z,y} contains a subset of bonds P = {b}, b =
{z;, i1}, v1 = x, 2,01 = y (if not, 0B # {z,y}, show this ). We call P a (connected)
path joining z and y.

I
]

Thus every B in the numerator can be decomposed as B = P|J B’ where P is some

set as above and 0B’ = (). Given B, P is not unique, but let us choose it arbitarily, and
call the choice P(B).

We may then rewrite the numerator as

> “(tanh B)F1 N " (tanh B)/7

3 B'eB(P)

where the sum over P runs through the paths joining = and y and B(P) consists of sets
B’ C By such that 9B’ = () and P(P|JB’) = P. Since B(P) C {B € Bx|0B = 0} each

12



term in this sum occurs in the denominator and we have

ZB’eB(P) (tanh ﬁ)|B/|
> pop_p(tanh B)I5l

<1

and so
0 < (020,04 < Y _(tanh B)!*. (4.1)
P

To control the sum over P write as above P = {(z;, z;41) 1, , 1 = @, Tpy1 = y. Given

x; there are at most 2d nearest neighbours z;,1 and n is at least |z — y|. Thus
(4.1) < Z (2d tanh B)" < Cele-vl/t
n>|z—y|

if 2d tanh 3 < 1 0.

Remarks.
1. We could have chosen P self-avoiding and so could have had only 2d — 1 choices :
Ziv1 # xi—1. Thus (2d — 1) tanh § < 1 suffices.

2. Ind=2,tanh 3, = V2 —1=0,4142.... We got tanh 3 < % which is not that bad. As
d — 00, our estimate tanh 5. ~ 1/(2d — 1) becomes exact by combining [16] and [18], see
[6]-

We now slightly modify the previous argument to prove part (a) of Theorem 4.1.

Proof of Theorem 4.1 (a) We prove uniqueness (independence on b.c) of the limit.

Existence is analogous. Consider 7,5’ € 2 and
—/

Y g,
o)k — o)t = S e M)

— (same with primes
(

3 e,

o,0’!

= . — (4.2)
R e
We expand slightly differently (to understand why, see Remark after the Proof).
i) = (14 )
fuy = PO |
Note that
0< fay < 46(1 + fuy) (4.3)
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using 0 < e* — 1 < ze” for 2 > 0, and 0 < 0,0, + 0,0, + 2 < 4. Expand in powers of
f as before, but only in the numerator : let By be the set of bonds intersecting A (i.e.
b= {x,y}, either z or y is in A), then

Y. (ea—a ]l

BCBy oo’ beB

(0a)f — (oa)} = Z H 1+ /)

oo’ bEBA

(4.4)

Let us say that b € B is connected in B to A if 3{b;}};, b € B i =1,--- ,n such that
b = {x;,xi11},b1 = b and x,.1 € A, see the picture.

e 1)

b, b, b, b,

1

Let By C B be the set of b in B connected to A. Suppose that no bond in By
intersects A° (i.e. all are in A i.e. all f, depend on 0,0’ and not on 7,5"). Then that
term in (4.4) vanishes. Indeed, the sum over o, 0/, with x € Uyep,bU A factorizes out and
vanishes, since [ [, B, Jv 18 symmetric under the interchange of o and o’ whereas o4 — o’y
is antisymmetric.

Hence, the nonvanishing terms in (4.4) have B’s such that B includes a connected path P
of bonds joining A to A°.
Bound the numerator as

(oa—a) [T Hl<2]16 II H <26 TJC+5) I 5

beB beP  beB\P beP beB\P

using (4.3) in the last inequality (Recall that f, > 0 !!); and so, picking, as in the proof
of Theorem 4.2, for each B, a choice P(B) of P,

YD (oa—0dl) Hfbr<224ﬁ'P‘Z > TIa+m ] 5 (4.5)

B o,0' bCB oo’ B'eB(P)beP beB’

where B(P) is the set of B’ C By \ P satisfying P(B’U P) = P. Now,
Z Hfb Z Hsz H (1+fb)
B’'eB(P) beB’ B/'CBA\P beBA\P
S0
<23 s Y T+ ) (4.6)
P

oo’ beBy
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The denominator in (4.2) equals » . [Tz, (1 + fi), so combining (4.2) and (4.6) we
obtain

| (o)} — o—A”|<2Z4B‘P‘<QZZZ4ﬁ“" (4.7)

r€A yeOA P:x—y

Taking 8dS < 1 the sum over paths is bounded by C(8d3)*~¥ and then
| {0a)3 = (04)X | < CIA] [0A|(8d3) AN, (4.8)

where OA is the boundary of A. For A = Ay, a cube of side L |OA] oc L4, dist(A, OA) o< L
and thus (4.8) is bounded by < C|A|L?~1§L with § < 1. This tends to zero as L — oo. .
U

Remark Note that the positivity of f,, was crucial in (4.5). This is why we did not use
the previous expansion. This method generalizes to a very general class of Hamiltonians,
see |7].

Exercises.

1. Estimate [(64)% — (04)%/| in for A C A’ the same way:

S e e, o

5 5 0€Qp o'€Q )y
A — (0A =
< >A < >A’ Z Z e*B/HA(U)*ﬁ,HA/(U/)
o€Qp 0'€Q )/

Expand e #Ha(@)=6Ha (') 35 above and note that only B’s connecting A to A¢ contribute.
Use this to show that the limit as A * Z¢ exists.

2. Similarily, write

o2 o Ioa 1 — o)— o' _ o)— o
[(oxoy)i — {ox)3{ov)Al = 526 PO oy — ol ][oy — a}]) Y e PP,

oo’

expand e PH(O—AH() 55 above and prove:
[{oxov)3 — (ox)3(ov)]| < Cem ™)

since here only B’s connecting X and Y will contribute i.e. all correlations functions

decay exponentially.

4.2 Low Temperature Expansions
Consider H} (o Zab For B — oo, e #"" reaches its maximum when all

op, = 0,0y = 1 ie. if all 0, = +1 (because of the 4+ bounadry condition). Consider,
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say in d = 2, the configuration o, =1 V& # z, 0, = —1:

+ + +
+ - +
+ + +

This has energy SH = 5H minimum + 85 (4dS in general dimension). Consider a connected
region R of —:
+ + 4+

+ + + +
+ + + +

oo+
This has H = Huin + 2|0OR| where |OR| = # bonds {z,y} with z € R,y € R°. We say

that there is a contour around R. Let us formalize this. Given o € €1, let
C(O‘) = {b S BA| oy = —1}

i.e. all bonds in A or joining A to A where o, # 0y,

The dual lattice of Z% is the lattice Z* + (3,1,..., 1) = {(z1,...,2q4)| i — 3 € Z,

i =1,...,d} where we consider both imbedded in R%. Let us visualize bonds b = {z,y}

as the closed line segments in R? from x to y O

Similarly is a 2-cell {z,y,z,u} ,I a 3-cell etc. 2-cells are often called

y

plaquettes.
Now a bond b in Z¢ defines a unique (d — 1)-cell b* "orthogonal" to it in the dual
lattice:
b*
?
| b*
e
b b
¢ d=3
d=2

Let B = {b*| b € Bp}. Let us denote
C*(o) :={b* € By| be C(0)}

i.e. C*(0) is a set of bonds (d=2) or plaquettes (d=3) in the dual lattice.
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We say two bonds b # b are connected if [bN Y| = 1 (i.e. they share one site) and two
plaquettes p # p’ are connected if [p N p’| = 2 (i.e. they share a bond). Given a set B of
bonds (plaquettes) consider the graph G(B) with vertex set B and edges {b, b’} if b and b’
are connected. Let G, be the connected components of G(B) and B, the vertices of G,
We call B, the connected components of B. We say B is connected if G(B) is connected.
By some abuse we say B and B’ are disjoint if no b € B, b/ € B’ are connected.

We will now characterize the connected components of C*(o).

Definition 4.3 A contour vy is a connected set v C B}, such that (d=2) each site z of
the dual lattice belongs to an even number of bonds b*, with b* € v or (d=3) each bond
of the dual lattice belongs to an even number of plaquettes b* € . Hence contours are
closed paths (d=2) or closed surfaces (d=3). We say a family I" of contours is compatible

if all v € I' are connected and all v,~" € I' are disjoint.

Example.

Allowed : |:|:|

Not allowed :

Lemma 4.4. The family I'(0) of connected components of C*(¢) is a compatible family

of contours. Conversely, given a compatible family I' of contours there is a unique o such

that I' = I'(o).

Proof. C*(0) has the property that x belongs to an even number of bonds (see figure).
Hence its connected components have this property.

Conversely, given I', let g € A° (so 0., = +1) and let P be any path of bonds from z,
to x. Let N(P) be the number of b € P with b € C(0), i.e. the number of times P crosses

contours (see figure). Put o, = (—1)¥"), This is well defined since if P’ is another path

then N(P) — N(P’) is even (show!). O
q
b3
bl
u A\
b, We have since 0? = 1,0,0,0,0,0,0,
b*
4 — J—
o . — oyo, = 1 = 0p,04,0p,04, = even num-
’ ber of g5, = —1
b,
y w

17



Let us denote by G, the set of compatible families I' of contours v € B}. The Lemma
implies:

—BHL(0) = BNy —28 > ||

€Tl (o)

and
Zi = eBNA Z H 261 (4.9)
TeGp vell
where we sum over the set of compatible families of contours I'. Also,

ST [T

reGy ~er €A

S [

reGy ~er

(oa)} = (4.10)

N,(T") = # of v € I surrounding z.

4.3 Magnetization

We prove Theorem 4.1. (b) by proving

Theorem 4.3. (Peierls argument). There exists f; < oo, 6 > 0 such that for B > p
(00)x = —(o0)s =0

for all A.
Proof. We have

(o)f =P(og=1) —P(og=—-1) =1—-2P(og = —1).

Now P(0g = —1) equals the probability that there are an odd number of contours sur-

rounding origin which in turn is bounded from above by the probability that there exists
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a contour surrounding origin. Denote by G} C G, those compatible families of contours

for which there exists 79 € G surrounding origin. Hence

Plog=-1)< 3 [[e 2l S T2

Fe(GOA yel T'eGp vel

This we may write as

— Z o281 Z H e=28hy Z H e~ 281

v surrounds 0 I~y }UreGy vel’ T'eGp vel

Since each term in the sum in the numerator occurs in the denominator, we get

P(og = —1) < Z e~2hl = Z 6_26"#{7 : 7y suwrrounds O, |y| =n}.  (4.11)
v surrounds 0 n=2d
To estimate the number of contours of « surrounding origin with |y| = n we pick a

b* € Bj and count the number of connected subsets of B} of cardinality n containing b*.
By Lemma 4.4. below this number is bounded by ¢2* with ¢, = 4 and ¢3 = 12. Since the
distance of b* to origin is bounded by n the number of choices of b* is bounded by (2n)¢
and so

#{~ : v surrounds 0, |y| = n} < (2n)dC§n.

Hence, for § > logcy the series in (4.11) converges, uniformly in A and tends to zero as

B — oco. The claim follows. Obviously (o¢), = —(0q) 4. O

Lemma 4.4. . The number of connected subsets of By of cardinality n containing b* is
bounded by c2* with co = 4 and c3 = 12.

Proof. A set B* C Bj is connected if and only if the graph G(B*) is. By Lemma 4.5.
any such graph is covered by doing a walk on B} with starting point b*, length 2n and
jumps between connected vertices. In 2d each 0* has 4 such neighbors and in 3d 12. The

number of such walks is ¢2”. The claim follows. O

Lemma 4.5 (Koéningsberg bridge Lemma ) Let G be a finite connected graph and let oy
be a vertex of G. Then there is a path starting and ending at o which includes each line

of G only twice.

Proof. Induction in the cardinality of the vertex set v(G). Let v(G) = n and {aq, as} be
an edge of G. Consider the graph G’ = G\ {a1, as}. If G’ is connected, by induction there
is walk w : ag — ap visiting all its edges twice. The walk w' : ag = a3 = as — a1 — ag
where the first oy is the first visit of w to «; is the desired walk.

If G’ is disconnected and ag and «; are in the same connected component induction
provides two walks ag — ap and ay — as. Then the desired walk is ag = a3 — ay —
Q9 — ] — Q. ]
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Remark 1 (og) # 0 is called spontaneous symmetry breaking : Ha(c) is invariant (if
h = 0) under ¢ — —o except for the b.c. (H{ and H5" are). As A 7 Z¢ the b.c. have a
finite effect | Another way to state this : Let h # 0. Construct limy sga(—)3 , = (=)n. It
will be independent on & (see below). Then limyo(—), = (=) T, limpo(—) . In particular,
let m(h) = (o0)n. Then m(h) is discontinuous at h = 0. This is called a first order phase

transition.

Remark 2 The existence of the limit A ~* Z¢ can be proved along the same lines as for

[ small above.

4.4 High and Low Temperature Expansions

One can go further and get identities and not only inequalities. Let us return to high

Z (tanhp)?!

temperature expansion

Numerator : x

Denominator : |:|:|

Try to cancel the so-called “vacuum graphs”, i.e. the ones not involving x or y. Decompose

B into connected components: B =, B, B, with B, connected sets of bonds (as defined
in Section 4.3). Denote by B a family of connected, mutually disjoint (i.e. disconnected)
sets of bonds and by B the set of such families. In the numerator, we have one component,
say B, such that 0By = {x,y}. So

(020, = > p(B) > T e®)> ] p(B):

By connected 0B1={xz,y} B:{B:1}UB€cB BeB BeB BeB

We have defined
p(B) = (tanh B)”!.

The algebra we will perform does not depend on the explicit expression of p. The cancel-
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lation is performed by the following trick. Consider the partition function

o 1 n
2= lemy=>— > IloB) (412)
BcB BeB n=0 (B1,Ba,...,By) a=1
B;NB; =0
oo 1 n
S SE D SR | N (4.13)
n=0 (By, ..., Bn) a=1 a<pf
(no constraint)
where the n! comes from writing the sum over the unordered sets B = {By,..., B,} as
one over ordered ones (B, Bs, ..., B,) and on the second line we introduced

0 BunNBs#0

B., Bg) =
X(Ba, Bg) {1 B, By =0

so that the last product imposes the constraint on the first line.
Note that if we didn’t have the constraint in (4.13) we could do the sum

> % > [ p(Ba) = exp( ZZ; p(B)). (4.14)
n=0 (B1,---, Bn) a=1 BCBa

(no constraint)

We will now expand the constraint to derive a generalization of (4.14). To achieve this
we write x(By, Bg) = 1 — n(B,, Bg) with

0 B,NBz=10

77(30”35):{ 1 BaﬂBﬂ7éQ) .

Then
[T =n(BaBs) =D [[ (—n(Bas Bs)) (4.15)
a<f G (wp)eg

where G is a collection of pairs {a, 5} o, =1,--- ,n,a # 5. G can be identified with a
graph on the vertex set {1,--- ,n} with edges {a, B} that connect vertices. G is connected
if any two vertices «, f can be connected by paths in G. Decompose G into connected

components
k
g= U Gi, G; connected. (4.16)
i=1

Note that this forces the corresponding B,’s to form a conneted network since 7 # 0 only

ifBamBB;é@@. Let C;= | J B

acv(Ga)
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Reorganize the sum (4.13) with (4.15),(4.18) inserted :
sum over k and a sum over k connected sets (C1,...,Cy).
sum over n > k
sum over all families of k subsets of {1,...,n} (i.e. v(G;) above)
sum over B,’s
sum over connected graphs on those subsets.

So, one gets:

> 1 n! 1
Z:Z Z Zﬁ Z nl[...nk!H(*)
k=0 (Cy,,Cp) n>k (n1,--- ,np)

n; =n

NI S T[eB) I (0B Bs)
-+, Bn,) a=1

i= (a,8)€G

H
5
o]

g
connected graph on
U B = e oy

The combinatorial factor (*) is the number of ways to choose a family of k subsets of

{1,...,n} of sizes {nq,...,ni}. Indeed, this number equals
n—1
n n—ni n—mn;— Ny n—Zni 1
ny No ns =1 k!
N
n! (n —mnq)! 1 n! 1
B nil(n —ny)! nal(n —ny —ny)! T Hlenilg

n
where comes from choosing the n; elements of set 1 etc. and we divide by k!

ny
because order of the sets does not matter.
Thus
=Z Z > Hn, > Z Hﬂ ) T (=n(Ba. Bs)
=,Ck) (n1, ng) =1 (B1,-++,Bn;) (a B)eg

[J R connected on
2 fi i {1,--+,n}

34 (Tse) —myse

k=0 c

X X % S [Ie) I CaBaB) @17

no (B, g a=1 (a,8)€G
Us, = c connected on
{1, N Yn}
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We have achieved our goal. With our assumptions, the exponent is O(A). The main

estimate that guarantees this is

Lemma 4.6 Let [p(B)| < €lPl. There exists ¢y s.t € < ¢g = | f(O)] < (2¢)!°.

(2 is arbitrary here). (Recall, B is always connected here).
Proof Omitted, see Simon’s book [42] or Seiler [38§]. O

Remark 3 Note that this is non-trivial. We can not estimate in (4.17) | —n| < 1. Indeed,
the number of graphs on {1, -- ,n} is the subsets of {1,--- ,n} x {1,--- ,n}ie. 27" and
the number of connected graphs is also > e ¢ > 0 which is much bigger than n! < n” so
the sum does not converge absolutely. One needs to account for cancellations. Note that
> ang I1(=n) = [T x(Ba, Bg) which is < 1. Connectedness of G makes estimates harder.

As an example consider the trivial case of Ising model in a box of side 2. There is only

one nontrivial term in the high temperature expansion for the partition function:
Z =1+ p(B) = os0B) — o= X 508"

with p(B) = (tanh 8)%. On the other hand, in the expression for f(B) we have B; = B

for all 7 and so
p(B
Z . S -

G {ap}eg

where G runs through connected graphs on {1,...,n}. Comparing these two expressions

we see that this sum equals %

Given the Lemma, write
> fO) =2 Y GlO)= fa
CCBa beBy CCBy: bGC beB

where we noted that in the second sum each C' C By is counted |C| times. Then

=1
foal < (2
n=1

where S, is the number of connected sets C,|C| = n, containing a given bond b. By
Lemma 4.4. |S,| < C™. Thus, for e small |f, 2| < Ce < oo uniformly in A and free energy

—TBA] A‘ log Z is uniformly bounded.
Actually, one easily proves that

lim — log Zy = —d/f li =
i gy 8 20 = =18 i o o=

independently of b (there are d bonds per site in Z%).
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Also, we get : Z p(B) exp ( Z f(0)>

0B={z, CNB=0
(a0, =

(3 f(0))
= > pBlexp Y f(C)=p(B) (4.18)

O0B={z,y} C:CNB#0

and |p(B)| < elPleCeBl < (2¢)!Pl. (4.18) is a version of the high temperature expansion.

It can be further processed but we won'’t do it here.

4.5 Ising model-summary

One expects the following phase diagram for the Ising model.
e If h # 0 the limit of (—)Z is independent of the boundary condition &.

e If h =0 and 3 € (f,,00) there are two translation invariant states states (—)* and if

B < f. the limit of (—)Z is independent of the boundary condition &.
e The correlation length £(h, 5) < oo except at h = 0,5 = .. Le.

((o405) — (oa)(oB)| < C(A, B)e UABIE,

e At h =0, = . one expects

c
<0$U > ~|o— o T 1.
y/ “le—yl— |z — ylo
At d=2, a=1/4 (exact)
d=3 a=1.0364 (numerical, see wikipedia Ising critical exponents)
d>4 a=d-2 (proven for d > 4)

Because of the behaviour for d > 4, one usually writes a = d — 2 + 7, and one calls n the

“anomalous exponent”. We will explain the exponent d — 2 below.

Rigorous results include : 3. is unique, & < oo up to B, A A Z¢ limit exists for all 5 and
h, and much else. The deepest is n = 0 for d > 4.

There are two different kinds of phase transitions in the Ising model:

1. First order transition For h # 0 let m(h, 5) = (0,) where the expectation is in the
unique state (this state is translation invariant so (o,) is independent of z). If 5 > f.

(low temperatures) then limy o m(h, ) = —1}3%1 m(h,B) > 0 ie. m is discontinuous at

h =0 (if < 3., m is continuous).
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unique state

Y

unique state

2 states

na (h)
/}/*ﬂ

2. Second order transition Let A = 0, consider

hl0

(o0 (= limplonlan ) = m(9)

Then m(5) > 0 for 5 > B., m(5) = 0 for 5 < .. What about m(5.)? m is continuous at

Be: limp » 1, m(T) = 0 =m(T,) (we use T'= 7' as a parameter).

wA

7

However, | 9% |— 0o as '/ T,. One has m(T) ~ |T. — T|° where /8 (not equal to 7!
here!) is a critical exponent for the magnetization. In d = 2, § = % (exact), in d = 3,
B = 0.3265 (numerical), in d > 4 one expects = % (this is proven for d > 5). The
continuity or discontinuity of the order parameter (m here) is refered to as second order
and first order transition. Note also that £ remains finite at a first order transition but

becomes infinite at second order transition.
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Remark 1. The states above are translation invariant i.e.
(04) = (0a4e) VA CZ% Vo eZ?

where A+ z = {a + z|a € A}. Thus Ising model has two translation invariant states in

low temperature and one in high temperature or nonzero field.
Ising model has also non-translation invariant ones. One considers so called Dobrushin

boundary conditions, see the figure.

+~ o+ b o4
+1 ‘
+ + A
+ b
. !
| 7 |
!

These force a contour (+ in the figure) joining the points where the boundary condition
changes. It turns out that in d = 2 one does not get a new state this way [1]. In a box
of side the contour fluctuates strongly: the expected deviation from the horizontal line is
L?* and an observer sitting at origin will see either a plus state or a minus state: in the

L — oo limit the state is a convex combination:
(=) =p(=) "+ =p)=)".

with some p € (0,1). However, in d = 3 at low temperatures the fluctuations are O(1) in
L and one does get a new state [12]| with an interface : (o,) > 0 for x far above, (o,) < 0
for x far below. However it is believed that there is a 5, > f., the roughening transition

point so that the interface state disappears for § < [, due to large fluctuations of the

interface.

Remark 2 Why is h # 0 unique ? Let e.g. h > 0 Let us try to construct — a state:

—_—

(—

e —_— —

z_ /\</
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The weight of o = —1 i.e. the configuration with no contours is e #(-20z0y—h20z) —

ePIBale=BMAl - The weight of the configuration where we have a contour at the boundary
ie. v=0A":

I .

A 3=OA

equals e?1Brlg=BRGEION=IA) - For A a L—box [0A| ~ L1, |A| ~ L% so the contour is more
probable! Hence, we expect that the A — Z¢ limit is the same as that of the + boundary

condition state. One can make a proof along these lines, see [20].

Remark 3 What about h which is not constant :

BH = B(=Y 0.0y + > haoy).

TEA
Let us consider h,’s random : let each h, be a random variable with zero mean : h, = 0
and different h,, h, are independent, identically distributed. Thus we pick a configuration
of h = {h,} randomly from such ensemble and consider the Gibbs state with this h. What

do we expect 7 Consider low temperature and say + boundary conditions. A contour ~y

costs now an energy and it weight is

exp(—BR21Y[ +2 ) hyl)

TEInty

Int_Y

Let v be an L-cube, so |y| oc L~ how about Z h, ? This is a sum of L? independent
TE€Int 7y
random variables, therefore of size o< L%? since its variance is

E() h.)* =) Ehyh,=> Eh:+ Y Eh,Eh, = L'EL’
T,y T

zAy
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Thus, ifd—1 > g i.e. if d > 2, the magnetic field is unlikely to suppress contours and we

expect 2 states. For d < 2 it seems to have a chance.

Theorem 4.8 For 3 large, Eh? small, d > 3 our model has 2 states: one with (o) > 0
and one with (o,) < 0. Ford < 2 there is only one Gibbs state (this holds with Probability

one in h).

Proof See [5] for d > 3 and 2] for d < 2.

4.6 Bounded spin models

Let us say a few words about the general formalism of classical statistical mechanics on

a lattice.

1. The “spins” o, can take more general values than £1. By a bounded spin model one
means o, € M where M is “bounded”, generally a compact metric space. Let us list a

few examples :

a) g-state Potts model. o, € {1,2,--- ,¢} and the Hamiltonian with free boundary

D dnua,

{:E7y}€BA

conditions is

(0 is Kronecker delta). Thus to minimize energy nearest neighbours want to be the same.
For ¢ = 2 this is Ising model: §,,» = 3(1 + 00’). The model has S, symmetry (= group
of permutations on ¢ objects): Let m € S,, (so 7 is a bijection from {1,--- ¢} into itself),
and Ty : Qp — Q1 (Tr0), = mo,. Then H(T,0) = H(o). At low temperatures we have
q phases:

Exercise. Devise a Peierls argument to construct a state (—)? with boundary condition

= p so that as § — oo, P(og = p) — 1.

At high temperatures there is a unique infinite volume limit which can be constructed
with a high temperature expansion. We can copy our arguments for the Ising model by
writing

e Pozoy = 6_ﬁ<1 + fay)
where f,, = e?!70oeo) —1 =4, , (e —1). Then

BIBAlp—=BHA(e) _ H (1405, 0, (" — 1)) Z H Oopo, (€7 —1)  (4.19)

{z,y}eBa BCBj {x,y}eB

We have 0 < f,, < B(1+ f,y) and the thermodynamic limit and decay of correlations can

be done as in the Ising case

Exercise. Check this!
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The high temperature expansion has actually an interesting structure. Let us consider
the partition function i.e. (up to a trivial multiplicative factor) the sum of (4.19) over o.
The set of bonds B defines a graph G with vertex set v(G) = A and edge set e(G) = B.
Let GG, be the connected components of G. The Kronecker deltas force all the spins to

be equal in each v(G,) and the spin sum factorizes over the v(G,). We obtain then

Z BIBAlg=BHA(0) _ Z(eﬁ — 1)@l ) (4.20)
o G

where n(G) is the number of connected components of G (note that each z € A not
belonging to any of the bonds in B is a connected component G, with v(G,) = {z} and
e(Gy) = 0). Eq. (4.20) is called the Fortyuin-Kasteleyn representation for the partition
function of Potts model. It has an interpretation of a percolation model, see [23].

As the Ising model Potts model as a critical (inverse) temperature . separating the
high temperature phase from the low temperature phase. In d = 2 and ¢ < 4 the
correlation length £ is infinite at 8. and finite elsewhere and the transition at (. is second
order. For ¢ > 4 the transition is Ist order and ¢ < oo. This should be the case in d > 2

and ¢ > 2 as well. This is proven for ¢ large enough in all dimensions, see [28].

b) O(N)-models. Here o, € S¥~! = sphere in RY i.e. 0, is a vector &, € RV, ||7,|]> = 1.

We take
H=— > 7.7,

lz—y|=1
This has O(N) symmetry: Let R € O(N) i.e. R = N x N orthogonal matrix, RT R = 1.
Then H(Ro') = H(d) where (RG ), = Rd,. The N = 2 case is called the XY-model,
N = 3 the classical Heisenberg model. These are very interesting. First, there is no
symmetry breaking when d = 2 : there are no states with (7,) # 0. This is called the
Mermin- Wagner theorem |31, 14]. We’ll prove it in section 5 below.

In d > 3 the O(N) models have symmetry breaking :
for < B, (2) =0, for 8> B, (7,) =m(B)n, neSV

There are infinitely many low-temperature states, parametrized by unit vectors n [18].

For d =2, N = 2 and N > 3 behave qualitatively differently. For N = 2 (XY -model
or plane rotator), there is a critical temperature . where & becomes oo: For f < f,
£(P) < oo and for B > B, £(B) = co. The correlation function has a peculiar decay if
B> Be: {o.0,) ~ |z —y|~*® where a(83) depends on 3 [27, 19].

For d = 2, N > 3, one expects £(3) diverge as e’ when 3 — oo (which is proven as a

lower bound).
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c) Gauge theories Consider bonds b with orientation b = (z,y) # (y,x) and denote
(y,z) = bt
The spins ai"e indexed by oriented bonds b and take values o, € SU(N) (N x N unitary

matrices, det g, = 1). Moreover we let 0,-1 = (03,)"!. Hence the state space is Q) =
(SU(N))Pn.

_\r
b,
Let p be a plaquette and choose arbitarily an orientation : by 4 ¥ b,
Vi
\
b
Put : 3
1 B
Sp = Re Tr Ob0py O30y = §(TI' Ob0phyOp3Opy + Tr Opy ** 'O'b4>

1
- E(Tl" Opy =+~ Oy + Tr (Ub1 o 'Ub4)_1)
(since Tr U =Tr UT =Tr U~! for U € SU(N)) and
Ha=)_5,
pCA

This Hamiltonian has a huge symmetry, the gauge symmetry : Let Gy = XzepSU(N)
ie. g€ Gyisamap A 32z — g, € SU(N) ie. at each point x € A choose a matrix
gz € SU(N). G, is the gauge group in A. It acts on spins as follows. For o € 0, g € Gj,
let

U(g)o)s = gu0s9, "

where b = (x,y). Then we have

SP(U(g>J) = ReTr [gz10b1g;219z20-b2g;31 e gg4lgm4o-b4g;11] = Sp(g)

X, X,

This is a big symmetry and in all dimensions it remains unbroken. The reason being
that a local symmetry such as U(g), g € G does not change the Hamiltonian, even with

arbitrary boundary conditions, provided those b.c. are on the boundary of A’, with A
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strictly included in A’. Then, the fact that the gauge symmetry remains unbroken is an

immediate consequence of the DLR equation (5.4) below.

2. The last example had a 4-spin interaction. Let us now generalize to give the general
formalism of bounded spin models. Thus, let M be a compact metric space, define as
before the infinite configuration space = MZ%’, and, in a finite volume Q) = M*. Q is
still a compact metric space (by Tychonov), with metric
D(o,0') = ZQ*md(ax,U;)
zeZ?
with d the metric on M. The measures on {2 we are interested in are characterized by

two data, the Hamiltonian and an a priori measure.
Hamiltonian. We want to have general interactions:

Definition 4.9 A potential ® is a collection of continuous functions

by : M¥ 3R for X CcZ% |X]|< oo

—o,0, f X ={z,y}, [vr—y|=1

Example In the Ising model we have ®x (o) = _
0 otherwise

We say the potential ® is translation invariant if ®x = ®x,, for all a € Z% where
X +a={z+alr € X}. More explicitly this means ®x(7,0) = Px,(c) where (1,0), =

Oria- We will assume our potentials are translation invariant.

Given a potential the Hamiltonian in A | |A] < oo is given by
Ha(o) = Y ®x(0).
XCA
Actually this is the free boundary condition Hamiltonian. (Note that e.g. in gauge the-

ories we rather consider spins on bonds, not sites so these definitions should be changed

appropriately).

A priori measure : Let v be a Borel probability measure on M. Thus, in Ising model

we had v(—1) = v(1) = %, in O(N)-model v is the uniform measure on SV~! and in
SU(N)-Gauge theories : v is the Haar measure on SU(N). The a priori measure in My
is the product measure

dv(0) = [ [ dv(o.) (4.21)

zEA

We can the define

Definition 4.10 The Gibbs measure in volume A (with free boundary conditions) is

1
dup(o) = Z—Ae"m"(”)dw\(a) (4.22)
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where Z) = fQA e‘ﬂHA(“)dl/A(a). For more general boundary conditions we pick as before
o € Q and let, for o € 2y,

o)=Y ®x(oVo) (4.23)

X:XNAH#D
where we use the notation : oV € Q: (0Va), = { gm z 2 ﬁc . The corresponding
Gibbs measure is then '
dul (o) = Le‘mﬁ\(”)dw\(a) (4.24)

Z
Note that (4.23) is an infinite sum so we need to address the issue of convergence.

Definition 4.11 & is finite range if there exists R < oo such that &y = 0 for all X
such that diameter of X is d(X) > R. Here d(X) := max, yex |x —y|. For finite range @,
(4.23) is finite trivially, since continuity of ®x in o implies

|Px|| = sup |Px(0)| < o0 (4.25)
ceEMX

by compactness of M.

Exercise. Let d =1 and & finite range R. Show that for all 5 the correlation functions
(F(0))% have thermodynamic limit which is independent on 6. Here F' depends on finitely
many spins. Moreover show the correlations decay exponentially. Hint: proceed as in 1d
Ising model by introducing a transfer matrix 7, ,» where 0,0’ € M. For simplicity you

may take M a finite set.

Sometimes finite range is not general enough. There are various classes of potentials,
that allow for the A 7 Z? limit of the free energy, the convergence of high temperature

expansions etc.

Our first class of potentials, By, consists of ® such that

1ello=" > llex]l < oo,

x cz?
0e X

using the definition (4.25) i.e. the interaction energy of oy with all other spins is finite.

Note that translation invariance implies ||®||o = Z |®x|| for any y € Z.

xczd

yeX
B, is a vector space, || ||o is a norm and By is complete in this norm, i.e. if [|®™ —
®™||y — 0 then 3® € By such that || — &™) |y — 0 as n — oo. So By is a Banach

n,Mm—00

space.
The Gibbs measure is well defined:
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Lemma 4.12 Let ® € By. Then
[HE ()| < [A] [|®]o.

Proof We have

IDMENCIES DD S TNOIED DD DTN EI L=

X:XNAH#D yeN x czd yeN x czd
yeX yeX

We have then
Theorem 4.13 Let ® € By. Then the free energy

1
F:—ngr;OLdﬁlogZAL (AL = L —box)

exists and is independent of 7.

Proof. a) Independence of 7. Let ¢ > 0. Consider

Hi0)-HI (@) < D, |ex(0V3)—Px(oVd)

XNA#D, XNACHD

(since terms with X C A cancel)

:Z > |X;A||(I)X(UVU) Cx(oV )|

Xas above

yeX

1
QZ > D(—MHCDXH

Xas above

yeX

IA

Divide the sum over y into two parts:

A
1° dist (y,A%) < Ly, ]
2° dist (y,A°) > Lo C
B

L
Then the contribution of 1° to (4.26) is bounded by

CLoL* |||l < eL?
if we take C'Ly/L < %e.
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The second sum with the constraint 2° is bounded by

20 ) |®x|| = LI6(Ly).

X:0€X, d(X)>Lo

Since the sum ) . [|®x|| converges, 6(Lg) — 0 as Ly — oo. Hence pick Lo so that
d(Lo) < e and then L so that (4.27) holds. Then we have

(4.26) < eL®

and thus
e Pl 73 < 73 < 7 P

So, for L > L(e)
L™ 1og 2§, —log Z3,| < Be.

Since this holds for all € > 0
ngr;o L™ 1og 23, —log Z3 | = 0.
Obviously we may replace ZX’L by the free boundary condition version above.

b) Existence. It suffices to consider the free boundary condition theory. Let € > 0. Then
3R such that ||® — ®F)|| < € where

(I)(R)_ (I)X diam (X)<R
X710 diam (X)>R

So
Hao — Hpom| < €A
and thus . )
—log Zprp — — log Z < Be.
‘|A| 0L LA @ ]A‘ 08 Zip o) | = Be

Thus, it suffices to consider ® of finite range, say R. Let Ly, > L; > R. We will compare
Ly%log Zy,, to Ly%log Zy, . Write Ly = nLy + L with L < L; and n € N. Then
Az, is a union of n? disjoint L;-boxes A® with i = 1,...,n% and a region A of volume
Al < CLyLE™". Let 0|y = 0. We get

nd
[Ha (o) = D Hao (0] < CRLS 0@ + CLiLE | @llo < C'LY(LT" + L)
i=1

where H ) is the free boundary condition Hamiltonian. The first term in the middle
expression bounds the contribution of ®x with X NA® £ @, X N (A®)¢ £ 0 for some i
and the second one the ®x with X N A # (). Thus,

_BZ'H i (U(i>)
[e AO T dyy, < (CUBLALT +Ia L5 ) (4.28)
f 6_'8HAL(U)dVAL2 o

e C'BLY(Ly +L1Ly ") <
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Now using dvy, (o) = dVA(O'A)H?:dldVA (c@) we get

(%)

/ e_ﬁZHA(Z) (U<Z))dVAL2 - (ZAL1)nd

we get
1 nd ! —1 —1
‘Flog Zny, = Tilog Za,, | < CBLT + LiLy")
2 2
Since | £ — 7-| < 4 this implies
1 1 " -1 -1
‘Flog Zny, = 77108 Z,, | < C"B(LT + LiLy")
2 1

and therefore taking Lo, — 0o

S C«//BLl—l

: 1 1
lim supL—g log Z,, — L_‘f

log Zy,,
and then L; — oo

=0

. 1 o1
} lim supL—g log Zy,, — lim me_il log Zy,,

proving the claim. ]

Remarks. 1. Idea in both parts was that boundary energy/volume — 0 as L — oo. Note
also that we have not proved that (—)? is g-independent nor that these states converge.

We have only shown that the free energy is independent of the boundary conditions.

2. The space By includes Ising type systems

H = Z JuyT20y (4.29)

z,yEN

provided .J,, has enough decay as |z —y| = 00 : e.g. |Jyy| < W will do.
There is a very important system where ® ¢ By: the Coulomb gas. It is like (4.29), o,

= charge at x i.e. + or — charges and

1
Ha(o) = Z Haxay.

z,y €A
z#y

LifX =
Hence &y = { [z—y] 1 ([L’,y)

and ¥ ®y = » L = oco. Nevertheless, the A * Z4
0 otherwise Z X Zly\ /!

0ex y#0
limit exists. The secret is in signs : note that e " gets very small contribution from o, =

+1 Vzx or o, = —1 Vz. The nonzero contribution comes from alternating configurations

(neutral ones : o is charge). See Simon [42], p. 121.
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Let us next consider High-temperature uniqueness. Let us proceed as in the Ising
model case. We first write

e PAHA — H e Pex — H e Pllexll H eﬁ‘i’x

XCA XCA XCA
(4.30)

where we note
Oy = ||Px| — Px > 0.

Disregarding the o-independent constant we then expand

H PP = H(1+fx): Z HfXa

XCA XCA {Xa} «

where the sum is over all families {X,} of subsets of A and fx = eP®x — 1 satisfies

0< fx < BPx(1+ fx).
We can now proceed as in the proof of Theorem 4.1.(a) to study the & or A dependence
of (Fa(0))3 where Fy4 is a continuous function on M. For instance eq. (4.7) will be
replaced essentially by

Zﬁﬁll%

P =1
where P = {Xi,...,X,} is a connected path of sets from A to A® ie. AN X; # 0,
X; N X;01 # 0 and X, N A £ (). To control this sum we need to assume a bit more from

the potential, namely that

@]l =Y 1X[ x| < oo

0eX
Exercise. Show that this condition allows to bound the above sum if £ is small enough

and show it tends to zero as d(A, A®) — oo.
Indeed one can prove

Proposition 4.14. Let |®|; < co. Then, for § small enough the correlation functions

(Fa(0))a converge as A T Z? to a 6-independent limit and
[(FaGp) = (Fa){Gg)| = 0
as dist (A, B) — 0.

See |5] for more details. Assuming more on the decay of ®x allows one to get infor-

mation about the decay of correlations. Eg. if we assume that for some a > 0

[z == e ||@x|l < o0

0eX

then the correlation function deals exponentially with distance

FuGp) — (FAMGp) < Ce ' UAB)
with 0 < o/ < a. [(FaGp) — (Fa){Gg) < Ce
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5 Gibbs States and DLR Equations

Finally, let us define what one means by Gibbs states in the general framework. Recall

the discussion in Section 2 of limits of finite volume correlations. That can be repeated

in the general framework. Thus if we knew that for all finite X C Z% and all f € C(M™)
((f) = lim (f)F,

n—oo

exists where A,, is some sequence of boxes converging to Z¢. Then we conclude as before
that ¢(f) = [ fdu for some Borel measure on M2, We now want to characterize these

limit measures as Gibbs measures.
Consider first the finite volume Gibbs measure dug (o) defined in (4.24) for a potential

® € Boi
. 1 z

dus (o) = ——e PH2.dy, (o) (5.1)
n Z/O\'n
Let A C A, and f € C(M?"). We use in this section the notation ox to denote the
configuration in X i.e. ox := {o;|x € X}. Also, for brevity let & denote 5. i.c we have

o configuration outside A,,. Then we have the

Lemma. EJ (f)=E (EZY2(£)).
Proof. We have

_ B 1 .

B, (1) = [ fdi, = [ Flowe Py (o) (5.2
An
A,
A
Write
H(0)= Y. ®x(ova)=HF7(0)+ > @x(oVa)=HT"+H
XN A, #D X o ac
XNAp #0

where H is independent of 0. Thus

Ein(f) = /dyA(g)f(J/Q/dVAn\A(J)Z} e_ﬁ(HZVa-i-?:l)

n

= [ amasio) [ @) o) gz (53)

n

37



But
ZO’\/O’ —BH _ /dVA(U)(iﬂHZWeﬂH — /dVA(U)e,BHZn(a)

o (5.3) becomes
B, (1) = [ i, (0) [ a0 f(h)
as claimed. O

Another way to say this is the following. The measure u3 projects to a measure

/fdlﬂ\n :/fd(MA )A

for all f € C(M?"). Then the Lemma says

(13.,)a on MA by the formula

(13, )a = / dug (o)pi’?

i.e. the projection of a Gibbs state in A, to a sub volume A is a convex combination
of Gibbs states in A with different boundary conditions. This simple fact motivates the

following definition:

Definition. A Borel measure p in MZ" is a Gibbs measure with potential ® € By if
for all finite A C Z? there exists a probability measure jine on M*"" such that for all
feCMh)

[ s@uto) = [([ Honan o) dino) (LR (5.4)

We denote the set of Gibbs measures of the potential ® by Gg .

Remark. The first integral is the integral of f w.r.t. the Gibbs measure in finite volume,
with b.c. oac, and (5.4) is some average over boundary conditions. (DLR) is the DLR-
equation (Dobrushin [10, 11|, Lanford, Ruelle [29]).

What is the connection of this definition to the thermodynamic limits of finite volume
Gibbs states? Let ug be a Gibbs measure on M*. We can extend pg to a measure u®*
in the infinite volume configuration space M%" by setting

ot = g x 0%

7 . . c .
where 09. is the Dirac measure on M i.e

[ 1018557 = f(on)
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for all continuous f on MA° (here 55 means just the restriction of the configuration &
to A°, where f is defined). Thus, if g € C(M?*), then

/ gdp®t = / gdu = (9)%

Consider then a sequence of boxes A,, tending to Z¢ and consider the measures p”"».

our original state on C'(M™).

We need the following fact from measure theory:

Let €2 be a compact metric space and let B(€2) = { Borel probability measures on Q}.
We say p, € B(Q) converge if [ fdu, converge for all f € C(Q).Then B(Q) is compact
in this (weak*-) topology i.e. if u, € B(2), n € N then there is a convergent subsequence
o, and limit p € B(Q): p,, — .

Hence, there is a sequence of boxes A,,  Z% such that p*n converges to some

measure /.
Theorem 5.1 u € Gs.
Proof. Let f € C(A). By the Lemma

[ tat, = [([ gy, = [ atorrdu o

where g(oae) = [ fdu}™ is easily seen to be a continuous function (check!). Hence the

claim follows from the convergence of the sequence p® . OJ

Remarks. In the general theory of Gibbs states one can now show the following.
Let ® € By and Gg be the set of Gibbs states of ®. Then :

a) Go is a convex set : g, o € G =

spp+ (1 —s)us € Go, s €10,1].

b) Gs is also compact (in the weak* topology).

c) There is a set of extremal elements i, € Go o € A (index set), (po is extremal, if
it cannot be written as a convex combination of two distinct p’s) such that every
i € Gg is uniquely a convex combination of i, (i.e., if |A| < oo, A = {a;}¥, then
3s,€[0,1], SN ss =1 and = S si/ta,, in general, there exists a measure v on

A, v(A)=1and p = [ prodv(a)). The measures p, are called pure phases.

Example. Ising model : the translation invariant pure phases are p* and p~,
general translation invariant Gibbs state u = su® + (1 — s)u~. For example pu/"¢¢ =
prerietie = 5(u* + p7) (Why 7).
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d) Pure phases have correlations that tend to 0 at infinity:
(f(@a);9(op)" = (foa)g(on)) — (f(oa))(g(op)) = 0 as dist(A, B) — oo.

Pure phases are physical, mixtures of them reflect our ignorance.

Let us finish this section by proving the Mermin-Wagner theorem for the XY-model.
This generalizes to general systems with compact Lie group symmetries. See Simon’s
book [42].

Theorem 5.2 Let p be a Gibbs measure for the XY-model. Then y is invariant under
a global rotation of the spins. Le. for any f € C(Q2) and R € SO(2),

[ t@inte) = [ s(reyin(o)
where (Ro), = Ro,.

Proof 1. The idea is as follows (we follow here [26], see [42], p. 296). Consider say f(o) =

cosp sinp
—sinp cosp '

F(0y), depends on o only. Let R(¢) be rotation by angle ¢, R(p) =

0
Go to angular variables o, = C?S ], s0H = — Zcos(ex — 0,), and the a priori
sin 6, o

. x
measure is - on 0, 27].
m

We want to prove :

(F(0o +¢)) = (F(0)) Vo,

it suffices to prove < F(6y + g0)> = 0, VF smooth. Now (—) is approximatively

7
) dple=0
()4 some large A, some b.c. @ because Gibbs measures are limits of such measures. Thus

we could change variables

(Fto+ ), = (F(00))

0+

A

which follows from HJ (6 — ¢) = H5#(6)

(Hi(e) =— ) cos(f,—0,)— > cos(f, — e‘y))

z,yEN z €A
y € A°

So the ¢ dependence is now in the b.c. This is tricky to control, so let us try to change

variables by slowly rotating the spins : rotate 6y + ¢ — 6y and the rest a bit less such
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that on OA there is no rotation : Let g : A — R ¢(0) = 1, g(x) = 0 for 2 near OA. Then,
let (7,0), = 0, + g(z)p

(Foo+ ) = (F((0)))
N
Oy = 0, — g(x)p = (T_,0),

a
A

F(o0) esp [~ 545 0] T 52

o

d 5 d 5
= G|y reor oni = =5 (], 100 F00))
Thus, by Schwartz inequality :
d d o\ 1/2
a P ‘ < g2 | (2~ Z(r f
‘<dap ¢=0 > < B <dgp ¢70HA<T v )
writing
d ol —BHZ (T=,0) d —BHZ (T—,0)
e
and integrating by parts, we get :
d 5\ 2 d? 5
(Gt) ) = (Gl P e0).

dd—;Hi(r_ﬁ) = —dd—; > cos <9x — 0, — 90(9(33) - g(y)>>

(zy)ze,yeA

where we sum only over z,y € A since g(z) = 0 near JA.

So
dd—; o = ’ >, (9(96) - 9(1/))2008(% —by)
(zy)in A
< > (9(96) - g(y))z-
(zy)in A
Thus,
(el =e T Go-s) o9

(zy)
z,y €A

where C' is g-independent. (5.5) holds for all g : A — R, ¢(0) = 1,9 = 0 near OA. Also
(5.5) holds for any A (C'is A-independent).

To make the above argument rigorous, we use the DLR~equation to write

o [ [ o] o
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i.e. an average over ¢ of what we did. Then (5.5) follows as above.

2. Second step. The point now is that

Reason : we show that this equals

inf /(Vh(u))2d2u (5.6)

heCge h(0)=1

and this equals zero. Thus, let h € C5°, h(0) = 1 (smooth function h : R*> — R with
compact support). Let the support of i be contained in Ag (= cube, center 0, side R).
Put g, : Z* - R ,gr(z) = h(£z) (z € Z*). Then g.(0) =1, g, = 0 near A, and

§:@ﬂm—gawﬁ=§:fZO%§®-*%§@—@0>2

xeZ? =1

(where e; = (1,0),e2 = (0, 1))

=YX

=2 [(Vh(u))*d*u. The infimum of this over h € C5°,h(0) = 1 equals zero : let

<m%m—h@@—a»r

it
L

>=

1 <1
(x) = { 2] lx; o This is piecewise C* and not 0 on boundary, but one can
x x| >

approximate this function by a function in C§° (show !). Now,

—

T
_€|x|2+e

Vhe(x) = for || > 1and =0,|z| < 1,=

/(Vh(u))2d2u = 271'62/ 72 % rdr = e — 0,
1

as € — 0 O

6 The Ginzburg-Landau Model

We now consider models where o, € R i.e. is unbounded.

Motivation :
1. Later (see Section 12) we see that our previous models naturally give rise to this by a
process called coarse-graining.

2. These are related to quantum fields.
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We will denote the spin by ¢(x) = ¢, i.e. the spin configuration is ¢ : Z? — R. Let

us consider a simple Hamiltonian

Ha(d)=— D o@)dy)+ad ¢ @)+ 1) ¢') (6.1)

{z,y}eBr zEA TEA

which again has the ¢ — —¢ symmetry, and consider the probability measure

ieffBHA(@ H do(z) (6.2)

Z
2 TEA

on R The normalization (i.e. partition function) is given by Z, = f]RA e AHA(9) [Lca dos.

This integral exists if A > 0. This is easy to see as follows:

Mal) = 5 O (Ge= @4 (—d b)Y E AN G4 > mdh
{z,y}eBa zEA zeA TEOA
>(a—d)) i+ A) o

zEA TEA

where, for x € A n, is the number of nearest neighbors y of x s.t. y ¢ A. Thus
*° 2 4 Al
ZAS[/ 6_5[(“_d)¢+’\¢]d¢] <oo HA>0o0or AN=0anda—d > 0.

Calla —d =% and so

2
Mald)=5 O G0 LY G AT G4 Y mdh (63)

{z,y}eBa TEIA

It will be much more convenient to work with the periodic boundary conditions instead
of the free ones above. In that case the last term is missing from (6.3) and B, contains

also the bonds joining opposite faces of the cube Aj.

Remark. The Ising model is a limit of this model : take

g: “2) 50 g¢i+A¢§ —AP2—1)2— A

and |/2e "D §(¢% — 1) (in the sense of distributions).

A—00

7 Gaussian Integrals

7.1 Definitions and elementary properties

Consider first the case A = 0. Then our measure is Gaussian.
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Definition 7.1 Let A be a real symmetric n x n matrix which is (strictly) positive definite
(i.e. all eigenvalues > 0 i.e. (¢, Ap) >0 Vo € R", ¢ #0). The Gaussian measure on R"

with covariance A™! and mean 0 is the probability measure

1 1
dp(¢) = e 2> Dg

where ¢ = (¢, , ¢n), Do =11, d¢s, (¢, Ap) = Z¢z iP5

Thus, each ¢; : R" — R given by ¢;(¢) = ¢; is a random variable, with mean 0 and
variance (¢?) = (A™1);. Also, (¢, f) is a random variable, with variance (f, A7 f).

Some calculations

1. Consider the partition function

Z = / e 2849 Dy,

A can be diagonalized by an orthogonal matrix S € SO(n): STAS = diag(Ai, ..., \,).
So |det S| = 1 and changing variables ¢ = SU we have D¢ = | det S|DV = DV and thus

2 2T 1/2 —1/2
Z = SNV DY = / Dty =TI () = [det(a/2m)]
/e 2 H e 2 ZI_II N et(A/2m)
2. The correlations functions ([*_, ¢;.) where i, € {i,...,n} (note: several i, may be

the same) can be computed using the generating function : Let f € R™. Define

1 / e 3(@AN+GN) Doy,

S(f) = (e®) =

with (¢, f) = >0 | ¢ifi. Then S(f) is smooth in f and

k k 9
(qLew) =11 551,50

But
S(f) = —/e S(o—AT [ A(G—AT N+ 5 (AT lf)qu

_ eg(fﬁlf)% / e HOAY Dy AT

using the change of variables ¥ = ¢ — A~!f. Hence, say the 2-point function,

82
dfi0f;lo

(digps) = ez = (471,
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In general,

0 kodd

k
1l 57 N =2 T a7, k=2
P {ap}epP
where P is a pairing of the set {1,2,--- ,2m} i.e. a partition into m sets of size 2. The

sum runs through all such pairings.

Example For n = 4 there are three pairings {{1,2},{3,4}}, {{1,3},{2,4}} and {{1,4},
{2,3}}. In general, the number of pairings is ( )', (show !).

Thus ,
I ¢ =>_ TI (¢
a=1 P {a,p}eP

a sum of products of 2-point functions.

7.2 The Gaussian Ginzburg-Landau model

Let us now specialize to the A = 0 Ginzburg-Landau model with periodic boundary

conditions on A;, = Z¢. This gives rise to a Gaussian measure on R/Azl with density

710 HCureny, (G0 E62) (7.1)

The quadratic form ) {z.y)eBa, (¢r — ¢,)? defines a matrix A, (lattice-Laplacean with
periodic b.c.):
Z (02 — ¢y)2 = —(¢, Aper ).

{zvy}GBA

Concretely

_(Aper¢)x = Z (be - ¢x+u) (7'2)
|ul=1
where the addition is modulo L. For example in d = 1 we have (—A¢), = 2¢, — ¢pp_1 —
¢:p+1-

(7.2) defines as well an operator A in infinite volume i.e. for ¢ € RZ". Then A is self
adjoint on (2(Z%) c R%"

P2 ={p: 2 > C| Y |du|* < o0}

x€Z4

Indeed, A is bounded: [[A|| < 2d (show!) and in the scalar product (¢,¢) = 4 Drtln
we have (¢, Ay) = (A, ).
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The periodic Laplacean can be defined in RZ" as well. For this consider the set

FP" < R%" of periodic functions : [we use ¢, or ¢(z) below !]
¢ € FF" : ¢p(x+ Ln) = ¢(z) Vn € Z%

Clearly FP" can be identified with R* namely ¢ is determined by ¢|s,, Ar = {z|z; €
{0,...,L — 1}}. Clearly A : FF" — F?" so the periodic Laplacean A, is the corre-

sponding matrix in RA-.

We will now diagonalize A, and A by Fourier series. Consider p € [—, )¢ and ¢, € RZ
¢p(x) = e®* (where px := Y paZa) . Then,

Ady(x) = Y (€7 — ) = 7 (e —1)e™ = —u(p)g,(x)

Ju|=1 Ju|=1
where
d
p(p) =2 (1—cosp,)
pn=1
Let, for L odd,
d 2
={peR’|p = 7y T € Z, |n;| < L/2}. (7.3)
Then
{¢p| D€ BL}

is a basis for FF*" (since they are independent and there are L? of them). We have

Z eiP(r=y) _ Ld5wy for x,y € AL (74)
pEBL,

and
Z cilP—a)z = L%,, for p,q€ By (7.5)
TzEAL

so {L™%%¢,},cp, is an orthonormal basis of eigenvectors of —A,., and from (7.4), we

conclude
(=Aper + 1), L4y ey =Gz —v) (7.6)
peEBL T

Thus, the correlations of the A = 0 GL-model are given in terms of the (periodic b.c.)
Green’s function Gp,.

How about L — oo ? In (7.6) we have a Riemann sum over cells of size (3£)%. So, in
the limit,

lim G d’p Y 7.7
Lglgo t(z—y) —/[M]dwmz (v —y). (7.7)
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This equals of course the kernel of the operator (—A +7)~! defined on ¢*(Z%). Indeed, on
(%(Z%) the operator —A has spectrum {u(p)|p € [—7, 7]} and we can diagonalize it by
Fourier series. If f € (?(Z%), let

Then f € L*(B), B = [—m, x| and

(r9)= 3 Fste) = [ s fwaw

x€Z4 B (

and we have the inverse formula

fla) = [ em it

Thus,

(24 = [ f S = 3Gl =)
ie. (~A+r),, =G(x—y). We have obtained

Proposition 7.5 Let y;, be the Gaussian measure on R 2, with covariance (—A,, +7) L.
Then

/ [Tota)dnn(®) — 3 ] Gloa —2s). (7.8)
P (aB)

8 Measures on spaces of distributions

Can we write the RHS of (7.8) in terms of a measure on R%‘? Note that this space is not
locally compact not to mention compact as we had in the case of bounded spin systems.
Hence we can not take the route via Riesz representation theorem to reconstruct a measure
out of correlation functions. The way out is to consider instead the characteristic function

of the measure.

8.1 Bochner’s Theorem

Let p be a probability (Borel) measure on R™. Recall that we defined the generating
function of p as S(f) = [e®Hdu(e) if e € L*(u). Tt is actually more convenient to

consider S(if), f € R™ i.e. the characteristic function i.e. the Fourier transform of p:

W)= [@hdue) fer.
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which always exists by dominated convergence theorem.

W (f) has some obvious and less obvious properties:
2) W) < [ 1dp=1.
b) W(0) = 1.

c) W is continuous. Indeed, by the dominated convergence theorem, if f,, — f then,
since [/ < 1, W (f,) = W(f).

d) Let z, € C, f, e R", a =1,--- | N. Then,

Sz W (o — f) /Zzazmz (6ufo) g=i(6113) / S 20 @) 2y > 0

a7ﬁ

Definition 7.3 W : R" — C is a function of of positive type if a) - d) hold.

Theorem 7.4. (Bochner’s theorem) W (f) is of positive type if and only if there is a
Borel probability measure on R™ such that W(f) = [ '@ du(e).

Proof. “«<" is done above.
“=". One uses an idea that is useful in other contexts, namely we use W to construct a

scalar product. Let
H={¢:R" = Cly(x) # 0 only for finitely many z}.

For ¢, € H put
(6,0) = > @) (y)W(z—y)

,yeRn
(this is a finite sum). (', )is an inner product except that (¢, ¢) = 0 does not imply ¢ = 0.
Let Ho = {¢|(¢, ¢) = 0}; Ho is a subspace of H. Put H = H/Ho = equivalence classes
(6] = [0+ o), do € Ho. Then (#, (-,-)) is an inner product space which can be completed
into a Hilbert space.
Let for t € R"U; : H — H (Uw)(z) = ¢¥(z + t). Clearly, U; : Hy — Ho so one
defines U, : H — H by Ut[¢] [Ut¢] (ﬁtqﬁ, (7,@) (¢,1) so U, is an isometry. We have
UHS = UtUS, UO — 1. Alsot — U, is strongly continuous (i.e. ¥i € Ht— Utw € H is

continuous from R" — ’H) because W is continuous:

1Uab — Ugd||* = 2(2b, %) — (Uh, Usth) — (Usth, Ub) = [2(0, ) — (b, Up_ ) — (3, Uy_ )]

This equals

Y U@@RW (@ —y) = W(r —y+t—s) =Wz —y+s—1)

I7y
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which tends to 0 as t — s. We have now verified the assumptions of

Stone’s Theorem. Let R® 3 ¢t — U, unitary in Hilbert space be strongly continu-
ous and U,Us = U, Vs, t, Uy = 1. Then for each ¢ € H,||¢|| = 1 3 a probability Borel
measure /5 on R™ such that (¢, Uyp) = [ O Ddpy(N).

Proof See Reed-Simon [35], vol. 1, Th. VIIL.12. [The heuristics behind the proof
is that, if H were finite dimensional, we could easily prove that U, is differentiable in t,
oU, 4
Wﬂtzo = iA;, A; Hermitean, [A;, 4;] = 0 and U; = ¢! %45, Diagonalize all A; simulta-
j

Ay 0

neously = A; = = d,uqs Z(S Mol
0 Ay

To finish the proof of the Theorem, using Stone’s Theorem, take gg eH

5= 1ol ¢u»={é o

= > @)y + )W —y) = (6, Ui0) = /“’t)d%@) O

z,yeR"

Suppose now we have measures p on R” and want to prove pu; converge as k — oo.
The properties 1,2 and 4 of W}, usually carry to the limit so the main issue to check is 2
i.e. continuity. In our case Wy however live in spaces whose dimensions tend to infinity as
L — infinity. We aim at conditions 1-4 in such a setup and a generalization of Bochner’s

theorem there.

8.2 Cylinder measures

Suppose we had a measure p on some o-algebra A of subsets of RY such that sets of the
form A x RM\" € A where A € A, = some o-algebra of subsets of R* and RM\" denotes
xR (and RY = x2° R). Then we get a measure 1, on A, by “integrating out” the

other variables :

in(A) = (A x R¥V). (8.9)
This resulting set of measures is consistent i.e.

fin(A) = ftntm(A x R™) (8.10)

provided A x R™ € A,,,, if A € A,. Thus, conversely, let {p,}>2, be a family of

measures, [, a Borel probability measure on R". We say pu,, are conszstent if (8.10) holds
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for all Borel sets A C R™. A natural o-algebra on RY is the o-algebra generated by the
cylinder sets. Denote by B Borel sigma-algebra on R and by B™ the one on R”.

Definition 8.1 A cylinder set on RN is a set of the form Sp, ... g, = {r € RV|z; € B;,i =
1,---,n,B; € B,n < oo}. The o-algebra of subsets of RY generated by cylinder sets is
denoded by BY. A measure ;i defined on BY is called a cylinder measure. We have then
the

Kolmogorov’s extension theorem. Let {1, }5°, be a consistent family of measures on

B". Then there is a unique cylinder measure 1 on BY such that
1(SBy,,B,) = tn(B1 X By X -+ X By). (8.11)

Proof. Main problem is countable additivity. We can do this with Riesz theorem by the
following trick.

Let R be the one-point compactification of R (i.e. R = R U {oo} and open sets are
open sets in R and sets of the form AU{oo} where A C R is open and A C [—n, n] some

n < oo, R is easily seen to be compact). Let

Then M is compact in the product topology. Let C(M) = {f : M — R|f continuous }
and Co(M) = {f : M — R|, f is continuous and depends on finitely many z;}. Define,
ﬁH‘f S Cb(ﬂ4),

)= [ sm,
where n is large enough, and we extend p, to R™ by putting fn(By X -+ X
{0} x -+ x B,) = 0. By consistency, ¢ is n independent if n is large enough. So ¢ defines
a positive linear functional ¢ : Co(M) — R, (1) =1, |¢(f)| < ||f||cc- The last one implies
that ¢ extends to C'(M) since Cy(M) is dense in C'(M). Hence by Riesz theorem there
exists unique Borel-measure y on M such that ¢(f) = [ fdu. Recall that M = RY. But

p({x € Xz, = oo some n) < Z,u({:r;|xn =o0}) = Zun({x|xn =o0}) = 0.
n=1 n=1
Hence 1 is supported on RY. By construction (8.11) holds (BY C Borel sets of RY) 2). O

As it turns out, we can embed all interesting function (and distribution) spaces into

RY. Let us start with two subsets :

2Borel sets of RN = smallest o-algebra containing open sets and cylinder sets are generated by open
sets.
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8.3 Minlos Theorem : Measures on s’

Let -
sm = {r € RY| Zn2m|xn\2 = ||z]]3, < oo}
n=1
for m € Z. Let
s = ﬂ S, S = U Sm
meZ mEeZ

(note : Spy, D Spy1 D - -+ ). s is the set of sequences which decay as n — oo faster than
any power, s’ the ones with at most polynomial growth. Give s the topology generated
by the neighbourhoods of 0 of the form

N(m,e€) = {a| [|z[lm < €}
(so neighbourhoods of y € s are y + N(m,€)).
Lemma 8.2 The space s with the above topology is a complete metrizable space, i.e. s

has a complete metric d such that d gives the same topology as above.

Proof. Define the metric

= e =yl
d =\ gom N2 7 Illm
() =2 2"

m=1

Then (Exercise) : Show that this distance defines the same topology as above and that

s is complete (Cauchy sequences converge). O

Remark. s is an example of a Frechet space i.e. a complete locally convex metric space,

and which is not a Banach space.
Lemma 8.3 s’ is the dual space of s i.e. the space of continuous linear functionals on s.

Proof Let y € s'. y defines a continuous linear functional ¢, on s :

ly(z) = (y,x) = Zynxn

Indeed, this converges since |y,| < Cn™ some m < oo and |z,| < C,,n™ for all m. To

prove continuity, let d(z*), x) — 0 as k — oo. Then, by Schwartz’ inequality,
- 1
k m|,.(k m+1 k
[, (a™) — £,(2)] < El Cn™Mall) =, = C Yy 0zl — @l

1\1/2
< (X =) 1 =

< "2 (2™ z) = 0 as k — oo.
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Conversely, let ¢ : s — R be a continuous linear map. Then there exists C' < co, m < oo
such that

[£(2)] < CllzIm (8.12)

for all z. Indeed, by continuity there exists a neighbourhood U of zero in s such that
[0(x)] < 1, for x € U. On the other hand U contains a set {z| ||z||,, < d} some m,d.
Hence, given a z € s we have 65— € U and so [((d7—)] < 1ie. [((z)] < 52| m)-

Let now e® € s be given by e = 8,. Put y, = {(e™). By (8.12)

[Yal = ()] < Clle!™ | = Cn™

soy €. Given x € s, let
g™ = Ze(k)xk.
k=1

Then ™ — z in s (prove !) and so
(™) = ((x).

But /(z™) = Zykack. Hence ¢(x) = (y, x) O
k=1

The reason we introduced s and s’ is the following. Let p be a cylinder (probability)
measure on BY. Note that s’ is a g-measurable set (prove !). Suppose pu(s’) = 1 ie.

u(BN\s') = 0 i.e. u is supported in s’. Then,
Exercise. Let 2 € s. Then the function y — (y, x) from s’ to R is p-measurable.

Definition 8.4 Let i be a cylinder probability measure on s’. The characteristic function
W:s— Cof pis

W(x) = / ().

Lemma 8.5 W satisfies
a) W(0) =1, [W(z)| <1
b) W is positive definite : given z; € C, 2) €s i=1,--- ,n we have

Z Zi; W (2@ — 20)) >0

: . bhy=1
c) W :s — R is continuous.

Proof As before, for ¢) use again the dominated convergence theorem. O
Finally, our goal:

Minlos’ Theorem A necessary and sufficient condition for a function W on s to be a

characteristic function of a probability measure on s’ is that it obeys a)-c) above.
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Proof. Let W be given. Let u € R™, put © = (uy, - ,u,,0,0,---) € s. Then W(z) =
W, (u) is a function of positive type in R™ = 3 probability measure p,, on R" such that

Wn(u):/ e dpy, (u)

{pn}22 are consistent since an((ul Uy, 0,0+, 0)) = Wy (u) and Wn uniquely deter-
mines g, (Why ?). Hence 3u on RY such that

W(r) = / () (8.13)

for all € s with only finitely many non zero z;. We need to show : p(s’) = 1. In that
case the integral can be restricted to s’ and (8.13) holds for all = € s (because both sides

are continuous in x and the set of x with a finite number of nonzero z; is dense in s).

u(s’) =1 : Recall that ' = U Sm With

m=—0oQ

sm = {y| Y _n*"y} = |yl < oo}
n=1
We show: given € > 0, there exists an m such that
p(sm) > 1—e. (8.14)

Since u(s') > p(s,,) we get u(s’) > 1 — € Ve i.e. the claim.
To prove (8.14), we use first the monotone convergence theorem to get a more mana-

geable expression :

N
Eﬂ)l}\}lg(l)o exp (—% Zln%zyi) dy = E%/e—‘;yllfndﬂ = (Sm)

0 y¢&sm,ie [|yllnm =00
QN
We consider /exp <_§;n2myz> dpi. Choose m:

Continuity of W(x) = 3 m, ¢ such that

o 1 € S,
since e~ 2Vl Ay (y € s,,) = { 4

W) =1 <e if [z, <9 (8.15)

(recall that W (0) = 1). (Note that m here tends to be < 0!).
Then, for all z € s,
2
Re W(z)>1—¢€— 5||x||2 (8.16)

—m—1
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since if ||z]|%,,_; < J, (8.16) holds by (8.15) and if ||z[|2,, ; > , (8.16) holds because
|[W(z)| < W(0) =1 implies Re W(x) > —1.

Now write
exp (——Zan 2) = /]RN ez(y’“")dy(a:)
- 1/2 x;
dv(zx) = }_[1(27r0m my=1/ exp(— 2@;2m>d:vn
to get

/ exp <——Zn2m 2) _ /R ) ( / exp (ziym) d,u(y)) dv(z)

= W(x)dv(x) :/ Re W (z)dv(z)

]RN
since the left hand side is real.
Hence by (8.16),

/exp (__Zan 2) du>1—e— %/RN ]2, dv(z).

But
N N oo .
/ |22y dv = Zn_Zm_Q/xidV(x) = Zn_Qm_2an2m < (Z —2) a.
RY n—1 n—1 ot n
Thus
ca
li _a w2\ gy >1—e—
Noee | P ( Z” ) pzl—e—
and our claim follows 0
Example. Gaussian measures. Let C' be a matrix Cj; i,j = 1,2, - with |Cj;| < ai™ - j™

some a < oo,m < oo and (z,Cx) = inij’ij > 0, Vx # 0, for z € s (note (z,Cx)
makes sense since |z;| < b,i~" all n). Then the function

1

We(z) = ez (@)
is of positive type.

Proof W is continuous since |(x, Cz)| < A||z||? for some n. Hence We(z) = lim W (z®),

i<
a:gk): i Z,_k . But
0 >k

k k
1 .
We(z®™) = exp <—§Zx,~xj0ij> = /k exp (sziy,) dp(y)
R

ij=1 i=1
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where s, is the Gaussian measure on R with covariance matrix Cyj, 4,5 = 1,--- , k. By
assumption, this is a positive k x k matrix. Hence, let Wk(z) = Wo(2®)) x € s so W§ is

of positive type and Wk (z) — We(z) Vo € s — We(x) is of positive type. O

We call the measure uc corresponding to Wy the Gaussian measure in s’ with cova-
riance C.

Example. Order Z? arbitarily such that Z¢ = {xyx|k = 1,2,--- } and |xg41| > |7%|. Then
¢ : Z* — R becomes 95 N> Rg¢ = ¢z, Thus, if Cyy x,y € Z% is a positive matrix with
|Coyl < a(]z| +1)™(Jy| + 1)™ we can define the Gaussian measure with covariance C' on
s'(2%) ={¢: 7% — R‘ Z(|x|+1)2m|¢x|2 < oo for some m € Z}. Thus C = (—A+r)~!is

z€Z4
an example (it is positive and |Cy,| < constant; this holds: » > 0,d > 3 and r > 0,d > 1).

8.4 Measures on Spaces of Distributions

Let

dn
: f’< o0 for all n,m >0} (8.17)
ITL

S(R)={f:R—=R|fis C* and sup(l + |z|™)
z€R

i.e. f and its derivatives decay faster than any power. Let us define (“creation and

annihilation operators”)

G I G )

£ %xz — % For f € S(R), let

1
2 dx?
1/2
"= N m 124 .
T (/Ru 1y )

This is finite due to (8.17)3.
We give S the topology where neighbourhoods of 0 are

and N =ata = —

N(m,e) ={f €S| [Ifllm <€}

Proposition 8.6 S is homeomorphic to s.

Proof Consider the functions ¢,, € S :

1 1,2

G0 = mfﬂ y On = (a™) "o

S

3See Remark 1 below.
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These satisty :
(¢na ¢m) = / ¢n¢md$ = 5nm

Proof agy =0, aa™ =a"a+ 1 imply

1 1
abn = a0 = —=[(@*)" o0 +a%a(a?)" o)
1 n . . n . n, _ nl
= ﬁ |:2<CZ+) 1¢2 + (&+)2aa+ 2(bo:| =...= ﬁ(aﬂ 1¢0 = a ¢n = ﬁ¢0

But also, for ¢, € S, (a*¢,v) = (¢,a)) 50 (¢n,$n) = (0, a"dn) = (0, ¢0) = 1.
n # m gives 0 since agpy = 0.

The functions ¢,, are thus orthonormal in L?(R). They are a basis (they are the Hermite
functions). Now our map S — s is f +— z = (z1, 29, ), with

Ty = (f, ¢n_1). Note that

No, = a+a¢n =no,
so (N +1)™¢ — 2’ with z], = n™z,,.
Thus
oo 2 oo
161 = [ 1OV 27 Pde = 32 (07 107 )| = D2 o =
k=0 n=1

i.e. the map f — 2z maps the neighbourhoods to each other. To conclude, we need to

show that this map is a bijection.

A) Injection : {¢,} is a basis of L.

N
B) Surjection, or the map is onto : Let x € s. Then we need to show that Zajngbn_l con-
n=1

verges as N — oo to an element f of S with z,, = (f, ¢,,—1). The sequence 22721 TPt
N N

converges in L? to f € L*. (N +1)™ angbn_l = annmgbn_l converges in L? = f €
n=1 n=1

0. And |[f]lm = ||z]lm s0 f € S. O

Definition 8.7 The space of tempered distributions on R is the set S’(R) of continuous

linear functionals on S(R).

Let o € S'(R). Put 4, = ©(¢,_1). Then ¢ continuous means® : IC,m : [p(f)| < C||f|m

4o continuous : Ve 3 N(m,d) : f € N(m,8) = |o(f)| < eie. ||fllm <= |p(f)] <e. Thus for any
7 €8, 16 = 1o (10 = < $15llm = Clf -
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VieS =y = |e(dn1)| < Cllgn-1]lm = Cn™. Hence y € s'. Conversely, y € s’ gives
rise to ¢, € S"(R) by ¢, (f) = Zyn(f, ®n-1). Indeed, from above, x,, = (f, ¢,) is in s so

n=1
|y (f)| < CJlz||m for some m and this = C|| f|| .

Remark 1 We see from above that || - ||, is a normon S : || f||%, = 0 = (f, gbn 0V
f = 0. Moreover, since ||f]|?, = ((a+a+ D™f, (ata + 1)mf) = < (ata+1) >

of (f, (a*a)kf) and (a*a)ff = (Polynomial in z and ) f, we get

1l < Con > Suplx s f@)] = Cul £l

a,B<2m

and conversely (show !). So, p € S <= AC, N : |p(f)| < C||f||™). This is in practice
useful, see Examples 1,2 below.

Example 1 Let ¢ be a polynomially bounded function : |p(x)| < C(1 + |z|)™. Then it
defines a distribution ¢ € S’ by

since

o0

/u+MWﬂﬂn

sope S

sc/u+mwmmms
1

mcﬂ S C" sup(l —+ |5E|)m+2|f(x)| S C”||f||(m+2)

Example 2 ¢ can be a “delta function” or its derivatives : let

o) = (1L )

Then,
()] < 1D flloo

so ¢ € S’. We denote ¢ = %5(:5 = Zo).
Remark This works in R" too :

SR") = {f € C®(R")| [2°D"flloc < Cap Var, 5}

b .
where o = (ala"' 7an)76 = (/817" ) n Hxal DB - Ha Bi* Basis {gpk}kEN"
Z;

O = Hcpk z;) and we define s = {z € RV"|z = (a, keNnZ (Hk) lzk|? < o0

Vm}. Do the rest !
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Definition 8.8 1. The cylinder set o-algebra in S'(R) is the smallest o-algebra containing
all sets

A(f, B) ={p € S'(R)|¢(f) € B}
for f € S, B Borel in R. It is just the image of our old cylinder algebra on s’ to S’ by the
map constructed above. Indeed, the cylinder o-algebra C' in s’ is the smallest o-algebra
of subsets of s’ that contains the sets 0,(B) = {y € §'|y, € B} where B is Borel in R.

I.e. it is the smallest o-algebra such that functions

pois' = R poly) = un
are measurable (i.e. p;'(B) € C VB Borel i.e. 0,(B) € C VB). Let C be the smallest

o-algebra in s’ such that the functions 7, : 8" = R m,(y) = (y,z) are measurable for all

o
x € s. Since p, = T, , el = 6nm we see that C' C C. But, also, 7, = anpn SO T, 18
n=1

C-measurable. Hence C' C C. Thus C' = C. Clearly the o-algebra defined above in S'(R)
is the image of C' under the map y € s’ — ¢, € S’. This proves the claim.

Definition 8.9 2. A cylinder measure on S’(R) is a measure on this o-algebra.
Translating from s, s’ to 5,5’ we get :

Theorem (Minlos) A necessary and sufficient condition for a function W on S(R™) to

be the characteristic function of a cylinder probability measure p on S'(R™),

W(f) = / e*dp(p)

is that W (0) = 1, W be of positive type and continuous.

Example Gaussian measures. Here W (f) = exp [-1C(f, f)] where C(f,g) is a continu-
ous bilinear function on S(R") x S(R™), with C(f, f) > 0 for f # 0. Important examples

are given by integral kernels

C(f,9) = /d”x/d”yC(w,y)f(fE)g(y)

here [|C(z,y)|[(1+ |z|)(1+ |y|)]™d"zd"y < oo for some m suffices. We are interested in
translation-invariant C’s i.e. C(z,y) = G(x — y). These are most conveniently expressed

in terms of Fourier transform : If f € S(R") we put
fi) = [ flaye e

and one gets f € S(R™). [This is because (z*DP f)"(k) = i*"PD*kP f(k), do the details !]

Inverse :

) = [t
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Then we have

[lr@pas = [1iw)
(fxg)(x E/ )d"y
(f*9)\(k) = f(k)

[ rcta = prwary = [1f0rce G

which holds for f,G € S to start with, but extends to much more general G’s.

and

Example The free Fuclidean field with mass m is the Gaussian measure g where

~ 1 n
- d"k
Clearly S > f— [|f(k)|? is continuous, so

(k2 + m2)(2m)"

W) = exp [__ FR)P ]

k2 +m? (2m)"

determines a measure on S’(R™), by Minlos’ theorem. Strictly speaking, G(x) is defined as

a distribution®, by the Fourier transform G but actually is a locally integrable function :

—m|z|

G(x) < C=

< —. (8.18)
|z
To see this, let us consider a ultraviolet cutoff : let A > 0 and define

. 1 A2
G = ey A

This is called Pauli-Villars cutoff. Note that G (k) fed G(k) pointwise, and as elements
of S".

Note S’ is given a topology such that ¢; — ¢ as i — oo if v;(f) = p(f) Vf € S.
For n < 4, Gy € LYR") and so G(z) is a continuous function (for n > 4 : replace

A? by( A? >k)

p2_|_A2 p2_|_A2

Fourier transform ¢ of a distribution ¢ € S is a distribution, ¢ € S’, defined by

o(f) = @m)"e(f) flz) = f(-2)

which is the usual (see example 1 above) if p € S: [ $(k (gﬂf = [ p(z) )d" .
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So, by rotational symmetry,

d"k ik1|z| A2
Calz) = / @n) K2 L m2 k2 4 A2

So the k; integral :

K2+ m? = (ky + i\ k2 + m2)(ky — i\ k2 + m2),
k24 A2 = (ky + i\ K2+ A2)(ky — i\ k2 + A2),

ko= (kg ks, ).

By Cauchy:

_.I_
2m) oy /kz 12 m? + A2 o 2 4 A2 m? + A2

dn—lE €—|x\\/ k24m?2 A2 e—\xh/ E24+A2 1
GA(:U> = (

which is smooth and converges as A — oo to

o dnfllg ef|z|\/ k24+m2
SRR P

this is a L' function satisfying (8.18). To see this, expand V k2 +m2 =m+ (’)(1;2) for
small k, and change variables V] zlk =k
Note that, a priori, for ¢ € 5’ p(x) is not defined, only ¢(f), f € S. These are mea-
surable functions in S’ and actually Gaussian random variables on the probability space
(S"(R™), p):

(e#f)y = =2t (FG)
so the variance of (¢, f) is (f,Gf). Let f; € S;i=1,--- ,N. Then z; = ¢(f;) are jointly

Gaussian :
<6i2tm> _ <€iw(2t¢fi)> — o3 T titi (£1.G )

ie. ¥ = (x1, -+ ,zn) € RY is Gaussian with covariance matrix Ai_j1 = (fi,Gf;). Hence
e.g.
d| d| | —ilto(f)+selo)] mdr
p(N)p(g)dnc(p) = ——| -] (e )= (f,Gg) = [ d"zd"yf(z)G(x —y)g(y)

and, more generally,

[ etidneto) =3 T1 (G

(ij)eP

— /d”x1 ~d"zon fi(z1) - (o Z H Gl

(ij)eP
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Hence we may use the notation

/@(961) - @(xan)dpa(p Z H G(x

P (ij)eP

even if strictly speaking ¢(x) is not a well defined random variable.

Remark Indeed, let us try to see what ¢(x)? would be. Formally

/w(x)Qduc(s&) =lim [ p(@)e(y)duc = lim G(z —y) = G(0) = co.

T—Y

This is a first instance of an ultraviolet divergence in quantum field theory. Our G is such
that ¢(z) is not a nice random variable (it is a “distribution valued random variable”).
We’'ll return to this.

9 The Gaussian Ginzburg-Landau Model : Critical Point
and Continuum Limit

Let us return to the lattice and the Ginzburg-Landau-model. The A = 0 case is the

. d . .
Gaussian measure pc on R (or s'(Z%)) with covariance

eip(z—y) dp
/ w)oy)dpc(?) = /[] () + 7 2

where z,y € Z%, ¢ € R%",
We have
0<Clz—y)<Ce W& €50, ¢ o0asr— 0.

Proof Let R = max |z; — y;|. We may assume R = |z — y1| = 21 — 1.
=1,

- | AN
— ) = iR 2P g (E-)
cwe-v= [ (/ 2(1—cosp1>+u<m+r2w>e 2rT

Use Cauchy for the p; integral
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A and C cancel since cos py, eP1 are periodic

™ d— 1—’
_ e—eR/ / iR 1 dpy o PED) d
o 2(1 — cos(py + i€)) + u(p) +r 2w (27r)d*1

Choose € so that : Re2(1 — cos(p; + i€)) +r > 0 ie. 2(1 — cosp;coshe) +r > 0 ie.
2coshe < 247 or € < cosh™*(1 +7/2). [So, for r small, one can choose ¢ ~ /7 |. So,

since p(p) > 0,
C(x —y) < Ce™H a
Thus r > 0 is non critical. For r = 0, we have

Udp ddp
Cx::czd/ ¢ > (g, |z
( ) | | [—7|z|,7|z|]¢ $2/L(p/|l'|) (27T>d ‘ | ( ’ |)

where & = z/|x|, provided .

Homework Prove that

=0y <

-Vr? ddl* A 00 T(d—2)A
:/ € p d—1 / o~ rd=3 gy — ( JAd—1
0

we 24/p2 (20)41 T 2(2m)d 2(27)d-1

for d > 2, where A;_; = volume of S92,

We can state the previous calculation for » = 0 in two ways :

a) We showed C(z) ~ G(z) as |x| — oo. Here G(z) = 2-point function of the massless
free field, é(p) = z%. Note that @, for d > 2, defines a continuous function e~2 G/
on S : We have

C
(f,Gg)Z/ d'zd®y———— f(@)g(y) < C||fllmllgllm for m large enough.
R4 xR? [z =y
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b) Consider the function

L72C(Lx — Ly) = L™ *(¢(Lx)¢(Ly))

[—m,m]e /u(p) (27T)d [—Lm,Lm)e LQM(p/L) (27T)d '

Formally, this converges

eip(w_y) ddp
s R G _
L—co /Rd pQ (27T)d (:(,’ y)v

since L*u(p/L) — p? as L — oo.

We call this the scaling limit : take the statistical mechanics at the critical point, look
at long distances, scale ¢ (by Lz above) = get quantum field theory. In this Gaussian
model we get : let z; # x; i # j, and pr(z) = LT ¢(Lx) (for z € (L717)%).

Then

/, HS"L(%)WO(@ L:zo/s Hs@(xi)dua(w)-

Here the LHS is with a measure defined on variables ¢(z),r € Z¢, a lattice model and
the RHS with a measure defined on variables ¢(z) x € R?, a continuum model (to make

this precise, observe that (L71Z)?) becomes “dense” in R? as L — o).

The massive case
How about r > 0 ? Consider again the Ginzburg-Landau model, C, = (=A +r)~! on
(%(Z4%). So,

eipﬁ ddp
Cr(x) = |x]2_d/ .
= Jalmjalm)d 122D/ |2]) + [z |?r (2m)

For |z| < r~%/2 (let  be small now)

Cr(x) ~ [
and for |z| > r~'/2 scale differently, p — r'/?p,

Cofo) = 2 ety
(z) =7
ox ma T (r2p) + 1 (2m)d

d—2 1/2
~ rTe_r/ |a;|

Stated differently, let us put r = L=2m? and consider, after the change of variable pm — p,

Ld_20m2/L2(L$> - / . e : ddpd
[~ Lm,Lx]? L lu(p/L) +m (27T)

etz ddp
L P — g (2.
Lod /R p?+m2 (2m)d (@)
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Hence o
LI otwmdue0) = [ T ot ()

i.e. if we approach the critical point » — 0 in a suitable way and scale distances and ¢

we get the continuum theory at nonzero m i.e. correlation length < oc.

Remark All the scalings are completely natural :

Formally
1 1
duc, (¢) = 26 2 (B(=A4) | | do(z

x€Z4

and ¢(z) = L¥¢L(a:/L) gives

(¢, (A +7)0)) = Y $a)(=A +7)¢)(x))

z€Z4

- Z () Z (p(z) — d(x 4+ u)) +ro(x)

zeZd lul=1

:ZL%%L(%) Z(W(z) (’DL(E z))—FTS@L(z)

x€Z lu|=1
_ er(y) —erly+ 1)
= > L%y | )] T+ Lrer(y)
ye(+2)4 lul=1
which, if ¢ went to a smooth function as L — oo,
— / —A+m*)p(y)dly = (¢, G, 59),
L—oo
r=m?2/L?

10 Non-Gaussian Theory on the lattice

10.1 Measures

Let us now consider the A # 0 Ginzburg-Landau model.

There are various finite volume theories that we can consider : Let A C Z¢ be an L-cube.

A) The measure
—eXp ( )\Zcb ) dpc, (@)
xEA

on R where e, is Gaussian with covariance Cy = (—Ap+7)~! and A, is the Laplacean

in Z with some boundary conditions on A (we have considered periodic and free above;
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one can consider Dirichlet or Neumann on the lattice too). Z normalizes the total mea-
sure to 1.

B) The measure
— exp< A () )duc (¢)
zEA

on s'(Z%) when pc is Gaussian with covariance C' = (=A +r)~!. Thus ¢ is in infinite

volume and the ¢* perturbation is in finite volume. Note that, whereas in A), ZA =

/ exp (—)\Z@ﬁ) duc, is strictly > 0, this is not immediately obvious in B). However,

zEA
recall Jensen’s inequality :

If v is a probability measure in R, and f : R — R is convex: f(tz + (1 — t)y) <
H(2) + (1= £)£(y), t € (0,1), then

[ st = 1 ( [eivto).

Apply it to the random variable x = )\Z(b; to get
yEA

/exp (—Aqu;‘;) duc > exp[=AY _(¢;)]

yeA yeN

where

(o1 = / dpc(9)¢, = 3C(0)° =3 { / ﬁ(gﬁ;d]

from our rules for Gaussian integrals. Also, since ((bf/} > 0, we get

exp[—3A|A|C(0)%] < Zy < 1. (10.1)

Note how the extensivity of Zy(= W) is visible here. Also, note that the free energy :
—3XC(0)2 < ‘ A‘ log Zy < 0, uniformly in A. Similar inequalities hold in the case A) above.

10.2 Perturbation Theory

It is possible to prove quite generally, using Ising-model approximations and various corre-
lation inequalities that the A — Z¢ limit of the above measures exist. These are, however,
special tricks and we want to understand these issues eventually using the renormalization

group. But let us for now proceed more heuristically and study the correlation functions
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perturbatively in A. Consider e.g. the pair correlation

[ o(x)o(y) exp ( A ¢(x) ) dpc (¢
G

zEA

(P(x)p(y))a = = Go(z,y).
[ exp < )\Z¢ ) duc (¢

TEA

(10.2)

It is not hard to see that, for |[A| < oo, this is C* in A. Indeed consider e.g. the
denominator and let V = Z o(x)* and set Fi(\) := [VFe Vduc(¢). Since

zeA

|Epoi( A+ €) — Fumy( V)] S VeV — 1]eV < e Ve AV < ejplg e A -ld=0V

and [ e~ A=V d0(¢) < oo for A— || — & > 0 we see that F,,_;()\) is differentiable with
F! _(\) = F,()\) and the latter equals the n:th derivative of the denominator. Proceeding
similarly with the numerator one shows that both numerator and denominator are C*>
and from (10.1) above, Z)y > 0. Hence G; is smooth (of course this way we get terrible
bounds for the derivatives as A gets large).

Thus, we have Taylor’s expansion for Gy:
N
GQ(J:a y) = Z G2,n($7 y)An + RN
n=0

where }\ing) A YRy(A) = 0. The Taylor coefficients G, have a nice graphical representa-
_>

tion which we now derive.

Let us start with small n. Denote (10.2) by .

n=0 N = [¢@)oy)duc+ ON), D=1+0O(\) so Gyy = C(z — y) our Gaussian
covariance.
n=1.

N = )\Z / P(x (2)*dpc

zEA

and

D=1-2Y [ o) duc.

zEN

From our rules of Gaussian integrals we get:

/ o(2) dic = 3C(0)?

from the three pairings. The integral

[ o@owol) dne

66



has 53 = 15 pairings and it equals

3C(x — y)C(0)* + 120 (x — 2)C(y — 2)C(z — 2).

So,
N = C(z —y)(1 = 3AA|C(0)%) = 120 “C(x — 2)C(y — 2)C(0)
zEN
and
D =1 - 3)|A|C(0)?

Hence altogether

Gay = —12C(0) Y Cl(z — 2)C(z — y).

z€A
To proceed further, we need to introduce some notation. Clearly, we need to calculate

expressions like

/ 6(0)6() [ o) e and / T ot

Both are given as sums of products of pairings > 5[]/, C(ua — ug) where {uq} are the
points x,y, z;, however such that each z; occurs 4 times. More precisely, let uyi_1)1; = 2;
forve=1,...,N,j=1,2,3,4 and uyn+1 = @, ugyn+o = y. Then the sum is over pairings
of the set 1,...,4N + 2.

To each pairing P we associate a graph G(P) as follows : G = (V, L) consists of a set
V of vertices and a set L of lines. Vertices are the set {z,y,z1, -+ ,2x} =V (for the 1st
case). Lines { join vertices : ¢ = {ug,,us, } where ug,up, € V and uy, = uy, is allowed.
Let I'y(V')be the set of such graphs G such that each vertex z; belongs to four lines (where
we count lines {z;, z;} twice) and each vertex z,y belongs to one line.

g.

Given a G satisfying these conditions, there may be several P’s such that G(P)
Call the number [{P|G(P) = G}| :=n(G).
Then

/qu i) o(y)duc = Z n(g)l_[C’(W1 — Ug,). (10.3)

Gel'a(V) Leg

Example. In (¢(2)*é(x)¢(y)) we had 2 graphs, G; has lines {z, z}, {2, 2}, {z,y} and G,
lines {x, z}, {y, 2}, {2, 2}. n(G1) = 3,n(Gs) = 12.

Now, once we sum (10.3) over the points 21, ..., 2y the order of the points z; will not
anymore matter. We get finally the following graphical rules which we state for arbitrary

correlations :

Definition 10.1 A ¢*- graph with 2m external legs, labelled 1,--- ,2m, and N unlabelled

vertices is a graph on N points (vertices) such that each vertex has 4 lines attached (one
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line can start and end at a vertex and is counted as two here), 2m lines have one end with

no other lines attached.

Examples.
Q 2m =2, N =1
><2m4,N1
2m =4, N =2

-—8 >< &

With this notation, we have

N O/HM exp( AS () )w —1" S n(9)

TEA g

d)\”

where G run through (2m,n)-graphs, n(G) is the number of pairings giving that G and
the amplitude A(G) corresponding to the graph G is the following expression:

1. Label the n vertices of G as z1, -+, 2,

2. To each line ¢ = {u,v} of G put C, = C'(u — v).

AG) = > ]c¢. (10.4)

21, ,2n €N L

We denote for short A (8) by 8
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Example. We get to O(\) :

— 43 —A3=8)+ 00

Gy =
1—X-3X+0(N)

- — —1n O - 3)\(— 8) +3>\<— 8) + O

= C(z —y)— 12X Q + O(\?)

=Cx—y)— 12)\2 C(r — 21)C(21 — 21)C(21 — y) + O(\?)

= C(z—y)—12)C(0 ZO:C—Zl —y) + O(\?)

z21EA

Remark. Note the presence of disconnected graphs like —— 8 that are cancelled upon
normalization.

Homework : Prove :

G=— —122 O +xa 8 v QO 44 o)+ O

and find «, 3,7

Theorem 10.2

/ o(@)dy)e = Ddpc

= (=" n(@)A@
= (Y @

d\m

where the sum E “ runs over connected graphs.

Remark. In the numerator the graphs are of the type U/ \ . 8 .
com;gcted

In the denominator



[.e. connected components have either both x and y or neither.

Note that disconnected graphs are here proportional to a power of the volume :

—8= Y)Y C(0)* =|A|C(0)°C(z — )

o 8 8 = C(z —y)C(0)Y|A|* etc

Proof of the Theorem. Notation :
J F(¢)e X" dpc

(F)x =

f€_>\2¢4dﬂc
so (F)o = [ Fduc
Then ;
= D (D@ F)a+ > (d(x))a(F)x
ie. C%\(F),\ = — Z(gb(:p)A‘; F), where we denote by

T

(F;G)x = (FG)x = (F)A(G)A
the so called truncated (or connected) correlation functions.

Lemma 10.3 Let F' = H O(za),G = H o(xs).

acA BeB
Then (F;G)o = Z H C(z, — zs5) where each pairing P has at least one pair {v,d}
P {~,}eP

such that v € A,6 € B.

Proof Obvious, since (F')(G) has those pairings where no such pairs occur and (FG)
has all pairings. O
Now (Prove !)

dn
b P = 0 3 (Pt otmn) oo o)
where
(Fy; Foie i Fy)o= > (=0 (x| = DITCT ] Fido
™ o 1€
where 7 = {m,}™ | is a partition of {1,--- , N} into || subsets.
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Example. (Fy; Fy; F3) = (F1FoF3)—(Fy Fo) (Fs) — (Fy F3) (Fy) — (Fy F3) (F) +2(Fy ) (Fo) (F3)

Now the thing to check is
Lemma 10.4 Let F; = H ¢(z;,). Then

a€cA;

(Fi;o 3 Fiv)o = Z H C(zy — x5)

P {y,}epP

where for each partition into pairs P, there is a {{;, 8;}}.*;' C P that forms a connected

path, connecting the A;’s, i.e. there exists a permutation p of the A;’s such that
M € Ap1), 01 € Ap2), Y2 € Ap(2), 02 € Apz) - On-1 € Ap).-

A

Example

The Lemma yields our theorem since there cannot be a connected graph with only one
leg. O
4
Problems. 1. Let Gy(x; -+ x4) = (H ¢(z;)) and define the connected four point function
i=1
G§(zq - x4) = (P(x1);...;0(4)). Prove that
Gy(ry - mq) = Ga(zy — 12)Go(13 — 4) + Ga(1 — 23)Ga(12 — 74) + Go(21 — 74)
Ga(zg — x3) + Gi(21, -+, 74)
N
Show that G has an expansion Z NGy, + OV with G4, consisting of connected

n=1

graphs with 4 legs.

2. Generalize 1. to the connected N-point function

Gy(rr---an) = (o(z1); -5 dlan))

by showing that

Gn(1--wN) = Z H G|CI|(9UI)

m Iew
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and that the perturbation expansion of G, consists of connected graphs with N legs.

3. Let
Z(J) = ().

Hence

Gn(z1,...,xN) = <H o(z;)) = (

Define F(J) :=log Z(J). Show

GSo(zn,. .. o) = (H aj(?xi)) ‘J:o F(J).

4. Prove that ddA—"n‘ log Z is sum of connected vacuum graphs with n vertices. (a vacuum

graph is a graph with no legs).

How to calculate the amplitude A(G) of a given graph G7 First, let us observe that
in our model Gy, ,, hasa A — Z4 limit : Clearly it suffices to consider a connected graph

which is an expression (let say m = 1)

Z A(.’,Cl,]fQ,Zl"'Zn)

21 2n €A

and A is a product of C(y; — y;) where the y’s are z’s or z’s. Use |C(z)| < const. e~12l/¢,
and note that, since G is connected, there exists a connected tree graph in G containing

all the vertices and all the legs (a tree graph has no loops).

Example.

; X . y

Now do the z; sums using ‘Z C(zi — zj)

ZjEA

< const (independent on A) starting at ends of

branches (e.g. z3 above).

72



10.3 Momentum space representation

Actual calculations are easier in Fourier transform. In order not to worry about analysis
let us first work in finite volume A = Z4. Recalling from Section 7.2. we have for p € By,

(defined in (7.3))
f) =Y e f(a).

zEAL

and the inverse formula

)= 170 e fip) = / dpe™ §(p)

pEBL L

where [ ; dp is a convenient shorthand for the Riemann sum, converging as L — oo to

f[_m]d dp where dp is the normalized Lebesgue measure [], ‘;I;i. We have, see (7.4, 7.5),

/dpeip(’”y) =0, for z,ye g (10.5)
L
and

Z 0T — 1d5 = (21)%L(p—q)  p,q € B (10.6)
zEAL
where we defined the discrete delta function 6. (p — ¢). Products work out as

(f9)(p) = fxg:= / daf(p — q)i(q)

L

and

(f*9) = fg.

Example.

O - Z Clz —21)C(21 — 22)°Clzz —y) = (C* C® x O)(x — y)

2122

Hence using above rules

with

or pictorially
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q
p-q-r
A more useful way to derive the same result is to insert for each C' its Fourier represen-

tation:
5

_ Z/ez‘[m(m_z1)+p2(Z1—22)+p3(Z1—zz)+p4(z1—Z2)+p5(z2—y)]Hé\(pi)dpi
L

2122 i=1

5
= / (2m) 0L (=p1 + P2 + ps + pa) (27)6L(—p2 — ps — pa + ps)eP PV [ [ Clps)dp
L =1

The first delta-function is due to the sum over z; and the second to the sum over z,. Note

“momentum conservation” at vertices.

P, D,
P, / \ 4 4
> \ip3 p7 > Ps p1=2pz~ ; pSZsz’
=2 =2
P, Py

Solving for the constraints we get again

= / dprdpadpsC (p1)C(p2)C(ps)C(pr — p2 — ps)C(p1)e )
L

using ps = p1, p4 = p1 — P2 — p3. These expressions now have the obvious limits as L — oo

with [ ; replaced by B
The general graph is now obvious :

P B
1) But momentum p; to legs, such that
> pi=0
P, Reason : G(xy,--- ,x,) is translation invari-
- ant :

G(xla”' 7xn):G(x1+yvx2+y7'” an+y)
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for all y so

Glpieoopa) = 3 Glan,my, - wy)e i 5m

L1,..yTn
= Z G(O,I’Q—le’... 7xn—l'1)€_i2ipixi
T1,.-3Tn
= Z G(0,xq, - ,xn)e—izzggpizie_m S, pi
ZT1yeZn

= 9(p2s - pn) 270, D_ pi)

where g(za,...,2,) = G(0,29- -+, x,).
2) Satisfy momentum conservation at each vertex (coming from the delta functions).

3) Integrate over each independent internal momentum.

Example.
P, . PP,
1 ~ ~ ~
> (p1) ( — p3)C(p2)C(p3)
3
T /] [] daC(a)Cla)Cla
P-9-9 A 4 v 4 +q -P-P-P ~ =
1T q; b -C(py —Q1—qQ)C(Q1+C]2—p1—p2—P3)
R Cpr1+p2— 1 — @2 — q3) = T'(p1,p2,p3)
PrBara, P, and in x space the graph is
p, )

w

dp;
G(a:l,--- ,1'4) :/ i(p1(z1—z4)+p2(r2—24)+p3(r3—24 )F pl Do, D3 H p>d
1=1

Remark 1. We have seen so far that :
a) If |A] < oo, the functions G(A) are C* in A

b) The Taylor coefficients G have a A — Z¢ limit.

2mn

It can be shown that if » > 0 and A is small enough the functions G A) have a A — Z¢

limit, they are C° in A and their Taylor coeflicients are the lim el

A—74d 2m "

Remark 2 The expansion is not convergent. Consider e.g. a lattice consisting of one

point i.e. the integral

F) = [ et

o0
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Then
B d"F
T d\

(4n)!
22n(2n)!

~ C"(2n)!

Qn

- [ = e

A=0

as n — 0o0. Thus the Taylor series ) %an)\” has <& ~ C"n!i.e. is very badly divergent.

Homework. Prove that F'()) is analytic in the region C\{\ € R, A <0}

and has an essential singularity at A = 0.

11 Infrared and Ultraviolet Divergencies

11.1  Infrared

Recall that for A = 0, the critical point of our model is at » = 0. What happens for
A > 0 7 The following is expected to be true :

For A > 0, there exists r.(\) such that for r > r.(\)

0 < (d(x)(y)) < Ae Ve ¢ <00 | §(r)sm2oy o

For r < r.(\) there are two phases, where (¢(z)) = &+ m # 0 and

[{0(2); d(y)) [< Ae™ Ve ¢ < oo,

with £(r) — oo as r 1T r.(N).
For r = r.()\),
lim (¢(x)(y))|e -yl #0

|z—y|—o0
where 7 is independent of A > 0, it depends on the dimension d, n = 0 if d > 4, and it
equals the 7 of the Ising model. These claims are proven, for small A and d > 4. The rest

remains a conjecture, although with plenty of theoretical and numerical evidence.

Let us see how these facts are reflected in the behavior of the perturbation theory when
r = 0. Let us consider the momentum space expressions for the graphs at » = 0. Since

all integrals are over a bounded region [—7, 7]¢ the only problem could come from p = 0

d
where u(p) = 22(1 — cosp;) = p* + O(p?) vanishes. Consider the following graph
i=1
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This is integrable in d > 2 if p # 0 and behaves as

|p|d—* d< 4
I(p) ~p—0 § log|p| d=14
constant d>4

XD

(. J/
-~

Thus = I(p)" ~ |p/™@* which is not integrable if

n(4 —d) > d (i.e. for d =3 if n > 3). Hence e.g. the graph

q

p P—q

has amplitude
/ Il dq
u(p — q) (2m)?
which is ill-defined for d < 4 and n large.

Conclusion. The individual terms of our perturbation expansion
G =3 N'Gpn

Gmn = Gmn(1 - Ty, r) have no limit as » — 0 if d < 4 (at least some of them). For
d > 4 it may be shown that this limit exists. Hence we expect to need radically new ideas

for d < 4. The p ~ 0 divergencies are called IR (infrared) divergencies.
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11.2 Ultraviolet

Consider now field theory. Let duc(p) be the Gaussian measure on S’(R?) with covariance
G = (—A+m?)~!. We would like to consider the continuum limit of the Ginzburg-Landau

model i.e. to start with finite volume A C Z? we would consider the measure

e G ().

We immediately run into trouble: ¢(z)%, as we saw, is not a well deﬁned random variable.
Indeed, [ p(z)*duc = co. Actually, we only know ¢(f) = [ p(z)f(x)dx for f € S(R?) is
a measurable function on S’ and has finite moments f o ”du < 00, Vn.

One way to proceed is to regularize the theory. Recall that [ ¢(z)*due = 3G(0)? and

0) = Jza G(p) 2 7amya- For us, G(p) = m so the divergence is due to insufficient decay

of CAJ(p) as |p| = oo i.e. UV (ultraviolet) divergence. Thus, let us replace a(p) by

~ -~

Ge(p) = G(p)x(ep) = G(p)x.(p)

where y € S(R?) cuts of large [p|. We demand x(0) = 1 and y > 0. E.g. x(p) = e ¥’
is a good choise. As e — 0, ae(p) -G (p) pointwise. Now ¢(x) is a well defined random
variable :

dp

(2m)?

[To be pedantic : a priori we know only that ¢(f) is measurable, for f € S, so consider

~

[ e, - @l o, G.0) = [ Gt

21|

< 0

_(@-y)?
O(fe), feuly) = ﬁ. This is a measurable function £, : S — R : ¢ — ¢(fc.).

Thus limHo (e also is measurable and this is what we call ¢(x) (formally : o(f..) =

[ o) feeW)dy=z/ ©(y) y)dy = o(x))].

Hence, con81der the measure

1

Z —fA[WP (@) 2+ 2p(z ]ddIdMG ( ) (11.1)
Ae

where we added for later purpose also a quadratic term to the Hamiltonian. This measure

is well defined provided a € R, A > 0. Indeed, as before by Jensen’s inequality we get
Zpe > exp [—|A](aG(0) + 3XG(0)%)]

4)\ ; ZAe S €| |4>‘

The correlation functions are again C'*° in A and a, and we have the expansion

and since ap? + \p* > —

N
G = Z N'aPGoppp+ Ry Ry = O oV

n,p=0
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given in terms of graphs. The coefficients, Gay ., for m? > 0, have a |A| — R? limit but
not an € — 0 limit, as we saw above.

The question of continuum limit will not arise in statistical mechanics where the lattice
spacing e is a fixed nonzero quantity. However, in quantum field theory this question arises.
In this case there is no fundamental length and one would like to have a quantum theory
of continuum fields. Moreover these fields depend also on time and are defined on the four
dimensional space time R*. Brushing aside for the moment the fact that this space time
carries the Minkowski metric instead of the Euclidean one we have been considering and
that in quantum mechanics the correlation functions of fields are replaced by expectation
values of field operators in Hilbert space, it turns out that in case of a scalar field theory
one needs to address precisely the question of € — 0 limit as above.

The problem of divergences of the coefficients of perturbation theory arose in the
1930’s when physicists were studying Quantum Electrodynamics (QED), the quantum
theory of electromagnetic field interacting with electrically charged matter. In this theory
there are two sorts of fields, the electromagnetic field A(z) which resembles our ¢(x) but
instead takes values in A(x) € R%. A(z) is the four dimensional electromagnetic vector
potential. It is a Gaussian field with zero mass, thus resembling our r = 0 free field.
The second field describes electrons and has non zero mass. The interaction term in the
Hamiltonian makes the theory non Gaussian; the analogue of our parameter \ is played
by the electron charge e. One can then proceed to derive a perturbation series as above
in powers of e and as above the individual terms are ill defined, diverging due to small
scale (large momentum) behavior of the integrands.

One would like to think about the electron charge (and its mass) as given physical
constants that enter the Hamiltonian describing the dynamics. The divergence of the
perturbation theory indicates that this point of view is incorrect. Rather one should
think about these parameters depending on scale. Thus physicists introduced in the 50’s
the idea of renormalization. We should think about the parameters entering e-cutoff
theory describing the charge and mass of the electron in that scale. These can very well
be different from the ones we measure that are interpreted as the charge and mass of
the electron in the measurement scale. Once we have introduced the renormalization
group we will make this picture more precise. For the time being we just remark that the
parameters a and A entering the measure (11.1) should be allowed to depend on the scale

€. Then the € — 0 limit question can be posed as follows.

Question. Find three functions Z(e), a(e), A(¢) such that

26" ([ [ elai).
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2m

converge, as € — 0, to elements of S'(R*™¢) (or Z(e)m<H ©(fi))e, converge for all f; €
i=1
S(RY)). Here ( ). is the expectation w.r.t. the limit of the measure (11.1), as A — R,

a = a(e) and A = A(e).
Remarks. 1. We allowed (it turns out this often is necessary) for a third parameter that
renormalizes the value of the field: o(z;) is replaced by Z(e)* ().

Obviously A(€) = 0,a(e) = 0,7 =1 is a solution. We ask if there are any limits that are

non-Gaussian. The answer is the following:

Ford=2,7 =1,a = —6A\G.(0), A\(¢) = A works.

Ford=3,Z =1,a = —6AG.(0) + aX?loge (a explicit), A(€) = A works.
For d > 4 there is no non-Gaussian limit.

Our objective is to explain these claims.

Remark. y. is a regulator. It cuts off momentum |p| > % very effectively. We could also
use a lattice-cutoff. Thus consider the following Hamiltonian on fields defined on (¢Z)%:

Let ¢ : (¢Z)? — R and set

H=13 (1 (#(@) _f(y>>2 + 23 @) + 3 ea(e)p(x)? + Me)p(a)?). (11.2)

€ 2

lz—y|=¢

Counsider as above the renormalized correlations

Gelwr, - wam) = Z(O)™ ([ [ (@)
i=1
As we saw before, setting
o(z) = e%go(ex) , zeZ? (11.3)
we have
Ge(w1, ..., Tom) = Z (€)X DGO (21 /€, ... T /€) (11.4)
where

2m
G(e) (yla s 7y2m) = <H ¢(y1)>(6)

and (—)© is the expectation w.r.t. the measure

lim L exp | — Z Ea(e)p(x)? + € N(e)p(x)* | duc.(9)

ATZS ZA’G TzEA
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where djuc, is the Gaussian measure on unit lattice fields ¢ € s'(Z9) with covariance
C.=(—A+ér) L

Thus our UV problem ¢ — 0 is the same thing as staying on a fixed lattice, taking
distances to oo (z;/€), and going to critical point (¢*r — 0). It should now be obvious
that both IR and UV problem have something to do with Statistical Mechanics at the

critical point.

Remark. The e-lattice theory can be interpreted as a particular cutoff of the continuum
theory. Namely, the measure with H as in (11.2) with a = A\ = 0 is the Gaussian measure
on s'((eZ)?) with covariance C, = (—A, +r)~! where the latter is an operator on ¢*(eZ?)
Le. (—Ap)(z) = Z[go(x) — o(z + ¢€i)]e 2 for p : (eZ)? — R. Concretely

li=1
1 (o.y) = / etr(z—y) d%p
—A,+7 Hy) = (= zja € 2u(ep) + 1 (27)

which shows that p is cut-off to [p;| < 7/e. Similarily, instead of the lattice model we may

consider the Statistical Mechanics where ¢ is on R? but has the cutoff , i.e. the measure

1
A, Z_Ae_m P g, ()

with G1(p) = Zx(p)-

12 The Renormalization Group

12.1 The Block-spin Transformation

Suppose that we have a Statistical Mechanics model at its critical point such that

A < B
|z —yle '~

| (o(z)o(y)) (12.5)

|z — ylote
(as |z — y| > 0) where € > 0. We are after a theory that explains the leading term in
this asymptotics and the fact that this term (or the exponent a) is universal i.e. stays
the same when the Hamiltonian is changed (at least under some changes). Thus suppose
there is a class of Hamiltonians that satisfy (12.5). Then the details of these Hamiltonians
affect the sub leading asymptotics i.e. the RHS of (12.5). We can get a special theory
where the scale invariance satisfied by the leading term is exact by taking the scaling limit.
Recall the relations (11.3) and (11.4) between cutoff quantum field theory and statistical
mechanics. Let, for L > 0

ou(x) = L3o(La). (12.6)
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Then if (12.5) is satisfied we get
A

=yl

Jim (o1 ()1 (y))

On the other hand ¢y, can be seen as a cutoff 1/L field as it depends on x € (L7'Z)<.
Hence if the LHS is given by an expectation (o(z)@(y)) the field ¢ lives on RY. Thus we
expect the limits, if they exist,

L—oo

lim (H wr(zi))

to be the correlation functions of a field theory. This field theory is called the scaling

limit of our model. By definition it is scale invariant, e.g.

L*(p(Lz)p(Ly)) = (p(z)p(y)).

Universality then would mean that several Hamiltonians give rise to the same scaling
limit.

The drawback of this formulation is that, first, the scaling limit is a different object
than the one we started with. The latter one is a fixed (unit) lattice model whereas the
former one is a continuum object. More importantly, we have not given any constructive
approach to the study of the scaling limit: we still need to understand the statistical
mechanics at the critical point, in particular we need to show (12.5). The Renormalization
group addresses these two problems. First, it supplements scaling by another operation,
coarse graining, that allows one to stay in the category of fixed lattice spacing theories.
Second, it provides actually a tool to study the critical theory.

We replace the scale transformation (12.6) by
¢ (w) = L2¢™(Lx) (12.7)
where ¢®¢"%¢(Lx) is the average of ¢ in a L-sided cube centered at Lz:

¢average(Lx> _ L—d Z ¢(LI‘ +y) (128)

L
yilyi|<5

(12.7) and (12.8) define a map ¢ € R — ¢, € R, ie. the scaled field is also defined

on Z%. We take for convenience L > 1 odd integer.

Here L =3
° o Lz °

° ° o Lx+y
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We see that ¢ — ¢, involves :
a) “Coarse graining” : average over details of ¢ for scales < L.
b) Scaling : ¢ () depends on ¢ near Lz and we multiply ¢ by L%/?
¢ — ¢ is called the Block-spin transformation. (12.7) and (12.8) define a linear map

Cr, : RZ — RZ’, concretely,

(Cp)yy = L274 { 1 |[(Lx —y)i |[< L/2

0 otherwise

Note that
C% - CLZ.

Thus, the iteration of (12.8) n times is the same as doing it once with L™ :

¢rn(x) = (Crno)(x) = (Cro)(z)
= L' 3" (L "z +y)

lyi|<L™/2

Now observe :

Proposition 12.1 Suppose that (12.5) holds. Then, for max; |z; — y;| > 1,

(CEO)(@)(CLO)(W))im2 AG (2, y)

“(z,y) /du/dv|x— +u—uv|®

and this holds also for all z,y, if a < d. Here O = [—1, 1]%.

with

Remark. G* decays as as |r — y| — oo.

Jz—yl* y\"

Proof. We get, for x # y,

| (CEO(@)CEd(y)) — ALET2 X" Lz —y) +u—v] ™|

u,v
[vgl,ug | <L™/2

< BL(a—Qd)nZ |Ln(£l§' _ y) +u— U’—a—e

_ BL_MZL_zdn|J] . y—I—L_"(u— U)|—a—e

7H—O>OO-/du/dU|m—y+u—v|_a_€:0
O O

and the A-term — A [ du [ dv|r —y +u —v[~* We used max |z; — y;| > 1, [(u —v);| <

1= |z —y+u—wv| >0, so integrals converge. The rest is similar. O
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Example For the Gaussian Ginzburg-Landau model with covariance = we take a = d—2

A
and get

p(L"z—L"y+u—v)

(Cro(x)Choly)) = LMD L~ zmz /

7r71']d /‘L(p)

s—y+L " (u—v))

dip el
_ L 2nd L 2n/
Z p(L="p)

L Lnﬂ-]d (27T)

m/du/dv(

)(x—y+u—v),

using L*"u(L~"p) — p?, as n — oo, and where —Apa is the usual —A on L*(R%). Now,

1 const

A Y= |z —y|=2

Remark. In this example, C7¢(z) are Gaussian, with covariance C7 < (C7)T. T denotes

the transpose, this is just what we write above, i.e.

5 (O (9) = (O (C (%)w

zZ,W

How about generally ?

12.2 Transformations on measures

Suppose p is a cylinder measure in RZ" and consider the random variables Cr¢. Their

generating function is
Wil) = [ Ddu(s) = [ (o)
= W(CLf)

which is obviously of positive type, so there is a measure uy, such that

WL(f) = / 0 dpup ().

w1z, is the probability distribution of the block spins Cp¢. Thus O : RZ

a map

C::B—B

where B are the cylinder measures on s'(Z%).

C7 is called the Renormalization Group Transformation on measures.
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12.3 Transformations on Hamiltonians

Concretely, let us work in finite volume Ay and take Ay = L¥-box centered at the origin.
Thus ¢ € RA Cp¢ € RAV-1 and C'¢ € RM-n. Let u be a probability measure

I _
dp(9) = e MId g

when H is some function H : R*¥ — R such that e~ is integrable. Then,
dpr (V) = F(0)d 10

with
F0) =5 [ T] 6(¥@) - (Coo)la))ato

z€AN_1
(Z normalizes [ Fd*-1 = 1).
Let us write this more explicitely : W(z) equals Lz times the average of ¢ in the L-cube
centered at Lz. Thus, if we fix ¥(z), Ve € Ay_1, we need to integrate out all fluctuations
around this average. In other words, let ¢y be a configuration that is constant in each
L-cube, and equals the average of ¢ there. Le. ¢o(Lz +y) = L™2VU(z) for all z € Ay_;,
all y with |y;| < L/2. Using our previous notation this equals

$o =L 2L~ 2HCTy = [ oCTw

(vecall, (CT),y = L2~ if z € L-cube at Ly, and equals 0 otherwise). Thus ¢ = ¢y + Z
with Z having 0 average over L-cubes i.e. C'1Z = 0. Thus

]_ —aT
F(0) = — / e A | | 5((OLZ)(x)>dANZ
reEAN_1

Even more concretely, take z € RAN\EAN-1 e 2(2) € R, Vo € Ay where 2 # Lw, w € Z%.

Put
2(x) x € AN\LAy_1

Z(x) =< — Z 2(Lw+y) x=Lw
lyi|<L/2
Then C,Z = 0 and so
F(\If) _ %/e—H(LdaCT\II+Z)dAN\LAN_1Z

a concrete integral over “fluctuation variables” z(z).
Let F = e "' The map Ry : H — M’ is called the RG Transformation on Hamiltonians,

i.e.

RiH = —log/eH(LdaC{‘”Z)dz (12.9)
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Here H : R — R and R, H : R*-1 — R. Note how the volume contracted from an

LN-box to an LV 1-box.

Remarks. 1. It was trivial to define the RG on measures and in infinite volume : Cjpu
is automatically a measure. On Hamiltonians, we need to
a) work in finite volume,

b) make some assumptions on #H so that Ry H in (12.9) is well defined.
2. RG is called a “group” because C} = Cp"i.e. (C})" = Cj. and (Rp)" = Rp». Actually,
it is a semigroup : R; = id but R;' is not defined.

Our Proposition 12.1 says that

J@or@icioman = 6 @)

(absorbing the constant A in the definition of G*), i.e.

/ U (x)U(y)dpn = G*(z,y)

Thus, we might hope that the measures pz» converge to some measure p* such that

/ W ()W (y)dp* (T) = G (2, )

and p* is a fived point of CF :
O =
Equivalently, provided we make sense of H in infinite volume, we might expect

(Ry)"H — H*, R M =N

n—oo

in some topology in a space of H'’s.

Remarks. 1. It is actually quite difficult to set up nice spaces of Hamiltonians for
unbounded spins : things are very sensitive to the dependence of H on large values of
¢(z)’s : we need the ¢(z) integral to converge at +00. This problem did not occur for
bounded spins where we could define H via potentials ® x and talk about the Banach space
B of Hamiltonians (i.e. of ®x’s) : Given ® € B, we could define the set of Gibbs measures
4 in infinite volume corresponding to ®. Moreover, above the critical temperature, we

expected @ to uniquely determine a p. For unbounded spins no similar formalism exists.

2. For bounded spins ¢ the RG, as defined above, will in general change the range of
values that o takes : e.g. for Ising spins o(z) € {£1} CLo takes values in the set
{0 € L79Z||o| < L2} ie. for a > 0, larger values. Upon iteration, C7o(z) € Lz=9"Z,
|Cro(x)] < L%. Thus, eg. at d = 3, where we expect a = d — 2 + 1 with n ~ 0.1,

as n — oo the block spins become unbounded and continuous! Anyway, for n < oo,
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we have a bounded spin model and can ask whether R actually maps Hamiltonians to
Hamiltonians. I.e. suppose u is a ®-Gibbs measure, ® € B. Is C}pu a Gibbs measure for
some ¢’ 7 If so, define R;® = ®'. This is expected to be true in Ising model, but proven

only for small 3 or large 5 (where one needs to enlarge B, surprisingly !).

3. For unbounded spins, R; and its iterations have been rigorously studied for the
Ginzburg-Landau model. It turns out that one can, to a certain extent set up a space
of Hamiltonians where R; acts; however, one has to supplement this with a different

representation of y for large values of ¢’s.
For the rest of the time, we will not discuss these problems. Rather we

a) Pretend that Ry is defined in some space of H’s and see what implications this could
have (Section 13).

b) Carry out a perturbative analysis of R}H for H = Ginzburg-Landau model and un-
derstand the IR and UV problem this way (Sections 14-16).

13 Rj near a Fixed Point : Critical Exponents

13.1 General Framework

We assume the following setup

1. We have some space K of “Hamiltonians” H such that H € K determines a unique
measure p1z on R We denote (F)y = [ Fdpuy. Here iz, is the limit of ZLAG_HA((f’)dA(b as

A 2 Z% and H, is some finite volume version of H (or more properly, H = {Ha}acza)-
2. The RG is defined in £ : Ry, : K — K i.e.

CLim = HR
We also suppose that there is a metric in I and if H,, — H, then py, — py.

Let us see what kind of picture of critical phenomena emerges from such assumptions.
Let H* be a fixed point of R, : RyH* = H*.

Definition 13.1 The stable manifold of H* in K is
M;={HeK|R}H—H"}

What can we say about the decay of correlations of H € M,? Let us define

Definition 13.2 H € M, is critical if

sup [(¢(x)p(y)) 2 le™ ¥/ = oo

x?y
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for all £ < oo.

Hence for critical H there are no A > 0, & < oo such that [{(¢(z)o(y))x| < Ae™27/¢ for
all z,y.
Recall @ in the definition of Cy, : (Cp¢)(x) = L2 L™ Z ¢(Lx + y). We have
lyil<%
Proposition 13.2 a) Suppose a < d. Then all H € M, are critical.
b) If a = d and ‘H € M is not critical, then (¢(z)p(y))y = 0 for x # y.

Proof a) Suppose A, &. Then,

0 7 [(¢(x0)(yo))3-| = | lim (¢(20)(Yo)) iyl
= |7111_>HC}O<CL¢(J:O)CL¢(3JO>>H‘
= | lim L7200 Y (oL + u)o (Lo + )l
|ui|<L™/2 |v;|<L™/2

< A lim L"@=2d) Z Z exp[—L"|zg — yo + L™"(u —v)[]/€

n—00
|ug|<L™/2 |v;|<L™/2

= A lim L”“/ du/ dve~ L lro—yoru—vl/¢
o Jo

n—o0

< AC lim L™* 9 = () = contradiction

n—oo
b) Now, if zg # g this is < AC lim L™e=4=1) = (. O

Remark. Also, if (¢(xq)d(yo))a # 0 for |z — yo| > 1 get above < lim L™ e1" = (.
Thus, if a < d, both H and H* are critical.

If a = d our block spins are
or(x) = L% ¢(Lx +y)

i.e. we normalize like independent random variables. The calculation above just showed
that if ¢(z)’s are (exponentially) weakly dependent then ¢ (x) become independent as
n — oo (central limit theorem).

Thus a < d is the interesting case.

[By the way, it can be proven quite generally that if (¢(x)p(y)) decays as |z —y|~* a > d
then it decays exponentially].

Identical argument shows that it can not be the case that H € My (o(z)o(y))n <
Alr — y|™ with @’ > a. Thus it is reasonable to expect:

Summary. M, is a critical surface consisting of H € K, all having the same critical

exponent for the 2-point function.
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Next, consider
M = {H|H has correlation length &}

For this we assume that all H € K have a well defined &, i.e. the limit

|1|im —%log@(ow(a&)} = ¢! exists
Then a) Mgy = M,
b) RL : ./\/lg — Mg/L

b) follows since Ry, scales by L:

(G(0)p(x)) myp = LD (@) d(La + v))p L ~ e~ HlfE,

u,v

Thus, we have a picture of K :

R; takes :
— critical H to H* upon iteration

— noncritical H away from H* upon iteration.

13.2 Linear Analysis around Fixed Points

Let us study Ry near H*. We assume that the usual dynamical systems ideas are appli-
cable i.e. that Ry is, say, a smooth map in K% Thus, let £ = DRy- be the derivative of
R at H*. This means that, for any H € IC,

R(H* + ¢H) = H* + eLH + O(2).

61f K is a Banach space, the derivative of R at  is defined as usual as the linear map DRy, : K — K :

1
DRyH; = lim —[R(H + €H1) — R(H)].
e—=0 €
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The spectrum of £ plays now a crucial rule in the analysis of R near H*.

In the known examples, the spectrum of £ has the following structure :
a) It is discrete, consisting of, real, positive, eigenvalues \; of finite multiplicity.
b) There is a finite number of \; with \; > 1.

Let H; be an eigenvector : LH; = \;H;. We say that :
1° H; is relevant if \; > 1
2° H; is marginal if \; =1
3° H,; is irrelevant if \; < 1
Note that DR},. = D(RoRo Ro---0 R)ys = (DRy+)" = L (since R(H*) = H*), so
R'(H 4+ €M) =H + e[ Hi+ ...
i.e. the H; perturbation increases (A; > 1) or decreases (\; < 1) exponentially in n or

stays constant (A; = 1). Let us interpret this. Suppose first the case where there is only

one A > 1, with multiplicity 1, say A;. Then for |z —y| >> 1
<¢(Lnx>¢(Lny>>H*+e’H1 ~ L_na<CZ¢(x)CZ¢(y>>’H*+eH1

= L7"0(2)0(W) e ey = L7"HA(2)0(Y)) e 4 exprn+0((exp)?) -

Take n such that e\ = O(1). Recall that we had one direction in K where we depart
from H* upon iteration, namely the one parametrized by £. Thus, it is natural to assume
that H* + eH; has £ < oo and H* + O(1)H; has £ = O(1). From above, then

EH + eHy) = LPE(H" + O(1)Hy)
= L"O(1).

Write \; = L% (so a > 0). Then € ~ L™ = &(H* + ¢H,) ~ e Ve

Let us identify ¢ = 0 with 7' = T, (T = temperature). Thus, our Hamiltonian * could be
say Ising model 5. Hsing and H* +€eH; would be SH rsing with (14+€)8* = for e ~ T —T..
More generally, we could start with Ising and consider some effective long distance model

(see below for precise definitions) for its correlations. Then again € ~ T — T.. So then
E~ (T =T,V

and —1/a is the so called correlation length critical exponent describing how ¢ diverges
as T — T.,".

_|z—yl
e €M for all z,y.

"Note that we got (¢p(z)¢(y))r ~

|z—y[*
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Universality. Consider now H = H* + ¢H;, \; < 1. As before,
(CLo(@)CLOY))n = (D(2)P(Y)) 2 +errn,
= (9(x)o(y))n + O(N)

so, if \; = L™%, a; > 0, then, since [u—v| ~ L™ = L~*" ~ |u—v|%. Thus these directions

give subleading corrections to the decay determined by H*. We have universality : the

N N

leading assymptotics of (H O(L"x;))y is <H G(L"x;))g it H € M (as n — oo and x;
i=1 i=1

are apart from each other) and the details of H are only seen in the O(L~*") corrections.

We say that all H € M, have the same critical behaviour.
Also, all the exponents «; are determined by H*, which appear not to depend on which
H we have (in My).

14 The Gaussian Fixed Point

14.1 Definition of RG in Momentum Space

As we saw above, the RG drives upon iteration the Gaussian measure puc where C' = ﬁ
(on Z%) to the fixed point

C*(z—y) = / du/ dv/ eifl’(m_z”)ei”(“_”)i &' z,y € Z°
m m R4 p* (2m)d

ie.
Tim (CEG(2)CES(Y))e = O (& = y)-
Since . .
: ey 2sin p,, /2
/ due™" = H/ ezpuuﬂduu _ H smPu/ :
O pu=1 —1/2 p=1 P
we have,
d . 2 d
) 1 2 2 d
C*(x —vy) = / elp(ﬂff—y)_2 H ( sinp,/ ) pd
R P’ Pu (2m)
(note ! this converges absolutely !) and writing [, dp,.f(p.) = Z/{ }dpuf(pu + 27mn),
nez v 1T
we have
dp
C* . — 'Lp(xfy)c*
wo) = [ )G
~ 1 2sinp,/2\>
C*(p) = ( - )
nezzd (p+ 27mn)? }:Il Pu + 2mny,



This is the Gaussian fixed point of the block spin RG. We should now like to perform
the linear analysis near C*. We will do this in a slightly different model, where it is less

messy (everything can be done in the case of block spin with identical conclusions).

We will consider, instead of a spin model on Z¢ (lattice cutoff), a “spin model” on R?
where we use a momentum space cutoff. A priori this is as good from the physics point
of view.

Thus, let dug be the Gaussian measure on S’'(R?) with covariance

= [ e X(®) AP
Gle=y) /Rde p* (2m)¢

where d > 2, x(p) is a cutoff, say

xX(p) = e
but anything with x(0) = 1 and fast decay at oo will do (say x € S(R%)). A priori we
know that only smeared fields ¢(f), f € S(RY) are integrable w.r.t. ug and

/ e g = e~ 5GP

so that e.g. (o(f)p(g)) = (f,Gg) = [ f(2)9(y)G(z — y)dzdy. However, now p(z) itself

makes sense (deﬁned as hm o(fe) where 111% fe = 5,; (e.g. f.(y) = (2me)~42e 2:@=%)) and
€E—r

we have [ o(z )dp,G = G( —y) well defined, Vz,y. (Technically, p¢ is supported on

distributions that are C™ functions, see Homework).

Thus, let us consider the finite volume measures
1
dva(p) = e " dug(p)
A

where Z, normalizes [dvy = 1,V, is a function of ¢’s localized in A, e.g., Vy =
[ dzP(p(x)) P e.g. a polynomial.
We now describe the RG in this setup. We need to split ¢ into “local” and “global” or
“high momentum” and “low momentum” parts as in the block spin case. We do this by
first splitting G : write, for L > 1,

G(p) = ]%X(p) = ]%X(Lp) + Y%(X(P) — x(Lp)).
Or
Gz —y) = /R ) eip(x‘y)]%x(Lp) (;lﬂ];d + /R , ei”(”&_y%(x(p) — x(Lp))
2— p 1 ddp p(z—y
=L d/Rde EX(p)(Qw)d +4d6 ( )p (x(p) — x(Lp))
— LQ‘dG(%y) YTz —y) (14.1)



Here I'(x —y) is the “high momentum” or “fluctuation within blocks” part : x(p)— x(Lp) =
e — e ' = O(p?) for p ~ 0 and it gets its main contribution if |p| € [L,1]. In
particular, for y analytic (prove !) |I'(z — y)| < Ae™#7¥//L ie. it has correlation length

< oQ.

Lemma 14.1 Suppose jig,, 7 = 1, 2 are two Gaussian measures on S’'(R%) and G = G1+G5.
Then for all F' € L*(uq),

/ Fo)dpa(e) = / F(1 + p2)duc, (01)duc, (©2).

Remark. Hence ¢ is the sum of independent Gaussians.
Proof 1°. Holds for F(p) = ), f € S(RY) : e 2(GN) = [N dpg and

/ AN+ 4, e, = / e D / 9Dy, = e BUIGUIHIGN) Z =G

2°. Suffices to check for F' a cylinder-function i.e. recall that cylinder sets

C(fla"' 7.fn7A1a"' 7An) = {90 € S/(Rd)“p(fz) € AHZ = 17 ?n}

where f; € S(RY), A; Borel sets in R. Let xc be the characteristic function of this C.
Then our claim follows (why 7) if we prove it for g = ¢ for all cylinder sets C'. But

o(f1), - ,o(fn) are Gaussian with covariance

(p(fi)e(f)) = (fi, Gf;) = Ay

i.c. for g : R® — R Borel measurable,
oot oltdnoto) = [ gl aduato (14.2)
and similarity for u(f) a=1,2
[ oerh) + sl or() + eal)dc dic
= /g(y1 21, Y+ 2n)dpa, (y)dpa, (2). (14.3)

But (14.2) = (14.3) if we can show it for g(x) = /™ for all A € R™ i.e. [ e M dpy(z) =
[ et (y)dua,(2) which is a special case of 1°. O

Let us apply the Lemma to (14.1). We note that the covariance of L’%gp(%) is L* G (%)

if ¢ has covariance GG. Hence :
[ Fopnate) = [ PP o)+ 2)duo(e)dun(2),
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This gives our RG :

_ oy S @) ()
<F>VA — /F<90)d A(@) - JIeiVA(lp)dﬂG“O)

i 42
_ [F(L=5p(5) + Z)e W 2 DD dpg (o) dur (Z)
= _d—2 .

[ e &2 e+ D qp () dur(Z)

= (F)»
with
dv(p) = %e_v(p)d/ﬁc(@) Z = /e_vd,uc
eV — /G_VA(L_dQQSD(LH‘Z)dluF(Z)

_d=2

_d=2 .
o(5) + Z)e T AD Dy (2)
_d-2 . :
fe—VA(L 2 ‘P(Z)Jrz)d,up(Z)

- JF(L

Hence, we got a renormalized measure v which is again of same form as v and we can
define the RG as a map of V'’s by

~ _d-2
RV(p) =V(p) = —1og/e‘V(L 2 DD (7). (14.4)

Compare with block-spin | The latter can actually, with a suitable definition of ¢ on the
RHS, be written exactly as (14.4).

Remark. If V = [, P(¢(x))dx then

—2 . —2

VLol +2) = [ PLTT )+ 2@

Y /L_IA P(L™% ¢(y) + Z(Ly))dy

i.e. it depends on ¢ in L7'A. So we may call 1% by Vi1, if we wish. Of course this will
not matter in the limit A * Z<.

We have now a fized point V =0, i.e. dug — dug under our RG. Call this the Gaussian
fixed point.

14.2 Compute DRy_o= L

From (14.4) we get immediately

) .

(LV)e) = [ VLT o)+ 2)dun(2).
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This starts to look not too bad ! We will study the spectrum of this linear map. Let us

first see some examples.

Example 1. Let V = [, p(2)*dz. Then

// L—* +Z( )>2ddeF(Z):
= L2d/ dx—ir/d:v/ )2dpr

=17 /A/L o(x)*dz + |A|T(0) (sinee /Z(x)2dup = F(O))
e /A , (gp(:c)2 + Ld*QF(O)>dx.

Hence, since, from (14.1), G(0) = L>*7¢G(0) + T'(0), we get L2T'(0) = L42G(0) — G(0),
and

c / Vo = L2 /A (ot — GO

i.e. we found an eigenfunction (as A — R?) [(p(z)? — G(0))dz with eigenvalue L? i.e.
with exponent o« = 2. Note that this corresponds to a mass term. In the lattice cutoff

case we have

1 X
Jim, e % Loen# dug () = diig o ()

, 1
Gz(x —y) = /elp(zy)eﬁ—.
(= =1) p(p) +m?

(Can you figure out what happens in the momentum space cutoff case?).This is a relevant

eigenvector.
Example 2. Consider V() = [, (Vgp > dr. In the same way, using V(tp(%)) =
(V) ($) we get : LV = fA/L (Vgp(m)) dr — |A|V2T(0) and

c ( /A (Vo) + v2G<0)}dx) _ /A /L((w(x))z £V°6(0))da

so this is a marginal eigenvector : note that it corresponds to a change of the fixed point
which is corresponding to H = [(V)? : in fact we have a one-parameter family of fixed

points duag o > 0.

Example 3. Consider V(p) = [, ¢(x)*dz. Now (using [ duprZ*™+! =0)
22-d) _ (T\* 2-d_(T)? 2 4
/dup(Z) [L o (L) 46124y (L) Z(2)? + Z(x)
_r22-a, (% 4 2-d (T2 2
L cp<L> 4 6L go(L) 1(0) + 30(0)
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SO

LV = i / o(z)'dz + 6L (0) / o(x)2dz + 3T(0)|A
AJL AJL
so, putting

Vi = / ()" — 6G(0)p(x)? + 3G(0))dz
A

we get LV, = L4, i.e. Vyis relevant if d < 4, marginal if d = 4 and irrelevant if d > 4.
It is obvious now that we have eigenvectors V,,, polynomial of degree n, with eigenvalues
L%t A simple way to get the formula for these eigenvectors is to consider

2—d

Lo — B2 [ o) @) / dppe? D) — oD+

where f(z) = L°2* L f(Lz) = L*3" f(Lz). Since

(F.6H =1 [ {(Lo)Gta ) f(Ldedy = 12 [ )G (1Y) sy
we have, see (14.1), (f,T'f) = (f,Gf) — (f,Gf) and so

Lo 3FGD+e(f) — o= 5(F.GH+e(f)

This is a kind of generating functional of eigenvectors. Let

dn

H,(t,a) = —

(t,a) = -

be the n'® Hermite polynomial (polynomial of degree n in ¢, homogeneous of degree n in
t,v/a). Then, let

—2ar?+4)t
A=0

n

Vil f) = Huolf), (1.G1)) = 5

_ o~ SEGHN4AR(S)
dx»

A=0

S0,

LV, (o, f) = Valw, f)-

Taking the limit p(f) — ¢(z) (i.e. letting f tend to a delta function), (f,Gf) — G(z —
x) = G(0), V. (¢, f) becomes a polynomial P, (o(z) in ¢(x), P,(p(z) = Hy(p(z), G(0)) =
o(z)" + arp(x)"2G(0) + - - - and

,C//\Pn<90(x)>de [ dn2st

where P, are Hermite polynomials.

P, (gp(x))d:p

A/L

A local V is an integral of a polynomial in p(x) and its derivatives. Clearly we get

eigenvectors
¢

ng
/ o(x)" H <Vk<p(:c)> dx 4 lower order polynomial
A

k=1
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with eigenvalue
A5 A ) = (3 k)

i.e. the more there are ¢’s or derivatives, the more V is irrelevant. In the class of even

local V'’s the relevant ones are, for d > 3 :

[¢* L? always
[t L7 d<4

the marginal ones are :

J(Ve)?*  always

[ " d=3

[ d=4
In case of odd V, we have [ with eigenvalue L% always relevant (this corresponds

to a magnetic field), [ ¢® with eigenvalue L% relevant for d < 6, [ ¢° with eigenvalue
L5‘%, relevant 3d < 10. (note that [ Ve, [ Vpp? are boundary terms).

14.3 The space K for L

We can set up a space K so that £ : K — K and study the spectrum of L.

Basically, we want to consider Vs of the form

n

/ doy -+ dao K (zr, - 20) [[ ol

i=1

and specify the K’s. For this, generalize a bit what we found above. Define the normal

ordered product :

JLe@) = 3 (17 [Tt ] et).

i=1 1c{1,n} jer iel

Homework.

n

/3i1j%0(5€i)3H

=

exp[ 5 (F.G) + ()

= Z)\ifia fi € S(Rd)-
i=1

This implies :
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The space K., consists of finite sums of the form. (Let ¢ € S(R?))

N
= Z/KQ w(@1 e Ty) H ()" V(z)™ I_Idg:Z (14.5)
nm i=1

d
where . = (n1, -+ ,nx), m = (my,-- ,my),n; € Nym; € N (V)™ = H(Vago)m“‘

a=1

m; = (Mg, -+ ,Myq) and Kyp(r1-on) = Kyl + 2,20 + 2, ;25 + ) Vo € R¢,

~

(translation invariance) and
/|Kgm(07$2a e >517N)|€7L(0’x27m’xN) = “Kw@”v <0

where L(xy,- -+ ,xx) = d(z) is the length of the shortest connected path ' in R? such
that all z; belong to I'; here v > 0.
Then LV has kernels K”:

Kppl) = LFEEAmm L= 2m NG, (L)

~A

and
::L%fzﬁﬂm+me—zﬁﬂmLNd/Whﬁm04ﬁw““@¢m-~dxn

!/
|| Qm”“{'

= LQEdeV1(ni+mi)L—Zﬁv1miLd/ |Knm<$)|67'd(L71£)d$2 codr,,.

But d(L7'z) = Ld(x), so

_ LdL%vazl(anrmZ)L*Zf\]:lml

Kyl

Sl 2y

Hence LV € Ky, and thus also LV € K,,.
Thus only (for V' even)

/K($— /Kagx— Vap(z)Vep(y /K:v— ) Ap(y)
[ G- oo, [ K= ooty

/ K (zreses) (@ )o(ws) oles), / Kz — y)p(a)oy)’ (14.6)

are not irrelevant in addition to [ ¢?, [ ¢*, [(V)?. These can be split into relevant /margi-
nal and irrelevant as follows. Consider e.g. the first term in (14.6). Let K (p) be the Fourier
transform of K. Since [ |K(z)|e"*ldz < oo we get K (p) is analytic in |Imp| < 7. For

simplicity we consider only rotation invariant V’s i.e. K(x) = K(|z|).
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Lemma 14.2 Let K(z) be rotation invariant with || K|, = [|K(z)|e"*ldz < co. Then
for all € S(R?))

/ K — y)o(@)o(y)dedy = / o(2)* + B(Vp(2))? + V(p)

where |af, |8| < C| K|, and Ve IC, /2 is irrelevant with kernel < C|| K|, .

Proof. Since [|K(z)|e"*ldr < 0o we get

Rl = [ e K@l < [ e )i
is analytic in [Imp| < . Taylor expand

K(p) = K(0) + 8p* + R(p) (14.7)

(we used the rotation symmetry to get the second term of the form Sp*) where
~ I 43 =
Rip) = 5 [ a1 - 0P Riew
0
= > Papspy Hasn ()
afy
we have

ol = [K(0)] < [[K],

and using Cauchy’s theorem
18] = [0*K(0)] <~?(IK]l,

It remains to study the remainder. We have

3

SR () = 3 pepon (0050, K) 1)

aBy

and so

)

1
o) = [t = 020,000, %) tp
1 —_—
_ / dt(1 = £)2(wat s K (2))(tp).
0
Taking inverse Fourier transform and changing variables we get
1 ‘ -
Honlw) = [ a1 =020 [ /' (azn R @) ()dp
0
1
= 2'3/ dt(1 — )%t 3z, xp2, K (2 /t).
0
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Hence

1
HHaﬁ’YH’Y/Z < /[; dttd/d{[(|x’/t>3‘K<x/t>’e'y|z|/2

1
:/ dt/dw|x|3|K(x)|67t|w/2.
0

Since |z]? < %e”"’”‘/z we get finally
48
[ Hapylly/2 < ?HKHT

Thus
7o / o (2 = 9)0a(2)02030(y)dardy

is irrelevant and satisfies the claim. O

The other terms can be analyzed similarly, e.g.

/K(xl,... ,x4)H¢(xi):a/¢4+‘7

where a = fK(O,xz,:Eg,:v4)d:E2dx3dx4 and V is irrelevant. Thus every V € K, can be

written as
V:T/:<p2:+z/:(Vg0)2:+)\/:gp4:+‘7 , ‘7610,/2

and then
LV = L27“/ L —I—z/ (V) : +L4_d)\/ ot 4V

with V' € Krq/2, HV’HLWQ < L72||V||. These are our “coordinates” in K.

15 Perturbative analysis of RV

15.1 General formalism

Consider now the full R:
RV(p) = —log/d,up(Z) exp V(LT o) + 2)]. (15.1)
Suppose V is in K as above. There are several problems :

1. pin (15.1) lives on R? and is not in S(RY), rather it is in S’NC™ i.e. it may increase
as x — oo. This is the IR-problem. We used A for that, so we may replace the
kernels K,, ,, above by K, ,,, x where x restricts x; € A.
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2. More serious problem is the convergence of (15.1) as Z becomes large. This is the
stability problem. Say for V = \p* we need at least Re A > 0. For a V as in the
previous section, this positivity property is not easy to state. Instead of trying to
address the stability problem, we will calculate RV perturbatively in X if V = Ap?.
With a lot of work, RV can actually be analyzed rigorously. One does the following :

a) For |p(z)| < C one uses the representation in terms of K, ,,, actually an

infinite series.

b) For |¢(x)| > C one uses another representation where positivity is explicit.

The problem is to combine a) and b) : ¢(x) can be small and ¢(y) large nearby.

One uses expansion ideas from statistical mechanics to decouple these problems.

Thus, let us start with V() = A [, ¢(x)*dz and see what RV looks like. Expand in

powers of \:
N
= Z A" (RV)n(¢) + Remainder

1

1 ar
= = —1 v e($)+2)
(RY)o(9) = SRV = iy (1o / r(2)).
Hence,
2 d 4
AR - )\// +Z( )) dedur = LV (¢)
RV ),(0) = =5 | [ Ve - / Vipr [ Vi)
= V(D) + 2R VL () + 2
where we use the notation of truncated expectations.
In general
1
NU(RV), () = (=) (Vi Vi Ve

Consider (RV);y : Denote L%go(%) = U(z). So

<(‘1’<x>+2<x>)( )> ~{(vor+2)') (v + 260)'),

=362 ¥ VWITE - o) 16-3(W(@)¥(y)’ + (@) ¥(y) )Tz = y)T(0)
FAIT(z —y)* + ( ;l —y)°T(0)*

+16 -3 ! W(2) W ()T (z —y)* +6-4-3(V(x)* + ¥(y))T(z — y)*T(0)
+169(z)® () T(z—y)+16-3-30(x)U(y)T(z — y)I'(0)*

or graphically
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X O8O0 .

O+m+ S ROn

where we have same rules as before except that :

- edges are I'(x — y)

T

- external edges have ¥ (z) = L¥4p(z).

Thus we end up with the representation
(RV)u(p) = > Ws(p)
g

where the sum runs through all connected graphs G with n+m vertices z1,..., T, y1,. ..,
Ym. Vertices y; have four edges ({z, z} allowed) attached and vertices z; have 4 —n; edges
attached where n; > 0. The Wg(yp) is equals

n

n(g)/ / M -] ﬁ\ll(a:i)”ida:iE/Kg(xl,...,xn)H\If(:ci)”idxi
) i=1 i=1

{2,2'}ee(G i=1

Recalling that |['(x —y)| < Ce~*=¥ for some o and the fact that the graph is connected

we get

Exercise. ||Kg||, < oo, for some v > 0.

N
Thus Z)\"(RV)H(@ € K, for some . It is more convenient to consider V(p) =
n=0

A S, (@)t do where, recall, : ¢*(z) := p(2)" — 6¢(2)*G(0) + 3G(0)?. Then

A (RV),(¢) = LV = AL / ()t

AJL

Exercise. Prove this !

Thus, e.g. (RV)y — @ + O + >O< .

From our analysis in the previous section, we get (for d = 4)

(RV)(p) = (A +aX? + O(N\?)) /A/L cp(x)t s (DA 4 O(N?)) /A/L cop(z)?

+(cA” + O(N?)) /A/L(V<p(x))2 +V
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where V is irrelevanti.e. LV contracts and V = O(\2). Here a comes from >O<

and ya=—2 [T(x)2dz+1%2 [T(z—y)L*9C(%£—%) (see computation

for d = 4 below); b, ¢ from /AR and and >O<
\_/

(see computation for d = 4 below).

15.2 TIteration

Suppose now V=X [ ¢ 4r [ 1o i 42 [ (V)?: +V where V € K is irrelevant,
1LV ||, < L=|V|, for @ > 0. Calculate perturvatively RV:

(RV)(#) = S_(=1)" (L) (V: Vi Ve + Remainder

(15.2)

where V = V(L™ %" ¢(+) + Z)

N
= (RV),,(¢) + Remainder
=0

n

The point is now that RV, € K, again. Indeed, we get graphs as before and also from

r, z and V. Pictorially, the V ones are

where are K, ,, and lines are I'(z — y).

It is not hard to show that the exponential decay of K, ,, and I' give rise to exponential

decay of these graphs. Thus the claim.

4
Example E.g. <<f K(xq, -+ ,xy) H go(xl))2> gives for instance
i=1
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4
2—d xi
= /HdIiL22d<P<Z) /deiK(x17$2aylay2)F<yl —y3)l(y2 — ya) K(y3, ya, T3, 74)

=1

4
K(g) = LY / deiK(L%, Lo, y1,y2)U(y1 — y3)U(yo — ya) K (Y3, ya, Lz, Lay)
=1

/‘6’76(0’1‘2,‘%37534)’%(0’ e ,$4)|daj2 e dx4
=L / el Ot | K0, L g, LV, L) |ds -+ duy (15.3)

Use £(O7 T, T3, l’4) S C(O7 T2, Y1, y2) + |y1 _y3| + |y2 _y4| +£(937 Ya, X3, ZE4) (Since the RHS
is the length of a particular path I' such that 0, x5, x3, 24 € T").
So,

4 4
(15.3) < L / H dy; H dIiK((L L2, y1y2)f(y1 - y3)F(y2 - y4)K(?J37 e, Ty)
i=1 i=2

with K = el 72K, ['(x) = e ID(2).
Use |T(y2 — y4)| < C, integrate over y4, 3, 74 :

3
(15.3) < L4d/deid$2|f_((0,x2,y1792)f(yl — y3)| |1 K| -1
i—1

Integrate ys : [ |['(y1 — y3)|dys < C” and then the rest :

(153) < CL" K3, < LK.

Summary. Perturbatively, the R™V retains the form :

(V)2 : —I—rn/

mzmw@:%/
L

:<p2:—|—)\n/ :904:—|—‘N/n
LA —nA LA
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where V, € K and |LV,|| < L™|V,|, o« > 0.
We get the recursion (denote g, = (zy, 1y, Vn))
Zn+1 = Zn + O(VnQ)
Tnp1 = LPr, + O(V2)
A1 = L7, + a2 + O(N2, Mg, 62)

Vi1 = LV, + O(V?).

Let us see how these behave as n — oco.

15.3 d>4

We want to determine the critical point, i.e. take

V:z/:(V¢)2:+T/:g02:+)\/:<p4:

and find 7(\) such that V' € M. Since 4 — d < 0 we expect the relevant fixed point to
be the Gaussian V = Z [ : (V)? :, for some constant Z # z, noted z., below.
Hence, the problem is to find ro = () such that

Tny An, Vp — 0 as n — oo.

Since 7,41 = L?*r, + --- tends to increase, we need to be careful. Let us construct
ro inductively. Given A (small), take rq € [—AMN?, AN?] = Iy, A chosen below. Then
|r1 — L?ro| < CA\* 4+ C(A)N\? where C is A-independent. Consider r; as a function of rq.
For A large enough, r; maps our interval

12
2

L2
r1(lp) D [—7/1)\2, AAQ}

i.e., since \; < LI\ + O(A\?) < )\, we can, by continuity, find an interval

L, C 1

such that
ri(1;) = [—AN], AN3].

Now, keep on iterating. We find intervals I,, C I,,_1 C --- Iy such that r, as a function of
ro satisfies

(L) = [—AN2, AN2]
and X, < LU=4=9n) for ¢ > 0, |V, || — 0.

Thus, ﬂ I, # 0 (since I,, closed C I,,_1) and, for rq € ﬂ I,,, we have

Vi, An, 7w — 0 as n — oo.
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Actually it is readily seen that |I,,| —= 0 so ﬂ I,, = one point = r(\), the critical r value.

n=0

Clearly r(\) = O()\?).

n—1
How about 2, ? Since z,11 = 2z, + O(\?) and zp = 0 we have 2, = ZO()\fn) =
m=0

n—1
D O((LE=ImN)?) — 2o = O(N?). So
m=0

R — zoo/ (V)

Hence, we have the one-parameter family of Gaussian fixed points e~/ (V#)*: dug and
6—7’()\)‘[2@22—)\]2@41 d,UG R—n> e—zoof:(Vgo)Q: d,uG
The Gaussian line has one unstable direction : ¢? : and, once that is fixed to the critical

value, we flow to the line :

154 d=4

Since A,11 = A\, to leading order we need to go to O(A\?). The sign of a in A\, 1 =
An +aX? + - -+ is very important so let us calculate it.
We will prove that A\, — 0 and r,, z,, V, = O(M\?). Thus a gets contribution from the

—%/<: <L¥<p<%> —I—Z(m))4 D <L¥<p<%> +Z(y)>4 : > dxdy.
This gives graph a) >O< which contributes directly and b) >_< which

contributes indirectly.

term
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a) Equals
72 4 94 T\? (Y\? 2
—?L /dxdygp(z> gp(z) [z — y)“dzdy
d

2 4 7
— _%L42d/d;¢¢<%> </ yI‘(y)2> + irrelevant (goes into V).

b) We have to normal order >_< since 17”+1 is normal ordered. This graph equals

Use
T\ 3 Y 3 x\ 3 Y 3
ol(p) ell) =elp) ()
_ 2 2
+ 9G<¥) : go(%) gp(%) : + quadratic term + constant
and write

[T -n-o(() ()
= /da: ; @(%)4 : /dy G (%)F(y) + irrelevant.

Thus a) and b) together give
—36L4_d/dm cp(z)t /(F(y)2 + 2L2_dG<%>F(y)> = —b(L)/ Lot dr

(using L4 =1, T'(y)* + 2L2_dG(%)F(y) = G(y)* - (LZ_dG(%))Q), where

b(L) = 36 / ay[owy? - ()] (15.4)

Therefore our recursion now is

Zn4+l = Zn + O(Ai)
Fnp1 = LP*r, + O(X2)
Mgl = An — b(D)A2 + O(\?) (15.5)

Vi1 = LV, + O(N\?)
1LV, < L72V,|

How does (15.5) behave? Consider first the differential equation

d\
= B\
dn B
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SO
dA 11 A
55 = —Bdn, — =< +fn, A

N PR "= e 0

i.e. for large n, \,, ~ %
Homework. Prove that (15.5) = A, < £.

Actually there is some interest in calculating b(L). We have

log L
b(L) = 36 / dy / ds L (G g))
0 ds

but
d —2s —s = 2_ Y v = —2s —s = 2
(G ) = (~4=7-V,) (G )
where we used the fact that G(Z) depends on |7] : G(Z) = G(r) r = |Z| and
ié(e’sr) = —e*rG'(e”°r) = —rié(e”'r’) = —7-V,G(e°F)
ds a  dr N v '

Thus, (with A = [, dQ)

log L [e's) d
b(L) = +36 / ds / dr v (44 v (e Gle ")) / do
0 0 dr

dr
log L 2
= 36A/ ds lim r* <e G (e Sr))
0 T—00
But
d*p e’ _ ,
pr— _p 1 .
G(r) /(2ﬂ)4 - e (15.6)
_ 2/ d'p ™ o ATA N r2/ d’p e VP
(277)4 p2 r—00 (271_)3 2 ,—pQ.
So ) )
2 > dp 1
: 4 —2s — _ - —
lim (G (e ) —(/ o2’ ) —(m
Hence

b(L) = 9AT *log L = Bylog L
A = area of unit sphere in R*.

Remark. 3, is universal, it did not depend on our cutoff e?*. We could have used any

cutoff x(p) ! This is a deep fact, see below.
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Summary. For d = 4, again we find a r9(\) such that

Rn(T0/2g022+>\/1Q041)=Vn

has A, — 0 like 1,1, = O(\2) = O(%) — 0V, = O(A\2) — 0 and
Zn = Zoo :ZO()\i) < 0
n=0

since » n—12 converges. We go to the Gaussian fixed point, but only logarithmically in the

scale : n ~ log L".

15.5 d<4

Now A\ny1 = L9\, + O(A\2) increases, so sooner or later \, is big enough so we can not
trust our perturbative analysis that holds only if A, is small enough.
It is very instructive to pretend that d is a continuous variable and take d =4 — ¢, ¢
small. Then
Mgt = LN, — b(L)A2 4+ O(N\3).

Let us look for a fixed point \* = ae + O(e?). We get 1 = L — b(L)ae + O(e?) or

a = % = By above (we used b(L)’ = ( )‘d +0(€) = Palog L + O(¢)). Thus a
=4

fixed point would be

d=4—¢
N =By le+ O(e).

However, now z,41 = 2z, + O(A2) = z, + O(\*?) increases. What went wrong ? We have

indeed a new fixed point A* # 0 and we need a different scaling of ¢ in our RG :

d—2 d—2+4n

L 2 — L

Let us proceed formally. Now

e M = o 3GV o o3 [(Ve)-V

_n
o LT3 [(Ve)*~RV(L 2 ¢)

— o (LTHOO) [(Ve)2=ry [10%i=N [rph=V
Thus, 14+ 2zp =1 (20 = 0)
1+ 201 = L1+ 2,) + O(A2)
= n = O(e?) and

Ang1 = L2\, — B log LX) + O(A))
= LN\, + O(e)\, — Balog LN2 + O(\2)
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so \* is still \* = 85 e + O(e?).
We got also 7,41 = L2, + O(N2), LV, < L7277|[V].

Summary d =4 — ¢

Now we have a new fixed point

1 -
7-[*:5/(Vg0)2+r*/1902:+)\*/:<,04:—|—V*

with A* = Bae + O(€2), r* = O(€2), V* = O(€2).

Also
1

<90(17)S0(y)>w ~ m
n = O(e?).
Remark d = 3 is e = 1 i.e. is non-perturbative. We expect, say for block-spin RG, that

for all A\ there is r(\) such that H = > (¢(z) — o(¥))? +r(A) > o(x)? + A3 o(z)*
critical and dn such that

R"H — H*
where R™ has Cp(y) = LT 2> @(Lz+y) (d =3) and 1, H* are A-independent. H*
has only one relevant direction, namely the correlation length and no marginal ones (for

d=2+4n

small €, one sees that the marginal (V¢)? becomes irrelevant).

16 The Continuum Limit

16.1 Effective Field Theories

We finally consider the QFT problem from the RG point of view. Suppose we have a
scalar QFT i.e. a measure v on S'(R?). Let 0" be L™" cube centered at L™"i,i € Z.
Suppose L4 f x)dx = p, (L") are well defined random variables (for the free field
they are, the covariance is just L2 fa? dx fa;L dyG(z —y)), i.e. given a f € s(Z?) suppose

Sn(f) = /eiij@n(L_nj)L_nddy(gp)

is a positive definite function (this means that S(f) = [ e#Vdv extends from f € S(R?)
to f =3_ fiXor, X characteristic function). Then S, defines a measure on s’ (L™7Z9), call
it v, which is the joint distribution of the variables ¢, (L~"7). We call v, the effective
QFT on scale L™" corresponding to v. Thus, the correlation functions of the effective

theory are just averages of those of v over cubes o' :

<ﬁ@n([ﬁ"ia)>y LNd"H/ dxla ng (2, > . (16.1)
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It is convenient to relate all of these effective theories to a fixed lattice Z¢. For this, define
a Z% field ¢, (i) = L™",(L~"i) where a is a parameter to be fixed later, and let yu, be
the distribution of ¢,, i.e.

(I1 ¢n(ia)>un -(I1 L‘mgon(L"z'a)>yn. (16.2)

How are the different ¢,,’s related ? Easy :

Gn-1(i) = L7 Do,y (L) = Lot Llnmbe / p(x)de

n—1
9

_ L—a(n—l)L—d Z Lnd/ QO(ZL‘)dZL' = La_d Z an(LZ + j)

ljol<L/2 Lity J

= (Co)(0) (16.3)
where C' is the block spin operator. Thus
-1 = C" .
Suppose p, are given by Hamiltonians #H,,. Then

Hpern = R™H, Vn,m.

Definition 16.1 Let RH* = H*. The unstable manifold M,, of H* is

M, = {’H‘H H, — H*, R"H, = ’H}

n—o0

Note that R : M, — M,. Thus, we are led to the conjecture :

There exists a € R and H* such that RH* = H* and H, — H*. Then all H, are

n—o0

on the unstable manifold of H*. Hence we got a nice picture: critical phenomena are on

Mg, QFT on M, !

1
p2 +7’TL2

. 2 4
L”d/ e“”;dx‘ ﬂ
on (2m)d

Example v = Gaussian measure, covariance @(p) = (free field, mass m). Then

v, has covariance

G, (L™, L") = / ePL DG (p)

R4

, 2
Let p,(p) = |L™ / e’mdx‘ and, for a = %, [, has covariance C,, :
o.n

.. —dn i —n(;_s; 1 ddp
Cp(i,j) = L= /e”L =9 pn(p)

2+ m2” W 2y
o 1 dp
_ ip(i—j) "
/6 p2+L_2nm2pn< p) (27T)d
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where

pu(L7p) = <M)Q = p(p)

Dy

AT R
e’pxda:’ = H
o0

p=1

is n-independent. Here (), are covariances that parametrize the Gaussian part of the
unstable manifold of the Gaussian fixed point C,—., of the block spin RG. They have
correlation length L"m ™!

Suppose now that we have a RG R : K — K and a fixed point H*. How would we
get a QFT from these data ?

Easiest way is the scaling limit : For x; # x; i # j, consider the limit

lim LN“"<H¢ >H* = lim G™(zy,--- )

n—o0 n—oo

= G(x1,- -+ ,xN). (16.4)

(to be more precise, suppose z; € (L™MZ)? for some M).

We expect this limit to exist. We expect that for |y; — y;| large Vi # j, we have for
Clyr, -+ syn) = ([T o(i))n-

C(yl +Zay27"' 7yN) _C(y17y27"' 7yN)’

~ (min |y, — gi) E‘C(yl YN

i>1

e>0,if |z2| < O(1) (say L). Then

<1]_V[¢(L":cz-> <H¢av w), (1+0(L™™)

where ¢4, (Lz) = L™¢ Z ¢(Lz +y). Thus,

lyal<%
G (2, an) = LN“"<H ¢aU(L(L"_1xi))>H*(1 +O(L™))
= G(n—l)(x17 o zn) (L +O(L™))

since (C'¢)(x) = LPqyp(Lax) and RH* = H*. Thus, one expects the limit in (16.4) to exist.
The distributions G(z1,- -+ ,zy) are correlations of a QFT (z; € R? now). What are the
effective field theories v, or u,, or H,, of this QFT ?

Answer All H,, are just H* !
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Proof This is just bookkeeping. By definition (16.1), (16.2),

<ﬂ 0lia) )

where ¢! = L™™ cube at L™™i,. Write the integral as a Riemann sum and use the

o

definition (16.4) of G:

= /dﬂﬁ ~dryx (T € 07)G (21, -+ ,xy) LNV dam

N
/Hd:caxG = nh_g)lo Z LNy (z, € UZTZ)LN(d’“)mLN‘m<H ¢(L”xa)>w.
{ra€L—"7Z4} a=1

Write 2, = L™™y,. Then y, is summed over y, € Z% vy, € L™ ™-cube at L™ ™i, (take
n > m). Thus, using (16.3),

<ﬂ¢<z‘a>>u = lim ([J(C""0)(0n)),

- <ﬂ ¢(Za)>y* =

The scaling limit is a scale-invariant, massless, field theory :
GN()\ZL‘l, cee ,)\ZL’N) = /\_NQG(ZL‘l cee ZL‘N).

In particular (assuming translation invariance):

const
G2($17 CBQ) =

o — @l

16.2 Non-Scale Invariant Theories

How to get a QFT with effective theories H,, # H* 7 E.g. we would like to get a massive
theory. We would like to pose this constructively : find (lattice) cutoff-L~" theories that

converge as n — oo to a QFT.

Example Look at free field again. Consider Ginzburg-Landau model on Z¢ with corre-

lation length ~ L™:

o= 53 (600) o)+ g S ey

(zy)

1.e.

e Do = dyc, (9)
Cu = (~A+ L77m?)
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on Z% We know that

LA (G(Ln)o( L)) = (;> (.9).

Cn
From RG we find
n—~{ 1 -1 *
R"™H, — =(¢,G, ¢) =H;

n—o0
, 1 dp
G _ ip(z—y) 74
Z('Ta y) /Rd e p2 n L—26m2 p<p> (27T)d (fL’, y e )

which are on the unstable manifold : RH; = H;_,. Pictorially,

“,_C.LJ_

?:—;X“ ZRE S §= |

So, in general, we should look for a 1-parameter family of Hamiltonians H» such that
R Hn converge as n — oo for all m. It is easy to see that Hy» must tend to Mgy as
n — oo and R" “H» to M,,.

As an example we consider the ¢* QFT in various dimensions.

16.3 ¢

We consider a momentum cutoff for simplicity and let

1
dVG(SD) = Ze_ze fAI(th)Q:—pE fA“P25_96 fAKp‘l:dﬂzG’e.

Let z [, + (V) o 4pe [y 2 ©* : +ge [, = ¢* = We(p); here® G(p) = mx(ep) and
let, e.g., Y = e P, We ask : are there functions of € z, Pe, ge such that v, converges to a

8We put m? into the covariance for simplicity : we are concerned with the UV-problem, not the IR.
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measure v on S" as € — 0 7 We know that A = 0 is a solution, and ask if a non-Gaussian

v is possible. The effective measures are defined as above, only easier : Write, for £ > ¢

~ 1 1 1
Ge(p) = mx(@) = mx(@?) + m(X(Ep) - X(fp))
= Gy(p) + Lee(p)
and define

w?(0) = ( [ e, () dic )

which has cutoff /. To connect to Statistical Mechanics and RG, we need to scale as in
(16.2) :

(d—2)

Oc(w) =€ 2 p(ex)

(we take a = %2 to anticipate what comes later). Then v, becomes f.:

2-d
dpie(@) = ™7 #dpc,(9) = e Wdpc,

where C.(p) = mx(p), has UV-cutoff 1, and is Gaussian. (Note the IR cutoff e?m?).
Here

V(o) = ze/ (V). +62p5/ L@ —|—64_dge/ ot
note the powers of € (so called canonical dimensions of mass, coupling). Then we have
V= RV

where R is as before :

2-d
RV = —log / e VT A+ g (Z)

T(p) = = (x(p) = x(Lp)). Let us put
re = €2pe, A =€ g,

As before, we could study the iteration r,,2,, \n — Tni1, Zns1, Anp1 but here we can

also do it infinitesimally, i.e. as a differential equation. We put L™ = e® and get, for
RV = (2(5),m05). Al9), Vils)) = Vils):

dz 9

i o(V7)

dr

- —9 2

s r+ OV?)

dA 2 3 17 17\2
== (- d)r— B +(9<)\ ,)\(z+r+V),(z+r+V)>
A% ~ )

i MV +0O(V?)
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where

MV(6) = 2| [V o) + 2)dn(2).

We want to choose r.(0), z.(0), Ac(0) such that tlim Voe(t + 5) = V(s) exists, Vs € R.
—00

d=2. Take 7. = 0, \. = €%g, z. = 0.

Put

M(s) = €62 gi(s), ri(s) = e pi(s), e = .

We get

dg _ —2(t—s) 2 dp _ —2(t—s) 2
7, = Ole 9), o, =0l 9°)-

Hence the limits tlim g:(t + s), limy_,o 7 (t + s) exist. This is a super renormalizable the-
—00

ory : the “bare” coupling g. can be taken e-independent and z., p. also.

d=3. Now A.(s) = ee®g;(s) and we have a “resonance” in the p-equation:

dg
22— Oe =942
s (e 9°)

dp

— = 0(g%.
s (97)
More precisely, write j—’s" = 2r + yA2 + O()\?), then,

dp —(t-s
2. =19"+ 07 gY).

Since g stays almost constant, we get
pi(s) = pi(0) + s7g* + bounded.

Thus, we need to take p;(0) = —tvyg? i.e.

ge =g, pe =9 loge

this is a “mass counterterm” of O(g?), coming from the graph

verges logarithmically in UV.

d=4. Now we stay in the (r, \) picture. A decreases logarithmically :

% = —BoA? + O(N?)
AGs) A(0)

T 1 F BasA0)
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If \.(0) stays bounded in €, as we have to assume in our perturbative analysis, then
A(s) 5z 0. Thus the only perturbative theory (= the one where the coupling constant

remains small on all scales) is the Gaussian. Same holds for
d>4 2 =—(d—4)A+ O(N\?) ie. A(s) — 0.

One might hope that, by taking A.(0) large enough, things might change. E.g. there
might be another fixed point A* for the RG, i.e. the flow in A would be

® < @ >
A=0 A

Unfortunately, this is unlikely to happen : in d > 4 it is rigorously proven that for all
z(€),r(€), A(e) the only € — 0 limits are Gaussian. For d = 4 there are strong theoretical

and numerical arguments supporting the same conjecture.
d<4: nontrivial fixed points.

Consider the d = 3 QFT constructed above. This has mass ~ m?2, coupling A. What
about m — 0 7 Above we could have taken m = 0 and started with r., A to produce an

effective Hamiltonian on scale 1 of the form

z/:ch2:—|—r/:<,02:+/\/:go4:+XN/

with various values of r. To solve for the IR we would need to keep iterating the RG. Now
A increases and eventually, if we really choose r = r(\) = critical point, we would tend
to the nontrivial fixed point H*. Thus, UV is controlled by the Gaussian fixed point, IR
by the non-Gaussian.

We could construct a scaling limit at H* : this would be a scale-invariant QFT with non-
Gaussian IR and UV. H* has (at least) one relevant direction : the correlation length.
We could construct, as above, a massive QFT corresponding to the unstable manifold of
H*. We expect the unstable manifold of the Gaussian fixed point H; to be 2-dimensional

(r,A), and the unstable manifold of H* to be one dimensional. So the flow is
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S
w

Mu(H) M (HY)

Thus, a “typical” QFT is a typical point of the r, A plane with Gaussian UV and finite
correlation length. The ones on M (H*) have non-Gaussian IR, Gaussian UV and the
ones on M, (H*) have non-Gaussian UV, £ < oco. (We should really include also the
r =00 (£ =0) “high-temperature” fixed point).

16.4 Asymptotic Freedom

What would have happened if 55 above had been negative at d =4 7 Now
d\

) _ M)
D o] A2 + O(NF) = A (0) = 1+ |Ba|she(s)

e if e=e"" s =1, and we want to fix A.—+(t) = g, then the “bare coupling” A, is

g
= — 0
L+ [B2]logetg <0

€

i.e. to have a non-Gaussian theory, we need to let A — 0 as ¢ — 0. This is obvious,
since A is now unstable. Actually, it is instructive to calculate exactly A\, : we need the

A-equation to O(A3) (i.e. again, we need to consider z,7, V too, to O(M\)). So consider

d\

I BN) = BoA? 4 BN+ B(N), B =0\,
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So

" _dA loge™*
— = €
s BO) T
9 1 1 g 1 Bs )
= [ ax = [ dx — =+ 0(1
AE BaA* 1+ Z2A+ O(N?) ‘Ae (6%2 BEA .
1 1 B

g -1
= = B9 0(g) = loge
52)\5 529 /83 & )\e (g) &

o g
1+ Bagloget — gﬁ% logloge=t +O(1)

€

This is how the bare coupling should be chosen to have a continuum limit.

Remark. We have seen that f is universal (independent on regularization). It can be
shown that (33 is also. (B, is not). They are intrinsic, depend only on the continuum limit
(which does not depend on the regularization). An example of asympotically free theory
is the Ginzburg-Landau model with A negative. This is not stable, but can be rigorously
defined by analytic continuation. Since A\ = —g, g > 0 we get % = [ag* + -+ 2 > 0.
More interesting one is the SU(NN) gauge theory. There one has two couplings z and A,
both marginal, with

dz

2 A2
ds ATt
d\

2 — BN\
s BsA” +

50 \(s)? ~ #3@_8) where € = e, \2(t) = ¢? and 2.(t) — 2.(0) = qfot A(s)? ~ 2 logt so

z¢(0) must diverge as —3-loglog et
Remarks.

1. Thus, we expect to find QFT’s at fixed points and on their unstable manifolds. For
Ginzburg-Landau model, d < 4 we find several non-Gaussian ones. For d > 4 the

fixed points and unstable manifolds are Gaussian.

2. Asymptotically free theories have Gaussian fixed points with marginally unstable

non-Gaussian direction. Here we have a non-Gaussian continuum limit.

Examples : Non Abelian gauge theories with not too many fermions (QCD is one).
Non-linear o-models in d = 2 (e.g. O(N), N > 2 spin systems we discussed earlier).

Certain d = 2 fermionic models (Gross-Neveu model).

3. IR behaviour of asymptotically free models is interesting. Now A(s) 7 as s in-
creases. E.g. in non-Abelian gauge and o-models. These theories have no relevant
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variable like r in Ginzburg-Landau model that would provide a mass (correlation
length). Nevertheless, they are massive (€ < 00) : € with be ~ e=OBSYX* (56 called
dimensional transmutation). There is no other critical point than A = 0. (\? is the

temperature in Heisenberg model).

4. Theories that are expected to be Gaussian (trivial) are : Ginzburg-Landau model,
QED, Standard Model of weak and EM interactions. This sounds paradoxical since
QED has a very successful renormalized perturbation theory and is the most ac-
curate known physical theory. The point is that, as long as we do not take € to
0, we can keep A, > 0 and so A(s) > 0. Now if one calculates a correlation func-
tion in perturbation theory, the graphs that are convergent integrals of the form
f|p|<6,1 I(p)dp depend on the cutoff like € to some power. But we may take (recall,

Ae = T51g=y has to be small so ((loge™) ™" ~ A)

€ ~ e—const/A.

Hence, the dependence on cutoff is ~ e~COnSt/

, very small for A small (3 = 137 for
QED). We say that all the above theories are good effective theories for distances
>> ¢ (in practice, energies << 10'® GeV). For smaller distances one needs to find

a new theory (say string theory).
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