Physics 127b: Statistical Mechanics

Renormalization Group: 1d Ising Model

The ReNormalization Group (RNG) gives an understandirsgalinganduniversality and provides various
approximation schemes to calculate exponents etc. We will first motivate and illustrate the method using the
1d Ising ferromagnet, following Nelson and Fisher [Annals of Phy8ic®26 (1975)].

The 1d Ising model is analytically soluble using various methods. We will be able to implement the RNG
explicitly and without approximation. Usually, an explicit implementation requires approximations. The
1d Ising model (as is true for any 1d system with short range interactions) has a ordered phase only at zero
temperature. We can think of this as a “zero temperature phase transition”. This leads to an important
difference from conventional, finite temperature phase transitions: rather thaoatlieg variablebeing

t = 1— T/T. (which makes no sense 1. is zero) the analogous variableds’™/” (which we will call

x) with kg Ty an appropriately chosen excitation energy. Once this change is made, the results illustrate the
general case very well.

Perturbation expansion

We considelV Ising spinss; = +1 with periodic boundary conditions (i.e. on a ring). The Hamiltonian in
zero field is

H=-J Zsi5i+1- (1)

The ground state—the ordered statd at 0—is the aligned state with spins all up or all down and energy
E = —NJ. The minimum excitation energy to flip one spin i$ &witch 2 bonds from-J to J), and so
the natural variable describing the finite temperature properties is

x = e 4T, (2)
We will try to develop a perturbation expansion in powers td describe the low temperature behavior, and,
sinceT, = 0, the transition to the disordered phase.

We organize the expansion in terms of flipping an isolated single spin, an isolated pair of spins, an isolated
triplet etc. There ar&v choices of an isolated spin to flip (energy cogt)4 Two flip two isolated spins
(energy cost 8) we can choose the first one Mways, and the second one M1— 3 ways, since flipping

the neighboring spins to the first one will not give isolated single spin flips, and will cost a different energy.
Then we divide by 2 since the ordering of which spin is flipped first doesn’t matter. In this we we have for
the partition function

QN — eNJ/kBT{Z
1
+ Nx+ SN(N = 3)x2+--- isolated single spins
1
+ Nx + EN(N —5)x2+ ... isolated pairs of spins

(total of N — 1 lines)
}. (3

Summing gives
1
Qy = 2e""/0T {14+ SN(N = 1x + O(N%?) -} (4)
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and for the free energy per spin
1
f=—J+kBT{§(N—1)x+---}. (5)

We see that in the thermodynamic limit the sedagergedue to the possibility of thermal fluctuations over

an infinite range of length scales (one spin flipped, a pair flipped,... half the spins flipped). Fdrlgiegl

model these fluctuations all have identical energy! This is indeed a special feature of the one dimensionality,
but in higher dimensions fluctuations over all length scales indeed become important at the transition point.

Conclusion:T = 0, B = 0 is acritical point of the 1d Ising model. Taylor expansions about this point
break down. In fact we will see that the expansion is nonanalytic, e.g.

f J 1/2
_ 6
Wl kT T (6)

with anontrivial exponent./2.

Renormalization Group

The key idea is not to try to treat all length scales in one shot. Instead use an iterative procedure to first
treat short length scales, and study their effect (“renormalization”) on the next larger scale etc. Furthermore,
rather than studying how the free energy varies with parameters of a fixed Hamiltonian, the RNG studies
how the Hamiltonian evolves to maintain a fixed free energy under the elimination of successive length scale
fluctuations.

For the X Ising model we can proceed completely analytically. For convenience let as define a reduced
Hamiltonian

_ H
H:_]Q;_T:KZSiSi+l+hXi:Si+CN (7)

with K = J/kpT, andh = uB/kgT, and we have added a “zero of energy” constant for complete
generality. A convenient definition of the corresponding partition function is

_ 1 - ,
ov=T12 3 o0 = eyt @
i si=%1

where the notatioff ry is introduced to denote the trace over all configurations oMtspins. Note that we
have added an extra factor of2.in the “trace”, i.e.Try is an average, rather than the mathematical trace.
This corresponds to subtracting the entropy t&fky 7 In 2 from the free energy, so that

—kgTINQy = A — NkzT In2. (9)

The free energy we calculate frofy is therefore the deviation from the free spin result—precisely the
guantity we are interested in.

Rather than doing th&ry all at once, we do the trace operation (i.e. average) over the stadgsnyfother
spin (or in general evergth spin, leaving a fractio — 1) /b remaining—we are doing the cabe= 2).

Consider first the effect of averaging over the states of a particulas spitihh neighborss, ands_. Focus
your attention on the terms in the product in E8).for Q y involving the spins

Tr, = 1‘ Z o eKs_s+%h(s_+s)+CeKss++%h(s+s+)+C o (10&)

s=%£1

— ... o242 cosiKs 4 Ksy 4+ h).... (10b)



(Notice that we consistently associate half the magnetic field term and the constant term with the “backward”
bond, and half with the “forward bond”). Obviously the variablao longer occurs irQ y—we have done

the necessary average over its two possible configurations. No approximation has been made, and repeating
this procedure correctly evaluatgs .

Now we would like to automate this scheme by setting up an iterative procedure. We can try to do this by
rewriting Eq. (LO) in terms of a neweffective Hamiltoniannvolving s, ands_ (the rest of the terms in the
product forQy are, so far, unchanged). In the present case this new Hamiltonian takes thiosanieit

with changed (renormalized) parameters.

We look forK’, i/, C’ so that
2"t CosHKs_ + Ky + h) = K5+t 3 6t +C (11)

for all choices ofs_,s, = +1. Since there are 4 states «f ands,, and only 3 parameters, it is not
immediately clear that this can be done. Indeed usually, i.e. more realistic systems or higher dimensions, it
will not be possibleand the Hamiltonian must be made more complicated as the iteration proddedgver

in the present case the only quantities appearing, namely ands_ + s, depend only on whether the

spins aret 1, |4, or (14 or | 1), i.e. only three different possibilities, so the three parameters are enough to
satisfy Eq. (1). Explicitly

"€ cosh2K + h) = K +C, (12a)
%€ coshh) = e K'+¢, (12b)
e "2C cosh(—2K + h) = X'~ +C, (12c)

The solutions are easily obtained by multiplying various combinations

/ cosh2K + h
eZh — eZh I"( + )

_— 13a
cosh2K — h) (132)
) 2K + h 2K — h
oK cosh2K + h) cosh ) (13b)
cosith
¢*" = ¢8€ cosh2K + h) cosh2K — h) cosif h (13c)

(e.g. the first equation is given by dividing the first of EiR# by the third).

Recursion Relations

Clearly this procedure can be repeated for every other spin, and we end up with a system with the same free
energy withvV /2 spins, twice the lattice spacing, and described by the same Hamiltonian but with parameters
K’, h', C’. The final step of the renormalization group is to rescale lengths down by a facgid2oh our

case), so that the lattice “looks the sam@his gives us the “scale factér= 2” renormalization group

H' = R,[H] (14)

defined by theecursion relations€eg. (13) which can be written

K = Rx(K, h), (15a)
W =Ry(K,h), (15b)
C' = bC + R.(K, h). (15¢)

IThe number of spins i&//2,down by a factor ob, but remember we are interested in the free energy density iN the oo
limit.
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Figure 1: Recursion relation for the temperature variatilethe 17 Ising model. Fixed points are at= 0
andx = 1. The “steps” yield successive valuesxgiunder the recursion.

Note that the constant term does not appear in the recursion relatiokis fpand only as a simple additive
piece in the recursion relation far. It keeps track of the contribution to the free energy coming from the
variables averaged over. We will concentrate on the evolution of the interaction parakgieend so will

not consider the third equation further.

Remember that the partition function and so the free energgeservedoy the transformation, so we have
for the free energy density ) . )
fLH =" f[H] = 2f[H] (16)

corresponding to the thinning out of the spins (or the shrinking of the full lattice). Similarly the correlations
between the surviving spins is preserved, so that for the correlation length
- - 1 -
E[H] = b 'E[H] = S51H] 17)
again corresponding to the trivial shrinking of the lattice. Equatidg} (L7), although trivial, will later be
important in understanding the content of the RNG.
We can now successively repeat the elimination i.e. solve the problem by iteration.

First considet: = 0. Equation {39 becomes

' 1
e = cosif(2K) = Z(eZK +e72K)2 (18)
or forx = e%K 4
, X
S "

The iteration of this equation can be understood graphically Eig.he twofixed pointsdefined byx’ = x
play a key role. At a fixed point the renormalization does not change the Hamiltonian. Equajidnen
shows us that must be zero or infinite at a fixed point.

Thex = 1 (i.e. K — 0) is thehigh temperature fixed pointThe interactions renormalize to zero, and
the behavior is simple. There are no large length scale phenomena, and the correlation length is zero. This
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fixed point isstableor attracting—starting from any initial value ot # 0 eventually leads to this fixed
point. Physically, any finite temperature state, inspected at long enough length scales, looks like the infinite
temperature solution, i.e. @isordered

Thex = x* = 0 fixed point is the nontriviatritical fixed point. The correspondirfgced point Hamiltonian
H* = H(x*, h* = 0) satisfies ) .

Ry[H*] = H*. (20)
The fixed point corresponds # — oo, and so to nontrivial behavior. This state has an infinite correlation
lengthé — oco. Note that this fixed point isnstableor repelling This is a key result:

The properties of the unstable, critical fixed point determine the physical behavior in the critical
regime near the transition temperature.

The fixed points tell us particularly simple behavior. The recursion relations under the renormalization
procedure allow us to relate the physical Hamiltonian (some gkrer x and/) to another Hamiltonian.

For example if we iterate many times, eventually the Hamiltonian for any nonzero temperature is related to
the Hamiltonian at the high temperature fixed point, where the properties are easy to calculate. This gives a
tractablescheme for calculating subsef behavior, namely the long length scale behavior that is left after

the elimination processes. Of particular interest is the behavidr-as 0. This means the physical system
corresponds to a value afclose to the unstable fixed point. We can understand properties of the system
(beyond the simple fact that the state is disordered) by studyingcifiews away” from the unstable fixed

point under the iteration procedure.

Critical Behavior

The critical behavior (i.ex small) may be understood liyearizingabout the unstable fixed point. Write
the physical value af asxp, and assume
xo = x* 4+ 8xq (21)

with §xo small. Then under each iteration of the RNG we find by linearizing E§). thatx is simply
multiplied by 4, so that after some chosen numhiggrations

Sx; = (Ay)'8xg WwithA, =4 (22)

whereA , is aneigenvalueof the linearization of the recursion relations about the fixed poiatx*. This
allows us to relate the physical behaviox@to the behavior we calculate with the renormalized Hamiltonian
given byx; = x* + 8x;. In particular we have for the free energy density

1
f(xo) = 5 fxy = Alxo) (23)

for xo small, where we have used the fact théfs zero. This result is good providirigs not so large that
x 7 is no longer small. A trivial-sounding statement, but another key point is:

The trick of using the renormalization group at a critical point is to choose the number of iterations
[ so that something is learned (e.g. from the right hand side ofZ&)). (

We often want to know the behavior ass varied towards the critical poinf'(— T.). Let us choose so
thatas xq varies,x , remains fixecat some small value so that the linearization remains valid. This means

that we choose n
| = N0y /x0) (24)
In A,
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Ther?

[ (xo) = 27 M0 I (25)
— x(l)nZ/lnAx[x;an/lnAxf(xf)]' (26)
The first term tells us what we want to know—how does the free energy depend on thexiféial so on

temperature). The second term in the brackets does not dependand is just a constant prefactor in the
xo dependence.

Thus we have found for smadl

InA,
f(x) = AxY™  with A, = =2 (27)
In2
or in conventional notation 1
fx) ~ x> with o, =2— I (28)

The nontrivial power law dependence oifi.e. square root) corresponds to the power law dependence on
at a finite temperature phase transition. Similarly

£(x0) = 26 (xy) (29)
so that following the same procedure

1
E~x""™ with v, = e (30)

Notice that the hyperscaling relation2x, = dv, is satisfied (remembel = 1 here): hyperscaling follows
directly from the scaling off with b=/ and the correlation length with.

Scaling of the field

Now we include the fieldi. The critical fixed point isc* = 4* = 0. The recursion relation for can be
written

. 1 [e"+xe™
h:h+éln[m] (31)
Linearizing about the fixed point gives
Sh' = 25h (32)
and the equation fa¥x is unchanged. Thus, in general notation
8x' = A8x with A, =0 and A, =2, (33a)
Sh' = ApSh  with A, =b* and A, =1. (33b)

(More generally we might expect a matrix equation

Sx’ ? ? 8x
= (34)
sh' ? 7 Sh
2We often have to manipulate exponent expressions such K&vp/x0)/INAx \where we want to look at the dependence on
x 7 /xo behavior. To do this write the expression as exp{(x/xo) In 2/ In A ] which can then be rewrittefx /xg) ™~ In2/In Ax




and then we would have to diagonalize to find the two eigenvalues, and the different linear combinations of
dx anddh that diverge exponentially from the fixed point.) So now iterafiignes from the initial values
(xo = x, ho = h) near the fixed poing0, 0)

x; = 20y (35a)
hy =2"'h (35b)
and
f )y =27 f (. ). (36)
Again choosé so thaty; is some small fixed value; asx varies
2= (xp/x) (37)
so that i
X * X £\ M/
) = (—) foe (B5)" (38)
Xf X

which can be written in the form

f(x,h) = Ax>*Y(D h

=) (39)
and we have derived thezaling formwith exponents

1 1

22—, =— =, 40a

“w==3 (40a)
A 1

Ay =— = 40b

2 (40D)
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