Übungen zur Mathematik I für Physiker

Prof. Dr. D.-A. Deckert

Blatt 5

Die Aufgaben, neben denen "Zur Abgabe" steht, können in **Dreier- oder Vierergruppen** gelöst und mithilfe von UniWorX bis Freitag, 23.11., 14:00 Uhr abgegeben werden. **Nur** diese Aufgaben werden korrigiert.

Aufgabe 1: (Zur Abgabe)

- 1. Die Teilmenge der reelen Zahlen $\mathbb{Q}(\sqrt{2}) := \{a + b\sqrt{2}, \ a, b \in \mathbb{Q}\}$ mit der Addition und Multiplikation geerbt von \mathbb{R} ist ein Körper. Lösen Sie in diesem Körper folgende Gleichungen:
 - (a) $a \cdot x = b$, wobei $a = a_1 + a_2 \sqrt{2}$ und $b = b_1 + b_2 \sqrt{2}$
 - (b) $x^2 = 9 + 4\sqrt{2}$
- 2. Betrachten Sie nun den Körper (F_5, \oplus, \otimes) , wobei $F_5 := \{0, 1, 2, 3, 4\}$ ist und die Verknüpfungen \oplus und \otimes analog zu denen in der Vorlesung für den Körper (F_2, \oplus, \otimes) jeweils als die Reste der Addition bzw. Multiplikation bei Division durch 5 definiert sind.

Lösen Sie in diesem Körper die Gleichung

$$(3 \otimes x) \oplus 4 = 2.$$

Aufgabe 2: (Zur Abgabe)

Sei $n \in \mathbb{N}$, seien $x, y, z, x_i, y_i \in \mathbb{R}$ mit $i \in \{1, ..., n\}$ und sei $|\cdot|$ der Absolutbetrag. Beweisen Sie folgende sog. Dreiecksungleichungen:

- 1. $|x+y| \le |x| + |y|$
- 2. $|x| |y| \le |x + y|$
- 3. $\left|\sum_{i=1}^{n} (x_i + y_i)\right| \le \sum_{i=1}^{n} (|x_i| + |y_i|)$

Zeigen Sie weiterhin, dass gilt: $2|xy| \le x^2 z^2 + \frac{y^2}{z^2}$ für $z \ne 0$.

Aufgabe 3: Zeigen Sie, dass der Körper der komplexen Zahlen aus Aufgabe 6, Blatt 4, nicht angeordnet werden kann.

Aufgabe 4: Widerlegen Sie mithilfe eines Gegenbeispiels die Aussage

$$(\forall n \in \mathbb{N} \ a_n > b_n) \Rightarrow \lim_{n \to \infty} a_n > \lim_{n \to \infty} b_n,$$

wobei $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergierende Folgen in den reelen Zahlen sind.

Aufgabe 5: Betrachten Sie die Folge (a_n) mit

$$a_n := q^n$$
 für $q \in \mathbb{R}$, $n \in \mathbb{N}$.

Untersuchen Sie diese Folge auf Konvergenz für |q| < 1, |q| = 1 sowie |q| > 1. Beweisen Sie Ihre Antworten.

Aufgabe 6: Beweisen Sie, dass im Körper der reelen Zahlen gilt:

- 1. $\lim_{n \to \infty} \frac{1}{n^2} = 0$
- 2. $\lim_{n \to \infty} \sum_{k=0}^{n} q^k = \frac{1}{1-q}, \ \forall |q| < 1$

Aufgabe 7: Sei $p \in \mathbb{N}, p > 1$ und sei (a_n) eine Folge mit $a_i \in \{0, 1, ..., p - 1\} \ \forall i \in \mathbb{N}$. Zeigen Sie, dass die Folge (x_n) mit

$$x_n := \sum_{i=1}^n a_i p^{-i} \ , \ n \in \mathbb{N}$$

eine Cauchy-Folge ist.

Aufgabe 8: Erinnern Sie sich an die Definition der Verknüpfungen \oplus , \odot auf der Menge der rationalen Zahlen $\mathbb{Q} := Q/\stackrel{Q}{=}$, wobei $Q = \{(p,q), p \in \mathbb{Z}, q \in \mathbb{N}\}$ und $\Big((a,b) \stackrel{Q}{=} (c,d) \Leftrightarrow (ad=bc)\Big)$:

$$\forall x, y \in \mathbb{Q} \quad x \oplus y := [(a, b) \oplus (c, d)]_{\underline{Q}} := [(ad + bc, bd)]_{\underline{Q}} \tag{1}$$

$$x \odot y := [(a,b) \odot (c,d)]_{\underline{\underline{Q}}} := [(ac,bd)]_{\underline{\underline{Q}}}, \tag{2}$$

wobei (a, b) und (c, d) irgendwelche Elemente von jeweils x und y sind.

Weisen Sie nach, dass diese Verknüpfungen wohldefiniert sind, d. h., dass die Ergebnisse der Addition \oplus und der Multiplikation \odot (die rechten Seiten von (1) und (2)) davon unabhängig sind, welche Elemente (a,b) und (c,d) von x und y gewählt werden.