Übungen zur Mathematik I für Physiker

Prof. Dr. D.-A. Deckert

Blatt 14

Die Lösungen zu diesen Aufgaben werden in der Vorlesung behandelt. Es erfolgt weder eine Korrektur noch eine Besprechung in den Tutorien.

Aufgabe 1: Entwickeln Sie die Funktion $f(x) = \log(1+x)$ für x > -1 um die Stützstelle $x_0 = 0$ mithilfe der Taylorformel $f(x) = T_{n-1}(x, x_0) + R_n(x, x_0)$ für $n \in \mathbb{N}$. Geben Sie eine Umgebung $U \subset \mathbb{R}$ von x_0 an in der Sie für gegebene Fehlertoleranz $\epsilon > 0$ die Ordnung n abschätzen können, für die $|f(x) - T_{m-1}(x, x_0)| < \epsilon$ gilt.

Aufgabe 2: Berechnen Sie für $f(x) = x^2$ das Integral $\int_0^1 f(x)dx$ mithilfe einer Riemann-Summe.

Aufgabe 3: Zeigen Sie die Regel der partiellen Integration: Für $f, g \in \mathcal{C}^1(\mathbb{R})$ gilt

$$\int_{a}^{b} f(x)g'(x)dx = f(x)g(x)\Big|_{x=a}^{x=b} - \int_{a}^{b} f'(x)g(x)dx$$

Hinweis: Wenden Sie dazu die Produktregel der Differentialrechnung.

Aufgabe 4: Berechnen Sie folgende Integrale und überprüfen Sie jeweils Ihr Ergebnis mithilfe des Fundamentalsatzes der Integral- und Differentialrechnung:

- (a) $\int_a^b \tan(x) dx$ für $[a, b] \subset (-\frac{\pi}{2}, \frac{\pi}{2})$.
- (b) $\int_a^b \frac{1}{1-x^2} dx$ für $\{-1,1\} \notin [a,b]$. *Hinweis:* Setzen Sie eine Partialbruchzerlegung $\frac{1}{1-x^2} = \frac{\alpha}{1-x} + \frac{\beta}{1+x}$ an.
- (c) $\int_0^b xe^x dx$ für $b \in \mathbb{R}$.
- (d) $\int_a^b \cos(x)^2 dx$ für $a, b \in \mathbb{R}$.

Aufgabe 5: Berechnen Sie die Fläche des Einheitskreises mithilfe eines Integrals. *Hinweis:* Beobachten Sie, dass ein Halbeinheitskreis mit $f(x) = \sqrt{1-x^2}$ für $x \in [-1,1]$ parametrisiert wird. Benutzten Sie die Substitutionsregel für Integrale mit $x = \sin(y)$ und dann z.B. die partielle Integration (oder alternativ die Eulerformeln), um das Integral zu berechnen. **Aufgabe 6:** Sei $n \in \mathbb{N}$, $f \in \mathcal{C}^n(\mathbb{R})$ und $x > x_0 \in \mathbb{R}$. Zeigen Sie mithilfe des Fundamentalsatzes und geschickter Anwendung der partiellen Integration, dass gilt:

$$f(x) = T_{n-1}(x, x_0) + \int_{x_0}^x f^{(n)}(y) \frac{(y - x_0)^{n-1}}{(n-1)!} dy,$$

wobei $T_{n-1}(x,x_0)$ das Taylorpolynom der Ordnung (n-1) ist. Beweisen Sie ausgehend von dieser Identität nochmals unseren Satz zur Taylorentwicklung, d.h., es gibt ein $\xi \in [x_0,x]$, sodass $f(x) = T_{n-1}(x,x_0) + f^{(n)}(\xi) \frac{(x-x_0)^n}{n!}$.