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Richard Feynman (1959):

Does this mean that my observations become real only when I observe an
observer observing something as it happens? This is a horrible viewpoint.
Do you seriously entertain the thought that without observer there is no
reality? Which observer? Any observer? Is a fly an observer? Is a star an
observer? Was there no reality before 109 B.C. before life began? Or are
you the observer? Then there is no reality to the world after you are
dead? I know a number of otherwise respectable physicists who have
bought life insurance. By what philosophy will the universe without man
be understood?

[R.P. Feynman, F.B. Morinigo, W.G. Wagner: Feynman Lectures on Gravitation

(Addison-Wesley Publishing Company, 1959). Edited by Brian Hatfield]
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Names of Bohmian mechanics

pilot wave theory (de Broglie),
ontological interpretation of quantum mechanics (Bohm),
de Broglie-Bohm theory (Bell),
...
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Definition of Bohmian mechanics

(version suitable for N spinless particles in non-relativistic space-time)

Electrons and other elementary particles have precise positions at every t

Qk(t) ∈ R3 position of particle k, Q(t) = (Q1(t), . . . ,QN(t)) config.,

dQk(t)

dt
=

~
mk

Im
∇kψt

ψt
(Q(t)) (k = 1, . . . ,N)

The wave function ψt : (R3)N → C evolves according to

i~
∂ψ

∂t
= −

N∑
k=1

~2

2mk
∇2

kψ + Vψ

Probability Distribution

ρ(Q(t) = q) = |ψt(q)|2

[Slater 1923, de Broglie 1926, Bohm 1952, Bell 1966]
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Bohm’s Equation of Motion

Electrons and other elementary particles have precise positions at every t

Qk(t) ∈ R3 position of particle k, Q(t) = (Q1(t), . . . ,QN(t)) config.,

dQk(t)

dt
=

~
mk

Im
∇kψt

ψt
(Q(t)) = vψt

k (Q(t))

vψ = (vψ1 , . . . , v
ψ
N) is a vector field on configuration space R3N

dQ(t)

dt
= vψt (Q(t))

first-order ordinary differential equation (ODE)

Determinism: If, for any “initial time” t0, initial data ψt0 and Q(t0) are
given, then the Schrödinger eq determines ψt for every t, and Bohm’s eq
of motion determines Q(t) for every t.

(state at time t) = (Q(t), ψt)
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Example of Bohmian trajectories Q(t): 2-slit experiment

Picture: Gernot Bauer (after Chris Dewdney)

wave-particle duality (in the literal sense)
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Probability Axiom

determinism ⇒ if initial config. Q(t0) is random with density ρt0(q) then
the probability distribution of Q(t) is determined by

∂ρt

∂t
= −

N∑
k=1

∇k · (ρtv
ψt

k )

Equivariance theorem (expresses compatibility between the 3 axioms)

If ρt0 = |ψt0 |2 then, for every t, ρt = |ψt |2.

Proof: This follows from

∂|ψt |2

∂t
= −

N∑
k=1

∇k · (|ψt |2vψt

k )

which in turn follows from the Schrödinger equation: Observe that

|ψt |2vk = ~
mk

Imψ∗t ∇kψt = jk

(known as the quantum probability current),

∇k · jk = ~
mk

Imψ∗t ∇2
kψt , then do some algebra.
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Equivariance

John S. Bell (1986):

De Broglie showed in detail how the motion of a particle, passing through
just one of two holes in the screen, could be influenced by waves
propagating through both holes. And so influenced that the particle does
not go where the waves cancel out, but is attracted to where they
cooperate. [Speakable and unspeakable in quantum mechanics, page 191]
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Another way to write Bohm’s eq of motion

polar representation of complex number: ψ(q) = R(q) e iS(q)/~

with R,S real-valued fcts, R ≥ 0. Then

vψk =
~

mk
Im

∇kψ

ψ
=

1

mk
∇kS .
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Many ways to arrive at Bohm’s eq of motion

Suppose we know Schrödinger’s eq and regard j = (j1, . . . , jN) as the
“prob current.” Suppose we want the prob density ρt of Q(t) to be
= |ψt |2 and the prob current ρtv to be = j . Then we must have

dQk

dt
=

jψt

k (Q(t))

|ψt(Q(t))|2
.

Suppose we want to link a wave and a particle via de Broglie’s
relation mv = ~k. Let’s try generalize this from plane waves,
ψ(q) = e ik·q, to arbitrary ψ(q) by replacing k with the “local wave
number” ∇S/~. This leads to

v = 1
m∇S .

A similar reasoning (using also Planck’s relation E = ~ω) leads from
E = p2/2m + V to the Schrödinger eq.

Bohm 1952: analogy with Hamilton–Jacobi formulation of classical
mechanics (involves fct S(q1, . . . ,qN), eq of motion
dQk/dt = (1/mk)∇kS)

...
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Wave function of a subsystem

composite system, Ψ = Ψ(x , y), Q(t) = (X (t),Y (t))

conditional wave function

ψ(x) = N Ψ(x ,Y )

N= normalization factor = (
∫

dx |Ψ(x ,Y )|2)−1/2. Time-dependence:

ψt(x) = Nt Ψt(x ,Y (t))

Does not, in general evolve according to a Schrödinger eq.

Note: conditional probability ρ(X = x |Y ) = |ψ(x)|2

Absolute uncertainty

Inhabitants of a Bohmian universe cannot know a particle’s position more
precisely than the |ψ|2 distribution allows, with ψ the conditional wave
function.

Qk(t) often called “hidden variable”—better: uncontrollable variable

Roderich Tumulka Bohmian Mechanics



Heisenberg uncertainty in Bohmian mechanics
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Empirical predictions of Bohmian mechanics

Central fact

Inhabitants of a Bohmian universe would observe outcomes in agreement
with the predictions of quantum mechanics.

Let us proceed slowly towards understanding the reasons behind this
statement.

Niels Bohr: impossibility of explanation of quantum mechanics in terms
of objective reality
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The 2-slit experiment

Particles do arrive on the screen at random positions with ρ = |ψ|2.
If one hole is closed, the interference pattern will be different.
It is easy to know through which slit the particle passed.
Why, in Bohmian mechanics, does detection at a slit destroy the
interference pattern?
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Evolution of ψ in configuration space of particle + detector:
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2-slit experiment

Richard Feynman (1965): “absolutely impossible to explain”

John Bell (1986): De Broglie’s explanation “seems to me so natural and
simple, to resolve the wave-particle dilemma in such a clear and ordinary
way, that it is a great mystery to me that it was so generally ignored.”

Let us now proceed to more general “quantum measurements.”
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Conventional Axioms For Quantum Mechanics

Schrödinger Equation

ψt : (R3)N → Cm wave function of a system. While the system is closed,

i~
∂ψ

∂t
= −

N∑
k=1

~2

2mk
∇2

kψ + Vψ

Measurement Postulate

If an observer measures the observable with operator A =
∑
α αPα at

time t, then
Prob(outcome = α) = 〈ψt |Pαψt〉 ,

and if outcome = α then (collapse)

ψt+0 =
Pαψt

‖Pαψt‖
.

Roderich Tumulka Bohmian Mechanics



Analysis of quantum measurement

Consider system + apparatus, experiment during time interval [t1, t2].

Ψt1(x , y) = ψt1(x)φ(y) = ψt1 ⊗ φ

with φ = ready state of apparatus.
self-adjoint operator A, orthonormal set of eigenfunctions Aψα = αψα.
“→” = unitary time evolution (Schrödinger eq) from t1 to t2. Suppose

ψα ⊗ φ→ ψα ⊗ φα

with φα a state of the apparatus displaying the outcome α. Then, by the
linearity of the Schrödinger eq, for ψ =

∑
α cαψα,

ψ ⊗ φ→
∑
α

cαψα ⊗ φα.

Roderich Tumulka Bohmian Mechanics



Analysis of quantum measurement (2)

Suppose ψα ⊗ φ→ ψα ⊗ φα.

Then, for ψ =
∑
α

cαψα, ψ ⊗ φ→
∑
α

cαψα ⊗ φα.

In Bohmian mechanics: The pointer of the apparatus consists of Bohmian
particles, too, and thus points in some direction. Q(t2) = (X (t2),Y (t2))
= the configuration of system + apparatus, has distribution

|Ψt2(x , y)|2 =
∑
α

|cα|2 |ψα(x)|2 |φα(y)|2,

using that the φα usually have (approx.) disjoint supports in
configuration space. Thus, the probability that the pointer points in the
direction corresponding to α0 is∫

dx

∫
support(φα0

)

dy |Ψt2(x , y)|2 = |cα0 |2,

in agreement with the measurement rule of QM.
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Thank you for your attention
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