THE EQUIVARIANT LOCAL -CONSTANT CONJECTURE

FOR UNRAMIFIED TWISTS OF Z,(1)
WERNER BLEY AND ALESSANDRO COBBE

ABSTRACT. Let N/K be a finite Galois extension of p-adic number
fields. We study the equivariant local epsilon constant conjecture, de-
noted by C3%(N/K, V), as formulated in various forms by Kato, Benois
and Berger, Fukaya and Kato and others, for certain 1-dimensional twists
T = Zp(x™)(1) of Zp(1) and V = T ®z, Q,. Following ideas of recent
work of Izychev and Venjakob we prove that for T' = Z,(1) a conjec-
ture of Breuning is equivalent to C% (N/K, V). As our main result we
show the validity of C%(N/K, V') for certain wildly and weakly ramified
abelian extensions N/K. A crucial step in the proof is the construction
of an explicit representative of RT'(N,T).
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1. INTRODUCTION

Let F/E denote a Galois extension of number fields and put I' :=
Gal(F/E). We fix a motive M which is defined over E and admits an ac-
tion of the group algebra Q[I']. Let L(M, s) denote the equivariant complex
L-function attached to M and F/E (see [BEOIL, Sec. 4]). We shall always
assume that this L-function satisfies a functional equation of the following
form relating the L-functions attached to M and its Kummer dual M*(1):
Loo(M*(1), —5)

Loo(M, s)

L(M,s)=¢e(M,s) L(M*(1), —s).
Here L., is an Euler factor at infinity and the equivariant e-factor (M, s)
decomposes into local factors

e(M,s) = HsU(M, s)

with v running through the set of finite places of E. For some more details
see [BEQ1], Conj. 7].

In this manuscript we are interested in a local equivariant e-constant con-
jecture which relates €,(M, s) in a specific way to certain local cohomology
groups of RI'(Gg,, M,) associated to the p-adic representation V' = M,,. The
validity of this e-constant conjecture for all finite places v of E is closely re-
lated to the compatibility of the equivariant Tamagawa number conjectures
for M and its Kummer dual M*(1) with the functional equation. Indeed,
Conjecture [BEOI], Conj. 8] is a semi-local analogue of the local e-constant
conjecture and is directly related to the functional equation compatibility

of the equivariant Tamagawa number conjecture, see [BF0I, Coroll. 1].



THE EQUIVARIANT LOCAL e-CONSTANT CONJECTURE 3

So henceforth we fix a prime number p and let N/K denote a finite Galois
extension of p-adic number fields with group G := Gal(N/K). We write G
(resp. G ) for the absolute Galois group of K (resp. N) and let V' denote a
p-adic representation of Gg. Let T' C V be a G'k-stable Z,-sublattice such
that V =T ®Zp @p.

Following seminal work of Fontaine and Perrin-Riou [FPR94] several au-
thors have formulated e-constant conjectures in this general context, see,
e.g., Benois and Berger in [BB0§| or Fukaya and Kato in [FKO0G]. For the
relations between the different formulations of the conjecture we refer the
reader to [Izy12]. We will use the notation of [IV, Conj. 5.1] and write
O (N/K, V) for the equivariant local e-constant conjecture. Here the sub-
script E'P is short for Euler-Poincaré and refers to the fact that the con-
jecture is formulated in terms of certain Euler-Poincaré characteristics. The
superscript na was added by Izychev and Venjakob for their non-abelian
generalization. We will recall and formulate the conjecture in Section

In a more specialized situation Breuning in [Bre04b| has formulated an
e-constant conjecture for T' = Z,(1) in terms of relative algebraic K-groups.
Extending ideas of [BB03] he proved his conjecture, amongst other cases,
for tamely ramified extensions N/K. Breuning’s conjecture clearly has to
be equivalent to CEH(N/K, V) for V = Q,(1), see e.g. [IVl, Appendix]. As
a by-product of our work we will obtain a rigorous proof of this assertion.

Izychev and Venjakob consider in [IV] the case where T' = Z,(x"™)(1)
is a one-dimensional unramified twist of Z,(1). More precisely, if x™ is the
restriction of an unramified character xg : Go, — Z; with x™|¢, # 1,
they reformulate C%%(N/K, V') in the spirit of Breuning and adapt his proof
of the tame case to show the validity of C%(N/K, V) for tamely ramified
extensions N/K and V = Q,(x™)(1). In the appendix of [IV] they also
indicate how to adapt Breuning’s arguments to prove the tame case for
unramified characters as above with x™|g, = 1.

We also recall that Benois and Berger in [BB0S, Th. 4.22] have proved
the conjecture Cp%p(IN/K, V) for arbitrary crystalline representations V' of
Gk where K/Q, is unramified and N is a finite subfield of K (e~ )/K. Here
oo denotes the group of all p-power roots of unity.

In this manuscript we will focus on weakly and wildly ramified exten-
sions N/K of an unramified extension K/Q,. We recall that N/K is weakly
ramified if the second ramification group in lower numbering is trivial. As

above we let x™ be an unramified character of GGx which is the restriction
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of an unramified character XQ, Gq, —* Z, . We require no assumption on

the restriction of x™ on Gy. The main result of our work is as follows.

Theorem 1. Let p be an odd prime and let K/Q, be the unramified exten-
sion of degree m. Let N/K be a weakly and wildly ramified finite abelian
extension with cyclic ramification group. Let d denote the inertia degree

of N/K and assume that m and d are relatively prime. Then Conjecture
P (N/K, V) is true for N/JK and V = Q,(x™)(1).

Remark 1. The assumptions of the theorem imply that the ramification
group is cyclic of order p (cf. [PVI3l Coroll. 3.4]). More precisely, |G| =
pd, |Go| = |G1| = p and |G;| = 1 for ¢« > 2. Here G; for i > 0 denotes a
higher ramification subgroup.

Remark 2. The proof of Theorem [1|is an adaptation of the methods in [BC]
where we prove Breuning’s conjecture for T' = Z,(1) and extensions N/K
as in the theorem. If x"|g, = 1, it is almost straightforward to extend
this result for 7' = Z,(x™)(1) because then twisting commutes with taking
(G y-cohomology.

Remark 3. If x™|qy # 1, the proof of the above weakly and wildly ramified
case is much more involved than the tame case of Izychev and Venjakob
because of the following fact. In the tame case the cohomology groups of
RT'(N,T) turn out to be perfect (see [IV], Prop. 2.5]) whereas this is in
general no longer true in our weakly and wildly ramified case. This makes the

computation of a certain refined Euler characteristic much more technically
difficult.

We recall that by [[zy12] Ex. 5.20] the representation T' = Z,(x")(1) is
naturally isomorphic to the p-adic Tate module T),F of a one-dimensional
Lubin-Tate formal group F defined over the ring Z,. Conversely, every one-
dimensional Lubin-Tate formal group F defined over Z, gives rise to an
unramified twist of Z,(1) as above.

We let K, denote the maximal unramified extension of K and put K; :=
K,. N N. We write N,, for the maximal unramiﬁecl_e\xtension of N. Let Ny
denote the completion of NV,, = NK,, and write N;* for the p-completion
of Nj*. We set

nr Gal(Nnr /K APX /o nr
Inyr(X™) = IndGalgNm;Kz) (NOX (x ))

N/

and usually identify Zn/x(x™) with H?ZlK NO\X, where dy/k denotes the

inertia degree of N/K. We will endow Zy,x(x™) with a natural action of
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Gal(Kn/K) x G. If x™|qy # 1 we set wy = v,(1 — x"(Fy)) where Fy
denotes the Frobenius of N. Let F' = Fx be the Frobenius of K.

In order to deal with the difficulties indicated in Remark [ above we
construct an exact sequence
1)

F-1)x1
0 — F(pn) — Inyx(X™) Sl

Inyk(X™) — Z/p"NZ(X™) — 0
and show the following theorem which may also be of independent interest.

Theorem 2. Let N/K be a finite Galois extension of p-adic fields. Let
X" Gx — Z,; be an unramified character as above and assume that

X"|ay # 1. Then the complex

° nr (F-1)x1 nr
Chr = [IN/K(X ) —— Iy (X™)

with non-trivial modules in degree 1 and 2 represents RI'(N,T).

Remark 4. The exact sequence should be seen as an analogue of the
fundamental short exact sequence of [Ser79, Exercises XIII, §5] which by
[BreO4al, Th. 4.20] is essentially a representative of RI'(G,Z,(1)). Note that
in the case x™|gy # 1 it does not seem to be possible to derive Theorem
from Serre’s result by a simple twisting argument.

In Section [2| we recall some preliminary results on K-theory, determinant
functors and refined Euler characteristics which we will need throughout the
manuscript. After these preparations we formulate in Section |3| the conjec-
ture C%(N/K, V') following the exposition of [IV] and then give a short
description of the organization of the paper.

Notations: We fix some standard notations which will be used through-
out the manuscript. Given a finite field extension M /L, we will denote the
norm and the trace by N, vy and Tyyyp respectively. If L/Q, is a finite
extension we write L¢ for the algebraic closure and set G := Gal(L¢/L).
We let L, denote the maximal unramified extension of L and write Fy, for
the arithmetic Frobenius of L. Note that F}, is a topological generator of
Gal(Ly,/L). As usual, we let O, denote the valuation ring of L and write
pr, = O for the maximal ideal.

We write dj, for the absolute inertia degree and ey, for the absolute ram-
ification degree. If M/L is a finite extension we let dy and epp de-
note the relative inertia and ramification degree, respectively. Then we have
dyv = dyyrdr, en = enyrer and Fyy = FgM/L. We will denote the inertia
group by I
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We let Ly be the completion of L,, with respect to the p-adic topology.
If A is an abelian group we denote p-completion by 121\, ie.,

A=1limA/p"A.

Note that A is in a natural way a Z,-module. We will denote by
vy L~ ®Zp Qp — @p

the map induced by the normalized valuation of L*.
If ¥ is any ring we denote its centre by Z(X).

2. K-THEORY, DETERMINANTS AND REFINED EULER CHARACTERISTICS

Let A be any unital ring. Let PMod(A) denote the category of finitely
generated projective A-modules and write PMod(A)® for the category of
bounded complexes of such modules. We also write D(A) for the derived
category of complexes of A-modules and DP(A) for the full triangulated
subcategory of D(A) of perfect complexes. We recall that a complex C* of
A-modules is perfect, if and only if there exists a complex P* € PMod(A)*
and a quasi-isomorphism P®* — C®. We say that a A-module N is perfect,
if the complex N[0] belongs to DP(A).

Our main references for the theory of Picard categories, determinant
functors and virtual objects are [BFQ1, Sec. 2] and [BB05]. For a more
explicit approach we refer the reader to [FK06l Sec. 1]. By Remark 1.2.10
of loc.cit. both approaches should be equivalent.

Let V(A) denote the Picard category of virtual objects associated to
PMod(A) and write [-]5 for the universal determinant functor

[]a: (PMod(A),is) — V(A),

where (PMod(A), is) denotes the subcategory of isomorphisms in PMod(A).
By [BEF01, Prop. 2.1] this functor extends to a functor

[Ja: (DP(A),is) — V(A).

We recall that the category V(A) is equipped with a canonical bifunctor
(L,M) — L ® M. We fix a unit object 1y () and for each object L an
inverse L~! with an isomorphism L ® L™! = 1y(,). Each element of V(A) is
of the form [P]y @ [Q]}' for modules P,Q € PMod(A). Furthermore, [P]s
and [@]a are isomorphic in V(A) if and only if the classes of P and @ in
Ko (A) coincide.

For any Picard category P we define m(P) to be the group of isomor-
phism classes of objects of P and set m(P) := Autp(lp). The groups
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mo(V(A)) and 71 (V(A)) are naturally isomorphic to Ko(A) and K;(A), re-
spectively.

In the sequel we fix rings A and ¥ and a ring homomorphism A — ¥
such that ¥ is flat as a right A-module. We assume that > is noetherian
and regular, that is every finitely generated ¥-module has finite projective
dimension. We write Py, = ¥ ®, P for the scalar extension map if P is a
A-module or a complex of A-modules. By abuse of notation we will write
[Pls. in place of [X®, Pls. We recall that there is a canonical exact sequence

of algebraic K-groups
IN» R s

where Ky(A, X) is the relative algebraic K-group defined by Swan in [Swa70),
page 215]. We recall also that elements in Ky(A, X) are represented by triples
[P, g,Q] where P,QQ € PMod(A) and g: Py — @y is an isomorphism of
Y-modules.

If ¥ = L[G] for a finite group G and a finite field extension L/Q, the

reduced norm map induces an isomorphism
Nrdy: K;(2) — Z(2)*

by [CR87, Th. (45.3)]. The same is true for algebraically closed fields L, in
particular for L = Q¢. We set 0} v := 0} y o Nrdg'.

The scalar extension functor PMod(A) — PMod () extends to a mo-
noidal functor V(A) — V(X) and we again write L — Ly, for L € V/(A).
Still following closely the exposition of [BB05] we define a tensor category
V(A, ) as follows. Objects in V(A, X)) are pairs (L, \) with L € V(A) and
A an isomorphism Ly, — 1y (x) in V(). A morphism (L, \) — (M, u) is
an isomorphism «: L — M in V(A) such that g o ax = A. The product
of (L,A) and (M, p) is (L ® M,v) where v: (L ® M)y — 1y(y) is the
isomorphism

(L® M)y, — Ly ® My, ASH, lys) ® 1ys) — ly(y).
By [BB05, Lemma 5.1] the category V(A,X) is a Picard category and

there is a natural isomorphism
(2) ing: mo (V(A X)) =2 Ko(A,X).
For a complex P € PMod(A)® we define objects P®" and P° in PMod(A)

by
pv:=Pr, P'=FHP

i even i odd
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Similarly we define

HY(P):= @ H'(P), H(P):=&D H'(P) H"P):=EPHP).
i even i odd i€l

Let P € DP(A) and let ¢t: H®(Ps) — H°Y(Px) be an isomorphism of -
modules. We refer to t as a trivialization and to the pair (P, t) as a trivialized
complex.

By [BBO5, Def. 5.5] there is a (refined) Euler characteristic xa »(P,t) €
Ko(A,X). We briefly recall the construction. The element ya (P, t) is de-
fined by

XA,Z(P’ t) = iA,E(([U]Auﬁ(Pﬂ t)))?

where ([U]a, k(P;t)) € V(A,X) is defined as follows. Let a: U — P be a
quasi-isomorphism with U € PMod(A)® and let x(P,t): [Uly — 1y(x) be
the isomorphism in V(X)) given by the composite

(3)
U)s, ™2 [H(Us))x

Hax)
—

[H (Pe)]s —2 [H* (Pe)[0]ls @ [H*(Ps)[1]]s

P god(pg)o]

BB, [HY(Po)[0))s @ [H(P)[1])s ly ).

Here ny,, is defined in [BB05, Prop. 3.1], 7y (py) by [BBO05, Prop. 4.4] and
Pred(py)jo) by [BB05, Lemma 2.3].

For computational applications it is often convenient to use an explicit
construction of a refined Euler characteristic due to Burns in [Bur04]. We
still consider a ring homomorphism A — ¥ as above, but now assume in
addition that ¥ is semi-simple. We fix an object P € DP(A) and a trivial-
isation ¢: H*(Pg) — H°Y(Pg). Following [BB05] we write x99 (P,t7") €
Ky(A,X) for the refined Euler characteristic defined by Burns in [Bur04].
If we write B (Py) C Pi for the boundaries of Ps and set B°Y(Py) :=
@D; .4q B (Ps), then by [BB0D, Th. 6.2] we have

(4) - X?XI?Z](P7 t_l) - XA,E(P; t) + allx,E((BOd(PZ)v _id))'

3. THE TWISTED LOCAL EPSILON CONSTANT CONJECTURE

In this section we formulate C3%(N/K, V') following the exposition of
[IV]. We recall the necessary notations and results to the extend that we
can relate Cp%(N/K,V) to Breuning’s conjecture. For further details we
refer the reader to [BB0S] and [TIV].
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3.1. The conjecture Cp%(N/K,V). We will briefly recall the definition
of local e-constants following the expositions of [BB08] and [IV].

Let E denote a large enough field of characteristic 0 such that F contains
the p-power roots of unity g, and the roots of unity of order p — 1. Let
K/Q, be a finite extension. We write px for the unique Haar measure
on K normalized by pux(Ok) = 1. Let ¢: K — E* denote an additive
continuous character.

We recall that the theory of Langlands and Deligne (cf. [Del73]) asso-
ciates to each E-linear representation V of the Weil group of K a local
constant £(V, ¢, ug). The basic properties of these e-constants are listed in
[BBOS8|, Sec. 2.3].

We fix a compatible system { = (§,») -, of p-power roots of unity and
define an additive character ¢¢: Q, — Ex_by Velz, = Land Ye(p™") = En.

Let now N/K be a finite Galois extension with group G. We assume
that E is large enough such that every irreducible character y of G can be
realized over E. For each character x of G we fix an E-linear representation
V\ with character y and write V* for the contragredient representation.

Following [IVl, Sec. 2.3] we define the element

ep(N/K,V) := (¢ (Dpst (Indksq, (V @5 Vy), v, N@p)))xem(@

in [T, e (@) = Z(Qy[G])*. For all unexplained notation we refer the
reader to [IV] Sec. 2.3].

We will apply the notation introduced and explained in [BBOS|, Sec. 1.1].
In particular, B, Bst and Bgr denote the p-adic period rings constructed
by Fontaine. If V' is a p-adic representation of Gk, we put

Gk

Dé(R(V) = (BdR ®Qp V) , DK

Cris(v) = (Bcris Xdq, V)GK .

The K-vector space D3 (V) is finite dimensional and filtered. The tangent
space of V over K is defined by

ty(K) = D (V) /Fil’ Dy (V).

Finally, we write expy : ty(K) — H'(K,V) for the exponential map of
Bloch and Kato.

For any Q,-vector space W we write W* = Homg, (W, Q,) for its Q,-
linear dual. For convenience we usually write ¢{,(K) instead of ¢y (K)*.

Let N/K be a finite Galois extension of p-adic fields with group G. We
set A = Z,[G], Q == Q,[G], A := Z¥[G] and Q := Q¥[G], where ZI¥

denotes the ring of integers in the completion (QT;}T of Q.
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We recall the fundamental 7-term exact sequence of Q,[G]-modules of

[BBOS, (2.2)]

(5)
0 — H(N,V) — DX,

Cris

— DY (VF(1))* @ty (N) — DJL(V*(1))" — H?*(N,V) — 0.

Cris Cris

expv

(V) =% DY (V) @ tv(N) 22% HY(N, V) 22

Cris

In the following we will freely use the properties of determinant functors as,
for example, formulated in [BFO1, Prop. 2.1]. As in [IV] Sec. 3] we use

(6) 0 — £y (N) — Dap(V) — ty(N) — 0

and by [BF01, Prop. 2.1] we obtain an isomorphism
(7)

[Din(Vlgyic1 ® BEN, Vilgyie) = [0y (Nleyicr @ v (N]eyie @ (&[Hi(N, V)]&%})'

Using the commutativity constraint, the right hand side of (|7]) is canonically
isomorphic to

H (N, Vg, © (DY (Vlgkie © [DY(V)layie) © v (V)o@
(8)  [H'(NV)ghe ® - (Mlgyie © (DN (1)) )gy0®
DX (V" (D) gl @ AN V)]gyi6)

Now the 7-term exact sequence induces an isomorphism from the
object in (8) to 1y (q,[q)), so that we obtain an isomorphism

(9)  (N/EV): [Dgp(V)lgyle) @ [BL(N, V)]g,ie) — Lv(e,le)-
We put
App(N/K, V) i= [RT(N, Vg, ) ® [Indw/g, (V)]g, @) € V(Q,[G]).
By [BB08, Lemme 2.13] we have an isomorphism
¥: Dip(V) — D (Indwyo, (V)
which induces a canonical comparison isomorphism
compy : Bar ®q, DiR(V) — Bar ®q, Indn/q,(V), c¢®@z = ().
The morphism comp,, gives the isomorphism
a(N/K,V): [DéVR(V)]E;iR[G] ® [IndN/Qp(V)]BdR[G] — Ly(Bur(a)-
Following [BBO0S8| Sec. 1.1] we put

hi(V) = dimg, (Fil' DE(V)/Fil* DE(V))
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and
ty(V) =Y ih(V).
i€Z
Furthermore, we set

r(v) = [T (=),

1€Z
where
, (t—1! ifi>0
@)= i
) {((j;! if i <0,

Multiplying &(N/K, V) by () where ¢ := log[¢] € Bgg is the uniformizer
of By associated with & = (§;n),,5,, We get

(10)  a(N/K,V): [Dgp(V)] e © Mdw/g, (V)] samic) — 1v(sanic)-

Composing a(N/K, V') with the automorphism of 1y (g, (q)) induced by the
element I'*(V)ep(N/K, V') we obtain

(1) BIN/E,V): [Din(V)]pq ® Mg, (V)] saic) — 1v(Baic)-
We also define 5'(N/K,V) as the following composite

(12)

App(N/K, V) (el

= [RL(N, V)] Banic) @ [Indwyg, (V)] Bagla)

= [RL(N, V)] Banic1 ® [Dar (V)] Banle) @ [Dar (V)] pypicy @ [ivyg, (V)] Banlc

§'(N/K,V) .
[D(]iVR<V)]B(11R[G] ® [Indyq, (V)] Banic)

(N/K,V)
B 1v(Br[c)-

Note that in order to apply ¢'(N/K,V) in the above definition it is
necessary to apply the commutativity constraint first.

The isomorphism §(N/K,V') is defined in the same way, just writing
B(N/K,V) in place of a(N/K,V) in the above formula. Since according to
[BBO8, Lemme 2.15] the isomorphism S(N/K,V) is actually defined over
Q), the same is true for 6(N/K, V), so that we actually have an isomorphism

(13) I(N/K,V): AYp(N/K, V) — 1y @q)-
We define
Ap(N/K,T) := [RL(N, T)lz,c) ® [Indnq, (T)]z,c) € V(Zy[G]).

The element A% (N/K,T) actually does not depend on the choice of T'
and is therefore a canonical element in V(Z,[G]) whose base change gives

AYL(N/K, V). We can now finally formulate the epsilon constant conjecture
(compare to [IV], Conj. 5.1] or [BB0S, Conj. 2.19]).
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Conjecture 3.1.1. If V' = Q, ®z, T is potentially semistable and if N/K
is a finite Galois extension, then the class [(AYp(N/K,T),0(N/K,V))] €
m0(V(Z,[G],Q)) is trivial in m(V (A, Q)).

3.2. C}%(N/K,V) for unramified twists of Z,(1). We specialize now to
the situation considered in this manuscript.

Let p be a prime and let K be a finite extension of Q,. Let xg, : Gg, —
Z, be a continuous unramified character and write x™ := X&TJGK for its
restriction to Gx. We write x¥“: Gx — Z, for the cyclotomic character

and consider the p-adic representation

T = Zp(X™) (X)) = Zp(X™)(1).

Explicitly, T' is Z, as an abelian group equipped with the G x-action defined
by gz = x™(g)x?¥“(g)z for g € Gg and x € Z,. We put V := Q, ®z, T'.

Let ¢ = Fg, denote the absolute Frobenius automorphism and set u :=
X0, (). Let F denote the Lubin-Tate formal group associated with 7 := up.
By [Izy12, Ex. 5.20] the representation 7' is the restriction to G of the p-
adic Tate module T,F.

Let N/K be a finite Galois extension with group G. As usual we write
F(pn) for the formal Z,-module py with the Z,-module structure induced
by the formal group law F.

We define the complex RI'(N,T) as the Gy-invariants of the continu-
ous standard resolution of 7' (cf. [NSWOS8| Ch. I, §2]). As usual, we write
H{(N,T) for the cohomology groups of RI'(N,T). We recall some well-
known facts about these cohomology groups. We write v,: Q, — ZU {o0}
for the normalized valuation map and set

(14) w=wny = ,(1 — x"(Fn)).
Note that w € Z if and only if x"|q, # 1.

Lemma 3.2.1. Assume the notation of Subsection[3.3

(a) If X" |cy # 1, then/\
(i) HY(N,T) = (NG (™))
(i) H*(N,T) = (Z,/p"Zy) (X™) ,
(iii) H'(N,T) =0 fori#1,2.
(b) If X" |ay =1, theﬁ\
(i) H'(N,T) = N*(x"),
(ii) H*(N,T) = Zp(x™),
(1ii) H' (N, T) =0 fori#1,2.

Gal(No/N)

I

F(pn),
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Proof. Part (a) is shown in [IVl Prop. 2.5]. If x™|g, = 1, then taking co-
homology commutes with twisting, i.e., H'(N, A(x™)) = H'(N, A)(x™) for
each G y-module A. Hence part (b) is immediate from [Bre04al Prop. 4.11].

O

In Section {4f we will give an alternative proof of part (a) by explicitly
constructing a representative for RI'(N,T'). For details see Remark

Remark 3.2.2. In [BC|] and [Chi85] the symbol Ny denotes the maximal
unramified extension of N which in the present manuscript is denoted by
Np;. In order to relate the results and computations of [BC] to the results
a/@ computations of this manuscript it is therefore worth noting that NE =

Ny Indeed, we have for each natural number n the canonical short exact
sequence

0 —> Noo/ (N 0 (NG)™") — Ng /(NG — N /N (NG )" — 0.

It is an easy exercise to show that NX(Ngy)P" = Ny and NX N (NP =
(NJ)P". Hence we have a natural isomorphism NX/(NX)P" = N /(Ng)P".

Remark 3.2.3. In our situation we have
1 ifi=-1
V) {0 if i £ —1.
Indeed, by [FOI10, page 148] or [IV], page 499],
ty-)(Qp) = Cp((x™) (1)Y= 0

and hence ty+1)(Q,) = 0. Then the short exact sequence @ implies that
D%(V) =ty (Qy), ie. FﬂOD?ﬁ(V) = 0. Furthermore the element exy , =
"t 1@ (ve€) defined in [IV], page 508] is a nonzero element in Fil’lDE%Q(V).
Since dim@p(Dgﬁ(V)) = 1, we deduce that Fil_lD%’;(V) = DS&(V), so that
there is only one jump in the filtration, namely at i = —1.

Hence we obtain tg (V) = —1 and I'*(V) =I*(1) = 1.

In this case we shall now reformulate Conjecture [3.1.1] in the language
of relative algebraic K-groups and refined Euler characteristics.

Following [IV] and [Bre04b] we define an element Ry/x € Ko(Z,[G], Q)
by

Ry = Cnyic + Ueris + 0% 161, an i1 () + 0% 161.8am1c) (ED(N/ K, V),

where each of the terms is an element in K(Z,[G], Bar|G]). After briefly
recalling the definition of Cy/x we give the formulation of the conjecture
due to Izychev and Venjakob, and then, following the approach of Breuning,
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modify R ~/K by the so-called unramified term in order to obtain an element
Ry/k € Ko(Zy[G),Q,[G]). In Section [6| we will write ep(N/K, V) in terms
of Galois Gaufl sums in order to tie up to the notion of e-constants as it is
used in Breuning’s conjecture [BreQ4bl Conj. 3.2].

The element Ciy/x € Ko(Z,[G],(?) is defined by

(15) Onyie = =Xzy(0)Barlc) (M A7)
where the trivialized complex (M®, A7) is given by
(16) M* = RT(N,T) & Ind;q, T[0]
and

A HOd(M.)BdR[G] — Hev(M.)BdR[G}’

y = {comp o expy’ if X"y # 1
comp o expy, +vy  if X™|gy = 1.
Note that the minus sign in the definition of Cy/k is due to a different
convention about Euler characteristics in comparison to [IV].

The explicit computation of Cy/k is the technical heart of this paper.
The computation is based on the construction of an explicit representative
for RI'(N,T) (see Section [4]) which is of independent interest. Our represen-
tative should be considered as the analogue of Serre’s explicit representative
of the local fundamental class (see [Chi85, Prop. 6.1] or [Bre04al, Th. 4.20]).

The term U,;s will be defined in Section . In the case x"|g, # 1 our
definition agrees with the one given in [IV] Sec. 5]. In Section [5| we will also
make the comparison to the correction term My, x which occurs in (the
generalization of) Breuning’s Conjecture 3.2 in [Bre04b].

Conjecture 3.2.4. Under the current assumptions Z;’N/K =0 in Ko(A, Q).

In the case x™|g, # 1 this is precisely the reformulation of Conjecture
3.1.1] as stated in [IV], (5.2)].

We now follow the approach of [Bre04b] to define a modified element
Ry in Ko(Z,[G], Q,[G]). We write O, for the ring of integers in the max-
imal tamely ramified extension of Q, in Qf. Let ¢: Ko(Z,|G], Q5[G]) —
Ko(O}]G], Q5[G]) be the natural scalar extension map. We recall that by
Taylor’s fixed point theorem the restriction of ¢ to Ko(Z,|G], Q,[G]) is in-
jective. Let us define Uy/k as in [Bre04b], then by [Bre04b, Prop. 2.12] we
have «(Un/x) = 0. We define
(17)

Ry = Onyic + Usris + 02,6, Banic) () — Unyx + 0,61, anicy (ED(N/ KL V),
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so that Ry/x = RN/K — Un/k. Using some of the properties of Uy g
with respect to the action of Gal(Q;/Q,) one can prove that Ry/x €
Ky(Z,|G],Q,[G]). We will do this in Subsection [7.1 and we will also prove
that if 7 = Z,(1), then the following conjecture is precisely Breuning’s
Conjecture [Bre04b, Conj. 3.2].

Congecture 3.2.5. Under the current assumptions the element Ry /x = 0 in

Ko(Zy[G], Qp[G]).-

Proposition 3.2.6. In the present setting the Conjectures and
are equivalent.

The proof will be given in Subsection [7.1] In the rest of the manuscript
we write Cp%b(N/K, V) for the equivalent conjectures|3.1.1}3.2.4} and [3.2.5|

3.3. Organization of the manuscript. To end this section we briefly
describe the organization of the manuscript. In Section |4 we construct an
explicit representative of RI'(N,T'). Section |5 is dedicated to the definition
of the term U,;s and the comparison of U, to Breuning’s correction term
My . In the following Section @ we discuss epsilon constants and express
them in terms of Galois Gaufl sums. This will allow us to compare the term
a%p[GLBdR[G} (ep(N/K,V)) to Breuning’s element T,k . In Section [7| we ex-
press Cn/x as a sum of a norm resolvent and the refined Euler characteristic
of RT'(N,T'). With these preparations at hand we study the Galois action of
the individual terms in the definition of Ry/x, prove Proposition and
compute the refined Euler characteristic Cy k. As a by-product we obtain
the proof of the equivalence of Breuning’s Conjecture [Bre04bl Conj. 3.2]
and C%(N/K,V) if T' = Z,(1). Finally in Section [8 we provide the proof
of Theorem [l

4. A REPRESENTATIVE FOR RI'(N,T)

In this section we construct an explicit representative for the complex
RI'(N,T). We assume the situation described at the beginning of Subsection
B2

4.1. Some preliminary results.

Lemma 4.1.1. Let L/K denote a finite Galois extension. Then we have a
canonical exact sequence

Gal(Lo/L) e Gal(Lo /L
) Ly (2 () )

0 — Flpr) — (L5 (™)
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of I/ x-modules. In particular, if X" |a, # 1, then there is an isomorphism
—~ .\ Gal(Zo/L)
fr: Flor) — (L5 0e™) .
Ezxplicitly fr.1 is given by a power series of the form 1+ e ' X + deg > 2,

where € € ZT‘?X is such that u = ¥~ 1.

Proof. We have L§ = 7% x k* x U &), where x denotes the residue class field
of Ly. Since any element of k* has coprime to p order and U E)) is p-complete

we obtain Ly = Z, x U E)) , and hence a canonical short exact sequence
1 —_
(18) 0— U — Ly — Z, — 0.

From [LR78, Lemma page 237] we derive the existence of an isomorphism
) Gal(Lo/L)

Fi Fp) — (UL ()

Up to the obvious isomorphism U &) = Gy (pr,), this isomorphism is given

by the uniquely defined power series 0(X) = ¢ !X + deg > 2 of [Neu92,
Koroll. V.2.3].

The result follows by twisting and taking Gal(Lg/L)-fixed points in (18]).

O

We set G := Gal(Ky/K) x Gal(L/K). In analogy to [Chi85, (6.2)] we set
Irr(X™) = Indgéal(Lo/K) <L§ (an)>

—~\d
and we usually identify Zy /x(x™) with (Lf)( ) o Recalling that F = Fi
denotes the Frobenius automorphism of K, note that the G-module struc-
ture on Zy/x (x™) is characterized by

(19)  (Fx1)-[e,2, 0 2,,,) = [0y w20, 20y ),
and
(20) (F™" x0)-[x1, 29, . .. ,de/K] = [a:cl}xm(&), :ch"r(f’), . ,ng;;(&)],

where F~" and o € Gal(L/K) have the same restriction to L N Ky and
7 € Gal(Lo/K) is uniquely defined by 7|x, = F~" and 7|, = 0.

We also have a G- and a Gal(L/K)-action on Zy,/x (x™), via the natural
maps G — Gal(Ly/K) — G and Gal(L/K) — G. Note that in the case
X" e, =1 we have

—~

(21) Irx(X™) = Ind(g}al(Lo/K) (LS(XM)> = (Indgal(Lo/K)LE)() (x™)

both as Gal(L/K)- and Gg-modules. The following lemma clarifies the
structure of Zy/x (x™) as a Gal(L/K)-module in the general situation.
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Lemma 4.1.2. If we identify the inertia group 11 x with Gal(Ly/Ky), then
there is a Gal(L/K)-isomorphism

frr:In dGaI L/K)LX — Lk (X™).

In particular, Ik (x™) is Gal(L/K)-cohomologically trivial.
Proof. We identify India/ll((L/K)Zo; with Z,[Gal(L/K)] ®z,(1, ] l/lo; and set

fri(o®z)=1x0) [z,1,...,1],
for x € Zg and o € Gal(L/K). To check that this is well-defined we take
7 € Ik and write 7 for the corresponding element in Gal(Ly/Kj). Then
frilor®@x)=1xor) - [z,1,...,1]=1Ax o)1 x7)-[z,1,...,1]
=(Ixo) ™D 1. 1]=10x0) [z7,1,...,1]
= fru(o®aT).
To prove the surjectivity of f~]-‘7L, we check that all elements of the form
[1,...,1,2,1,...,1] are in its image. Let ¢ + 1 be the index of z and let us
take 0 € Gal(L/K) such that 0| nx, = F'~*. Then
Fro@®a® X" = (1x o) o7 X" 1]
= (F'x D(F 7 xo)-[27 X7 1 1]
=(F'x1)-[2,1,...,1] =[1,...,1,z,1,...,1].
It remains to prove injectivity. Let us take [ [, 0; ® x; € ker f;’ - Clearly we
can assume that 0 < i < dp/x — 1 and 0;|rnk, = F~%. Then we calculate
dL/K_l

. e~
3 _ 1..60x™(60) .61x™(61) Gap i —1X"(Gap e —1)
frL H o @x; | = |7 » L1 v Lap et J

Since we are assuming that the element is in the kernel, we deduce that
all of the x; are equal to 1. Hence f]:7L is injective. The isomorphism is
Gal(L/K)-invariant by construction.

By [Ser79, Prop. XII1.5.14] the I /x-module Ly is I,/ x-cohomologically
tr1v1al Using [Bre04a, Lemma 4.9] the same holds true for the p-completion
LX By Shapiro’s Lemma we finally derive that Ind?a/l L/K) LX is Gal(L/K)-

cohomologically trivial. U

We now prove a slight generalization of a well-known lemma, see e.g.
[Neu92, Lemma V.2.1].

Lemma 4.1.3. Given c € ﬁL\O there exists x € ﬁL\O such that xX"(FL)FL=1 —

. . n
c. If x, 1is such a solution modulo Ufo, then we can assume that r = z,

(mod Ufg). In particular if ¢ € U&), then we can assume x € Ug)).



18 W. BLEY AND A. COBBE

Proof. Let n € N, let 1, € Z be such that ¢, = x"(FL) (mod p"). First
of all we want to determine an z, € Up,/ Ufz such that zX (W=l =
¥ =l = ¢ (mod Ug;). Let ¢, € U, be congruent to ¢ modulo U£Z7
then it is enough to find =, € Uy, such that x%f2=1 = ¢,. The same
proof as in [Neu92, Lemma V.2.1] works, simply writing Fp1 instead of
¢ everywhere. (Note that here we are using that Ly is complete.) More-
over, if we assume that we already have an x,_; € U,/ Uf;H such that

xzrfl(FL)FL_l = xfﬁ?_l = ¢ (mod Ufzfl), then we can find z, with the
n—1

additional property that 2, = ,,_1 (mod U} ).
By passing to the limit we obtain an element x € Up, which satisfies

nr _ .. . .
X" (FLFL=1 — ¢ The remaining assertions are now straightforward. O

4.2. The construction of the complex. We continue to assume the sit-
uation of Subsection [3.21

Theorem 4.2.1 (Serre). If x™(Fy) = 1, then we have an ezact sequence
0 — L*(X™) — Zr/xk(X™) — Lo/ (X™) — Zp(X™) — 0

of Z,|Gal(L/K)|-modules.

Proof. Taking into account the isomorphism this follows directly from
[Chi85l Prop. 6.1] by p-completing and twisting. O
Now we want an analogous result for the case x™(Fp) # 1.
We set
wr, = vp(1 = x™(FL)),
which is finite when x™ (Fp) # 1.
For n > wy, we put

Va={y € Ly /(Ly)"" : vely) =0 (mod p**)}
and
Wy = {y € L3 /(LS + g F0Fist — 1),
Note that when w; = 0 the congruence in the definition of V,, is always

trivially satisfied, so that V;, = L /(L)P".

Lemma 4.2.2. Assume x™(F) # 1. If m > n > wy, then we have a

commutative diagram of exact sequences:

m X" (FL)Fr—1

0 W, Ly /(Ly)P Vin 0

Tm,n lﬂ'm,n Om,n

X" (FL)Fr—1

0 W, L (LX) v, 0.
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Here 7, , denotes the canonical projection and 7, and op,, are induced
by Tpmm. Moreover, m,, , and o, , are surjective and the projective system
(W), satisfies the Mittag-Leffler condition.

Proof. To prove the exactness of the rows we must show that

Ly /(L5 2 v,
is surjective. If ¢ € V,,, then v (c) € p“LZ/p"Z, so that there exists k € Z
such that

vi() = B(™(Fy) — 1) (mod p'Z).

We set

c n n

= EAZC) € Uro/(Ur, )" C Lg [ (Lg)"

where [r7] denotes the class of 77, modulo (L )?". By Lemma there
exists ¥’ € U, /(Ur,)*" such that

(x/)an(FL)FL*1 =,

Then we set x = 2/[rz]¥ and obtain

xX”(FL)FL—l _ (xl[ﬂL]k)Xm(FL)FL_I _ c’[ﬂ.L]k(Xm(FL)_l) — C/[WL]UL(C) = c.

The commutativity of the diagram as well as the surjectivity of m,,, and
Omn are evident. It remains to show that the projective system (W),,), sat-
isfies the Mittag-Leffler condition. To that end we prove that coker(7,,,)
stabilizes for n > wy, as m tends to infinity.

By the Snake Lemma we obtain
(Lg)" /(Lg )"
Since n > wy, it is easy to see that

ker(om,n) = (Lg)" /(Lg )"

e XEF L ker(o,, ) — coker(7p, ) — 0.

so that we have to compute the cokernel of
(L3 /L™ = (L (L5
where 1 is induced by x™(Fp)F — 1. Clearly,
im() © (=7 (U ) (£5)"/ (L5)"

We claim that we have equality. Let ¢?" = ﬂ%’w%vpn with | € Z and
v € Up, represent an element of the right hand side and set ¢ := 7rleva.
By the first part of the proof we can construct € Lg/ (Lg)pm such that
X" FFL=1 — [¢]. Then (xp")xm(FL)FL_l = [¢?"], which proves our claim.
Finally we note that for m > n+wy, one has (Lg)pm C T (U )P

Hence coker(7,,,) = (Lg )pn/(ﬂfﬁrnZ x (Up,)"") stabilizes. O
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By the definition of V,, we have a commutative diagram of short exact

sequences
0 Vin LY (LYW —— L) p*r T 0
0 V, Ly J(L§ V" ———Z/p*"Z. 0.

Note that when wy, = 0 we simply interpret Z/p“tZ as 0. By Lemma m
the maps o0, , are surjective and hence the projective system (V},),, satisfies
the Mittag-Lefller condition. We define

W :zl'&nWm V :zl'&an

and thus obtain by [Wei94), Prop. 3.5.7] two short exact sequences

0—>W—>Z§—>V—>O,

0—>V—>Z§—>Z/prZ—>O.

Splicing together these two sequences we obtain

"(Fr)Fr—1

0— W —L17X L 25 2y T — 0,

which we rewrite in the form

(22) 0 — WH™) — LF (™) 225 LI (™) 25 Z/p Z(™) — 0.

We clearly have W (x™) & ZO;(X”)GZ"I(LO/L) which by Lemma [4.1.1] is
isomorphic to F(pr).

Note that we also have a natural Gal(L/K)-action on (i}(xm))GaNLo/L)
and Z/p“tZ(x™) defined by extending an element o € Gal(L/K) to an
element & € Gal(Ly/K).

So we can formulate the following theorem.

Theorem 4.2.3. Assume X" (Fy) # 1. We have an ezact sequence

(F—1)x1

0 — (Lg (™))™ E D — Ty e (™) Liyx(X™) 25 Z/p Z(x™) — 0

of Z,|Gal(L/K)]-modules. Here wy, denotes the sum of the valuations vy, .

Remark 4.2.4. In the proof of Theorem [4.2.8 we will use this result together
with the isomorphism (L (x™))C(E0/E) = F(p ;) provided by Lemmal4.1.1]

Proof. We start by showing that all the homomorphisms are Gal(L/K)-
invariant. Let o € Gal(L/K) and let ¢ € Gal(Ly/K) be such that 6|, = ¢
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and &|g, = F~", where n is an integer. Let # € (L (x™))%(0/L) Then z

maps diagonally to the element [z, ..., 2] € Ip/x(x™) and we have
Ixo) |z, z,....2|=(F"x1)(F"xo0) |z,z,...,x
(Ixo)[z,2,. .. 2] = VT
=(F"x1)- [mﬁx“r(tﬁ)’ x&x”(ﬁ)’ o ’x&x”(ﬁ)]
TR @) G exE)  ox o)
- [xéx“’(&) 29X™(9) 7 xffx‘“(&)].

If we inject o - x = 27X (®) diagonally into Zj, /i (X™) we obviously get the
same element, so that the first map is Gal(L/K)-invariant. The second map
is Gal(L/K)-invariant because (F' — 1) x 1 and 1 X ¢ commute.

Let [x1,..., 24, ] € Zr/x(X™). Then

(Ix o) [z1,2, ..., Tay, ] = (F" X )(F" X 0) - [21, 22, ., Tay ]
= (F" x 1) - [29X (0)7$;x (U), o Zic/K(U)]
o nr(a.)F nr(F ) o nr(&)F nr(F ) o nr(a.) box nr(a.)
= [ dl)‘(/KJ,-l—LnX v m..,l’dz(/K LX r 7x1X 7"'7deX/K—TL]‘

Its valuation is:

dL/K—TL dL/K
x"(5) Z v (i) + X" (FL) Z vr (i)
=1 i=dp, c+1-n

= X" (0)(ve(z1) + - +vi(za,,,)) (mod p**),
from which we deduce the Gal(L/K)-invariance of wy,.
Next we show the exactness of the sequence. The first map is just the
diagonal embedding.
Let = [z1,29,..., 74, ] € ker((F' — 1) x 1). Then

Frx™(Fr) "
dr /i Ty T2 dr -1
(F-1)x(x)= | ———,—,—,...,—/—| =1
I Ty T3 Ldr,
. . F nr F F nr F
implies that zy, = 3 = .-+ = 24, and 1, = deL/XK( L) _ xy " (Fo) 14

follows that the kernel of (F'— 1) x 1 is contained in the image of the first
injection. Since the opposite inclusion is straightforward, we have exactness
at the second non-trivial term of the sequence.

Let us consider exactness at the third non-trivial term. The following is
just an adaptation of the arguments used to prove [BD13, Lemma 11 and 12].
Let ¢ = [e1,¢9,. .., ¢ay ;| € ker(wy) for some ¢; € ZE(XM). By assumption
- Cdy i is in the kernel of v;, and hence by there exists an element

y € Ly (x™) such that yX" =t = ¢ ¢,

C1Cy ..

- Cdy - Now we set

J— nr
r=|cocs. .. Cdp ¥ C3 - Cdp Yy - ,CdL/KquL/Kfl/,CdL/K’yay] < IL/K(X )-
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Then
mFLan(FL) T
dr/x Ty T dr/x—1
(F=DxD(@)=|—"—— — ..., ——
T To I3 IdL/K
B yFrx (Fr) CoC3 ... Cdy )Y C3Ca- .. Cdp )Y Cdp, Y
- ’ ) P
CQCg...CdL/Ky CgC4...CdL/Ky C4C5"’CdL/Ky Yy
[ yFex™ (Fr)=1
= | Y———C,C3,...,C4
s €2, 03, y Ydy
C2C3 -+ Cdp e /
= 01,02,63,...,CdL/K] .

The opposite inclusion is easy by the definition of wy,. This proves exactness
in the third term.
The surjectivity of the last map is clear. (I

We let M/L/K be finite extensions such that both M/K and L/K are
Galois. We have a canonical inclusion

v=tme: Tk (X™) — Ty (X™),
dyjn=1 L d -1 dpm/L=2 . d —2
T [xFL X (FL)M/L ’xFL X (FL)M/L ,...,CL’],
- dr/x
where = = [21,...,24, ] € (LO) and the exponents of x have to be

understood componentwise. There are three possibilities:

(1) X" (Fy) # 1 and x™(F1) # 1;
(2) x™(Fu) = 1 and x™(Fr) # 1;
(3) x™(Fm) =1 and x"(FL) = 1.
In case 1 we verify by a long but straightforward computation that the

diagram of exact rows

- (F-1)x1 w
0 — (Lg (x™)) Gl Eo/E) — T e (x™) Tk (X™) — Z/p** Z(x™) — 0

lc iLJM/L le\l/L lp
(F-1)x1

0 — (Mg (x™) S M) — Ty e (X)) > gy (X™) = Z/p*VZ(X™) — 0

At/ =1 o
commutes, where p = ey > ;00" Fp.

In case 2 we have

B dar/p—1 a . ' an(FL>dM/L —1
war(ar () = (@) D X" (FL) = (@) =y
X"(Fa) =1

0.

= W €T =
u( X (Fr) — 1
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Therefore we obtain a commutative diagram

(F-1)x1

0 —= (Lg (x™)) GallEo/D) — Ty e (™) Lok (X™) % Z/p*MZ(x™) — 0

J{C tM/L lLAI/L lo

— (F—1)x1

0 — (MOX (an))Gal(ZMo/JW)4> IM/K(Xm) I]V[/K(Xm) M Zp(an) —

Note that the bottom exact sequence comes from Theorem 4.2.1]
In case 3 our diagram takes the form

(F—1)x1

0 — (L (™)) Galbo/L) — Tp e (™) Trr(X™) L Z,(x™) —0

Lg lbl\/l/L \LM/L l[M:L]

— (F—1)><1 wpg
0 — (M (™)) S MM — Ty e (™) Loy (X™) = Zp(x™) — 0.

Lemma 4.2.5. (a) If X" (FL) # 1 for every finite Galois extension L/K,
then we have an exact sequence

: X nr a : nr F-1)x1 : nr
0 — lim (L5 (™) S1E0/D) — i Ty (™) 2 Jim Ty e (X™) — 0,
L L L

where the direct limit is taken over all finite Galois extensions L/ K.
(b) If x*(FL) = 1 for some finite Galois extension L/K, then we have
an exact sequence

: T nr a : nr (F-Dx1 . nr nr
0 — limy (L3 (¢™) S4B Sl Ty e () L2 b 2, (607) — @, (0™ = 0.

Proof. For the proof of (a) we use the diagram of case 1. Since the direct
limit functor is exact it suffices to show that lim (Z)p“rZ(x"™)) is trivial.
We first note that

on = (TN (o)

= wp + v, (1 + X" (Fp) + ...+ X" (Fp) e,
Let now x € Z/p“*Z(x"™). Then we let M/K be a finite Galois extension
such that L C M and p“*|ep/r. Then

a1+ Fi oot e = a1 X (FL) + oy (B0
and, since
vp(enr/n(1+ X" (Fr) + ... + X" (Fp)™e1)
> wp 4 vp(1 4+ X" (FL) 4 ..+ X" (Fp) ™21 = wy,
we see that x becomes trivial in Z/p“MZ(x™).

The proof of (b) is achieved by taking the direct limit over the diagrams
of cases 2 and 3. The result follows since it is straightforward to show that

lim, Zp(x™) = Qp(x™)-
O
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Lemma 4.2.6. We have

(IM/K (an)) Gal(M/L)

= LlM/L (IL/K<Xm)) .

Proof. For the proof we set d:= dyyr and d := dp k. As usual we identify
Ta/k (X™) and (MJ)%, the Gal(Ky/K) x Gal(M/K )-action being described

by and . Let us consider [z, %o, ..., 25] € (IM/K(X”))Gal(M/L) with
T1,T9,...,x5 € (M])%
Let 6 € Gal(My/Ly) and o = G|y € Gal(M/L). We have
(1 x o)[z1,220,..., 25 = [xfxm(&), xgxm(ﬁ), o ,xgxm(&)].

Since 7|k, = 1 it follows that x™(6) = 1. So from the above calculations,
recalling that [xq,z, ..., x4 has to be fixed by the action of 1 x o, we get
2?7 = a; for i = 1,...,d. Since this holds for every & € Gal(My/Lg) we
conclude that x; € (Zo;)d =T (™) fori=1,....d.

Now let us take 7 € Gal(My/L) such that 7|p, = Fy, and set 7 := 7|y €
Gal(M/L). In particular the element [xq, s, ...,z ] must be fixed by the

action of 7. We have

[T1, 22, ... x5 = (L x 77 ) [z1, 22, ..., 2]
= (F'x D)(F 4 x 7 Y[z, 29, .., 1)
— (Fdx 1)[x§*1x“r(?) 17 ;*lx‘“(f)*ly ,:L,;*lx’“(?)*l]
_ [ TR E) @ e
Since x; € Lk (x™) = (Z})d for i = 1,...,d, we can always substitute 7

by 7|, = Fr and Fy by Farlr, = Fg. Setting © = z; and comparing all
the components in the above equality, except for the first one, we obtain

Fdhfl nr( g d—1 Fdhf2 nr( g d—2
(21, 29,... x5 =[x X (FL)T P XM EDT 0 ).

Therefore we have proved that

(21, @0, ..., 2] = tayr().

For the opposite inclusion we take z € Zp,x(x™) and have to show that
y = tyyr(x) is fixed by all 0 € Gal(M/L). As before we let 7 € Gal(My/L)
denote an element such that 7|, = I, and set 7 := 7|y € Gal(M/L). Then

(Ix7 Ny =(F"x1)(F*x 7_1)[ng_1X"r(FL)J_17ng_QXm(FL)d_Q, )

— (F x 1)[aFe XmE)T? P (F) T ' (FL)
Y

xZ

g e ooy

Fi=2er (5 )d-2

—1 nr -1 nr
Fo o x™(FL)~ ' Fux (FM),x 7”"1]

:[m

= /() = y.
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Let now o € Gal(M/L) be arbitrary. Then there exists ¢ € Z such that
o7 ML, = id. We then have (1 x o7%)y = y and the result follows from the
above computation and (1 x o) = (1 x o7%)(1 x 777). d

From Lemma [£.2.6] it is immediate that

Gn
(23) (thL/K(Xm)> = Iy (X™),

where the direct limit is taken over all finite Galois extensions L/K. From
now on, we will mainly be interested in the case x"|¢, # 1, since the corre-
sponding results for the case x™ |, = 1 are known. Under the assumption
X"|ay # 1, we see that

(24) (Q(x™))" = 0.

Lemma 4.2.7. The Gg-modules h_n}LIL/K(Xm) and Q,(x™) are acyclic
with respect to the fized point functor A s ASN.

Proof. By [NSWO08|, Prop. 1.5.1] we have for ¢ > 0
HE(N, limg Zo (™)) = liny HY(Gal(L/N), T e (™)
L L

which is trivial by Lemma [.1.2] The module Q,(x™) is cohomologically
trivial since it is divisible (see [NSWO0S8|, Prop. 1.6.2]). O

We can now state and prove the main result of this subsection.
Theorem 4.2.8. If x™|¢y # 1, then the complex
(F-1)x

[ ] nr 1 nr
Cyri= [IN/K<X ) — Inyx (X )]

with non-trivial modules in degree 0 and 1 represents RI'(N, F).

Proof. We write X* for the standard resolution (as defined in [NSWOS,
Sec. 1.2]) and I*® for an injective resolution of th(LAg(Xm))Gal(Lo/L). Let
C* be the complex
. (F-1)x1 ..
lim Zp e (X") ——— Im T/ (x™) — Qp(x™)
L L
or the complex
, (F-1)x1_ ..
i Zp e (X™) ——— lim T/ (X™),
L L
according to whether Y™ becomes Eivial for some G, or not.
The G-modules Map(G™, lig (L (x))GallLo/L)) appearing in X*® are in-
duced in the sense of [NSWO0S8|, Sec. 1.3]. By Proposition 1.3.7 of loc.cit. the

standard resolution consists therefore of acyclic modules with respect to
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the fixed point functor. By [Lan02, Th. XX.6.2] there exists a morphism
of complexes X* — I°* inducing the identity on ligL(Lg(Xm))Gal(LO/ L)

and isomorphisms on cohomology. By Lemma [4.2.5] and [4.2.7| we may ap-

ply [Lan02, Th. XX.6.2] once again and obtain a morphism of complexes
C* — I*, also inducing the identity on lig (Lg (x™))GalEo/L) and isomor-
phisms on cohomology. By Lemma

Gn
(@(LS(X“))G“(L”/L)> = (NG (x¢™)) S0 & F(p ).
L

Therefore applying the G y-fixed point functor together with and
shows that C} » = (C*)®Y is quasi-isomorphic to RI(N, F). O

Corollary 4.2.9. With the assumptions of Theorem [4.2.8 we have

| F(px) ifi=0
H'(N,F) = (Z/p°Z)(x™) ifi=1
0 ifi#0,1.

Proof. This is an immediate consequence of Theorems [4.2.3] and 4.2.8 [

In the sequel we always identify RT'(N,F) and C} . We again put
G = Gal(N/K) and recall that a complex is said to be Z,[G]-perfect, if
it is quasi-isomorphic to a bounded complex of finitely generated Z,|G]-
projectives.

Corollary 4.2.10. If x™|¢y # 1, then the complex RU'(N,F) is Z,|G]-

perfect. More precisely, there exists a complex
P* =[P — P" — P

of finitely generated Z,|G|-projectives together with a quasi-isomorphism
n: P* — RT(N,F).

Proof. By [Lan02, Prop. XXI.1.1] and Theorem there exists a quasi-
isomorphism f: K* — RI'(N,F), where K*® := [A — B| is centered in
degree 0 and 1 with B a Z,|G]-projective module. As the cohomology groups
H'(N, F) are finitely generated, the proof of [Lan02, Prop. XXI.1.1] actually
shows that we can assume that A and B are both finitely generated. By our
Lemma the module Zy,/x(x™) is cohomologically trivial. We hence
apply [Lan02, Prop. XXI.1.2] with § being the family of cohomologically
trivial modules. We obtain that A is cohomologically trivial and hence has a
two term resolution 0 — P~! — P® — A — 0 with finitely generated
projective Z,[G]-modules P~! and P°. Tt follows that RT'(N,F) is quasi-
isomorphic to [P~! — PY — P1| with P! = B. O
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4.3. From RI'(N,F) to RI'(N,T). If C* is a complex and p € Z, then
C*[p] denotes the shifted complex, that is C[p] = C**P. In this subsection
we will show that the complex P*[—1] of Corollaryis quasi-isomorphic
to RT'(N,T). Together with Theorem this will prove Theorem 2| whose

formulation we recall once again.
Theorem 4.3.1. The complex
. oy (F=1)x1 or
CXr = [IN/K(X ) — In/ (X )}
with non-trivial modules in degree 1 and 2 represents RI'(N,T).

Remark 4.3.2. Theorem combines with Theorem to give a new
proof of Lemma [3.2.1] part (a).

In the following we adapt the argument used to prove [BreO4al, Th. 4.20].
We will need the following Lemma.

Lemma 4.3.3. Let h: Y* — W* be a map of cochain complexes. Suppose
h =0 in D(Z,|G]). Suppose also that Y* is bounded from above, comprising
only projectives. Then h is homotopic to zero.

Proof. 1t follows from [Wei94, Coroll. 10.3.9] that there exists a quasi-
isomorphism t: Z®* — Y*® such that ht: Z®* — W* is null homotopic.
By the dual of [Wei94, Lemma 10.4.6] there exists s: Y* — Z*® such that

ts is homotopy equivalent to the identity. Hence Ats is both homotopic to
0 and to h. U

Lemma 4.3.4. There exist quasi-isomorphisms of complexes
pn: P*/p" — RT(N, Fp"])[1]
which are compatible with the inverse systems.

Proof. The proof proceeds in two steps. First we construct morphisms of
complexes ,,, and then in a second step we modify the definition in such a
way that the ¢, are compatible with the inverse systems.

By Kummer theory and [NSWO08, Exercise 1.3.1] we have a short exact

sequence of complexes
0 — RT(N, Flp"]) — RT(N, F) X5 RT(N, F) — 0.
As a consequence of [Wei94, Ex. 10.4.9] we obtain an exact triangle
RT(N, Flp"]) — RT(N, F) 25 RT(N, F) — .
Analogously we see that

P2 Pt Pt —
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is an exact triangle.
Let n: P* — RI'(N,F) be the quasi-isomorphism of Corollary 4.2.10]
Then we obtain a commutative diagram in D(Z,[G]) of the following form

(o

p

Tn

P P

.

RD(N, F) 2= RO(N, F) -~ RD(N, Flp"))[1] —— .

Po/pn

For clarity we use dotted arrows for morphisms in D(Z,[G]) which are not
actual maps of complexes. As it is common we use — to indicate a quasi-
isomorphism. By the definition of a morphism in the derived category there

exists a complex Z* such that
RI(N,F) +— Z* — RI'(N, F[p"))[1].
By [Mil80, Lemma VI.8.17] we construct a morphism of complexes
Un: P*— RI(N, Flp"])[1],
which makes the following diagram

° p ° Tn

b e

RT(N, F) 2~ RT(N, F) > RT(N, F[p"])[1] —

commutative in D(Z,[G]). As RTI'(N, F[p"]) is p™-torsion, the map ¢, factors

through P*/p" and we obtain morphisms ¢,, of complexes such that

Tn

Po Po Po /pn

I T e ¢

RT(N, F) -2~ RT(N, F) "> RU(N, F[p"])[1] —

commutes. We want to show that is actually a morphism of triangles.
To that end we have to show that in

n

p

Tn

Po Po po/pn P.[l]

P

p A

RU(N,F)—— RI'(N, F) -“"> RU(N, F[p"])[1] —= RT(N, F)[1]

the right hand rectangle commutes. Since P* % P*/p" is surjective it
suffices to show that n[l] o w o 1, = v 0 ¢, o m,. By the commutativity of
the central square this is equivalent to n[1] ow o m, = v o A, on which holds
true by [Wei94, Sec. 10.2, TR3].
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We can therefore apply the 5-Lemma ([Wei94, Exercise 10.2.2]) and de-
rive that the morphism ¢, is a quasi-isomorphism.
In a second step we now show that the maps ¢,, can be chosen so that
they are compatible with the inverse systems. We recall the identification
N = RL(N,F) and we set Q}, := RT(N, F[p"])[1]. We write n¢: Qf —
*_, for the canonical map induced by the epimorphism F[p"] — F[p"~1].
Note that by [NSWO0S|, Exercise 1.3.1] each 79 is an epimorphism. We also
write 72’ : P*/p" — P*/p"~! for the canonical projection.
We proceed by induction on n. We consider the following diagram in
D(Z,[G)

P p P* n Po/pn
X X &‘
. P . °
N,f > CN,I ------------------------------------------------- > Q’I’L
p = 71'5
p = &
. o o/, n—1
P pn—l P Tn—1 P /p
n Pn—1
° P . °
e — - Q0

and want to show that we can modify ¢, so that the square on the right
commutes. By a diagram chase we can show that

(P17t — 7901, =0
in D(Z,|G]). By Lemma we obtain a homotopy

hyp: P*— Q8 [—1]
such that
(Pl _ympt — m@iph ) = diy ! bl + B,
Since Q°_,[—1] = RT'(N, F[p"~1]) is p"~'-torsion, h,, induces a homotopy
b P — Q-1
such that ;zn = h,m,. Hence we obtain
(TG = iy W B, = ) B,

where d} , is the differential of P*/p". Since 7}, is surjective, we deduce that

(pn 17T o Qz z_dz 1 hz +hz+1d
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We are now precisely in the situation of [BF98, page 1367]. For the sake of
completeness we recall the argument.

We view P?/p", Q= and Q' as Z/p"Z[G]-modules and observe that
P! /p" is Z./p"Z]G]-projective. Hence there exists a lift A% of h? such that

7 n
P/p
n
Q,i—1
i—1 T i—1
Qn n—1 0

commutes. We now replace each ¢! by
ol + do bl + B .
Since we have only changed ¢,, by a homotopy the diagram still com-

mutes in D(Z,[G]). By a straightforward computation we see that 7%p,, =
¢n_1mP. This concludes the proof of the inductive step. O

We now provide the proof of Theorem 4.3.1}

Proof. From Lemma we obtain a map ¢ := @n v, of complexes,
p: P* — RI(N,T)[1].

Here we have naturally identified lim P* /p" with P* and Hm RT(N, F[p"])
with RI'(V,T'). Since each ¢, is a quasi-isomorphism we obtain for each 4

an isomorphism

H(p): tim H'(P*/p) — lim H* (N, F[p").

By [BF98, Lemma 9] we conclude that lim H'(P*/p") = H'(P*®) and also
that lim H™(N, F[p"]) = H*'(N,T), so that ¢ is a quasi-isomorphism.
U

5. THE TERM Ul

The term U, arises from the comparison of the trivialization A\ used to
define the refined Euler characteristic

Cn/x = —X2,G),Barlc) (M A7)

in and the trivialization §'(N/K, V) defined in (12)). In this section we
will make this comparison explicit, and in the case x™|¢, = 1 also compare

Ueis to the generalization of Breuning’s correction term My
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5.1. The computation of U.;;,. We define U,,;s by the equation
(26)
in[G],BdR[G}(A%%D<N/K7 T)a ﬁ,(N/K, V)) = CN/K + a%p[c]deR[G] (t) + Ucrisa

where iz,(q],Bir[q] denotes the natural isomorphism from .
Lemma 5.1.1. Conjecture|3.1.1 and Conjecture |53.2.4] are equivalent.

Proof. Since dimg,(V) = 1 for V. = Q, ®z, T, the representation V is
obviously potentially semistable. Conjecture states that

Z'ZP[G’},BdR[G]((A%?P(N/Kv T)v 6(N/K’ V)))

becomes 0 in Ko(A, Bqr[G]), while Conjecture states that Ry x be-
comes 0 in KO(JNX, Bgr|[G]). Recalling the definition of RN/ x and U Con-
jecture is therefore equivalent to the assertion that

iz, Ban ) (AFp(N/ K, T), B'(N/K,V)) + 07 1c1 Banicy (ED(N/ K, V)

becomes trivial. Recall that in our special situation we have I'*(V) = 1.

Hence the definition of §(N/K, V) in implies
The equivalence of the two conjectures follows easily. U

We proceed now to explicitly compute Uls.

We write H.(N,V) and H(N,V) for the exponential and finite part of
H'(N,V) as defined by Bloch and Kato. For basic properties as used in our
context we refer the reader to [BBOS|, §1.4].

For our calculation of U.;s we need to recall the fundamental exact se-
quences from [BBOg| (1.1) and (1.2)]:

(27) 0 — H°N,V) — DX

Cris(v)¢:1 — tV<N) ﬂ Hel(N7 V) —0
and
(28)

0 — H°(N,V) — DX

cris

(V) =% DY

cris(v) S tV<N) E—V> H}(N’ V) — 0.
Note that ey |, vy = expy. We will also need the dual of with V*(1)
in place of V:

(29)

0 H}(N, V*(1))" = DY (V*(1)" & t. 1y (N) = DX

cris

(V*(1))* = HO(N, V*(1))* —0.

By local duality we have

(30) H°(N,V*(1))* = H*(N,V), Hy(N,V*(1))* =
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Splicing together and we obtain the fundamental 7-term exact
sequence ([5)) which induces the trivialization ¢'(N/K, V') from (9).
Recall that V = Q,(x™)(1) and V*(1) = Q,((x™)™1).

Lemma 5.1.2. We have:
(CL) tV*(l)(N) =0.

(b) dime H}(N7 V*(l)) _ {O Z'fXHI“|GN 7& 1

1 if x™|g, = 1.

N R RO AY if X" ey # 1
(C) H}<N7 V) - Hel(N7 V) = (1() nr ) ) HT|GN —
Uy’ (X™) @2, Qp  if X™|ay = 1.
(@) H' (N, V) = (N5 () &2, Q. In particular, if x|y = 1,

we have HY(N,V) = NX(x™) ®z, Qp.
Proof. (a) By [FOI10, page 148] or [IV) page 499] we have
tv- () (N) = Cp(x™) (=) =0

and (a) follows.
(b) Using and (a) we deduce

dimg, H;(N,V*(1)) = dimg, H(N,V*(1)).
Clearly

0 if oy # 1
Qp((x™)™) if x™ay = 1.

(¢) The proof of [IV], Lemma 6.3] shows that 1—¢: DY. (V) — DX

cris cris

HO(N,V*(1)) = Qu((x™) ™) = {

V)
is an isomorphism. Hence H;(N,V) = H(N,V) is immediate from
[BB08, Lemma 1.3].

From (30) we deduce

dimg, H}(N, V) + dimg, HX(N, V*(1)) = dimg, H'(N, V).
Combining this with (b) we obtain the equality
Hi(N,V)=H'(N,V)
in the case x"|g, # 1. For x™|g,y = 1, the isomorphism
HY(N, V) = UY (™) @2, Q,

is well-known, see for example [BK90, Ex. 3.9].
(d) Immediate by Lemma [3.2.1]
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5.2. Uuis in the case x™|q, # 1. We start considering the case x™|g, # 1.
By Lemma Lemmal[3.2.1] (a) and the duality results the 7-term

exact sequence degenerates into the two exact sequences

(V) =% DN

cris

0 — DN

cris

(V)@ ty(N) — HY(N,V) — 0

and

0 — DN (V*(1))* — 0.

By (27), Lemma and the fact that ey, (v) = expy, the first sequence
is split by exp‘_/l. Recall the definition of iz g B,z and the definition of

(V*(1)" = D

cris

the trivialisation in (3)). If we compare the trivialisations k = r(M*, A1)
and f'(N/K,V), then we see that holds, if and only if

(31) Ueris = 97,1610, (5 © B7Y) = 07,161, Banic) (1)

where we interprete ko 3! € m (V(Q,[G])) as an element in K;(Q,[G]). It
follows that

(32)

Ueris = 97,1610, 161 ([Pavis(V), 1 = 8]) = 93, 160,161 ([Piris (VA (1)), 1 = 7)),
Note that the sign originates from the fact that the first term in the first
sequence is in odd degree whereas the first term in the second sequence is
in even degree.

We introduce the following notation. If z € Z(Q,[G]) we let "z €
Z(Q,[G])* denote the invertible element which on the Wedderburn decom-
position Z(Q,[G]) = @;_, F; for suitable finite extensions F;/Q, is given
by (*x;) with *x; = 1 if x; = 0 and *z; = z; otherwise.

We now compute U explicitly. Recall that F = F = @@,

Lemma 5.2.1. If x™|g, # 1, the endomorphism 1 — ¢* of DN .(V*(1))* is

cris

an isomorphism. Furthermore we have
a%p[c],@p[c]([Dé\r[is(V*<1))*a 1—¢%) :5%,,[@,@1,[@(*((1 —u™F ey))
in Ko(Z,[G.Q,[G)):

Proof. We let v* be a Q,-basis of V*(1). In particular, cv* = x™ (o)~ 'v* for
all 0 € Gg.
__ Ga, __
We consider the Z,-module (Zg%x&)) ¥ For s € Zx5r one has

__ G,
s € (Zgr(xgp)) <~ up(s) —s=0.

Adapting the proof of [Neu92, Lemma V.2.1] we construct t"* € ZT}r such
that ()P~ = u~"' (mod p) and up(t™) = ™. It follows that " € Z5°
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o = G
and furthermore, it is easy to show that (Z2r(x™)) ™ = Z,t™. Note that
" is unique up to multiplication by units of Z,.

By [FO10, Th. 6.14] we know that ZT}T C Buis, S0 that the element
ep = (t") ' @0
is contained in Beis ®g, V*(1). Since o(t") = xg (¢)~'t™ for all o € Gy,
we derive that ¢} € (Beis Qq, V*(l))GK C DN.(V*(1)). Let N; C N denote
the maximal unramified subextension of N/Q,. So we have [N; : Q,] = dx.
Since dimpy, DY (V*(1)) < dimg,(V*(1)) = 1, the element e} generates
DX. (V*(1)) as an Nj-vector space, i.e., DY, (V*(1)) = Nyej. By the -
semilinearity of ¢ we obtain ¢(eg) = xg, (¢)eg = ueg.

cris

We now fix a normal basis element 6 of N;/Q,. Then w; := ¢ 70e},
j=0,...,dxg—1,is a Q,[G/I]-basis of DY, (V*(1)). Let ¢y € DY, (V*(1))*,

cris cris

l=0,...,dg — 1, be the dual basis. Then

dg—1

DE(V*(1))" = @D Qu[G/ 114

1=0

and for 0 < j < dg we have
¢ () (F'w;) = hi(6(F'o™0ep)) = di(uF o™ 0e5) = uhy (Flw; 1),
which is v for ¢ = 0 and [ = j — 1, 0 otherwise. For j = 0 we get
¢* (V) (Fwo) = Yi(¢(F'0eq)) = i (uF* o™ 0es) = ughy(F*™ gy ),

which is u for i = —1 and | = dgx — 1, 0 otherwise. Hence ¢*(¢;) = w1
for 0 <1 <dxg —1and ¢* (g, 1) = uF' .

With respect to the Q,[G/I]-basis ¢y, ..., 94,1 the matrix associated
to 1 — ¢* is given by

1 0 0 -+ 0 —uFt

- 1 0 --- 0 0

0 —u 1 0 0

A= . .

o o 0 --- 1 0

o 0 0 -+ —u 1
Since det(A) = 1 — u® F~! the lemma follows. Note that this is invertible
if and only if x™|¢, # 1. O

Lemma 5.2.2. The endomorphism 1 — ¢ of DN..(V) is an isomorphism

cris

and we have

07, ic1.0,01 ([P (V), 1 — 9]) :%p[c],(@p[c}(*((l —p " u " F)ey))
in KU(ZP[G]7 @p[G])'
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Proof. The proof is analogous to the previous lemma, following the compu-
tations in [IV, Lemma 6.3]. O

5.3. Uuis in the case x"|g, = 1. We now study the case x™|g, = 1.
By Lemma [5.1.2) Lemma (note that this lemma holds also for

Xlew = 1), @7, 23), [9), and Lemma (b) the 7-term exact

sequence degenerates to

(33) 0 — DN.(V) =% DN.(V) — 0,
(34) O—>t(N)3p—V—>H1(NV)—>M—>O
v ’ HI(N.V)

and
(35)

HY(N,V) 1"

— DN (V*(1))* DN (V*(1))* H?*(N .
0— H}(N,V) — CI“IS(V ( )) — CI‘lS(V ( )) — ( 7V) — 0

In the case x™|g, = 1 taking cohomology commutes with twisting, so
that we may and will assume that V' = Q,(1) (see Remark below). By
[BK90, Ex. 3.10.1] and Lemma the short exact sequence fits into
the following diagram:

exp 1
0 — ty(N) —% HY(N, V) g}gg;gg 0
O
36 exp NTx W@@,Qp
(36) 0 N N* ®z, Q, Tar—y 0
_ _ .
0 N exp N; ®Zp Qp VN Qp 0

where exp is induced by the p-adic exponential map and Ok, denotes the

connecting homomorphism induced by the Kummer sequence. We have a
morphism v, in V(Q,[G])

REL0AS)
" VHEN, V)

® [HQ(N, V)] Qp[G]

Q[G]

® [Dé\l{ls(v*(]‘))*] Qp[G) ® [D(]}\I"IIS(V*(]‘))*] EQ;[G] o2y [H2(N7 V)] Qp[G]

[Hl (N,V)
Qp[G]

HI(N,V)

— lyg,la)

where the last arrow is induced by the exact sequence . From Lemma
together with the isomorphism invy: H*(N,V) — Q, we deduce a



36 W. BLEY AND A. COBBE

morphism v, in V(Q,[G])

@ [Hz(N7 v)}Qp[G] — ly@la)

CHY (N, V)|
P HI(N, V)

QplG]
which is induced by the valuation map vy. We set
vi=mon €m(V(Q[G]) = Ki(Q[G]).
The comparison of the trivializations k = k(M*, A™!) and §'(N/K, V) shows

(as explained in some more detail in the appendix) that

(37) Ueris = 97, 110,101 ([Dais(V), 1 = @) + 07161.0,1¢1(7)-

We now proceed to compute U5 explicitly. The first summand is computed
by Lemma [5.2.2, For non-trivial characters the same computation as in the
proof of Lemma shows that

8%;,[G],QP[G]([<1 —€ ) CI‘IS( (1))*7 1— (b*])
(er —eq)))

er)).

It therefore remains to compute the trivial component of ~. For this we

= 0p,q0,0c (L= F7)
= Oz, i01.0,0) (L= F71)

will need some preparations.
We recall that the exact sequence is derived by dualizing and then
using local duality from
(38)
0 — HO(N,V*(1)) % DY (V*(1)) =% DN,(V*(1)) — H}(N,V*(1)) = 0,

Cris Cris

which is with V' replaced by V*(1). Recall that N; is the maximal
unramified subextension of N/Q,. The sequence is explicitly given by

0— Q, —= Ny —5 Ny =5 H}(N, V(1)) — 0,

where ¢ is the connecting homomorphism. Explicitly, for v € Ny and 0 € Gy
we have &,(0) = o(y) —y, if y € Ny is such that (1 — ¢)(y) = z. By
[BK90, Ex. 3.9] H{(N,V*(1)) € Homeon (Gn, Q) = H'(N,V*(1)) are the

unramified homomorphisms, hence
H;(N,V*(1)) = Homeons ((Fi), Qp)-
We will always identify H(N,V*(1)) with Q, via

p: Hi(N,V*(1)) — Qp, > n(Fy).
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Recall that Ty, g, denotes the trace map. Since
&(Fy) = Fn(y) —y =" (y) —y

=Y (60 - ¢ W) =~ X ) = ~Twjo, (@),

we have the commutative diagram

0 Q, —= N, —% N,

o L E b b

1—¢

0 Q — M Ny Qyp 0.
By dualizing we obtain
(40)
% (7TN1/QP)* % (1=p)* % L* %
0 Q; Ny —2% N Q; 0
- kb k
1 * * £ * (1—¢)" * L* *
0 Hf(./\/7 V*(1)) Ny Ny (@p 0
Hl(N,V)/H}(N,V) H?(N,V)
= invy
N80, o Q.

U]<\,1)®@p

where sy and sy denote the duality maps from (30]).

Lemma 5.3.1. (a) Let m € Q; = Homg,(Q,, Q,) be defined by mi(1) =

1. Then s1(u*(m)) = [mn] where [wn]| denotes the class of mn in
NX®Q,
Uy o0,

(b) Let na € Q be defined by m2(1) = 1. Then invy(sa(n2)) = 1.

Proof. (a) We want to prove that (my,-) = p*(m), where

(41) (-,y: HY(N,V) x H'(N,V*(1)) — H*(N,Q,(1)) oy Q,
denotes the duality pairing. As in the proof of Lemmal(5.2.1{we let 6 €
N7 be a normal basis element. In addition, we require the property
Tnij0,(0) = —1. Since H;(N,V*(1)) = Q,&, it is enough to prove
that (mn, &) = p*(n1)(&). By the defining property of 6 we obtain

1 (m)(&o) = m (&) = m(=Tn g, (0)) = m(1) = 1.

By [NSWO08, Coroll. 7.2.13] we obtain

(T, &) = vy (mn U &p) = Ep(reen(mn)) = & (Fv) = =Ty o, (0) = 1.



38 W. BLEY AND A. COBBE
(b) If
(h HENV) x HO(N, V(L) — HE(N,Qy(1) 225 @,

denotes the local duality pairing, then by definition (s3(12),) = n2
and therefore

invy (s2(12)) = (s2(m2), 1) = m2(1) = 1.
U

As explained in [BF01], Sec. 2.5] we can and will identify here V(Q,) with
the category of graded invertible modules with the commutativity constraint
¥ as in [BEFOL, (5)]. Explicitly, for objects (L,«) and (M, () and [ € L,
m € M one has

YP(Ilem)=(-1)"meI.
We also point out that for an object (L, ) we fix a right inverse by setting
(L,a)™! := (Homg, (L, Q,), —a), i.e. (L,a) ® (L, )" = (Qp,0).

Lemma 5.3.2. Under our assumption that x™ =1,

| _ ldykeq)
O2,16101610) = A = pye)

Proof. As already mentioned the computation of the (1 — eg)-component is
analogous to the proof of Lemma [5.2.1

For the computation of the trivial component, by Lemma [5.3.1| we can
identify ;! ® 1, with [ty]™' ® 1, so that we need to compute v (n; ' ® 1)
and v, ([rx]™! ® 1), where by abuse of notation we have denoted the eg-
component of v; and v, again by the same symbol.

Using the commutativity constraint we obtain

(42) Y(lry] ' ®@1) = —1.

For the computation of the trivial component it remains by Lemma [5.3.1
to compute the image of ;' ® 1, under the morphism ~,. By we have

to show .
Yt @me) = Tdo
N/K

The eg-component of the top sequence in diagram is given by

(=Tx ) 1—p)* *
0 — @ — %, Ny L oy 5 Q) — 0.
The elements egt)o, ..., eqWa,—1 constitute a Q,-basis of eg Ny, where the

elements v, ..., 14,1 are defined as in the proof of Lemma We set

¢;::€G¢i7 ZZO,,dK—l
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Since (1 — )" (¥;) = ¥ — i, we set z; := )j — )}, so that
Z = (20, Zdg—2)Q,

is the image of (1 — ¢)*. We consider the two short exact sequences

(_T1 p)* * —p)*
(43) 0 — Q) — 0, coNy S 7 0
(44) 0 — Z =5 egN; 5 Q — 0

and compute the image of ;' @' @ ()"t @y with ¢/ := g A Ay
under the natural map

@)g, ® [eaNila, ® [eaNilg, ® [Qpla, — v,
which is induced by the top sequence of .

We express (=7, /q,)" (1) in terms of the Q,-basis 1)y, ..., 1qy—1 of Ny
which is dual to the basis wy,...,wsy—1 of Ny defined by w; = ©70.
As usual 6 is a normal basis element with the additional property that
Tn.j0,(0) = —1. One has

(=Twe,) " (m)(wi) = m(=Twy g, (wi) =m(1) =1
forall i =0,...,dy — 1. We set by := (=Tn,/q,)" (1) and obtain

dy—1 dN/K_1 dig—1 dig—1

by = sz’: Z SDdKj Z¢i:dN/sz;’-
i=0 j=0 i=0 i=0

Hence (b1, ¥y, - -, ¥y, o) = (U0, - -, ¥y, 1) A with the matrix A € Glg, (Q)
given by

dyyg 1.0 -+ 0
dyyg 01 -+ 0
A= : S :
dyk 0 0 1
dyk 0 0 0

A splitting 7 of (1 —¢)* is given by 7(z;) :==.,i =0, ...,dx — 2. Therefore,

under the isomorphism
leaNtle, = [Qla, ® [Zg,
induced by we obtain
U det(4) 7 (m @ 2),

where 2 := 29 A ... A Zg,—2.
We define
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Then o is a splitting of * because

1 dy—1 1 dy—1 dy—1
o(n2))(1) = Tdy ; ¥i(1) = dn ; (% (; w]> =1
We put by := o(n2). Then
1 dy—1 1 drg—1
by = —— Zwiz—d— >
=0 =0

Hence we have (2o, ..., 24, —2,b2) = (¥, - - -, ¥}, 1) B with the matrix B €
Gla, (Q,) given by

1 0 -+ 0 0 —5

-1 1 -~ 0 0 —=

0 -1 - 0 0 -1+

B=1 . . S e
0 0 -1 1 -+

1

0 0 0 -1 —5-

Therefore
Y det(B) Mz @ n2)

under the isomorphism induced by (44)), resp. (¢/')~! > det(B)(ny ' ® z71).
Note that

det(A4) = (=1)" M dy/x, det(B) = —1.
Putting things together we obtain
nt ey © @) @

S () © (@ 2) © () @ )
N/K

= (=1)% (z® ()7 ®m)

dn/k

1
= (—1)dK+1m(z ®my' @z @)

1
— (_1)dK+1+dKflm(z ® Zil ® n;l ® 7]2)

1 _

= d—(ﬁz L@ n,)
N/K

1
dn/k
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Remark 5.3.3. In the case x™|g, = 1 but x™ # 1 the restriction of x™ to
N defines an abelian character of G = Gal(N/K). We write

1 nr —
eynr = @ZX (o)o™!

oeG

for the associated idempotent. The calculations in this case are basically
the same as in the case V = Q,(1). Diagram becomes

00— Qu((x™) ") —= N1 ((x™)~1) == Ny((x™) 1) == HA(N, V(1)) —0

O
0 —=Qy((x"™)™") —= Ni((x") ™) == Ni(x™) ) —~ Qp((x™) ) —0.

Note that the maps in and also their splittings do not change: this is
the reason why we write f instead of 1 — ¢ which otherwise could falsely be
interpreted as  — = — x™(¢)p(x). For the rest of the proof of the second
part of the next proposition one just has to take into account that only
the action of G on the modules changes by the twist so that we obtain the
non-trivial contribution from non-torsion cohomology for the character x"*.

We summarize the main result of Section [Bl

Proposition 5.3.4. a) If x™|c, # 1, then Usis = O(my/k) with

(1= p 5 u 9% F)ey)
m =
NI T (1 = wik F1)ep)

b) If x™|ay =1, then Usis = O(my k) with

e (1= p ¥ u=F)er) - *(dn/r ey )
NI (1 — udx F-1)ep) '

Proof. Combine the equations and with Lemma [5.2.1}5.2.2} 5.3.2|
and Remark [5.3.3] O

Remark 5.3.5. In the case x™ = 1 we precisely recover the correction term

M]]\g,;‘}‘(l in Breuning’s conjecture [Bre04bl, Conj. 3.2].

6. EPSILON CONSTANTS OF WEIL-DELIGNE REPRESENTATIONS

In this section we study the epsilon constant defined in [IV], Sec. 2.3] and
in the situation described in Subsection [3.2] we rewrite it in terms of Galois

Gauf} sums.
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6.1. Epsilon constants and Galois Gaufl sums. If L/Q, is a finite
extension and W is an Artin representation of G, we let f(W) denote the
Artin conductor of W. Let 1 = )¢ be the standard additive character, as
defined in Subsection [3.1} By [IV, Lemma 4.1] we have

(45)
en(N/K, V) = (= (Indijg, ()~ ia,) ™ X8, (F(Indigse, (V) ™))

x€lrr(G) .

rec

. Xg, .
Here we view x@ as a character Q; — Gai — Q) via the local

reciprocity map.

Remark 6.1.1. Contrary to the convention in [IV] we normalize reciprocity
maps by sending a uniformizer 77, to the arithmetic Frobenius map F7.

Lemma 6.1.2. Assume that M /L is an abelian extension of p-adic number
fields. Let 1 be an irreducible character of Gal(M/L). Let ®; = n;* Oy, be
the different of L/Q,. Then

e(n, b, ur) = p™rrr(n),

where 11,(n) is a Galois Gauf$ sum (see e.g. [PV13, page 1184]).

Proof. We will apply some of the properties listed in [BB0S| Sec. 2.3]. If 5
is unramified we derive from (1) of loc.cit. the equality

drsr

e(n, 2, pr) = n(m™ )p

We point out that we have n(7;**) (and not n(n7*) as in [BBO§| or [IV])
due to our different normalization of the reciprocity map. By the definition
of Galois Gaufl sums one has 7.(n) = n(7,**) and the lemma follows for

unramified characters 7.
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Let now 1 be a ramified character. We write f(n) = 7, "Op, for the
conductor of 1. By (1) of loc.cit. and [Del73|, (3.4.3.2)] we have
() = | ) )
{vL(z)==sL—mn}

1 T x
- S m. n S m. ¢ S m. duL
/erE ML(PLL+ ") <7TLL+ ") <7TLLJr n)
1 / T T
= — T N = | V| i | A
NL(pLL+ n) €03 <7TLL+ n) (ﬂ_LL-&- ,)

1 U(m ) Z x T
/LL(pSLL+mn> 2t - ) ! (ﬂi”””) v (7‘ZL+mn)

xEUL/Uémn)
U(mn)
= %ﬁ(n) = p"rr(n),
pr(py )

where the next-to-last equality results from the definition of Galois Gauf3

sums. 0

We will now use Brauer induction in degree 0 to deduce the following

proposition.
Proposition 6.1.3. Let x be an arbitrary character of Gg, with open ker-
nel. Then
5(X> wa qu) = T@p(X>'
Proof. By [SerTT, Exercise 10.6] there exist integers a4 such that
X —xX(Dlgg, = Za¢1ndK¢/Qp(¢ - 1)
¢

with linear characters ¢ of Gg, and Ky = (Q5)*"?). We will again apply
some of the properties (1) - (6) listed in [BBO8, Sec. 2.3]. By (2) of loc.cit.
local constants are additive and Lemma applied for M = L = Q,
together with the fact that 7x(lg, ) = 1 shows that e(lg,, , ¥, uq,) = 1.
Therefore we conclude

S(X, ¢a :qu) - E(X - X(l)lGQp7 wv MQp)g(lGQp7 ¢7 :u@p)x

= €<X - X(l)lGQzﬂw? :u@p)'

We now use (2) and (4) of loc.cit. in order to derive

e(x. ¥, ng,) = [[end, o, (¢ — 1), ¢, g, )"
@

(1)

= H€(¢ - 17 7%7 :qus)ad)a
¢
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where we write 1y Ky — (Qg)* for the standard additive character of
K. Because of dim(Indg, g, (¢ — 1)) = 0 the A-constants which arise in (4)
of loc.cit. do not show up.

We again apply additivity followed by our Lemma [6.1.2| and obtain
€<X7 ¢7 :u@p) = H 5(¢7 %57 NK¢)CL¢ . H 5(17 1/}¢>7 MK¢,)7€L(i>
¢ ¢

Tt T ) ™
¢ ¢

=TI (7. (0) 7, (1) 1)
¢

Now we recall from [Fr683] that Galois Gau8 sums are additive, inductive

in degree zero and equal to 1 for the trivial character. It follows that

(X, ¥, ng,) = [ [, (@ = )™ = [ [ 70, (Indi, jg, (6 — 1))
5 6

= 70,(x — x(1)1a,,) = 7o, (X)-
O

6.2. Epsilon constants for unramified twists. We apply the results of
this section to unramified twists of Z,(1).

Proposition 6.2.1. Assume that N/K is an arbitrary Galois extension of
p-adic number fields with Galois group G. Let XQ, be as usual and X@rp(gp) =
u. Let x € Irr(G) and write f(x) = 7 Ok for the Artin conductor. Then

ep(N/K, V), = (det(Indg/g,x)) (—1) -y K Ex()Fmy) -7g, (Indg g, (X)) "
Proof. By property (3) of [BB0S8, Sec. 2.3] we have

e(Indkyg, (X), =¥, ko) = det (Indgg, (X)) (—1) - e(Indg /g, (X), ¥, g, )-

By Proposition [6.1.3| we conclude further

(46)  e(Indgq, (x), =¥ to,) = det (Indgq, (x)) (1) - 7, (Ind kg, (X))-
Finally, by [Neu92, VII.11.7], we deduce
f(Indg /g, (x)) = Y Nicjg, (F(x)) = plessx®pm,

where 0 denotes the discriminant of K/Q,,. Since xg (p) = x@, (v) = u we
obtain

(47) X8 (F(Ind g, (x))) = ufscxDm),
Combining (45), and the assertion of the proposition follows. [

For later reference we record the following lemma.
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Lemma 6.2.2. Assume that N/K is an arbitrary Galois extension of p-adic
number fields with Galois group G. If x € Irr(G), then

93, 161.0,1¢) ((det(Indk/g,x)) (a)) =0

for alla € Q.

Proof. We write 0 € Gg, for any lift of recq,(a) € G?Ql; Let us denote by
Ver: G?Q’; — G% the transfer homomorphism, see e.g. [NSWO0S8, Ch.L5].
By [Del73, §1] we have the rule

det(Indg/g,x) = det(x) o Ver.

Therefore det(Indg/g,x)(a) = (det(x))(r) with 7 := Ver(s). The linear
character dety factors through the quotient Gal(K® N N/K). If o/ € G
denotes any lift of 7|y, then (det(x))(7) = (det(x))(c’). It follows that
det(Indg/q,x)(a) is the image of 0’ € K(Zy[G]) under the canonical ho-
momorphism K(Z,[G]) — K1(Q,[G]). The result follows now from the
localisation sequence. Il

7. THE COMPUTATION OF THE COHOMOLOGICAL TERM

This section contains the more technical part of the paper, concerning
the computation of the cohomological term Cy/x in the special case we are
considering. This will allow to prove Theorem [1|in the last section.

7.1. Some general results about Cy, k. We start with some general re-
sults about the cohomological term, for which we do not need the restrictive
assumptions of Theorem |1 We will use these results to prove the rationality
of Rn/k and the equivalence of Conjectures [3.1.1} [3.2.4 and [3.2.5| as stated
in Proposition [3.2.6| Furthermore we will show that Breuning’s conjecture
[Bre04b, Conj. 3.2] is a special case of Conjecture m

We recall that T = Z,(x™)(1) with an unramified character x™ which
is the restriction to G of an unramified character xg : Gg, — Z;. Then

T = T,F where F is the Lubin-Tate formal group associated with 7 = up
and u = xg ().

Let £ C Oy be a full projective Z,[G]-sublattice such that the exponen-
tial map expr: G, — F converges on L. We first assume that x™|q, # 1.
We set X (L) := expr(L£) and obtain in this way a full Z,[G]-projective
sublattice of F(py), which by Lemma (a) we identify with H*(N,T).
If x™|ay = 1 we note that expg = exp —1 where exp denotes the p-adic
exponential map. In this case we define X (L) := exp(L) and obtain a full



46 W. BLEY AND A. COBBE
Z,|G)-projective sublattice of Uy C N%. Recall that by Lemma m (b)
we identify H'(N,T) with N* (y™).

So in either case we have a natural embedding X (£) < H'(N,T). As
in the proof of Corollary 4.2.10] we fix once and for all a representative
[A — B] of RT'(N,T), i.e., A and B are finitely generated cohomologically

trivial Z,|G]-modules centered in degrees 1 and 2. In addition, we will always
assume that B is Z,[G]-projective. Thus we have a perfect 2-extension

0— HY(N,T) — A— B — H*(N,T) — 0.
The embedding X (£) — H'(N,T) induces an injective map of complexes
X(LO)[-1] — M*,
where M* = RI'(N,T) @ Indy,q,(T)[0] was defined in (16)).
We put

K*(L) = Indwyq, (T)[0] @ X(£)[-1],

M*(L) = [A/X(L) — B] with modules in degrees 1 and 2,
and have thus constructed an exact sequence of complexes

0— K*(L) — M* — M*(L) — 0.

By the additivity of Euler characteristics (see [BB05, Th. 5.7]) and the
definition of Cy/k in we obtain
(48) Ok = —xXz,061,Barlc) (I (£), A7) = Xz, 161, Banlc) (M*(£), A3
with \; = compy, o exp;,' and

Aot (HY(N,T)/X(L)) @z, Bar|G] — H*(N,T) ®z,(c) Bar[G]

given by

A, — UN if an‘GN =1
2 — . nr
0 if X ‘GN 7& L.

From we obtain
X2,(G),Banlc) (B (L), A7)
= — X261, Banlc) (B (L), M) = 03 6] By (B (K (L)), —id)).

By the definition of X%lj[(;] BanlG) W€ derive

(50) XOZLd[G]’BdR[G] (K*(L), A1) = [X(L),compy, o exp‘_/l, Indy/q, (T)].

Furthermore, by [BB05, Lemma 6.3], we have
(51)
8%p[G],BdR[G’}((BOd<K.(‘C))7 —id)) = a%p[G],BdR[G]((X(‘C) ®z,[G] BdR[G]v —id))-

(49)
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Since X (L) ®z,1¢ Qp[G] = Q,[G) "% is a free Q,[G]-module, the right
hand side is trivial, so that we deduce from , , and
(52)

Cn/kx = [X(L), compy, o expy', Indy/q,(T)] = Xz,c1Barjc1 (M * (L), A 0.

Similarly, it can be shown that
(53) X2(G),Barlc] (M (L), A1) = X550 Banic) (M (L), Xa).

Remark 7.1.1. If p%; is Z,|G]-projective for some n € N and n is large
enough so that expr converges on p7y;, then we can use £ = p7%;. In this case
we obtain X (L) = F(p}) resp. X (L) = U](\?). For example, if N/K is at
most tamely ramified, every ideal p%; is Z,[G|-projective. If N/K is weakly
ramified, then p% is Z,[G]-projective, if and only if n =1 (mod |G4]). Both
properties are implied by [Kéc04, Th. (1.1)].

The computation of xz,(c],5.x(c)(M*(£),A;") in the special case of The-
orem |1} will be postponed to the next subsections. For the purpose of this
subsection we just remark that

(54) Xz,16Banlc) (M (L), 257) € Ko(Z,[G], Qy[G)).

The term [X (L), compy, o expy, Indy/q,(T")] can be made more explicit
if we let £ be of the following special form. Let b € N be a normal basis
element of N/K, i.e. N = K[G]b, and suppose that £ = Ok[G]b is such
that expr converges on L. Let

p=(03)yeme) € Z@IGN = [ @)~
x€lrr(G)
be defined by
Py = 0 Ny, (B1X).
where D denotes the discriminant of K/Q, and N/q, (b|x) the usual norm
resolvent, see e.g. [PV13] Sec. 2.2].

Lemma 7.1.2. Let £ = Ok|[G]b be as above. Then

[X (L), compy, o eXP‘_/la Indpy/q, (T)] + a%p[c},BdR[G] (t) = é%p[a],BdR[G] (p)
m K()(ZP[G], BdR[G])

Proof. The proof is similar to the proof of [IV, Lemma 6.1]. O
Combining and Lemma we obtain
(55) Cnyx = =07, 161 Banic) (D) + 07,161, Banic) (P) — X261 Barlc] (M (£), A5 1),

We recall the basic properties of the so-called unramified term Uy,
defined by Breuning in [Bre04bl, Prop. 2.12]. We write O} for the ring of
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integers in the maximal tamely ramified extension of @, in Qf. For subrings
Zp|G] € Ay C Ay € Q]G] we write

jA17A2 : KO(A17 Q;[GD — KU(A27 Q;[G])
for the natural scalar extension map. We write

v Ko(Z,|G], Qy[G]) — Ko(O,[G], Q;[G])
for jz, (a0t t (). We recall that by Taylor’s fixed point theorem the restriction
of ¢ to the subgroup Ky(Z,[G], Q,[G]) is injective.
Let @;b be the maximal abelian extension of @, inside Qp. Then we
recall that sz = Q,"Q;™, where Q)" denotes the maximal unramified

extension of Q, and Q;*™ := Q,(j1p= ). For each w € G, we define elements
W e e Gal(@zb/(@p) by
Wnlf|@2r — W|Q2r7 Whr

wram|@gr — 17 wram

Q;am — 17

Qram = W Qram.
P P

Then Upyk is the unique element in Ko(Z,[G], Q5[G]) satisfying the follow-
ing two properties (see [Bre04bl Prop. 2.12))
(2) If (ay)xemc) € Tlenre (@;)X is any preimage of Uy/k under
Oz,1c10501> then
(56) w(a-10y) = aty detimay o (x) (W")
for all w € G,.
Recall the definition of :

RN/K = ON/K + Ucris + a%p[GLBdR,[G} (t) - UN/K + 0%19[0]73&[@] (€D(N/K, V))

We are now able to prove the following result.

Proposition 7.1.3. The element Ry, ts rational, i.e. Ry/x belongs to
KO(ZP[G]an[GD-

Proof. For elements x,y € Ko(Z,[G], Q5[G]) we use the notation x = y when
r—y € Ko( »|G|, Q,[G]). Since Uy is rational, we derive from Proposition

621 G and 63
R/ = 02,161,816 (P) — Uny — Ty
where T/ g = 8%1) (G], Bar[C] (T@p(IndK/@p (X))Xelrr(G)) is precisely the element
defined by Breuning in [Bre04b, Sec. 2.3].
By [Bre04bl, Lemma 2.4] we obtain for all preimages

(6}( x€lrr(G E H

x€lrr(GQ)
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of Ty/kx under é%p[G],@;,[G] and all w € Gy,

(57) w(ﬁw_%X) = BX detIHdK/Qp () (wram>'

From the proof of [Bre04bl Lemma 2.8] we derive

(58) w(low_lox) = Px detIHdK/Qp () (w>
The result now follows by combining , and . O

At last we provide the proof of Proposition [3.2.6, We have to show the

equivalence of the following assertions.
() Jz, (e 3 (AER(N/K, T),6(N/K,V)]) = 0in mo(V (A, Q) = Ko(A, Q).
(ii) Ry = 0 in Ko(A, Q).
(it) Ry = 0 in Ko(Z,[G], Q).

Proof. By Taylor’s fixed point theorem the restriction of the map Jz, ).k O
Ky(Z,|G),Q,[G]) is injective. In order to show the equivalence of (ii) and

(iii) it suffices by Proposition|(7.1.3/to show that j; g 3 (Rn/x) = Ry, k. For

this purpose we just remark that the proof of [Bre04bl Prop. 2.12] actually
shows that j; ¢ x(Un/k) = 0.
The equivalence of (i) and (ii) was already shown in Lemma[p.1.]] O

To conclude this subsection we prove the following proposition.

Proposition 7.1.4. If T = Z,(1), then Conjecture and |Bre04bl,

Conj. 3.2] are equivalent.

Proof. |Bre04bl, Conj. 3.2] states that
REi = TR + O+ Ui — M =0,

where we write the index Breu to refer to the terms defined by Breuning.
The terms U]]\B,;‘jg and Uy are defined in the same way. By Remark [5.3.5}

M]]?,;e[? = U,s. By Proposition together with Lemma we have
Tﬁﬁg 3%p[a},BdR[G]T@p(1ndK/Qp (X)) = —3%p[c},BdR[G]5D(N/K7 Vy:

Recalling the definition of £(X) in [BB03, (19)], the proof of [BB03|, Lemma
3.7) and Equation (53), we see that
(59)
E(exp(L)), = X%lpd[G},BdR[G](M.(‘C)[l]a Az_l) = _X%lpd[G},BdR[G](M.(‘C)7 A2)
= X2,(6),Barlc) (M (L), A5).
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Using [Bre04Dl, Prop. 2.6, [Bre04b, Lemma 2.7, (59)), Lemma [7.1.2] and
(52) we obtain:
CNj% = Elexp(L)), — [£, pr, Hi]
= Xz,00)Baic) (M (L), A1) = 0% ()
= Xz,[G),Banlc](M*(L), A;l)— [X (L), compy, o expf/l, Indyq,(T)] — 8}\,BdR[G} (t)

= —Cn/k — 8}\,3(11{[@ (1).
Substituting all those terms in R]%r/e}é we get —Ry/k. U

7.2. The computation of Cy/x. Our aim now is to make Formula
more explicit in the special situation of Theorem [1| by calculating the Euler
characteristic xz, (), Baric](M*(L), Ay ). We will use several preliminary re-
sults and constructions of [BC] and therefore stick closely to the notations
used there.

We will consider local field extensions as follows.

/\
/\/
\/\
\/

Here K/Q, is the unramified extension of degree m, i.e. dx = m = [K : Q,].
Furthermore, K'/K is the maximal unramified subextension of N/K and
we set d := dy/xk = [K' : K]. We assume throughout that (m,d) = 1.
Finally, M/K is a weakly and wildly ramified cyclic extension of degree p
and N = MK'. Since (m,d) = 1, there exists K’/Q, of degree d such that
K'=KK'

Let F':= Fi € Gal(N,,/M) = Gal(K,,/K) be the Frobenius automor-
phism; we will keep the notation Fy for the element F¢ € Gal(N,,/N) =
Gal(K,,/K"), which in [BC] used to be called Fy. We put ¢ = p™, b= F~!
and consider an element a € Gal(N,,;/K) such that Gal(M/K) = (a|n),
alg,, = 1. Since there will be no ambiguity, we will denote by the same
letters a, b their restrictions to N. Then Gal(N/K) = (a,b) and ord(a) =
p,ord(b) = d. We also define T, := >} a’.
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Any irreducible character ¢ of G decomposes as 1) = x¢ where y is an
irreducible character of (a) and ¢ an irreducible character of (b).

We will always identify Ko(Z,[G], Q5[G]) with Q5[G]*/Z,[G]” where the
isomorphism is induced by 3%[0}7@;[@. We say that a € Q;[G]X represents
c € Ky(Z,[G], Q¢[Q)), if é;p[c]j@;m(a) = .

If x"|¢, = 1 the Euler characteristic xz,c],5um(c)(M®(£), A3 ") is just a
twist of the element E(exp(L)), which we computed in [BC|, Prop. 4.3.1].

From now on we assume that x"|q, # 1. We will have to study sepa-
rately the cases w = 0 and w > 0, where w = wy = v,(1 — x™(Fu)) is as in
. We start with some preliminary results and constructions which will
be used in both cases.

Lemma 7.2.1. Forn > 2 one has
F(py) is Z,|G]-projective <= n=1 (mod p).

Moreover,
F(pn) is Zy|G]-projective <= w = 0.

Proof. For n > 2 the formal logarithm induces an isomorphism F(p%,) = ply
of Z,|GJ-modules by [Sil09, Th. IV.6.4]. Hence the first assertion follows from
[K6c04, Th. 1.1 and Prop. 1.3].

We henceforth assume n = 1. By Lemma [£.1.1, Lemma and The-
orem we already know that F(py) is cohomologically trivial, if and
only if w = 0. Hence it suffices to prove that if w = 0 then F(py) is tor-
sionfree. By [Sil09, Th. IV.6.4] log» converges on F(py), so that we may
set J :=logz(F(pn)) € N. We consider the commutative diagram

0 — F(pX) —= F(pn) —= Flpn)/F(py) —=0

l log 7 l log » l AF

0 Py J J/p —=0,
where Ax(z + F(p%)) = logz(x) + p%. Recall that in Subsection we

introduced a Lubin-Tate formal group F associated with 7 = up. By [Neu92|
Sec. V.4, Aufgabe 4] we may choose F such that

o0

ogre) = > 2
ogr(z) =) —.
=

We recall that vy(m) = p. If vy(z) = 1, then £ is a unit and so is also

T+ % Since for 7 > 2
z’ P
UN : :p]_]p227
e
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we deduce that vy(logz(z)) = 0 for z € F(py) \ F(pn?), so that Az is
injective. By the snake lemma the middle vertical map is therefore also
injective and we have an isomorphism logr: F(py) — J of Z,-modules.

Obviously, J C N is torsionfree. O

1. :
By the above lemma we can use £ = pé)\f in our constructions (see also

Remark . In this case we have X (L) = F(p%™).

We recall now some results and constructions of [BC|. Let 6; € M be such
that Og[Gal(M/K)|6y = py and Tty = p (see [BC|, Lemma 3.1.2]).
Let 65 (resp. A) be a normal integral basis generator of trace one for the
extension K'/Q, (resp. K/Q,). Such elements exist by [BC|, Lemma 3.1.1].

Since a € G; \ Gg, where G is the i-th ramification group of G =
Gal(N/K), we know by [Ser79, Sec. IV.2, Prop. 5] that 6" = 1 — a,6,
(mod p?,) for some unit a; € O5;. Since a; can be replaced by any element
in the same residue class in Oy /pyr = Ok /pr, we can assume that oy €
Ox.

By our choice of A, we know that A, A%, ... A" " is a basis of O over
Z,, where ¢ denotes as before the Frobenius automorphism of K,,,/Q,. Since
1 ="Tkig,A= Z?:Ol A% and a; € OF it easily follows that also

m—2

(60) a1,y = OélA, 3 = a1A¢, e, Oy = CklA(’O

constitute a basis of Ok over Z,,. In particular, we have the equality A = g—f

We recall from [BC, Lemma 3.1.3] that the polynomial X? — X + Af,
divides X4' =X +1in Ok /px[X]. As in [BC] we choose 5 € Ok, such that
2

o mod Py is a root of XP — X + Af,. The following lemma is analogous
to [BC, Lemma 3.1.4].

Lemma 7.2.2. Assume w > 0. If we we consider 1 4+ x50, as an element
of N§, then

(1+ xgé’l)xm(FN)FN_l =0/"'=1—a0 (mod p?vo).

d

q

Proof. From <2—§> -2 = -1 (mod pg/) we obtain x%d —Zy = —m
(mod py,). Since w > 0 we have u™ =1 (mod p) and hence obtain

(61) udmxgd —1zy=—a; (mod py,).

Recalling x™(Fy) = u¥™ =1 (mod p) and vy(6;) = 1 we conclude
(1 4 296, )X FWEN=Y — (1 4 I XN (1 4 200,) 7!
= (1+u™23 0,)(1 — 220,)  (mod p%,)
=1+ u28 6, — 226, (mod p%,)

=1—a10; (mod p?\,o),
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where the last congruence follows from (61)). (I
As in [BC, Lemma 3.1.5], we can use Lemma to find an element
v € U](V}O) such that yX"(FVFv=1 — =1 Tf ¢y > 0, using also Lemma [7.2.2]

we can assume that v = 14 226, (mod p%, ).

Let
W/ == ZP[G]Zl @D ZP[G]ZQ,
p—1 m
W = P P Z,[Glor;
j=n k=1
and put
W = WZO‘

Note that these are the same as the p-completions of F', Fs,, F = F>q of
[BC], but here we prefer to change the notation to avoid confusion with the
notation for the Lubin-Tate formal group.

Note that the assignment vy, ; +— ajw; induces an isomorphism

p—1 m p—1
(62) W — P P z,[Glarw; = @ Ok [Glw;
j=0 k=1 j=0

of free Z,|G]-modules. We will always identify W with ?;(1) Ok |[Glw;.
We set
1 itw=20
63 E = , ;
(63) {zfgg—l ui(A6)? ifw >0
and

(64 ﬂ:{1 if w=0

u ifw>0.

Recall that in Lemma [4.1.1| we defined € € ZT‘}YX such that u = ¥~ 1.

Lemma 7.2.3. We have E € O, and E¥ = uE (mod pOk-). In particu-
lar, if w > 0 we can also assume ¢ = E (mod pOg).

Proof. For w = 0 there is nothing to prove. So let us assume w > 0.

Since Afy is an integral normal basis generator for the unramified exten-
sion K'/Q,, the elements (Af,)¢" are linearly independent modulo pO:.
Hence £ # 0 (mod pOk) and we deduce E € Oy,.

Moreover, we have
dm—1
B =uY u V(40,7 =uE  (mod pOy)
=0
because u¥™ =1 (mod pOk) as a consequence of 0 < w = v,(1 — Y™ (Fy))
and Y™ (Fy) = u®™. d
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We define
faw s W — Flpx)
by
Faw(ve;) = Eag(a —1)76
for all k and j, where 6 = 6,6,. We denote by fsw the composition of fs

with the projection to F(py)/F(p5 ™).
The following lemma is the analogue of [BC, Lemma 4.1.3].

Lemma 7.2.4. The map fsw is surjective. More precisely, for j > 0,
Fow (W) = Flon V' /F (o).

Proof. For j = p, W, = {0} and F(p%™")/F(p%") = {0}, so the result is
trivial.

We assume the result for j + 1 and proceed by descending induction.
Recall that by [BC, Lemma 3.2.6], pit' = (p,(a — 1)9)0. Hence if z €
f(pN)jJrla then

E7'e = upf + v(a—1)70  (mod p’F?)
for some p, v € Ok[G]. We write v = Zk,é Vioa®bt. Let 0 = Zk,é’ a™ vy, pa" 0"
By Lemma we have
@™ a* b (E(a —1Y0) = a™E* ™ - a"b(a — 1)70
=F-d"(a—1)0 (mod p¥™).

p+1

Since pupf € pyy~ we conclude further

v =FEv(a—1Y0=0E(a—1Y0 (mod pi™).

By the analogue of [BC, Lemma 4.1.7] we have 7E(a — 1)70 = fow(iw;)
(mod p%?) and thus 2 = faw(7w;) (mod p%?). This means that 7(z) is the
sum of an element in the image of W and an element in F(px )42/ F(pi),
which is by assumption in the image of W11 C Ws,;. O

As in [BC] we will need to construct some particular elements in the
kernel of f5y. We will proceed as in [BCl Lemma 4.2.4, 4.2.5, 4.2.6].

Lemma 7.2.5. Let 0 < j < p—1,1 < k < m. Then there exists p; €
W o such that the element

sjk = ap(a — N)w; — agwjr + fijk

is in the kernel of fsw. Here wy, should be interpreted as 0.
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Proof. The formal subtraction of X and Y takes the form
X—7Y=X-Y+AXY +BX*+CY?+deg >3
with A, B, C € Z,. Taking Y = 0 we see that B = 0, taking X =Y we then
get C'= —A. Hence
X —7Y=X-Y 4+ AXY — AY? + deg > 3.
For

v := Fag(a—1)al, vy:= Eap(a—1)0, z:=2—y= FEap(a—1y7"0
we obtain from [BC, Lemma 3.2.5] and Lemma
oy(z) =wvn(y)=4+1, on(z)=ovn(z—y)>j+2

In the following computation all congruences are modulo pg\f 3,

r—ry—rr=x—y+ Avy — Ay* — 2+ A(x — y + Avy — Ay?)z — AZ?

=2+ Ayz — 2+ Az + Ayz)z — A2* = 0.

Therefore

Fow(an(a — Dw; — agw;i1)

= Eog(a—1Yaf —5 Eap(a—1)0 — 5 Eag(a—1)""10 = 0 (mod F(p}™®)).
Using Lemma , by the same arguments used in the proof of [BC,
Lemma 4.2.4] the result follows. U

Recall that (m,d) = 1. Let 7 denote an integer such that mm = 1
(mod d). The next lemma is the analogue of [BC|, Lemma 4.2.5 and 4.2.6].

Lemma 7.2.6. The elements

ry = o1 Tawo + (u_lﬂl_mmb_mal — Qp)Wpy_1,

-1 ~1—mmb—ﬁ1

Ty = apTawo + (v U Qg1 — Q) Wp_1,

for1 <k <m, and
m
T = O TaWo + (ulﬂlmmbmal — y tgtmmmy Z o — am> Wy—1
i=2
are in the kernel of fsw.

Proof. Recall the isomorphism

— Gal(Noy/N)
frovs Flpw) — (N7 (™)

from Lemma {.1.1} By [Ser79, Prop. V.6.8], we know that /\/’NO/KOU](\?O) c
U1(<20) - U](VQOP) c UJ%;H). This implies that

Nuvoyreo (frn(Ead)) = Ny (1 + e 'Eag)  (mod piiH).
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Now we calculate f37w(ak7~;w0), using the results and calculations of [BC]
and the fact that 65 = 62" = 67" = 65" (mod pg,).

faw (o Tawo) = To - Byl = f£ (T - (fr.nv(Ecd)))
= frvWNuoko (frn (Bard)))
= f7Nyo/io (1 + e Eag))  (mod pifH)

—1 —1
= 17l <1+< Eoyby EakQQ) )qu) (mod p%!)

_ (a,ﬁz _ el (O‘k_QQ) ) Eoayp (mod pp+1>

(05] (03]
1~ Qy i p—m +1
=|agby—u aoy | — | 6 Ep (mod pi ).

Bywehavefor1<k<m,

(%)p _ <A¢k_2>p _ Apk—l — Ak (mod pK)

o g
and

(8% P m—2 p m 1 — (67 2

m) = (Ar )z —1-S A =1y 2 d px).

()~ Swro g i
Hence we obtain the following congruences modulo p%; .
10y — u_lﬂoz1€37m> Ep ifk=1

fgw(&ﬂ;wo) = by — u‘lﬁakﬂeg*m) Ep ifl<k<m

amby +u™ta (—oq + Y0, o) 93_m> Ep ifk=m.
Recalling Lemma and [BCL Lemma 3.2.4], for 1 <i < m we calculate
Fow (W a0,y ) = w A TG (Bog(a — 1)P716)

=y tat (B ma? m(a — 1)p_19b7m)

= u @ ES " 0,08 (0 — 1)P710,

=u 0By "p  (mod pi)
and

faw(@iwy 1) = Eai(a—1)P"'0 = Eaiflop  (mod pi™).

For x,y € p? we see that  —ry =z — y + Azy — Ay?> =z —y (mod p%™)

so that we easily deduce the lemma by the above calculations. O

From now on we will need to distinguish between the cases w = 0 and
w > 0.
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7.3. The Euler characteristic when w = 0. As already mentioned we
use £ = p& and thus have X(£) = F(p’). Since w = 0 the second

cohomology group of M*(L) vanishes and we have the short exact sequence
0 — Flpn)/FH) — A/X(L) — B — 0.

Recall that for w = 0 both F(py) and F(p%™) are Z,[G]-projective by
Lemma [7.2.1] Hence, recalling also (53)), we derive

X2, (6 Ban(c) (M (L), A1) = [F(p),id, F(py)].

By Lemma [7.2.4) the map fayw: W — F(pn)/F(ph") is onto. Thus
we obtain the short exact sequence

0 — ker(faw) — W 2% Flpn) /F R — 0
which implies
[F(pR ), id, F(py)] = [ker(faw), id, W].

Recall the definition of the elements s, and 74 in Lemmas [7.2.5 and [7.2.6]

Lemma 7.3.1. The pm elements ry,sj, for 0 < j <p—-2, 1<k <m
constitute a Z,|G]-basis of ker f3w .

Proof. At the end we want to adapt the proofs of [BC, Lemmas 4.2.7 and
4.2.9], but first we need some preparations. We write the coefficients of the
a;wp_1-components, ¢ = 1,...,m, of the elements r;, j = 1,...,m, into the

columns of an m x m matrix which we call M,

wibm—1 0 0 . 0 0 u"th™m
0 —1 0 0 0 —y ™
0 T | 0 0 —u ™
M = 0 0 wlp ™ 0 0 —u ™
0 0 0 u~tp—m -1 —u~tpm
0 0 0 0 u tpm 1—u~tp™

-1 0 -~ 0 0 —-C

¢ -1 -+ 0 0 —C

o ¢ --- 0 0 —C
MC,n = . . .

0 0 Cc -1 —-C

0 0 0o ¢ —-1-C
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has determinant (—1)" Y "  C". Setting C' := u~'b~™ we obtain

-1

det M = (u_lb_m _ 1)(_1)m—1 (u—lb—m)i

3

)

= (=)™ H(ump ™™ — 1)_: (=)™ Hu™b 1t —1).

o

We claim that det M is a unit in Z,[G]. To that end it is sufficient to
show that det M is a unit in the maximal Z,-order A’ in Q,[G] because
(A)* N Z,|G] = Z,[G]*. For any irreducible character ¢ of G we have
P(det(M)) = (—=1)™ Y (u"™¢;—1) for some d-th root of unity (; (depending
on ). If now 1 (det M) were not a unit, we would conclude that u™ =
X" (Fy) =1 (mod p) contradicting the assumption w = 0.

We are now prepared to apply the arguments used to prove [BC|, Lem-
mas 4.2.7 and 4.2.9]. Following the proof of Lemma 4.2.7 of loc.cit., we can
demonstrate that the pm +m elements ry,s;, for 0 <j<p—-1,1 <k <m
generate ker fs5 w as a Z,[G]-module. Since the determinant of M is a unit, it
can be shown as in the proof of Lemma 4.2.9 of loc.cit. that for k =1,...,m
we have s,_1 € (r1,72,...,7m)z,[q- Therefore the elements listed in the

statement of our lemma generate ker f3 . We actually have a basis since
ker(f?),W) is free of ZP[G]—rank rkZp[G’}(W) = pm. 0

Proposition 7.3.2. Assume that w = 0. For £ = p%' the element

X2,16),Barlc) (M* (L), X ') € Ko(Zy|G], Bar[G])

is contained in Ko(Z,|G],Q,y[G]) and represented by € € Q,[G]* where

Lo if X = Xo
=D () = 1) (x(a) = )P if X # X

Proof. We choose the elements 7, and s;; of Lemma as a Z,|G]-basis
of ker(f;w) and fix the canonical Z,|G]-basis of W. Then

XZP[G]:BdR[G](M.<£)? )‘2_1) = [ker(fsw),id, W]

is represented by the determinant of

T @-DI 0 - 0 0

0 I (@=0I - 0 0

0 x I 0 0
M= . : . : :

0 * * —I (a—1I
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Recalling that p is odd, we get:

p(=1)mey if X = xo

det(x¢(M)) = {(—1)m2<P—1> det (xp(M))(x(a) — )™= if x # xo

m

_Jp if X = Xo
(=)™ o) = 1)(x(a) — )™= if x # xo.
O

7.4. The Euler characteristic when w > (0. Recall the definition of F
and « in and respectively.

Lemma 7.4.1. There is a commutative diagram of Z,[G|-modules with ex-

act rows

0~X2)aW —WaWw 2

lﬁ Lfs

fr.n

0 —— F(pn) — In/x(X™)

ZP[G] 20 — Zp/prp(an) —0

bk

Inik(X™) = Zp/P°Lp(X™) — 0

(F-1)x1

where
da(z1) = (b — 1)z,
d2(z2) = (a — 1)z,
02(vjx) =0 for all k and j,
falz0) = [01, 1, 1],
fa(z) = 01, 1,...,1],
~3(22) =,
fa(on3) = frn (Faw (Ve ),
m(z0) =1

Further, X (2) = ker(8|w+) and fy is the restriction of fs to X(2) & W.

Proof. We first remark that the natural G-structure on Zn/x(x") given
by the inclusion G — Gal(Ky,/K) x G induces on Z,/p“Z,(x"") the G-
structure characterized by

a-1=1, b-1=x"(F1).

Note that this is well-defined because Y™ (F)? = x™(Fy) =1 (mod p*) by
the definition of w.
The exactness of the bottom 2-extension is shown in Theorem [£.2.3] For

the exactness of the top row we have to verify exactness at Z,[G]zo; the rest
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is clear by the definitions. If we set H := ((a — 1)zq, (u™b — 1)zg), then we
must prove H = ker(7). The inclusion H C ker(r) is implied by

m((a—1)z)=(a—1)-1=0,
T((u™b—1)z0) = (X" (F)b—1)-1=0.

Let Az € ker(m) with A € Z,|G]. Then clearly A\zy = z2zy (mod H) for some
x € 7, with v,(z) > w. Since w = v,(1 — x™(Fy)) and x\™(Fy) = u®™, we
can write z = (u¥™ — 1)y with y € Z,. Hence x29 = ((u™b)? — 1)yzy € H.
The proof of commutativity is straightforward using 69— = X" (Fn)Fv =1
which holds by the definition of +. For the convenience of the reader we give

the computations

(Fx D)(Fx )" 1,1,...1]
01,1,...,1]

fa(02(21)) = (X" (F)b = 1)z)) =

(F x 1)[61,1,1,...,1]

B 01,1,...,1] = ((F=1)x 1>f3(21),

1xa)h.1,1,....1]

F2(02(22)) = fal(a = 1)z) = 0,1,1,...,1 0971 1,1, 1]
— [ryxnr(FN)FNfl 1 1 1] _ [’yxnr(FN)FNj/}/,,y".‘7,y]
Ty ) [f)/’”)/’,’}/]

= (F=1)x D7 -0l = (F=1) x 1) fs(2).
U

We let fy: X(2) @ W — F(py)/F(®%") denote the composite of f,
with the canonical projection.

Lemma 7.4.2. The complex
F* = lker fy — W' W — Z,[G]z]

with modules in degrees 0,1 and 2 is a representative of M*(L) for L = pf’vﬂ.

Proof. By Lemma [7.4.1] and Lemma we have a quasi-isomorphism of

complexes
F* — [T (™) frn(FORT) — Iy (X™)] -
By Theorem the right hand side represents M*(L). O
Our aim is to use Lemma to compute the Euler characteristic
X2,(G)Barlc) (M (L), A5 7).

We therefore must compute ker f; explicitly. A first step in this direction is

the following lemma which is similar to [BC, Lemma 4.1.5].
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Lemma 7.4.3. We have
X(Z) = <7222; (a - 1)21 - (Umb - 1)Z2>ZP[G}-

Proof. The inclusion ”2” is clear from the definition of ds. For the inverse

inclusion we let

hS]
L
U
L
—_
U

p—1 d-1
a; ja't’ 2z + Bija't’ z

%

8
I

I
o
Il
o

%

Il
=)
.

Il
=)

J
be an element in X (2) with «a; j, 5;; € Z,. From d5(z) = 0 we derive
(65) umag 1 — i+ Bimy — Biy =0

for all 0 < i < pand 0 < j < d. Here and in the following we regard all
indices as integers modulo p and d respectively.

Taking the sum over the index 7 we deduce

p—1 p—1
m
(66) umY =)y
i=0 1=0

for all 0 < j < d. Applying repeatedly we get

p—1 p—1 p—1

E m § dm E
Q0= U Qidg—1=...=U 5 0-

i=0 =0 1=0

Since u®™ = ™ (Fy) # 1 by assumption, we obtain Y°*~) o, = 0. Using
again, it follows that

p—1
(67) D ai; =0
=0

for all 0 < 5 < d. So in particular the above sum does not depend on
the choice of j, so that we can continue our proof exactly as in [BC,
Lemma 4.1.5]. Note that with the notations of [BC] we would obtain g = 0,
so that in the present situation two generators are enough. We include the
computations for the convenience of the reader.

We want to find 7, ; and v; in Z, such that

p—1 d—1 d—1
r = Z Yi ;a6 ((a — 1)z — (u™b — 1)z9)) + Z Vi Tozo
i=0 j=0 =0
p—1 d—1 p—1 d—1
= (’)/Z'_Lj — %J)a’bjzl + (—Um’}/i,j_l + Yi,j + I/j)alb]ZQ.
i=0 j=0 i=0 j=0

So we need to solve

(68) Yi—1,5 — Vi,g — Qi
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and

(69) —u" -1+ Yy + v = By

We set v;; = _Z1§z§i oy and v; = [y ;. Then equation is clearly
satisfied for i = 1,...,p—1 and for i = 0 it is immediately implied by (67)).
Equality is proved by an easy induction on ¢ using . U

Still following the conventions in [BC] we use the notation [z] to denote
the element [z, z, ..., 2] € Zy/k(X™) or even in Zy/r(X™)/fr.n(F(PR)).
Now we need to evaluate f; (or equivalently fg) at the generators of

W (2) determined in the previous lemma, as we did in [BC, Lemma 4.1.6].
Lemma 7.4.4. We have

fal(a =1z = (" = 1)z) = [,

f3(Taza) = V).

Proof. Using , , 0r7t = AXHENENTL b — g and ™ (FTY) = ™
we obtain

~ m B [ T | | S
falla =)z = (W™ = 1)z) = (F x 1)(F~1 x b)[y*", ..., 4*"]

B e e R R o) I ) e (e LRRR Yo
(X 1)[b,. 2% [N 4b A
_ 61,7, -] — [y A1
[egail)b’Yl’a V] Y
The second equality is obvious by the definitions. U

The following results are the analogues of [BC, Lemma 4.2.1] and [BC,
Lemma 4.2.2].

Lemma 7.4.5. Let m be an integer such that mm =1 (mod d). Set

51 = (CL—].)Zl—(Umb—].)ZQ+ <zm: ai(umb)l—(i—Q)rﬁ+<al _zm: az) (umb)fn> wo.

1=2

Then there exists y, € Wy, such that t; =1, +y; € ker(f4).

Proof. Recalling that « has been chosen such that v = 1 + x56; (mod p?\,o)

and following the calculations in the proof of [BC, Lemma 4.2.1] we obtain
’yl_b = (1 + :L,le)l—b =1- Z Oziebli(iizmb — alﬁbﬁl + Z Oéiebﬁl (mod p%\fo).
=2 1=2

By Lemma and Lemma [7.2.3
(70) frv(X)=1+E'X +deg>2 (mod pOx/)
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and so by Lemma [7.4.4] we deduce
fi(la—=1)z — (u™b —1)2)

=Y @B — 0 BOT Y B0 (mod p,).
i=2 =2

Since by Lemma [7.2.3] for any integer 1,
(u™b) - (EO) = v™E" 6" = v™u ™ E" = 6" (mod PA.)s

we have

i3

NgE
L
=
3
=
N
3
+
N
L
|
NE
L
N———
=
3
=
3
N—
S
(e)

= Z o (umb) =DM <a1 — Z Oéi> (umb)m) - (E§) (mod p%,)

Z BT 4 BT — Z o E0”" (mod )
=2 =2

and we can conclude that f,(£;) =0 (mod p%,)- Therefore

fat) € F(p)/F %)

and by Lemma there exists y; € Wx; such that fi(—y1) = fa(t1), i.e.
t~1 + Y1 € ker(f4). O

Note that t; is not exactly the same as in [BC] since there is a u™ factor

which appears at all the occurrences of b.

Lemma 7.4.6. The element
ar ifm=1

ty == Toz0 — _1 with 8 =
2 22 = Fwpy with {042 ifm>1

1s in the kernel of fy.

Proof. As for the previous lemma, we can follow the calculations in the
proof of [BC, Lemma 4.2.2]:

T Nk (1 + 2201) = 14 20p — ahoy Pp =1+ Bop (mod p?\;gl).
As in the proof of the previous lemma, we deduce that
fi(Taz) = EBop  (mod pii’).
Next using [BC, Lemma 3.2.4] we calculate
f4(ﬂwp,1) = EB(a—1)""'0 = Effyp (mod pﬁ;gl).

Hence we easily conclude since F(p%, )/F(phi') = phe /ot O
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Lemma 7.4.7. The element
r1 = Tat1 + (u™b — 1)ty
belongs to ker f4 NW and its aqwy-component is (u™b)™T,.

Proof. Straightforward calculations as in the proof of [BCl Lemma 4.2.5].
U

Following the strategy in [BC] we consider the a;w,_i-components, i =
1,...,m, of ty and rq,...,7,,. We write these components as the columns
of a m x m-matrix M. If m > 1, then we obtain

0 0 0 -0 0 (wmb) ™
11 0 - 0 0 — (W)
0 (umb)y™ —1 .- 0 0 —(u™p)~™
M=1]0 0  (umb)™ 0 0 —(um™p)~™
0 0 0 ce (umh)T™ —1 —(u™b)~™
0 0 0 e 0 (u™b)™™  —1—(u™b)™

If m = 1, then the matrix is determined by ¢y and recalling the definition

from Lemma [7.4.6) we get M = (—1).

Lemma 7.4.8. The determinant of M is (—1)™(u™b)~™m=1,

Proof. This is an easy calculation. U
The next proposition is the analogue of [BC| Prop. 4.2.10].

Lemma 7.4.9. The pm + 1 elements ti,ta, 1y, for k = 2,...,m, sj for

0<j5<p-—2,1<k<m constitute a Z,|G|-basis of ker fy.

Proof. We first note that s, € (t2,72,...,7m)z,(g) Which follows as in the
proof of [BC, Lemma 4.2.9]. The main input here is the fact that the matrix
M is invertible.

Moreover, by Lemma [7.4.3] ¢; and ¢, generate (X(2) + W)/W, which
therefore must coincide with (ker fy + W)/W, and the same proof as for
[BC, Lemma 4.2.7] shows that the elements 7, and s;4, 0 <j<p—1,1<
k < m, generate ker(fy) N W. We can thus argue as in the proof of [BC,
Prop. 4.2.10]. O

By Lemma we have the equality
X2,(6),Bar (61 (M (£), 0) = Xz,(6),Bar(c) (£, 0).

Since all cohomology groups are torsion we have a short exact sequence of
Q,[G]-spaces

0 — (ker fi)g (o) — (W' & W)y 6 —= Q,[Glzo — 0,
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where ¢ denotes the inclusion. By the definition of the (old) refined Euler

characteristic we have
X261 Banic) (F7[11,0) = [ker f4 & Z,[Glz0, 0 & 0, W' & W],
where ¢ is a Q,[G]-equivariant splitting of J,. By we obtain

Xz,(G),Bar(c) (£ (1], 0)
= X016, Ban(c)(F*[1],0) = 92, (61, Bunic) (B (F* [ Bgic)), —idD).

Note that F*[1] has non-trivial cohomology only in degrees 0 and 1 and
both cohomology groups are torsion. By [BB05, Lemma 6.3] we therefore

obtain

02,16, Banic) (B (F* [UBnic)s —1d) = 03,6 i) (H' (F*[1]) Buglc), —id) =0.

Furthermore, we recall that xz,ic),B.x[c1(F°,0) = —Xxz,[6),Bar[c)(F°[1],0). In
conclusion, we have derived the equality

XZP[G]deR[G]<F.7 0) = [ker J1©® ZP[G}Z& LD o, W' W]

Taking the Z,[G]-basis of ker f; determined in Lemma and the
obvious Z,[G]-basis of W’ & W we can represent the inclusion ¢ by the

following matrix:

a—1 0 0 0 0 0 0
1—u™ T, 0 0 0 0 0
v 0 T (a—1)I 0 0 0
% 0 0 —I  (a—1)I 0 0
m= x 0 0 x —I 0 0 )
* 0 O * * oo =1 (a—1)I
* M1 ./\;l * * * _—

where M is the matrix M without the first column M, (which in the case
m > 1is just —ey), I is defined analogously from the identity matrix I and
v is a vector whose first component is (u™b)™. Note that this looks very
similar to the corresponding matrix in [BC], up to some twists by powers
of u. Next we need to choose a o. We set

o (2) = udml_ 1 (Z(m@i) -

=0

and easily check that d, o 0 = id.
By the above discussion we know that the refined Euler characteris-
tic Xxz,(¢),Barlc](M*(L£),0) is represented by the determinant of the matrix
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(w, M) € Glyp12(Q,[G]) which represents the Q,[G]-equivariant map ¢ + o
with respect to the chosen Z,|G]-basis. Here w is the column vector

d—1/ mzp\i ¢
o (MOO) |

udm — 1

We get that the matrix (w,9) is given by

T o 9 0 0 0 0 0
0 1—u™ T, 0 0 0 0 0
0 v 0 T (a—1)I 0 0 0
0 % 0 0 —I  (a—1)I 0 0
0 * 0 0 * —1 0 0
* 0 0 * * oo =T (a—1)1
0 * My M * * cee ok -1

We recall that every irreducible character ¢ of G = Gal(IN/K) decomposes
as ¥ = ¢x where x is an irreducible character of (a) and ¢ an irreducible
character of (b). We first compute

S (@)t ulm — 1 B 1
v ( win =1 ) " o) — D = 1) wneb) - 1

and note that u™x¢(b) # 1 because otherwise we would have x™(Fy) =

ud™ = 1. For the computation of the determinant we distinguish two cases.

Case 1: y = 1.
Here (x¢)((w,9M)) = ¢((w,IM)) is of the form

T 0 0 0 0 0 0 0
0 1—ump(b)  p 0 0 0 0 0
0 d(v) 0 pl 0 0 0 0
0 * 0 0 —I 0 0 0
0 * 0 0 x  —1 0 0 |-
* 0 0 * * -1 0
0 * p(M1) (M) = * =1

where we recall that the first component of the vector v is (u™b)™. The

determinant is

T O Ve G U
wol) 1wl - L
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Case 2: y # 1.
The matrix (x¢)((w,9M)) is here given by
e X@)—1 0 0 0 0 0

0 1-ump(d) 0 0 0 0 0
0 xo) 0 (x@-DI 0 00
0 « 0 —I  (x(a)-1)I 0 0
0 * 0 * —1 0 0
0 * 0 * * oo =1 (x(a)—1)I
0 x  xo(M) % * cee —I

Using Lemma we compute for the determinant

1 —u"p(b) p—1)m?2 m(p—1
W(—l)( " det(xd(M))(x(a) — 1)*—Y

= (=)™ (W p(b)) ™D (x(a) — 1)V,
We summarize the above discussion in

Proposition 7.4.10. Assume that w > 0. For L = p};\;rl the element

X2,(61.Barlc)(M*(£), A3") € Ko(Z,|G), Bar[G])
is contained in Ko(Z,|G],Q,|G]) and represented by € € Q,[G]* where
W e
(=1)™ Humd(0)) "™V (x(a) — 1)"P=D i x # xo.
8. PROOF OF THEOREM [I]
We have to show that the element
Ry = Cnyic + Uesis + 0%, 161 Banic) () + 03,61, Banic) (€D (N/ K, V)
of Ko(Z,[G],Q) becomes trivial in Ko(A, Q). By we get
Rk = Ueris + 3%p[a],BdR[G} (p)+

+ a%p[G],BdR[G} (5D(N/K7 V)) - XZp[GLBdR[G](M.(ﬁ)’ >‘2_1)
By Proposition together with Lemma the element

(w2 - 10, (Indg /g, X0) ") 6

——— 0 if x =xo
T2 i x £ xe

is a representative of 8%17[@7 Barlc)(ED(N/K, V). We note that by the proof

with

of [BC, Prop. 5.2.1] we obtain 7, (Indg/q,X¢) = Tk (x¢). Since we intend
to apply [BC, Prop. 5.1.5] we will use the integral normal basis generator
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p2apby of £ = pky 1 which we constructed in [BC| Sec. 5.1]. Then Proposi-

tion 5.2.1 of loc.cit. implies that dz, (), Byric)(P) + Oz,1¢1,Baric) (ED(N/ K, V)
is represented by

pxu”"e I/ZNK/Qp(QQ‘(b) if x = Xo
i (X) 0, N s, (021 0)p™ X (1) p(b~2)u=>™ if x # xo.

We want to point out that this is a crucial step in the proof and relies
on one of the main results of [PV13] which was basic for the proof of [BC,
Prop. 5.1.5]. Note that this is the inverse of the result in [BC|, Prop. 5.2.1]
after substituting ¢(b) with u¢(b) everywhere.

If x™|gy = 1 then the calculation of Xz (c]Bu(c)(M*(L), ;") corre-
sponds to the calculation of E(exp(L)), in [BC|: the representative of the
local fundamental class has to be twisted by x™, then starting from [BC|
Lemma 4.1.2] one has to substitute b with ub everywhere. Since also Ue;s
corresponds to My/k, just substituting b with u™b, the same calculations
of [BC| Sec. 6] can be used to prove Theorem [I| in the case x"|g, = 1. So
the interesting case is when x™|¢, # 1, which we will assume from now on.

By Proposition m the element U is represented by uess € Q,[G]™
where o

Ueris x¢ = {% %f e
1 if X # Xo-

We first deal with the case w = 0. Inserting the result of Proposition

we obtain that RN/ K 18 represented by 7 € Q) where

01/ "N g, (0210)p*™ (1—p~ ™ u= ™ $(b™ 1))

o= P (I—um (b)) if X = Xxo
xe Ny OO0 Pt
(—)m=T(u=mg(b)—1—1)(x(a)—1)"F-1) X 7 Xo
1/2 _m . MM () —1 )
Ok Nicrg, (Baloyu™o(b™") iy’ if X = Xo

- l/wK/@p(ezw)( b ) A g (b) it £ X

NK/Qp 02|¢) —

D .
—W P(b)"H(1 — pmump(b)) if x =xo
0 Nic/0, (0219) 5 \™ .
—= 1—?&(@2 u"p(b) ™ ((X(a)j)p—1> x(4) if x # xo.
Similarly to [BC], Proof of Theorem 1], we define Wy, € O}[G] € Z2*[G]*
by
X6(Wa,) = 0 Nigsg, (619).
By a straightforward computation (see [BC, Lemma 3.2.3]) there exists a
unit @ € Z,a] such that p(1—e,) = (a—1)P"*a(1—e,) and the augmentation

of wis (p— 1)! = —1 (mod p). Evaluating at x # xo we get p = (x(a) —
1P x (@),
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Then by the above calculations we have

Wo,u™™b~!
 1—umb
By [Ex683l Sec.I, Prop. 4.3] the element Wy, is a unit. Furthermore, recalling
that v, (1 — u™N/K) = w = 0,

7= (1 —p™u™b)e, + (—u)"o4(l —e,)) .

1 14+ u™b+ -+ AN/ k=1 pdnyx—1
1—umb 1 — y™dnN/x

€ 7u(Gl.

Since its inverse 1 — u™b is also in ZT{,‘T[G], it is a unit. So we just need to

show that the element
F= (I —p"u™b)e, + (—0)™o4(1l — e,)

is a unit in Z2*[G]. We first show that 7 is contained in Z2'[G], which is true
if and only if
eq + (—u)"oy(1 — e,)

is in Z27[G]. This is equivalent to

1= (—x(a))"x(04) (mod1—¢p)

for any non-trivial character y, which is straightforward since x(ua) = —1
(mod 1—¢,) and x(04) =1 (mod 1—(,). Note that in the present situation
this is not enough to conclude the proof of our theorem as it was in [BC],
since we could not find a rigorous proof in the literature that C%(N/K, V)
is true over maximal orders. Actually, if we knew that the conjecture were
functorial with respect to restriction and quotient maps in relative K-theory
(as commonly expected), a standard K-theoretic argument would show the
validity of C2%(N/K, V') over maximal orders. However, we prefer to give
a short argument to prove directly that 7! has integral coefficients. Note
that
1 L+ p"u™p(b) + -+ + (P um (b)) /e
1 — pmum¢p(b) a 1 — (pmum)dn/x '
Therefore we have
s Lepmumb e 4 (prumb) e
T (e

ea + (=) "o (1 —e,).
The integrality of this term is obviously equivalent to the integrality of

~\—m _—1

which, in turn, is equivalent to the congruence

1 ~\\—m -1
i = (MO ) (mod 126,
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This is true since both sides are congruent to 1. This concludes our proof
in the case w = 0.

In the case w > 0 we insert the result of Proposition in the formula
for 7 and, with the same notation as in the case w = 0, we obtain

0,2 Nic/q, (02]0)p%™ (u™ $(b) —1) (1—p~ ™ u"" ¢ (b~ 1))

Ry = = G (1= a0 it X = Xo
X® 012N/, (0200)p™ X (4) (b)) ~2u~2m "
D T é®) 7D (@)D ifX 7 X0
1 2 MM p(b)—1 .
/ 1N (Gl e on if x = xo
2L/2 " X(@)(b)2u2m
[ NK/Qp (62]) < )pﬂ) (ijim()z;?[g)))fﬂz(mfl) if x # Xo
X (We,)(b) 7 M (1 — pmum(é(@) if X = xo
~XO(Wa,)$(B) = (el ) (4t X £ X,

Hence we have
F = W, bt My~ mmm ((1 — pUb)eq + (—i) " ogu™ (1 — ea)> :

As above we have to prove that

F=(1—p"u™b)e, + (—a) o™ ™ (1 — eg)

is a unit. Note that this is the same as the element we got in the case w=0,

mmm

up to the factor u in the 1 — e,~-component. Since we are in the case

w > 0 we have u™™ =1 (mod 1— ¢,). Furthermore, since mm =1 (mod d)

we derive ™™ = ™ (mod 1—(,), i.e. w” ™™ =1 (mod 1—¢,). Using this

fact, the proof for w = 0 is given by the same calculations as for w > 0. [

APPENDIX A. A MORE DETAILED COMPUTATION OF Ul

The aim of this appendix is to give some more details for the computation
of Uis. By we need to compare 3’ and k. In the definition of both

trivialisations one starts with the same isomorphism
Ap(N/K,V) = [RI'(N, V)] ® [Indyq, (V)]
— [HY(N,V)]7' @ [H*(N, V)] @ [Indy/g, (V)]

We set

A= [DE(V)] @ [Dgi (V)]

B=[H'(N, V)| @ [tv(N)] @ [H(N/V)/H}N, V)],

C = [H'(N/V)/H}N, V)| '@ D5 (V* ()] [DE (V1)) @ [H* (N, V)],
D = [ty(N)™'] @ [Dgr(V)],

E = [Dix(V)]™' ® [Indwg, (V).
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Then there is a natural isomorphism
[HY(N,V)]"' ® [H*(N,V)| ® Indy/g,(V)] = A®BRC®D®E,

where we used the defining property of right inverses and the commutativity
constraint to identify [ty (N)]™' @ [H*(N, V)] with [H*(N, V)] ® [ty (N)] 1
Up to now all the calculations are in common for 5’ and k. Now we can

compare the two trivialisations term by term:

A — 1: This is determined by 1 — ¢ in 4’ and by 1 in k.

B — 1: In both cases this isomorphism comes from the exponential map
expy, see for example the exact sequence .

C — 1: For ' we use , while for k we first have to identify C' with
[HY(N/V)/H;(N,V)|™" @ [H*(N,V)] and then consider the valua-
tion map vy.

D — 1: This comes from @, recalling Lemma .

E — 1: This comes from the comp, map, for both f’ and &, but in the
definition of B’ there also appears a multiplication by t/#(") = ¢.

So the difference between ' and x lies in A — 1 and C' — 1 and in the
multiplication by ¢ in £ — 1 and leads to when x™|g, # 1 and
when x"|g, = 1.
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