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Abstract

Let N/K be a finite Galois extension of p-adic number fields and let
ρnr : GK −→ Glr(Zp) be an r-dimensional unramified representation of the ab-
solute Galois group GK which is the restriction of an unramified representation
ρnr
Qp : GQp −→ Glr(Zp). In this paper we consider the Gal(N/K)-equivariant

local ε-conjecture for the p-adic representation T = Zrp(1)(ρnr). For example,
if A is an abelian variety of dimension r defined over Qp with good ordinary
reduction, then the Tate module T = TpÂ associated to the formal group Â of
A is a p-adic representation of this form. We prove the conjecture for all tame
extensions N/K and a certain family of weakly and wildly ramified extensions
N/K. This generalizes previous work of Izychev and Venjakob in the tame
case and of the authors in the weakly and wildly ramified case.

Contents

1 Introduction 2
1.1 Plan of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The cohomology of Zrp(1)(ρnr) 5

3 Formal logarithm and exponential function in higher dimensions 7

4 Computation of the term Ucris 10
4.1 Some preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Computation of Ucris . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Computation of epsilon constants 16

6 Computation of the cohomological term 19
6.1 Identifying cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Definition of the twist invariant . . . . . . . . . . . . . . . . . . . . . 20
6.3 The cohomological term CN/K . . . . . . . . . . . . . . . . . . . . . . 21
6.4 The tame case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.5 The weakly ramified case . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Rationality and functoriality 38

8 Proof of the main results 39

1



Bibliography 42

1 Introduction

Let p be a prime and N/K a finite Galois extension of p-adic number fields with
group G := Gal(N/K). We write GK (resp. GN) for the absolute Galois group of
K (resp. N) and for each finite extension E/Qp we let FE denote the arithmetic
Frobenius automorphism. Let V denote a p-adic representation of GK and let T ⊆ V
be a GK-stable Zp-sublattice such that V = Qp ⊗Zp T .

As in [IV16] and [BC17] we write Cna
EP (N/K, V ) for the equivariant ε-constant

conjecture, see for example Conjecture 3.1.1 in [BC17]. For more details and some
remarks on the history of the conjecture we refer the interested reader to the intro-
duction and Section 3.1 of [BC17].

In this manuscript we will consider Cna
EP (N/K, V ) for higher dimensional unram-

ified twists of Zrp(1) (which should be considered as the Tate module associated with
Gr
m). More precisely, by [Cob18, Prop. 1.6], each matrix U ∈ Glr(Zp) gives rise to

an unramified representation of GK by setting ρnr(FK) := U . We will be concerned
with the module T = Zrp(1)(ρnr), which by [Cob18, Prop. 1.11] can be considered as
the Tate module of a an r-dimensional Lubin-Tate formal group.

We recall that for r = 1 and representations ρnr which are restrictions of unram-
ified representations ρnr

Qp : GQp −→ Z×p Izychev and Venjakob in [IV16] have proven
the validity of Cna

EP (N/K, V ) for tame extensions N/K. The main result of [BC17,
Thm. 1] shows that Cna

EP (N/K, V ) holds for certain weakly and wildly ramified finite
abelian extensions N/K. In this context we recall that N/K is weakly ramified if the
second ramification group in lower numbering is trivial. Generalizing these results
we will show:

Theorem 1.1. Let N/K be a tame extension of p-adic number fields and let

ρnr
Qp : GQp −→ Glr(Zp)

be an unramified representation of GQp. Let ρnr denote the restriction of ρnr
Qp to GK.

Then Cna
EP (N/K, V ) is true for N/K and V = Qr

p(1)(ρnr), if det(ρnr(FN)− 1) 6= 0.

Remarks 1.2. (a) The condition det(ρnr(FN)− 1) 6= 0 holds, if and only if H2(N, T )

is finite (see Section 2). It is also equivalent to
(
Zrp(ρnr)

)GN = 0.

(b) If r = 1, then det(ρnr(FN) − 1) = 0 if and only if ρnr|GN = 1. If r > 1, then
there are ’mixed’ cases where both ρnr|GN 6= 1 and det(ρnr(FN) − 1) = 0, see,
e.g., [Cob18, Example 3.18].

(c) If ρnr|GN = 1, then twisting commutes with taking GN -cohomology, so that we
expect that Cna

EP (N/K, V ) can be proved relying on the fact that the conjecture
is known in the untwisted case by [Bre04b]. In the case r = 1 this is sketched in
[IV16, App. A.1], however, for r > 1 we have not checked the details.

In the weakly ramified setting we will prove the following theorem.

Theorem 1.3. Let p be an odd prime. Let K/Qp be the unramified extension of
degree m and let N/K be a weakly and wildly ramified finite abelian extension with
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cyclic ramification group. Let d denote the inertia degree of N/K, let d̃ denote the
order of ρnr(FN) mod p in Glr(Zp/pZp) and assume that m and d are relatively prime.
Let

ρnr
Qp : GQp −→ Glr(Zp)

be an unramified representation of GQp and let ρnr denote the restriction of ρnr
Qp to

GK. Assume that det(ρnr(FN) − 1) 6= 0 and, in addition, that one of the following
three conditions holds:

(a) ρnr(FN)− 1 is invertible modulo p;

(b) ρnr(FN) ≡ 1 (mod p);

(c) gcd(d̃,m) = 1 and det(ρnr(FN)d̃ − 1) 6= 0.

Then Cna
EP (N/K, V ) is true for N/K and V = Qr

p(1)(ρnr).

Remarks 1.4. (a) In the case r = 1 we define as in [BC17, (14)] a non-negative
integer ω = ωN := vp(1 − ρnr(FN)). Note that the conditions (a) and (b)
concerning the reduction of ρnr(FN) modulo p generalize the cases ω = 0 and
ω > 0, which were studied separately in [BC17], and which exhaust all the
possible cases when r = 1. In the higher dimensional setting of the present
paper, however, this is not true, even under the assumption det(ρnr(FN)−1) 6=
0. To deal with the remaining cases, our strategy of proof is to replace the
field N by its unramified extension of degree d̃ and to use functoriality with
respect to change of fields (see Prop. 7.2). For technical reasons this forces us
to require hypothesis (c).

(b) By [Cob18, Lem. 1.1] we know that d̃ is a divisor of pst with s = (r − 1)r/2
and t =

∏r
i=1(pi − 1).

In a more geometrical setting, if A/Qp is an abelian variety of dimension r with
good ordinary reduction, then by [Cob18, Prop. 1.12] the Tate module of the as-
sociated formal group Â is isomorphic to Zrp(1)(ρnr

Qp) for an appropriate choice of
ρnr
Qp . Here it is worth to remark that the converse is not true, i.e. not every module

Zrp(1)(ρnr
Qp) comes from an abelian variety with good ordinary reduction. In this set-

ting, by a result of Mazur [Maz72, Cor. 4.38], we know that det(ρnr(FL)− 1) 6= 0 is
automatically satisfied for any finite extension L/Qp, see Lemma 8.1.

Theorem 1.5. Let N/K be a tame extension of p-adic number fields and let A/Qp

be an r-dimensional abelian variety with good ordinary reduction. Let ρnr
Qp be the

unramified representation induced by the Tate module TpÂ of the formal group Â
of A and let ρnr be the restriction of ρnr

Qp to GK. Then Cna
EP (N/K, V ) is true for

V = Qp ⊗Zp TpÂ.

Theorem 1.6. Let p be an odd prime and let A/Qp be an r-dimensional abelian
variety with good ordinary reduction. Let K/Qp be the unramified extension of degree
m and let N/K be a weakly and wildly ramified finite abelian extension with cyclic
ramification group. Let ρnr

Qp be the unramified representation induced by the Tate

module TpÂ of the formal group Â of A and let ρnr be the restriction of ρnr
Qp to GK.

Let d denote the inertia degree of N/K and let d̃ denote the order of ρnr(FN) mod p
in Glr(Zp/pZp). Assume that m and d are relatively prime, and, in addition, that
one of the following conditions holds:
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(a) ρnr(FN)− 1 is invertible modulo p;

(b) ρnr(FN) ≡ 1 (mod p);

(c) (m, d̃) = 1.

Then Cna
EP (N/K, V ) is true for V = Qp ⊗Zp TpÂ.

To conclude this introduction we reference forthcoming work of Nickel [Nic18]
and a forthcoming joint paper of Burns and Nickel [BN] where an Iwasawa theoretic
approach to Cna

EP (N/K, V ) is developed. In a little more detail, Nickel formulates
an Iwasawa theoretic analogue of Cna

EP (N/K,Qp(1)), call it Cna
EP (N∞/K,Qp(1)) for

the purpose of this introduction, for the extension N∞/K where N∞/N is the un-
ramified Zp-extension of N . Then, in a second paper, Burns and Nickel show that
Cna
EP (N∞/K,Qp(1)) holds if and only if Cna

EP (E/F,Qp(1)) holds for all finite Galois
extensions E/F such that K ⊆ F ⊆ E ⊆ N∞. Furthermore they prove a certain
twist invariance of the conjecture. If χnr

Qp is a one-dimensional unramified charac-
ter, they show that Cna

EP (N∞N
′/K,Qp(1)) holds if and only if Cna

EP (E/F,Qp(1)(χnr))
holds for all finite Galois extensions E/F such that K ⊆ F ⊆ E ⊆ N∞N

′ where
N ′/N is a certain unramified extension of degree dividing p − 1. It will be very
interesting to see how this Iwasawa theoretic approach will carry over to the higher
dimensional case.

Notations: We will mostly rely on the notation of [BC17] and [Cob18]. For
a field L we write Lc for its algebraic closure; for any subfield L of Qc

p we let L̄
denote the p-adic completion of L. In this paper, N/K will always denote a finite
Galois extension of p-adic number fields. We write Nnr for the maximal unramified

extension, and then set N0 = Nnr and denote by N̂×0 the p-completion of N×0 . Let
N1 be the maximal unramified subextension of N/Qp. We will denote by eN/K and
dN/K the ramification index and the inertia degree of N/K, ON will be the ring of

integers of N and UN will be its group of units. We also set ΛN =
∏

r N̂
×
0 (ρnr),

ΥN =
∏

r ÛN0(ρ
nr) and Z = Zrp(ρnr) and we will mostly use an additive notation

for the (twisted) action of the absolute Galois group GN . The elements fixed by the
action of GN will be denoted by ΛGN

N , ΥGN
N and ZGN , respectively.

Let ϕ be the absolute Frobenius automorphism, let FN be the Frobenius auto-
morphism of N and let F = FK be the Frobenius of K.

For an r-dimensional formal group F , we denote by F(p
(r)
N ) the group structure

on
∏

r pN induced by F .
For any ring R we denote by Mr(R) the ring of r × r matrices with coefficients

in R and by Glr(R) the group of invertible matrices. A unity matrix will always be
denoted simply by 1. Also we write Z(R) for the centre of R.

If Λ and Σ are unital rings and Λ −→ Σ a ring homomorphism, then we write
K0(Λ,Σ) for the relative algebraic K-group defined by Swan [Swa70, p. 215]. If
Σ = L[G] for a finite group G and a field extension L/Qp we write NrdΣ : K1(Σ) −→
Z(Σ)× for the map on K1 induced by the reduced norm map. We will only be
concerned with cases where NrdΣ is an isomorphism. In this case we set ∂̂1

Λ,Σ :=

∂1
Λ,Σ ◦Nrd−1

Σ : Z(Σ)× −→ K0(Λ,Σ) where ∂1
Λ,Σ : K1(Σ) −→ K0(Λ,Σ) is the canonical

map. If there is no danger of confusion we will often abbreviate ∂̂1
Λ,Σ to ∂̂1.

For any Zp-module X and any ring extension R/Zp we set XR := R⊗Zp X.

4



1.1 Plan of the manuscript

We will start recalling some results on the cohomology of Zrp(1) which are proved in
[Cob18]. We will also formulate a finiteness hypothesis (F), which we will assume
throughout the paper, and we will show some basic consequences of (F). After a short
digression on the formal logarithm and exponential function in higher dimension in
Section 3, we can start our study of the conjecture Cna

EP (N/K, V ).
As in [BC17], which was motivated by the work in [IV16], we define an element

RN/K = CN/K + Ucris + rm∂̂1
Zp[G],BdR[G](t)−mUtw(ρnr

Qp)

− rUN/K + ∂̂1
Zp[G],BdR[G](εD(N/K, V ))

(1)

in the relative algebraic K-group K0(Zp[G],Qp[G]). The conjecture Cna
EP (N/K, V ) is

then equivalent to the vanishing of RN/K .
Actually the element RN/K as defined in (1) differs from [BC17, (17)] by the term

mUtw(ρnr
Qp). This new term emerges from the computation of the cohomological term

CN/K , which was slightly incorrect in [BC17], and has to be compensated in the
definition of RN/K . For more details on this issue we refer the reader to Remark 6.6.

We will explicitly compute the terms CN/K , Ucris and ∂̂1
Zp[G],BdR[G](εD(N/K, V )) in

the definition of RN/K and then use these results to prove Cna
EP (N/K, V ) when N/K

is tame (Theorem 1.1) and, under some additional hypotheses, also when N/K is
weakly and wildly ramified (Theorem 1.3). This generalizes previous work for r = 1
of Izychev and Venjakob in [IV16] in the tame case and the authors in [BC17] in the
weakly ramified case.

2 The cohomology of Zrp(1)(ρnr)

Let u ∈ Glr(Zp) and let ρnr = ρu : GQp −→ Glr(Zp) denote the unramified represen-
tation attached to u by [Cob18, Prop. 1.6]. By [Haz78, Sec. 13.3] there is a unique
r-dimensional Lubin-Tate formal group F = Fpu−1 attached to the parameter pu−1.
As in [Cob18, Prop. 1.10] we can construct an isomorphism θ : F −→ Gr

m defined
over the completion Qnr

p of Qnr
p such that

θ(X) = ε−1X + . . . and θϕ ◦ θ−1 = u−1 (2)

where ε ∈ Glr(Znr
p ) has the defining property ϕ(ε−1)ε = u−1. In the following we set

T := Zrp(1)(ρnr) and for future reference we recall that T is isomorphic to the p-adic
Tate module TpF of F by [Cob18, Prop. 1.11].

Let N/Qp be a finite field extension and let N0 = Nnr denote the completion of
the maximal unramified extension of N . Following [Cob18] we define

ΛN :=
∏
r

N̂×0 (ρnr), Z := Zrp(ρnr).

Then, by [Cob18, Cor. 3.16], we have

H1(N, T ) ∼= ΛGN
N
∼= F(p

(r)
N )×ZGN ,

H2(N, T ) ∼= Z/(FN − 1)Z,
H i(N, T ) = 0 for i 6= 1, 2.
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Remark 2.1. We point out that the above isomorphisms are induced by the explicit
representative C•N,F of RΓ(N, T ) constructed in [Cob18, Thm. 3.15]. In the formu-
lation of Cna

EP (N/K, V ), however, we will use the identification of the cohomology
modules resulting from the use of continuous cochain cohomology. We will address
this problem in Section 6.1.

For each finite field extension N/Qp we set

UN := ρu(FN) = ρnr(FN) = udN/Qp

and in the sequel always assume the following finiteness hypothesis.

Hypothesis (F): det(UN − 1) 6= 0.

This hypothesis clearly implies (and, in fact, is equivalent to)

H1(N, T ) ∼= F(p
(r)
N )

H2(N, T ) ∼= Z/(FN − 1)Z = Zrp/(UN − 1)Zrp is finite.

The elementary divisor theorem immediately implies

#(Z/(FN − 1)Z) = pω with ω := vp(det(UN − 1)),

where vp denotes the normalized p-adic valuation.
We first study the case when N/K is tame.

Proposition 2.2. Let N/K be a finite Galois extension with Galois group G =
Gal(N/K). Assume that Hypothesis (F) holds. If N/K is tame, then both H1(N, T )
and H2(N, T ) are G-cohomologically trivial.

Proof. By [Cob18, Thm. 3.3 and Lemma 2.2] it suffices to show that Z/(FN−1)Z =
Zrp/(UN − 1)Zrp is cohomologically trivial.

We set M := Z/(FN − 1)Z and write I = IN/K for the inertia group. By [EN18,

Lemma 2.3] it suffices to show that Ĥ i(G/I,M I) = 0 and Ĥ i(I,M) = 0 for all i ∈ Z,
where Ĥ i denotes Tate cohomology. Since M is a (finite) p-group and p - #I we get
Ĥ i(I,M) = 0. Hence it suffices to show that Ĥ i(G/I,M I) = 0 for all i ∈ Z. Since
G/I is cyclic and M finite, a standard Herbrand quotient argument shows that it is
then enough to prove that Ĥ−1(G/I,M I) = 0. Note that M I = M . The long exact
cohomology sequence attached to the short exact sequence

0 −→ Z FN−1−−−→ Z −→M −→ 0

of G/I-modules yields the exact sequence

Ĥ−1(G/I,Z) −→ Ĥ−1(G/I,M) −→ Ĥ0(G/I,Z).

With FN = F
dN/K
K one has UN = U

dN/K
K and

1− UN = (1 + UK + . . .+ U
dN/K−1

K )(1− UK).

Since UN − 1 is invertible, the same is true for 1 − UK , hence ZG/I = 0 and
Ĥ0(G/I,Z) = 0. To show that Ĥ−1(G/I,Z) = 0 we note that the above iden-

tity also implies that 1 + UK + . . . + U
dN/K−1

K is invertible, and hence the kernel of

the norm map is trivial. Consequently, Ĥ−1(G/I,Z) = 0.
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Because of Proposition 2.2 the tame case is much more accessible to proofs of
conjecture Cna

EP (N/K, V ) than the wild case. Conversely, the following lemma shows
that in the generic wild case the cohomology modules are not cohomologically trivial.

Lemma 2.3. Assume that Hypothesis (F) holds. Then the following are equivalent:

(i) H2(N, T ) is trivial.

(ii) UN − 1 ∈ Glr(Zp).

If N/K is wildly ramified, then this is also equivalent to

(iii) H1(N, T ) is cohomologically trivial.

(iv) H2(N, T ) is cohomologically trivial.

Proof. The equivalence of (i) and (ii) is clear. The equivalence of (iii) and (iv) follows
from [Cob18, Thm. 3.3 and Lemma 2.2]. To see the equivalence of (i) and (iv) in
the wildly ramified case it suffices to note that I acts trivially on M := H2(N, T ) =
Z/(FN − 1)Z. If P denotes a subgroup of I of order p, then one obviously has

H1(P,M) = Hom(P,M) = 0 ⇐⇒ M = 0.

3 Formal logarithm and exponential function in

higher dimensions

In this section we prove some results which are probably well-known, but for which
we could not find a precise reference in the literature. Throughout this subsection
we let L be a finite extension of Qp and vL the normalized valuation of L.

The statement and the proof of the following lemma generalize [Frö68, IV.1,
Prop. 1] to a higher dimensional setting. We set X := (X1, . . . , Xr) and for a
homomorphism

f =

f1
...
fr

 : F → Gr
a

we write Jf (X) :=
(
∂fi
∂Xj

)
1≤i,j≤r

for the Jacobian of f .

Lemma 3.1. Let F be an r-dimensional commutative formal group defined over Zp.
Then there exists a unique isomorphism logF : F → Gr

a defined over Qp, so that the
Jacobian JlogF (X) satisfies JlogF (0) = 1. Furthermore, JlogF (X) ∈ Glr(Zp[[X]]) and
logF(x) converges for all x = (x1, . . . , xr) ∈ L(r) satisfying min{vL(x1), . . . , vL(xr)} >
0.

Proof. By [Frö68, II.2, Thm. 1, Cor. 1] there exists an isomorphism g : F → Gr
a

defined over Qp. It is then clear that the Jacobian Jg(0) is an invertible matrix.
We also note that Jg(0)−1X defines an isomorphism g1 : Gr

a → Gr
a. Thus the

composition logF = g1 ◦ g : F → Gr
a is an isomorphism satisfying our normalization

JlogF (0) = Jg1(g(0))Jg(0) = Jg(0)−1Jg(0) = 1.
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To prove uniqueness we assume that f : F → Gr
a is another isomorphism with

Jf (0) = 1. Then

JlogF ◦f−1(0) = JlogF ◦f−1(f(0)) = JlogF (0)Jf−1(f(0)) = JlogF (0)Jf (0)−1 = 1.

It is easy to see that the isomorphisms Gr
a → Gr

a over Qp are in one to one correspon-
dence with the matrices in Glr(Qp). Hence we deduce that logF ◦f−1 is the identity
map, i.e., f = logF .

To show that JlogF (X) ∈Mr(Zp[[X]]), we write

logF(F(X, Y )) = logF(X) + logF(Y ).

We view both sides as formal series in the variables Y , calculate the Jacobians and
evaluate at Y = 0:

JlogF (F(X, 0))JF(X,·)(0) = 0 + JlogF (0).

As a consequence we obtain

JlogF (X)JF(X,·)(0) = 1.

We let a denote the ideal of Zp[[X]] which is generated by X1, . . . , Xr and note that
pZp[[X]] + a is the maximal ideal of the local ring Zp[[X]]. By the axioms of formal
groups it follows that JF(X,·)(0) = 1 +M with a matrix M ∈Mr(Zp[[X]]) with coef-
ficients in a. Hence det(JF(X,·)(0)) ≡ 1 (mod a) and we deduce that det(JF(X,·)(0))
is a unit in Zp[[X]]. It follows that JF(X,·)(0) is invertible in Mr(Zp[[X]]), so that its
inverse JlogF (X) has integral coefficients and is in fact in Glr(Zp[[X]]).

Hence a general term of any component logF ,i of logF is of the form a
m

∏r
i=1 X

ni
i ,

with m = gcd(n1, . . . , nr) and a ∈ Zp. If we set n =
∑r

i=1 ni, then

vL

(
a

m

r∏
i=1

xnii

)
≥

r∑
i=1

nivL(xi)−vL(m) ≥ nmin{vL(x1), . . . , vL(xr)}− (logp n)vL(p).

This last expression tends to infinity when the total degree n tends to infinity.

As usual we write expF for the inverse of logF . To obtain information on the
convergence of expF we will need the following lemma whose proof is inspired by the
proof of [Sil09, Lemma IV.5.4].

Lemma 3.2. Let f, g ∈ Qp[[X]]r be power series without constant term such that
f(g(X)) = X for X = (X1, . . . , Xr). Assume that Jg(X) ∈Mr(Zp[[X]]) and Jg(0) =
1. Then for all s ∈ N and for all i, n1, . . . , ns ∈ {1, . . . , r} we have

∂sfi
∂Xn1 · · · ∂Xns

(0) ∈ Zp.

Proof. In a first step we prove the following

Claim: For all s ∈ N and all n1, . . . , ns ∈ {1, . . . , r} the expression

r∑
m1=1

· · ·
r∑

ms=1

∂sfi
∂Xm1 · · · ∂Xms

(g(X))
∂gm1

∂Xn1

· · · ∂gms
∂Xns

(3)
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is a polynomial in ∂tfi
∂Xk1 ···∂Xkt

(g(X)) with 1 ≤ t ≤ s − 1, k1, . . . , kt ∈ {1, . . . , r} and

coefficients in Zp[[X]].
Indeed, the chain rule for ∂

∂Xn1
applied to fi(g(X)) = Xi yields

r∑
m1=1

∂fi
∂Xm1

(g(X))
∂gm1

∂Xn1

= δi,n1 (4)

and thus establishes the claim for s = 1.
For the inductive step we apply ∂

∂Xns+1
to the expression in (3) and again by the

chain rule we obtain

r∑
m1=1

· · ·
r∑

ms=1

r∑
ms+1=1

∂s+1fi
∂Xm1 · · · ∂Xms∂Xms+1

(g(X))
∂gm1

∂Xn1

· · · ∂gms
∂Xns

∂gms+1

∂Xns+1

=
∂

∂Xns+1

(
r∑

m1=1

· · ·
r∑

ms=1

∂sfi
∂Xm1 · · · ∂Xms

(g(X))
∂gm1

∂Xn1

· · · ∂gms
∂Xns

)

−
r∑

m1=1

· · ·
r∑

ms=1

∂sfi
∂Xm1 · · · ∂Xms

(g(X))
∂

∂Xns+1

(
∂gm1

∂Xn1

· · · ∂gms
∂Xns

)
.

Using the inductive hypothesis for the first term on the right hand side and the
assumption Jg(X) ∈Mr(Zp[[X]]) for the second one proves the above claim.

In order to prove the assertion of the lemma we again proceed by induction on s.
For s = 1 we specialize (4) at X = 0 and obtain from g(0) = 0

r∑
m1=1

∂fi
∂Xm1

(0)
∂gm1

∂Xn1

(0) = δi,n1 .

Since Jg(0) = 1 this implies ∂fi
∂Xn1

(0) = δi,n1 ∈ Zp.
For the inductive step we specialize (3) at X = 0 and since Jg(0) = 1 we simply

obtain
∂sfi

∂Xn1 · · · ∂Xns

(0).

By the above claim and the inductive hypothesis this is an element in Zp.

Lemma 3.3. The isomorphism expF converges for all x = (x1, . . . , xr) ∈ L(r) satis-
fying min{vL(x1), . . . , vL(xr)} > vL(p)/(p− 1).

Proof. By Lemma 3.1 and Lemma 3.2 we have

∂s expF ,i
∂Xn1 · · · ∂Xns

(0) ∈ Zp

for any s ∈ N and i, n1, . . . , ns ∈ {1, . . . , r}. It follows that each component expF ,i
of expF is of the form

∞∑
m1=0

· · ·
∞∑

mr=0

am1,...,mr

m1! · · ·mr!
Xm1

1 · · ·Xmr
r

9



for some am1,...,mr ∈ Zp. As in the proof of [Sil09, Lemma IV.6.3 (b)] we can show
that

vL

(
am1,...,mr

m1! · · ·mr!
xm1

1 · · ·xmrr
)
≥

r∑
i=0,mi 6=0

(
vL(xi) + (mi − 1)

(
vL(xi)−

vL(p)

p− 1

))
which under our assumption tends to infinity as the total degree tends to infinity.

We summarize our discussion in the next proposition.

Proposition 3.4. Let L be a finite extension of Qp with normalized valuation vL.

Let n > vL(p)
p−1

be an integer. Then the formal logarithm induces an isomorphism

logF : F((pnL)(r)) −→ Gr
a((p

n
L)(r))

with inverse induced by expF .

Proof. Given the results of this section the proposition follows as in the proof of
[Sil09, Thm.IV.6.4].

4 Computation of the term Ucris

4.1 Some preliminary results

We will apply the notation introduced and explained in [BB08, Sec. 1.1]. In partic-
ular, Bcris, Bst and BdR denote the p-adic period rings constructed by Fontaine. We
recall that the field BdR = B+

dR[1/t] is a Qp-algebra which contains Qc
p and carries

an action of GQp . The uniformizing element t = log[ε] depends on the choice of
ε = (ζpn)n≥0 where the primitive pn-th roots of unity ζpn are compatible with re-
spect to x 7→ xp. We let χcyc : GQp −→ Z×p denote the cyclotomic character which is

uniquely determined by the requirement ζσpn = ζ
χcyc(σ)
pn for all n ≥ 0 and all σ ∈ GQp .

In particular, we have σ(t) = χcyc(σ)t for all σ ∈ GQp .
The subring Bcris of BdR contains the element t and, in addition, there is a

Frobenius endomorphism φ acting on Bcris. In Section 4.2 we will frequently use the
formula φ(t) = pt. If V is a p-adic representation of GK , we put

DK
dR(V ) :=

(
BdR ⊗Qp V

)GK , DK
cris(V ) :=

(
Bcris ⊗Qp V

)GK .
The K-vector space DK

dR(V ) is finite dimensional and filtered. The tangent space of
V over K is defined by

tV (K) := DK
dR(V )/Fil0DK

dR(V ).

Finally, we write expV : tV (K) −→ H1(K,V ) for the exponential map of Bloch and
Kato. Note here that H1(K,V ) is defined using continuous cochain cohomology (see
Remark 2.1).

For any Qp-vector space W we write W ∗ = HomQp(W,Qp) for its Qp-linear dual.
For convenience we usually write t∗V (K) instead of tV (K)∗.

We fix a matrix T nr ∈ Glr(Znr
p ) so that ϕ(T nr)(T nr)−1 = u−1, which exists by

[Cob18, Lemma 1.9].

10



Lemma 4.1. Let v∗1, . . . , v
∗
r denote the elements of the canonical Qp-basis of V ∗(1).

Then e∗i =
∑r

n=1(T nr)−1
i,n ⊗ v∗n, i = 1, . . . , r, constitute a basis of DN

cris(V
∗(1)) as an

N1-vector space and of DN
dR(V ∗(1)) as an N-vector space. In addition, each element

e∗i is fixed by the action of the Galois group GQp.

Proof. The following proof is the r-dimensional generalization of the first part of the
proof of [BC17, Lemma 5.2.1].

By definition we have T nr = uϕ(T nr) and by induction we deduce FN(T nr) =
ϕdN (T nr) = u−dNT nr, and hence udNFN(T nr) = T nr.

First of all recall that the completion Znr
p of Znr

p is contained both in Bcris and
BdR. We now prove that the elements e∗i are fixed by the absolute Galois group GQp ,
which will show that the e∗i are contained in both DN

cris(V
∗(1)) and DN

dR(V ∗(1)). We
note that the inertia group IQp acts trivially on V ∗(1) and hence it remains to prove
that e∗i is fixed by ϕ. We first need to calculate ϕ(v∗i ). Here we use the definitions
and the fact that the elements vi constitute the canonical basis of Qr

p(1)(ρnr
Qp):

ϕ(v∗i )(vj) = v∗i (u
−1vj) = v∗i

(
r∑

k=1

(u−1)k,jvk

)
= (u−1)i,j.

Hence

ϕ(v∗i ) =
r∑
j=1

(u−1)i,jv
∗
j ,

and we conclude that

ϕ(e∗i ) =

(
r∑

n=1

(T nr)−1
i,n ⊗ v∗n

)ϕ

=
r∑

n=1

r∑
h=1

(T nr)−1
i,huh,n ⊗

r∑
k=1

(
u−1
)
n,k
v∗k

=
r∑

h=1

r∑
k=1

(T nr)−1
i,hδh,k ⊗ v

∗
k =

r∑
k=1

(T nr)−1
i,k ⊗ v

∗
k = e∗i .

Since T nr ∈ Glr(Znr
p ) ⊆ Glr(Bcris) the elements e∗1, . . . , e

∗
r are a Bcris-basis of

Bcris ⊗Qp V
∗(1). As N1 is a subfield of Bcris, we see that e∗1, . . . , e

∗
r are linearly

independent over N1. This concludes the proof that the elements e∗i constitute a
basis of DN

cris(V
∗(1)) since dimN1 D

N
cris(V

∗(1)) ≤ dimQp(V
∗(1)) = r. In particular this

also proves that V ∗(1) is cristalline. Then the elements e∗1, . . . , e
∗
r must also be a

basis of the N -vector space DN
dR(V ∗(1)) = N ⊗N1 D

N
cris(V

∗(1)).

Lemma 4.2. Let v1, . . . , vr be the elements of the canonical Qp-basis of V . The
elements ei =

∑r
n=1 t

−1T nr
n,i ⊗ vn, i = 1, . . . , r constitute a basis of DN

cris(V ) as an
N1-vector space and of DN

dR(V ) as an N-vector space. In addition, each element ei
is fixed by the action of the Galois group GQp.

Proof. For σ ∈ IQp we compute

σ(ei) =
r∑

n=1

σ(t−1T nr
n,i)⊗ σ(vn) =

r∑
n=1

χcyc(σ
−1)t−1T nr

n,i ⊗ χcyc(σ)vn = ei.

Hence the elements ei are fixed by the inertia group and a similar computation as in
the proof of Lemma 4.1 shows that ϕ(ei) = ei. The proof follows as above.
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Lemma 4.3. Let ṽ1, . . . , ṽr be the elements of the canonical Qp-basis of V (−1). The
elements ẽi =

∑r
n=1 T

nr
n,i ⊗ ṽn are a basis of DN

cris(V (−1)) as an N1-vector space and
of DN

dR(V (−1)) as an N-vector space. In addition, each element ẽi is fixed by the
action of the Galois group GQp.

Proof. Similar as above.

4.2 Computation of Ucris

We recall that V = Qr
p(1)(ρnr) and V ∗(1) = Qr

p((ρ
nr)−1) and that we always as-

sume Hypothesis (F). The following lemma (and its proof) is the analogue of [BC17,
Lemma 5.1.2].

Lemma 4.4. We have:

(a) tV ∗(1)(N) = 0.

(b) H1
f (N, V ∗(1)) = 0.

(c) H1
f (N, V ) = H1

e (N, V ) = H1(N, V ).

Proof. Proofs are as for [BC17, Lemma 5.1.2]. For the proof of part (c) we also need
that by Lemma 4.7 below the endomorphism 1−φ of DN

cris(V ) is an isomorphism.

By the above lemma, [Cob18, Coroll. 3.16] and [BC17, (30)] the 7-term exact
sequence [BC17, (5)] degenerates into the two exact sequences

0 −→ DN
cris(V )

1−φ−−→ DN
cris(V )⊕ tV (N) −→ H1(N, V ) −→ 0

and
0 −→ DN

cris(V
∗(1))∗

1−φ∗−−−→ DN
cris(V

∗(1))∗ −→ 0.

The term Ucris ∈ K0(Zp[G],Qp[G]) is defined by [BC17, (26)]. We recall that for a
ring R the abelian group K1(R) is generated by elements [P, α], where P is a finitely
generated projective R-module and α is an automorphism of P . By the computations
in loc.cit., see in particular equation [BC17, (32)], we obtain

Ucris = ∂1
Zp[G],Qp[G]([D

N
cris(V ), 1− φ])− ∂1

Zp[G],Qp[G]([D
N
cris(V

∗(1))∗, 1− φ∗]). (5)

Before computing Ucris we need an easy lemma from linear algebra.

Lemma 4.5. Let R be a unital commutative ring and let

M =



1 0 0 · · · 0 B1

A 1 0 · · · 0 B2

0 A 1 · · · 0 B3
...

...
...

. . .
...

...
0 0 0 · · · 1 Bn−1

0 0 0 · · · A 1 +Bn


∈Mnr(R)

be a block matrix, with n2 square blocks of the same size. Let det = detR denote the
determinant over R. Then

det(M) = det

(
1 +

n−1∑
i=0

(−A)iBn−i

)
.
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Proof. By Gaussian elimination we obtain the matrix

1 0 0 · · · 0 B1

0 1 0 · · · 0 B2 − AB1

0 0 1 · · · 0 B3 − AB2 + A2B1
...

...
...

. . .
...

...

0 0 0 · · · 1
∑n−2

i=0 (−A)iBn−1−i
0 0 0 · · · 0 1 +

∑n−1
i=0 (−A)iBn−i


.

The Wedderburn decomposition of Qp[G] induces a decomposition of Z(Qp[G])
as a finite direct sum

⊕
i Fi of suitable finite field extensions Fi/Qp. If x ∈ Z(Qp[G])

we let ∗x ∈ Z(Qp[G])× denote the invertible element which is given by (∗xi) with
∗xi = 1 if xi = 0 and ∗xi = xi otherwise.

We now generalize [BC17, Lemma 5.2.1 and Lemma 5.2.2] and in this way explic-
itly compute the element Ucris. Recall that F = FK = ϕdK is the Frobenius element
of K. We write I = IN/K for the inertia subgroup of the Galois extension N/K.

Lemma 4.6. The endomorphism 1 − φ∗ of DN
cris(V

∗(1))∗ is an isomorphism. Fur-
thermore we have

∂1
Zp[G],Qp[G]([D

N
cris(V

∗(1))∗, 1− φ∗]) = ∂̂1
Zp[G],Qp[G](

∗(det(1− udKF−1)eI))

in K0(Zp[G],Qp[G]).

Proof. We have to compute φ(e∗i ). Using the ϕ-semilinearity of φ we compute

φ(e∗i ) =
r∑

n=1

ϕ((T nr)−1)i,n ⊗ v∗n =
r∑

n=1

((T nr)−1u)i,n ⊗ v∗n

=
r∑

n=1

((T nr)−1uT nr(T nr)−1)i,n ⊗ v∗n =
r∑

n=1

r∑
`=1

((T nr)−1uT nr)i,`(T
nr)−1

`,n ⊗ v
∗
n

=
r∑
`=1

((T nr)−1uT nr)i,`e
∗
` .

We fix a normal basis element θ of N1/Qp. Then wi,j := ϕ−j(θ)e∗i for i = 1, . . . , r
and j = 0, . . . , dK − 1 is a Qp[G/I]-basis of DN

cris(V
∗(1)). Let ψi,j ∈ DN

cris(V
∗(1))∗ for

i = 1, . . . , r and j = 0, . . . , dK − 1 be the dual Qp[G/I]-basis.
For 0 < i, h ≤ r, 0 ≤ j, k < dK − 1 and 0 ≤ n ≤ d− 1 we have

φ∗(ψi,j)(F
nwh,k) = ψi,j(φ(F nϕ−k(θ)e∗h)) = ψi,j

(
F nϕ−k+1(θ)

r∑
`=1

((T nr)−1uT nr)h,`e
∗
`

)

=
r∑
`=1

((T nr)−1uT nr)h,`ψi,j(F
nϕ−k+1(θ)e∗`) =

r∑
`=1

((T nr)−1uT nr)h,`ψi,j(F
nw`,k−1)

If n = 0, k = j + 1 and any 0 < h ≤ r this is equal to ((T nr)−1uT nr)h,i; it is 0
otherwise. Hence

φ∗(ψi,j) =
r∑

h=1

((T nr)−1uT nr)h,iψh,j+1.
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Analogously for 0 < i ≤ r and j = dK − 1 we have

φ∗(ψi,dK−1) =
r∑

h=1

((T nr)−1uT nr)h,iF
−1ψh,0.

Note here that φ∗ is indeed defined over Qp[G/I] since (T nr)−1uT nr ∈Mr(Qp).
With respect to the Qp[G/I]-basis ψi,j the matrix associated to 1−φ∗ is given by

1 0 0 · · · 0 −F−1(T nr)−1uT nr

−(T nr)−1uT nr 1 0 · · · 0 0
0 −(T nr)−1uT nr 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · −(T nr)−1uT nr 1


.

In this matrix each entry is an r× r matrix with coefficients in Qp[G/I] (recall that
F = FK generates G/I). In the following we write det for the determinant over the
commutative ring Qp[G/I]. By Lemma 4.5, the determinant of the above matrix is
det(1−F−1(T nr)−1udKT nr) = det(1−F−1udK ). Since this determinant computes the
reduced norm of 1− φ∗ the equality in the lemma follows.

To conclude that 1− φ∗ is an isomorphism it is now enough to notice that

(1− F−1udK )(1 + F−1udK + · · ·+ (F−1udK )dN/K−1) = 1− UN ,

which is invertible since by Hypothesis (F) we always have det(UN − 1) 6= 0.

Lemma 4.7. The endomorphism 1− φ of DN
cris(V ) is an isomorphism and we have

∂1
Zp[G],Qp[G]([D

N
cris(V ), 1− φ]) = ∂̂1

Zp[G],Qp[G](
∗(det(1− F (pu)−dK )eI))

in K0(Zp[G],Qp[G]).

Proof. The proof is analogous to the proof of the previous lemma.
To show that det(1 − F (pu)−dK ) is invertible in Qp[G/I], it is enough to notice

that
∑∞

i=0(F−1(pu)dK )i converges in the matrix ring Mr(Zp[G/I]) and is the inverse
of

1− F−1(pu)dK = −F−1(pu)dK (1− F (pu)−dK ).

Proposition 4.8. We have

Ucris = ∂̂1
Zp[G],Qp[G](

∗(det(1− F (pu)−dK )eI))− ∂̂1
Zp[G],Qp[G](

∗(det(1− udKF−1)eI)).

Proof. The proof is easily achieved by combining (5), Lemma 4.6 and Lemma 4.7.

We conclude this section proving some functorial properties for the term Ucris. To
that end, we let L be an intermediate field of N/K and set H := Gal(N/L). Then
we let

ρGH : K0(Zp[G],Qp[G]) −→ K0(Zp[H],Qp[H]), (6)

denote the natural restriction of scarlars homomorphism, and if H is normal in G,
then

qGG/H : K0(Zp[G],Qp[G]) −→ K0(Zp[G/H],Qp[G/H]). (7)

denotes the homomorphism which is induced by the functor HomZ[H](Z, ·) = (·)H .
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Lemma 4.9. Let L be an intermediate field of N/K and H = Gal(N/L). Then:

(a) ρGH(Ucris,N/K) = Ucris,N/L.

(b) If H is normal in G, then qGG/H(Ucris,N/K) = Ucris,L/K.

Proof. Let ucris,N/K ∈ Z(Qp[G])× be such that ∂̂1
Zp[G],Qp[G](ucris,N/K) = Ucris,N/K . We

will use an analogous notation for all the other Galois extensions involved in the
proof.

Then, for any irreducible character χ of G, we can take

(ucris,N/K)χ =

{
det(1−χ(F )(pu)−dK )

det(1−udKχ(F )−1)
if χ|IN/K = 1,

1 if χ|IN/K 6= 1.

For two (virtual) characters χ1 and χ2 of a finite group J we write 〈χ1, χ2〉J for
the standard scalar product.

(a) By [BW09, Sec. 6.1] we have

ρGH(ucris,N/K) =

 ∏
χ∈Irr(G)

(ucris,N/K)〈χ,IndGHψ〉G
χ


ψ∈Irr(H)

.

Since 〈χ, IndGHψ〉G = 〈χ|H , ψ〉H by Frobenius reciprocity we obtain

(ucris,N/K)〈χ,IndGHψ〉G
χ =


1 if χ|IN/K 6= 1,

ucris,N/K if χ|IN/K = 1 and χ|H = ψ,

1 if χ|IN/K = 1 and χ|H 6= ψ.

If ψ|IN/L 6= 1, then χ|IN/K 6= 1 whenever 〈χ|H , ψ〉H 6= 0. Thus ρGH(ucris,N/K)ψ = 1
for those characters ψ.

On the other hand, if ψ|IN/L = 1, then ψ is a character of the cyclic group

H := H/IN/L = 〈FL〉. Each character χ ∈ Irr(G) with (ucris,N/K)χ 6= 1 is actually
a character of G := G/IN/K = 〈FK〉. Note that we can naturally identify H with
a subgroup of G and recall that |G/H| = dL/K .

We therefore obtain∏
χ∈Irr(G)

(ucris,N/K)〈χ,IndGHψ〉G
χ =

∏
χ∈Irr(G),χ|H=ψ

det(1− χ(FK)(pu)−dK )

det(1− udKχ(FK)−1)
.

We consider the numerator and denominator separately and use in each case the
polynomial identity ∏

χ∈Irr(G),χ|H=ψ

(X − χ(FK)) = XdL/K − ψ(FL).

15



For the numerator we compute∏
χ∈Irr(G),χ|H=ψ

det(1− χ(FK)(pu)−dK )

= det

 ∏
χ∈Irr(G),χ|H=ψ

(pu)−dK
(
(pu)dK − χ(FK)

)
= det

(
(pu)−dKdL/K

(
(pu)dKdL/K − ψ(FL)

))
= det

(
1− (pu)−dLψ(FL)

)
and a similar computation for the denominator shows claim (a).

(b) For any character ψ of G/H we write infl(ψ) for the inflated character of G. By
[BW09, Sec. 6.3], qGG/H(ucris,N/K)ψ = (ucris,N/K)infl(ψ) for any ψ ∈ Irr(G/H). This

is equal to (ucris,L/K)ψ because IL/K = IN/KH/H and infl(ψ)(FK) = ψ(FK).

5 Computation of epsilon constants

As in [IV16, Sec. 2.3] we define

εD(N/K, V ) = (ε(Dpst(IndK/Qp(V ⊗ ρ∗χ)), ψξ, µQp))χ∈Irr(G) ∈
∏

χ∈Irr(G)

Qp
× ∼= Z(Qc

p[G])×.

For all unexplained notation we refer the reader to [IV16, Sec. 2.3]. If there is no
danger of confusion we sometimes drop ψξ and µQp from our notation. Still following
[IV16] (see the proof of Lemma 4.1 of loc.cit.), we obtain

Dpst(IndK/Qp(V ⊗ ρ∗χ)) ∼= Dpst(V )⊗Qnr
p
Dpst(IndK/Qp(χ

∗)). (8)

For an extension L/K of p-adic fields we write DL/K = π
sL/K
L OL for the different

of L/K; in the case K = Qp we use the notations DL for DL/Qp and sL for sL/Qp .
If M/L is a finite abelian extension and η an irreducible character of Gal(M/L),
then we let τL(η) denote the abelian local Galois Gauß sum defined, e.g., in [PV13,
page 1184]). For the definition of Galois Gauß sums for a finite Galois extension
M/L we refer the reader to [Frö83, I.§5].

Proposition 5.1. We have the equality

∂̂1
Zp[G],Qcp[G] (εD(N/K, V ))

= ∂̂1
Zp[G],Qcp[G]

((
det(u)−dK(sKχ(1)+mχ) · τQp(IndK/Qp(χ))−r

)
χ∈Irr(G)

)
.

where we write f(χ) = π
mχ
K OK for the Artin conductor of χ.

Proof. In the proof we will use the list of properties in [BB08, Sec. 2.3]. The field
K of loc.cit. corresponds to Qp in our situation. Hence, if ψ denotes the standard
additive character, we have n(ψ) = 0 for its conductor.

16



Since V is cristalline the N1-basis {ei} constructed in Lemma 4.2 is also a Qnr
p -

basis of Dpst(V ). A straightforward computation (see the proof of Lemma 4.6 for a
similar computation) shows that

φ(ei) =
r∑

h=1

p−1((T nr)−1u−1T nr)h,ieh. (9)

As in the proof of Lemma 4.2, any element σ of the absolute inertia group acts
trivially on the basis elements ei, whence Dpst(V ) is unramified.

Applying (8) and [BB08, 2.3 (6)] we obtain

ε(Dpst(IndK/Qp(V ⊗ ρ∗χ)), ψξ)

= ε(Dpst(IndK/Qp(χ
∗)), ψξ)

r · det(Dpst(V ))(p)m(Dpst(IndK/Qp (χ∗))),

where m(Dpst(IndK/Qp(χ
∗))) is the exponent of the Artin conductor.

We consider the first factor and note that

Dpst(IndK/Qp(χ
∗)) ∼= Qnr

p ⊗Qp IndK/Qp(χ
∗),

so that we deduce from [BC17, Prop. 6.1.3] that

ε(Dpst(IndK/Qp(χ
∗)), ψξ) = τQp(IndK/Qp(χ

∗)).

As a consequence of [Mar77, Prop. II.4.1 (ii)] we get

τQp(IndK/Qp(χ
∗)) = τQp(IndK/Qp(χ))−1 · pm(Dpst(IndK/Qp (χ∗))) · (det((IndK/Qpχ)(−1))).

For the second factor, we first note that

det(Dpst(V ))(p) = det(ϕ−1, Dpst(V )).

By [BB08, page 625] the action of the Weil group WQp on Dpst(V ) is defined so
that the action of the geometric Frobenius ϕ−1 coincides with the usual action
of ϕ−1φ on Dpst(V ). We recall from (9) that with respect to the basis {ei} of
Dpst(V ) the element ϕ−1φ acts as ϕ−1(p−1(T nr)−1u−1T nr) on Dpst(V ), so that we
derive det(ϕ−1, Dpst(V )) = p−r det(u−1).

Finally, by [Neu92, VII.11.7], we get

f(Qnr
p ⊗Qp IndK/Qp(χ

∗)) = f(IndK/Qp(χ
∗)) = d

χ(1)
K NK/Qp(f(χ

∗)) = pdK(sKχ(1)+mχ),

so that

m(Dpst(IndK/Qp(χ
∗))) = m(Qnr

p ⊗Qp IndK/Qp(χ
∗)) = dK(sKχ(1) +mχ).

We conclude that

εD(N/K, V )χ =
(
det(IndK/Qp(χ))(−1)

)r · det(u)−dK(sKχ(1)+mχ) · τQp(IndK/Qp(χ))−r.

The proposition is now immediate from [BC17, Lemma 6.2.2], which shows that

∂̂1
Zp[G],Qp[G]

((
det(IndK/Qpχ)(−1)

)
χ∈Irr(G)

)
= 0.
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Concerning functoriality with respect to change of fields we have the following
lemma.

Lemma 5.2. Let L be an intermediate field of N/K and H = Gal(N/L).

(a) ρGH(∂̂1
Zp[G],Qcp[G](εD(N/K, V ))) = ∂̂1

Zp[H],Qcp[H](εD(N/L, V )).

(b) If H is normal in G, then

qGG/H(∂̂1
Zp[G],Qcp[G](εD(N/K, V ))) = ∂̂1

Zp[G/H],Qcp[G/H](εD(L/K, V )).

Proof. By Proposition 5.1 we have

ρGH(∂̂1
Zp[G],Qcp[G](εD(N/K, V )))

= ρGH

(
∂̂1
Zp[G],Qcp[G]

((
det(u)−dK(sKχ(1)+mχ) · τQp(IndK/Qp(χ))−r

)
χ∈Irr(G)

))
.

By [Bre04b, Lemma 2.3] we have

ρGH(∂̂1
Zp[G],Qcp[G]

(
τQp(IndK/Qp(χ))−r

)
χ∈Irr(G)

)= ∂̂1
Zp[H],Qcp[H]

(
τQp(IndL/Qp(ψ))−r

)
ψ∈Irr(H)

,

whereas [BW09, Sec. 6.1] implies

ρGH

(
∂̂1
Zp[G],Qcp[G]

(
det(u)−dK(sKχ(1)+mχ)

))
= ∂̂1

Zp[H],Qcp[H]

(
(αψ)ψ∈Irr(H)

)
with

αψ =
∏

χ∈Irr(G)

det(u)−dK(sKχ(1)+mχ)〈χ,IndGHψ〉G .

From [Neu92, Thm. VII.11.7] and the obvious relation

IndGHψ =
∑

χ∈Irr(G)

〈χ, IndGHψ〉Gχ

we derive∏
χ∈Irr(G)

f(N/K,χ)〈χ,IndGHψ〉G = f(N/K, IndGHψ) = d
ψ(1)
L/KNL/K(f(N/L, ψ)),

where dL/K denotes the discriminant of L/K. This implies∑
χ∈Irr(G)

mχ〈χ, IndGHψ〉G = dL/KsL/Kψ(1) + dL/Kmψ.

Furthermore, we note∑
χ∈Irr(G)

〈χ, IndGHψ〉G · χ(1) = (IndGHψ)(1) = [G : H]ψ(1) = eL/KdL/Kψ(1).
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Hence we deduce from dL = dKdL/K∑
χ∈Irr(G)

dK(sKχ(1) +mχ)〈χ, indGHψ〉G

= dK(sKeL/KdL/Kψ(1) + dL/KsL/Kψ(1) + dL/Kmψ)

= dLsKeL/Kψ(1) + dLsL/Kψ(1) + dLmψ

= dLψ(1)(sKeL/K + sL/K) + dLmψ

= dLψ(1)sL + dLmψ.

where the last equality follows from the multiplicativity of differents, see [Neu92,
Thm. III.2.2 (i)]. The first functoriality property is now obvious.

The second functoriality property follows easily from [Bre04b, Lemma 2.3] and
[Neu92, Lemma VII.11.7 (ii)].

6 Computation of the cohomological term

6.1 Identifying cohomology

In the following we will take the opportunity to clarify some of the constructions
of [BC17, Sec. 7.1, page 356]. This is necessary since in the definition of CN/K

we use the identification of H1(N, T ) with F(p
(r)
N ) coming from continuous cochain

cohomology combined with Kummer theory whereas in the computations in [BC17,
Sec. 7.1] we use the identification coming from [BC17, Thm. 4.3.1] combined with
[BC17, Lemma 4.1.1]. In this manuscript we work in the r-dimensional setting based
on the results of [Cob18, Sec. 3], where the special case r = 1 covers the situation of
[BC17].

Let

C•N,ρnr := [IN/K(χnr) −→ IN/K(χnr) −→ Qr
p(ρ

nr)/(FN − 1) ·Qr
p(ρ

nr)],

with non-trivial modules in degree 0, 1 and 2, be the complex of [Cob18, Thm. 3.12]
and let

C•N,T := [IN/K(χnr) −→ IN/K(χnr)],

with non-trivial modules in degree 1 and 2, be the complex of [Cob18, Thm. 3.15].
We also deduce from [Cob18, Thm. 3.3] combined with [Cob18, Lemma 2.1] the short
exact sequence

0 −→ F(p
(r)
N )

fF,N−−−→ IN/K(χnr) −→ IN/K(χnr) −→ Z/(FN − 1)Z −→ 0. (10)

In the sequel we will use dotted arrows for morphisms in the derived category
and solid arrows for those which are actual morphisms of complexes.

In the proof of [Cob18, Thm.3.12] we construct an isomorphism

τ : C•N,ρnr
// RΓ(N,F)

in the derived category which induces the identity on H0. In a second step, see
[Cob18, Cor. 3.13], we produce quasi-isomorphisms

η : P •
∼−→ C•N,ρnr and η̃ : P̃ •

∼−→ C•N,T [1]
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where

P • := [P−1 −→ P 0 −→ P 1 −→ Qr
p/(FN − 1) ·Qr

p(ρ
nr)],

P̃ • := [P−1 −→ P 0 −→ P 1].

Here the Zp[G]-modules P−1, P 0, P 1 are finitely generated and projective and the
uniquely divisible module Qr

p(ρ
nr)/(FN − 1) · Qr

p(ρ
nr) is G-cohomologically trivial.

Composing η and τ we obtain an isomorphism P • // RΓ(N,F) in the derived

category. Passing to the projective limit in [Cob18, Lemma 3.14] we obtain another
quasi-isomorphism ϕ : P̃ •

∼−→ RΓ(N, T )[1] and thus obtain the following commuta-
tive diagram in the derived category

C•N,ρnr

τ

��

C•N,T [1]ιoo

ξ

��

P •

∼ η

OO

τ◦η∼
��

P̃ •
ιoo

∼ η̃

OO

∼ ϕ

��
RΓ(N,F) RΓ(N, T )[1]

τ◦η◦ϕ−1
oo

(11)

On H0 we therefore obtain the commutative diagram

F(p
(r)
N )

fF,N //

id
��

H0(C•N,ρnr)

H0(τ)

��

id // H1(C•N,T )

H0(ξ)

��
F(p

(r)
N ) id // H0(N,F)

H0(ϕ◦η−1◦τ−1)// H1(N, T )

(12)

By the proof of [BC17, Thm. 4.3.1] (which is used also for [Cob18, Thm. 3.15]) we
know that the composite

H0(N,F)
H0(ϕ◦η−1)−−−−−−→ H1(N, T ) −→ H1(N,F [pn])

is the Kummer map ∂Ku,n resulting from the distinguished triangle

RΓ(N,F)
pn−→ RΓ(N,F) −→ RΓ(N,F [pn])[1] −→ .

By the universal property of projective limits we obtain

H0(ϕ ◦ η−1) = ∂Ku, respectively H0(ξ) = ∂Ku.

6.2 Definition of the twist invariant

In this subsection we define an invariant Utw(ρnr
Qp) in the relative algebraic K-group

K0(Zp[G],Qnr
p [G]). We recall that T nr ∈ Glr(Znr

p ) satisfies the matrix equality

ϕ(T nr) = u−1T nr. (13)
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This equality determines T nr up to right multiplication by a matrix S ∈ Glr(Zp),
explicitly, if T̃ nr is a second matrix satisfying (13), then T nr = T̃ nrS. It is thus
immediate that the element

Utw(ρnr
Qp) := ∂̂1

Zp[G],Qnr
p [G]

(det(T nr)) (14)

does not depend on the specific choice of T nr satisfying (13).

Remark 6.1. The element Utw(ρnr
Qp) clearly becomes trivial under the canonical map

K0(Zp[G],Qnr
p [G]) −→ K0(Znr

p [G],Qnr
p [G]).

6.3 The cohomological term CN/K

In this subsection we clarify and correct the computation of the cohomological term
CN/K of [BC17, Sec. 7.1]. In particular, we produce a detailed proof of [BC17, Lemma
7.1.2], which in loc.cit. was quoted from [IV16, Lemma 6.1]. It is this part of the
computation where the new term Utw(ρnr

Qp) emerges.
We recall that we throughout assume Hypothesis (F), in particular, ρnr|GN 6= 1.

Then, by [BC17, (15), (16)] the cohomological term CN/K is defined by

CN/K = −χZp[G],BdR[G](M
•, expV ◦comp−1

V ) (15)

where
M• = RΓ(N, T )⊕ IndN/QpT [0]. (16)

We fix a Zp[G]-projective sublattice L ⊆ ON such that the exponential map expF
of Lemma 3.3 converges on L(r). We set X(L) := expF(L(r)) and note that X(L) ⊆
F(p

(r)
N ).

The embedding X(L)
fF,N
↪−−→ H1(C•N,T ), where fF ,N is the first map in the exact

sequence (10), induces an injective map of complexes X(L)[−1] −→ C•N,T . We set

K•(L) := IndN/Qp(T )[0]⊕X(L)[−1],

M•(L) := [IN/K(ρnr)/fF ,N(X(L)) −→ IN/K(ρnr)] (17)

with modules in degree 1 and 2 and have thus constructed an exact sequence of
complexes

0 −→ K•(L) −→ C•N,T ⊕ IndN/Qp(T )[0] −→M•(L) −→ 0.

We first rewrite CN/K in terms of the middle complex and obtain

CN/K = −χZp[G],BdR[G](C
•
N,T ⊕ IndN/Qp(T )[0], expV ◦comp−1

V ◦H
0(ξ))

with ξ as in (11). We then use additivity of refined Euler characteristics in distin-
guished triangles and derive

CN/K = [X(L), λ, IndN/Qp(T )]− χZp[G],BdR[G](M
•(L), 0), (18)

where λ is the following composite map

X(L)BdR
= F(p

(r)
N )BdR

fF,N−−−→ H1(C•N,T )BdR

H0(ξ)−−−→ H1(N, T )BdR

compV ◦exp−1
V−−−−−−−−→ (IndN/Qp(T ))BdR

.
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Then the term χZp[G],BdR[G](M
•(L), 0) is precisely the term which is computed in

[BC17, Sec. 7.2] in the one-dimensional weakly ramified case. We will compute this
term in arbitrary dimension r ≥ 1 in Section 6.4 in the tame case and in Section 6.5
in the weakly ramified case.

For the first term we obtain

[X(L), λ, IndN/Qp(T )] =

[
X(L), λ2,

r⊕
i=1

Lei

]
+

[
r⊕
i=1

Lei, compV , IndN/QpT

]
(19)

where the elements e1, . . . , er are defined in Lemma 4.2 and λ2 is the composite map

X(L)BdR[G]

H0(ξ)◦fF,N−−−−−−−→ H1(N, T )BdR[G]

exp−1
V−−−→ tV (N)BdR[G]. (20)

Note that e1, . . . , er constitute an N -basis of DN
dR(V ) = tV (N).

In the next three lemmas we will compute the summands in (19).

Lemma 6.2. With λ2 denoting the composite map defined in (20) we have[
X(L), λ2,

r⊕
i=1

Lei

]
= 0.

Proof. This proof is an expanded version of the arguments of [IV16, p. 509].
Recall the isomorphism θ : F → Gr

m from (2), which satisfies θ(x) ≡ ε−1x
(mod deg ≥ 2). Let πBdR

: BdR
+ → Cp be the natural projection to the residue

field. Similarly to [BK90, p. 360] we can construct a commutative diagram of exact
sequences

0 // T
θ−1

//

=

��

lim←−F(p
(r)
OCp

)

θ

��

// F(p
(r)
OCp

)

ε◦θ
��

// 0

0 // T //

incl

��

lim←−(O×Cp)
r(ρnr) = (R×)r(ρnr)

x7→εx0 //

��

(O×Cp)
r //

logp

��

0

0 // V //

=

��

(Bϕ=p
cris ∩BdR

+)r(ρnr)
ε◦πBdR //

incl
��

Cr
p

//

v 7→t−1Tnrv
��

0

0 // V // Bϕ=1
cris ⊗ V // (BdR/BdR

+)⊗ V // 0

Note that (differently from [BK90]) some of the objects are twisted by ρnr in
order to make all maps GN -invariant; ε always denotes multiplication by the element
ε ∈ Qnr

p which occurs in (2). We observe that by Lemma 3.1 we have the equality
logp ◦ε ◦ θ = logF .

Taking GN -fixed elements and cohomology we obtain

(F(p
(r)
OCp

))GN = F(p
(r)
N )

∂Ku //

logF
��

H1(N, T )

incl

��
(Cr

p)
GN = N r

s

��

H1(N, V )

=

��
((BdR/BdR

+)⊗ V )GN = tV (N) =
⊕r

i=1 Nei
expV // H1(N, V ),
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where the map s is such that s(vi) = ei for all i. Note that this diagram is the
higher dimensional version of [IV16, (3.4)]. It makes the identification s of N r and
the tangent space tV (N) explicit.

We rewrite λ2 in terms of the maps in the last diagram and get

X(L)BdR[G] = F(p
(r)
N )BdR[G]

H0(ξ)◦fF,N //

λ2

**

H1(N, T )BdR[G]

∂−1
Ku // F(p

(r)
N )BdR[G]

logF
��

BdR
(r)

s

��
tV (N)BdR[G]

By diagram (12) we see that (∂−1
Ku ◦H0(ξ) ◦ fF ,N)(X(L)) = X(L), so that it remains

to show

[X(L), s ◦ logF ,
r⊕
i=1

Lei] = 0,

which is immediate from logF(X(L)) = L(r) and s(vi) = ei for i = 1, . . . , r.

Lemma 6.3. With notation as in (19) and m := [K : Qp] we have[
r⊕
i=1

Lei, compV , IndN/QpT

]

= −rm∂̂1
Zp[G],BdR[G](t) +

[
r⊕
i=1

Lẽi, compV (−1), IndN/QpT (−1)

]
,

where the elements ẽi are defined in Lemma 4.3.

Proof. It is easy to see that in the r-dimensional setting we also have a diagram as
in [IV16, (6.1)]. If we denote the vertical maps in this diagram by f1 and f2, then[

r⊕
i=1

Lei, compV , IndN/QpT

]
+ [IndN/QpT, f2, IndN/QpT (−1)]

=

[
r⊕
i=1

Lei, f1,

r⊕
i=1

Lẽi

]
+

[
r⊕
i=1

Lẽi, compV (−1), IndN/QpT (−1)

]
.

Since f1 sends each basis element ei to ẽi, the first summand on the right hand side
is trivial. Both IndN/QpT and IndN/QpT (−1) are isomorphic to Zp[G]rm as Zp[G]-
modules. Via these isomorphisms the map f2 corresponds to multiplication by t and
so we obtain

[IndN/QpT, f2, IndN/QpT (−1)] = [Zp[G]rm, t,Zp[G]rm] = rm∂̂1
Zp[G],BdR[G](t).

Let β ∈ N be a normal basis element of N/K, i.e. N = K[G]β. Let

ρβ = (ρβ,χ)χ∈Irr(G) ∈ Z(Qc
p[G])× =

∏
χ∈Irr(G)

(Qc
p)
×
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be defined by
ρβ,χ = d

χ(1)
K NK/Qp(β|χ),

where dK denotes the discriminant of K/Qp and NK/Qp(β|χ) the usual norm resol-
vent, see e.g. [PV13, Sec. 2.2].

We also recall the definition of the twist invariant Utw(ρnr
Qp) in Section 6.2. The

next lemma corrects an error in [BC17, Lemma 7.1.2] where we just quoted the
proof of [IV16, Lemma 6.1]. However, whereas we work in the relative group
K0(Zp[G], BdR[G]), the authors of loc.cit. work in K0(Znr

p [G], BdR[G]) where Utw(ρnr
Qp)

vanishes by Remark 6.1.

Lemma 6.4. With m = [K : Qp] and ∂̂1 = ∂̂1
Zp[G],BdR[G] we have[

r⊕
i=1

Lẽi, compV (−1), IndN/QpT (−1)

]
= r [L, id,OK [G]β] +mUtw(ρnr

Qp) + r∂̂1(ρβ).

Proof. We let Ttriv = Z(r)
p and Vtriv = Q(r)

p denote the trivial representations. Let
z1, . . . , zr denote the canonical Zp-basis of Ttriv.

In the following we choose to use for each GN -representation W

IndN/Qp(W ) = {x : GQp −→ W | x(τσ) = τx(σ) for all τ ∈ GN , σ ∈ GQp}

as the definition for the induction. Note that if L/Qp is any field extension (e.g.,
L = BdR) which carries an action of GQp and W is an L-space, then IndN/Qp(W ) is
also an L-space with (αx)(σ) = σ(α)x(σ) for all α ∈ L and σ ∈ GQp . We also note
that

IndN/Qp(W ) −→ L[GQp ]⊗L[GN ] W, x 7→
∑

σ∈GQp/GN

σ ⊗ x(σ−1),

is a well-defined isomorphism of L[G]-modules. For the comparison isomorphism
compW we then obtain the following simple description

compW : L⊗Qp
(
L⊗Qp W

)GN −→ IndN/Qp(L⊗Qp W ),

l ⊗ z 7→ lyz,

where l ∈ L, z ∈
(
L⊗Qp W

)GN and yz(σ) := z for all σ ∈ GQp (and hence, (lyz)(σ) =
σ(l)z).

We define a G-equivariant isomorphism

h̃ :
(
BdR ⊗Qp Vtriv

)GN −→ (
BdR ⊗Qp V (−1)

)GN , 1⊗ zi 7→ ẽi,

and

h : IndN/Qp
(
BdR ⊗Qp Vtriv

)
−→ IndN/Qp

(
BdR ⊗Qp V (−1)

)
, x 7→ h̃ ◦ x.

Then, similar as in the proof of [IV16, Lemma 6.1], we obtain a commutative diagram

BdR ⊗Qp (BdR ⊗Qp Vtriv)GN
compVtriv //

BdR⊗h̃
��

IndN/Qp(BdR ⊗Qp Vtriv)

h

��
BdR ⊗Qp (BdR ⊗Qp V (−1))GN

compV (−1) // IndN/Qp(BdR ⊗Qp V (−1)),
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As a a consequence we derive[
r⊕
i=1

Lẽi, compV (−1), IndN/QpT (−1)

]

=

[
r⊕
i=1

Lzi, BdR ⊗ h̃,
r⊕
i=1

Lẽi

]
+

[
r⊕
i=1

Lzi, compVtriv , IndN/QpTtriv

]
+
[
IndN/QpTtriv, h, IndN/QpT (−1)

]
=

[
r⊕
i=1

Lzi, compVtriv , IndN/QpTtriv

]
+
[
IndN/QpTtriv, h, IndN/QpT (−1)

]
= r [L, id,OK [G]β] +

[
r⊕
i=1

(OK [G]βzi), compVtriv , IndN/QpTtriv

]
+
[
IndN/QpTtriv, h, IndN/QpT (−1)

]
The computations in [IV16, pages 512-513] show that[

r⊕
i=1

OK [G]βzi, compVtriv , IndN/QpTtriv

]
= r∂̂1

Zp[G],BdR[G](ρβ).

It finally remains to prove that[
IndN/QpTtriv, h, IndN/QpT (−1)

]
= mUtw(ρnr

Qp).

To that end we write
GQp =

⋃
ρ̄∈G

⋃
σi∈GK\GQp

GNρσi

and define elements xij ∈ IndN/Qp(Ttriv) and yij ∈ IndN/Qp(T (−1)) for i = 1, . . . ,m
and j = 1, . . . , r by

xij(ρσk) =

{
zj, if i = k and ρ̄ = 1,

0, otherwise,

and

yij(ρσk) =

{
ṽj, if i = k and ρ̄ = 1,

0, otherwise.

Without loss of generality we assume ρ = 1 for ρ̄ = 1. Then the xij, respectively,
the yij, constitute a Zp[G]-basis of IndN/Qp(Ttriv), respectively, IndN/Qp(T (−1)).

For fixed i and j and for 1 ≤ k ≤ m we compute

(h(xij)) (ρσk) =

{
ẽj, if i = k and ρ̄ = 1,

0, otherwise.

For 1 ≤ s ≤ m and 1 ≤ t ≤ r let ξst be indeterminates (with values in BdR). Then(∑
s,t

ξstyst

)
(ρσk) =

{∑
t(ρσk)(ξkt)ṽt, if ρ̄ = 1,

0, otherwise.
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Since ẽj =
∑

t T
nr
tj ⊗ ṽt we obtain

∑
t

(ρσk)(ξkt)ṽt =

{∑
t T

nr
tj ⊗ ṽt, if i = k,

0, if i 6= k,

and hence for all 1 ≤ t ≤ r

ξit = σ−1
i (T nr

tj ), ξkt = 0 for k 6= i.

We conclude that with respect to the chosen basis the map h is represented by a
block matrix of the form

C =

 σ−1
1 (T nr)

. . .

σ−1
m (T nr)

 .

We recall that ϕ(T nr) = u−1T nr and fix αi ∈ Ẑ such that σi|Qnr
p

= ϕαi . Note that for
all n ∈ Z, ϕ−n(T nr) · (T nr)−1 = un, which coincides with ρnr(ϕn). By a continuity
argument we have ϕ−αi(T nr) · (T nr)−1 = uαi , where uαi is well-defined by [Cob18,
Lemma 1.5]. Then

det(C) =
m∏
i=1

det (uαiT nr) = det(u)α det(T nr)m

with α =
∑

i αi. Since det(u)α ∈ Z×p ⊆ Zp[G]× the result follows from the definition
of Utw(ρnr

Qp).

We summarize the results of the previous lemmas in the following proposition.

Proposition 6.5. With ∂̂1 = ∂̂1
Zp[G],BdR[G] and χ = χZp[G],BdR[G] we have

CN/K = −rm∂̂1(t) + r [L, id,OK [G]β] + r∂̂1(ρβ) +mUtw(ρnr
Qp)− χ(M•(L), 0).

Remark 6.6. To compare Proposition 6.5 and [BC17, (55)] we first note that in
loc.cit. we have L = OK [G]β. The additional new term Utw(ρnr

Qp) emerges from the
computations in Lemma 6.4. The error does not affect the validity of any of the
arguments in [BC17], it just forces us to adapt our definition of RN/K and R̃N/K .

To finish the proof of the conjecture it is necessary to compute explicitly the term
χZp[G],BdR[G](M

•(L), 0). For this we will consider the tame and the weakly ramified
case separately.

6.4 The tame case

In this subsection we let N/K be tame und compute the term χZp[G],BdR[G](M
•(L), 0)

from (18). In the tame case, by results of Ullom, we can and will use L = pνN for a
large enough positive integer ν and we also fix β ∈ ON such that ON = OK [G]β.

Proposition 6.7. We have

χZp[G],BdR[G](M
•(L), 0) = r[pνN , id, pN ]− ∂̂1

Zp[G],BdR[G](
∗(det(1− udKF−1)eI)).
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Proof. The key point in the proof is that by Proposition 2.2 the cohomology modules
of M•(L) are perfect, so that we can compute the refined Euler characteristic of
M•(L) in terms of cohomology without explicitly using the complex. In a little more
detail, we note that the mapping cone of

F(p
(r)
N )/X(L)[1]→M•(L),

where the map in degree 1 is induced by fF ,N , is isomorphic to H2(N, T )[2]. We
also recall from Section 2 that we identify H2(N, T ) with Z/(FN − 1)Z. Hence we
conclude from [BB05, Thm. 5.7] that

χZp[G],BdR[G](M
•(L), 0)

= χZp[G],BdR[G]

(
F(p

(r)
N )/X(L)[1], 0

)
+ χZp[G],BdR[G](Z/(FN − 1)Z, 0).

To compute the first summand we observe that by Proposition 3.4 we have X(L) =
F
(
(pνN)(r)

)
. Since for each integer i ≥ 0 the identity map induces isomorphisms

F
(
(piN)(r)

)
/F
(
(pi+1
N )(r)

) ∼= (piN)(r)/(pi+1
N )(r) (21)

a standard argument shows that

χZp[G],BdR[G]

(
F(p

(r)
N )/X(L)[1], 0

)
= χZp[G],BdR[G]

(
p

(r)
N /(pνN)(r)[1], 0

)
= r[pνN , id, pN ].

For the computation of the second term we consider the short exact sequence of
G-modules

0→ Zrp[G/I]
F−1udK−1−−−−−−→ Zrp[G/I]

π−→ Z/(FN − 1)Z → 0,

where π(z(ḡ)) = g · (z + (FN − 1)Z) for all z ∈ Zrp and g ∈ G and where G acts
on Z/(FN − 1)Z through any lift of its elements to GK (which is well-defined since
elements of GN act trivially).

Let x =
∑d−1

i=0 αiF
−i ∈ Zrp[G/I] be an element in the kernel of the map on the

left. Then udKαi−1−αi = 0 for all i. Hence (uddK − 1)αi = 0 and by the assumption
ZGN = 1, it follows that αi = 0 for all i. Hence the map on the left is injective.

Next we see that π((F−1udK − 1)ei) = (ρnr(F−1)udK − 1)ei = 0.
Conversely let x =

∑d−1
i=0 αiF

−i ∈ Zrp[G/I] be such that π(x) = 0. Modulo
the image of F−1udK − 1, x has a representative y ∈ Zrp. We must show that
y ∈ im(F−1udK −1). Since π(y) = 0, there exists z ∈ Zrp such that y = (uddK −1)z =
((F−1udK )d − 1)z, which is in the image of F−1udK − 1. Hence we have exactness in
the middle term.

To prove the exactness of the sequence, it remains to check the surjectivity of the
map on the right, which is obvious.

Since we are considering the case of a tame extension, Zrp[G/I] is a projective
Zp[G]-module and we have:

χZp[G],BdR[G](H
2(N, T )[2], 0) = −[Zrp[G/I], F−1udK − 1,Zrp[G/I]].

The results follows.
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6.5 The weakly ramified case

In this subsection we let p be an odd prime. Let K/Qp be the unramified extension
of degree m. We let N/K be a weakly and wildly ramified finite abelian extension
with cyclic ramification group. We let d = dN/K be the inertia degree of N/K and
assume that m and d are relatively prime.

The aim of this subsection is to compute the term χZp[G],BdR[G](M
•(λ), 0) from

(18) in this weakly and wildly ramified situation. For that purpose we aim to gener-
alize the methods of [BC17], however, this forces us to introduce a further technical
condition which might be either

Hypothesis (T): UN ≡ 1 (mod p)

or

Hypothesis (I): UN − 1 is invertible modulo p

Here (T) stands for trivial reduction modulo p and (I) for invertible modulo p. If
we set ω := vp(det(UN − 1)) then we have the following equivalences

(I) holds ⇐⇒ UN − 1 ∈ Glr(Zp) ⇐⇒ ω = 0.

Note also that Hypothesis (T) immediately implies ω > 0. However, in the higher
dimensional setting there are mixed cases, where none of our hypotheses holds.

As in [BC17] we have a diagram of fields as follows.

Nnr

N Knr

M
p

K ′

d

K
m

K̃ ′

Qp.

Here K ′/K is the maximal unramified subextension of N/K, M/K is a weakly and
wildly ramified cyclic extension of degree p and N = MK ′. Since gcd(m, d) = 1,
there exists K̃ ′/Qp of degree d such that K ′ = KK̃ ′.

The following lemma generalizes [BC17, Lemma 7.2.1].

Lemma 6.8. For n ≥ 2 one has

F((pnN)(r)) is Zp[G]-projective ⇐⇒ n ≡ 1 (mod p).

Moreover,
F(p

(r)
N ) is Zp[G]-projective ⇐⇒ Hypothesis (I) holds.
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Proof. For n ≥ 2 the formal logarithm induces an isomorphism F((pnN)(r)) ∼= (pnN)(r)

of Zp[G]-modules by Proposition 3.4. Hence the first assertion follows from [Köc04,
Th. 1.1 and Prop. 1.3].

We henceforth assume n = 1. By Lemma 2.3 we know that F(p
(r)
N ) is cohomo-

logically trivial, if and only if Hypothesis (I) holds. Hence it suffices to prove that

F(p
(r)
N ) is torsion-free. By [Cob18, Lemma 2.1] the module F(p

(r)
N ) is isomorphic to(∏

r N̂
×
0 (ρnr)

)GN
which is torsion-free. Indeed, any tuple (ζ1, . . . , ζr) of p-th roots

of unity ζ1, . . . , ζr ∈ N̂×0
∼= Zp × U

(1)
N0

must be contained in N (because N0/N is
unramified). Hence (ζ1, . . . , ζr) is fixed by GN , if and only if it is fixed by FN , if and
only if ζ1 = . . . = ζr = 1 (using Hypothesis (I)).

By Lemma 6.8 we can and will take L = pp+1
N and thus obtain

X(L) = F
(
(pp+1
N )(r)

)
.

We recall some of the notations from [BC17]. We put q = pm, b = F−1 and
consider an element a ∈ Gal(Nnr/K) such that Gal(M/K) = 〈a|M〉, a|Knr = 1. Since
there will be no ambiguity, we will denote by the same letters a, b their restrictions
to N . Then Gal(N/K) = 〈a, b〉 and ord(a) = p, ord(b) = d. We also define Ta :=∑p−1

i=0 a
i.

Let θ1 ∈ M be such that TM/Kθ1 = p, where TM/K denotes the trace map from
M to K, and OK [Gal(M/K)]θ1 = pM . Let θ2 (resp. A) be a normal integral basis
generator of trace one for the extension K̃ ′/Qp (resp. K/Qp). Let α1 ∈ O×K be such
that θa−1

1 ≡ 1− α1θ1 (mod p2
M). If we set

α1, α2 = α1A,α3 = α1A
ϕ, . . . , αm = α1A

ϕm−2

, (22)

then these elements form a Zp-basis of OK (see [BC17, (60)]).
Furthermore, we use [Cob18, Lemma 2.4] to find for i = 1, . . . , r an element

γi ∈
∏

r U
(1)
N0

such that
(FN − 1) · γi = (θ1)i, (23)

where
(θ1)i := (1, . . . , 1, θa−1

1 , 1, . . . , 1)

with the non-trivial entry is the i-th component.
Let

W ′ = Zp[G]rz1 ⊕ Zp[G]rz2,

W≥n =

p−1⊕
j=n

m⊕
k=1

Zp[G]rvk,j ∼=
p−1⊕
j=n

m⊕
k=1

Zp[G]rαkwj =

p−1⊕
j=n

OK [G]rwj

and put
W = W≥0.

If we write e1, . . . , er for the standard Zp-basis of Zp(r), then a general element of W
is of the form

r∑
i=1

p−1∑
j=1

m∑
k=1

λi,j,keivk,j =
r∑
i=1

p−1∑
j=1

µi,j,keiwj
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with λi,j,k ∈ Zp[G] or µi,j ∈ OK [G]. We will apply this convention analogously for
the modules W ′ and W≥n.

We define a matrix E ∈Mr(OK′) by

E =

{
1 under Hypothesis (I)∑dm−1

i=0 (Aθ2)ϕ
i
u−i under Hypothesis (T)

(24)

and a matrix

ũ =

{
1 under Hypothesis (I)

u under Hypothesis (T)
(25)

We also recall that in [Cob18, Lemma 1.9] we constructed an element ε ∈ Glr(Znr
p )

such that u = ε−1 · ϕ(ε).

Lemma 6.9. The following assertions hold:

(a) E ∈ Glr(OK′).

(b) ϕ(E) ≡ ũE ≡ Eũ (mod pOK′).

(c) ϕ(ε−1E) ≡ u−1ũε−1E (mod p).

Proof. Let H = Gal(K ′/Qp) and let f : H → K ′ be defined by f(σ) = (Aθ2)σ
−1

.
Then, applying [Was97, Lemma 5.26 (a)], we obtain

det((Aθ2)τσ
−1

)σ,τ∈H =
∏
χ∈Ĥ

∑
σ∈H

(Aθ2)σ
−1

χ(σ).

Since Aθ2 is an integral normal basis generator and K ′/Qp is unramified, the left
hand side det(τσ−1(Aθ2))σ,τ∈H is a unit (whose square is the discriminant of K ′/Qp).

Therefore, for each character χ ∈ Ĥ the factor

∑
σ∈H

(Aθ2)σ
−1

χ(σ) =
dm−1∑
i=0

(Aθ2)ϕ
i

χ(ϕ−i)

is a unit and hence
∑dm−1

i=0 (Aθ2)ϕ
i
ϕ−i is a unit in the maximal order M of K ′[H].

Since
∑dm−1

i=0 (Aθ2)ϕ
i
ϕ−i ∈ OK′ [H], we deduce from the well-known fact

M× ∩ OK′ [H] = OK′ [H]×

that
∑dm−1

i=0 (Aθ2)ϕ
i
ϕ−i ∈ OK′ [H]×. We now apply the character ρnr

Qp and easily derive
(a).

For the proof of (b) we can assume Hypothesis (T) and we compute

ϕ(E) =
dm−1∑
i=0

(Aθ2)ϕ
i+1

u−(i+1)u ≡ Eu ≡ uE (mod pOK′)

where the congruences hold because we have umd ≡ 1 (mod p) by hypothesis (T).
If Hypothesis (T) holds, then part (c) is an immediate consequence of [Cob18,

Lemma 1.9]. Under Hypothesis (I) it follows from the definitions.
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Generalizing the approach of [BC17, Sec. 6.3] we define a Zp[G]-module homo-
morphism

f̃3,W : W −→ F(p
(r)
N )

by

f̃3,W (eivk,j) = Eαk(a− 1)jθei = E



0
...
0

αk(a− 1)jθ
0
...
0


for all i, j, k, where θ = θ1θ2. We denote by f3,W the composition of f̃3,W with the

projection to F(p
(r)
N )/F((pp+1

N )(r)).
In order to generalize [BC17, Lemma 7.2.4], we first need a higher dimensional

version of [BC16, Lemma 4.1.7].

Lemma 6.10. For ν ∈ OK [G], i = 1, . . . , r and j = 0, . . . , p− 1 we have

f3,W (νeiwj) ∈ pj+1
N ei and f3,W (νeiwj) ≡ νE(a− 1)jθei (mod pj+2

N ).

Proof. We write ν =
∑

h,l,k νh,l,ka
hblαk for some νh,l,k ∈ Zp. Then

f3,W

(∑
h,l,k

νh,l,ka
hbleiαkwj

)
=
∑
h,l,k

νh,l,ka
hbl · Eαk(a− 1)jθei ∈ pj+1

N ei

by [BC16, Lemma 3.2.5]. Using the isomorphism in (21), this is congruent to∑
h,l,k

νh,l,ka
hblEαk(a− 1)jθei (mod pj+2

N ).

Lemma 6.11. The map f3,W is surjective. More precisely, for j ≥ 0,

f3,W (W≥j) = F((pj+1
N )(r))/F((pp+1

N )(r)).

Proof. For j = p, W≥p = {0} and F((pp+1
N )(r))/F((pp+1

N )(r)) = {0}, so the result is
trivial.

We assume the result for j + 1 and proceed by descending induction. Let x ∈
F((pj+1

N )(r)). As in the proof of [BC17, Lemma 7.2.4], there exist νh,`,i,k ∈ Zp such
that

x ≡ E
∑
h,`,i,k

νh,`,i,ka
hb`αk(a− 1)jθei (mod pj+2

N )

≡
∑
h,`,i,k

ũm`Eϕ−m`νh,`,i,ka
hb`αk(a− 1)jθei (mod pj+2

N )

≡
∑
h,`,i,k

ũm`νh,`,i,ka
hb`Eαk(a− 1)jθei (mod pj+2

N )

≡ f̃3,W

(∑
h,`,i,k

ũmlνh,`,i,ka
hb`eiαkwj

)
(mod pj+2

N ).

31



This means that the class π(x) of x in F(p
(r)
N )/F((pp+1

N )(r)) is the sum of an element in
the image ofW≥j and an element in F((pj+2

N )(r))/F((pp+1
N )(r)), which is by assumption

in the image of W≥j+1 ⊆ W≥j.

Lemma 6.12. Let 1 ≤ i ≤ r, 0 ≤ j ≤ p − 1, 1 ≤ k ≤ m. Then there exists
µi,j,k ∈ W≥j+2 such that the element

si,j,k = αk(a− 1)eiwj − αkeiwj+1 + µi,j,k

is in the kernel of f3,W . Here wp should be interpreted as 0.

Proof. As in the proof of [BC17, Lemma 7.2.5], we see that the formal subtraction
of X and Y takes the form

X −F Y = X − Y + (X tAhY )h − (Y tAhY )h + (deg ≥ 3).

with Ah ∈Mr(Zp) for h = 1, . . . , r. In analogy to the proof of [BC17, Lemma 7.2.5]
we set

x := Eαk(a− 1)jaθei, y := Eαk(a− 1)jθei, z := x− y = Eαk(a− 1)j+1θei

and we obtain that x−F y −F z ≡ 0 (mod F((pj+3
N )(r))). Therefore

f̃3,W (αk(a− 1)eiwj − αkeiwj+1) ≡ 0 (mod F((pj+3
N )(r)))

and we conclude the proof of the lemma using Lemma 6.11.

Lemma 6.13. The elements

ri,1 = Taeiα1w0 + εu−1ũ1−mm̃ε−1b−m̃eiα1wp−1 − eiα1wp−1,

ri,k = Taeiαkw0 + εu−1ũ1−mm̃ε−1b−m̃eiαk+1wp−1 − eiαkwp−1,

ri,m = Taeiαmw0 + εu−1ũ1−mm̃ε−1b−m̃ei

(
α1 −

m∑
i=2

αi

)
wp−1 − eiαmwp−1

for 1 ≤ i ≤ r and 1 < k < m are in the kernel of f3,W . Note that εu−1ũ1−mm̃ε−1 has
coefficients in Znr

p and is fixed by ϕ, hence it has coefficients in Zp.

Proof. We denote by vj the j-th component of a vector v. Using [BC16, Lemma 3.2.2]
and Lemma 6.9 (c) we calculate

(NN0/K0(ε
−1Eαkθei))j = NN0/K0(θ1)(ε−1Eαkθ2ei)j

p

≡ −αpkθ
p
2α

1−p
1 p(ε−1Eei)j

p
(mod pp+1

N0
)

≡ −αpkθ
p
2α

1−p
1 p(ϕ(ε−1E)ei)j (mod pp+1

N0
)

≡ −αpkθ
p
2α

1−p
1 p

(
u−1ũε−1Eei

)
j

(mod pp+1
N0

).

We also compute

TN0/K0(ε
−1Eαkθei) = TN0/K0(θ1)ε−1Eαkθ2ei ≡ pαkθ2ε

−1Eei (mod pp+1
N0

).
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With this in mind, we can do analogous calculations to those in [BC16, Lemma 4.2.6]
and [BC17, Lemma 7.2.6] and obtain

f3,W (Taeiαkw0) ≡ ε

(
αkθ2 − α1

(
αk
α1

)p
θb
−m̃

2 u−1ũ

)
pε−1Eei (mod pp+1

N0
).

Furthermore,

f3,W (εu−1ũ1−mm̃ε−1b−m̃eiαk+1wp−1)

≡ εu−1ũ1−mm̃ε−1Eϕmm̃αk+1pθ
b−m̃

2 ei (mod pp+1
N0

)

≡ εu−1ũ1−mm̃umm̃(ε−1E)ϕ
mm̃

αk+1pθ
b−m̃

2 ei (mod pp+1
N0

)

≡ εu−1ũε−1Eαk+1pθ
b−m̃

2 ei (mod pp+1
N0

).

It is straightforward to adapt the remaining calculations from [BC17, Lemma 7.2.6]
and conclude that ri,k ∈ ker f3,W for for 1 ≤ i ≤ r and 1 < k < m. The proof that
ri,m ∈ ker f3,W is analogous.

From now on we have to distinguish the cases of Hypothesis (T) and (I).
We start assuming Hypothesis (I).
Following the computations in [BC17, Sect. 7.3], we have

χZp[G],BdR[G](M
•(L), 0) = [F((pp+1

N )(r)), id,F(p
(r)
N )] = [ker(f3,W ), id,W ].

Lemma 6.14. The pmr elements ri,k, si,j,k for 1 ≤ i ≤ r, 0 ≤ j ≤ p− 2, 1 ≤ k ≤ m
constitute a Zp[G]-basis of ker f3,W .

Proof. We adapt the proof of [BC17, Lemmas 7.3.1]. We write the coefficients of the
eiαkwp−1-components, i = 1, . . . , r, k = 1, . . . ,m, of the elements ri,j, j = 1, . . . ,m,
into the columns of an mr×mr matrix which we callM and whose entries are r× r
blocks,

M =



εu−1ε−1b−m̃−1 0 · · · 0 0 εu−1ε−1b−m̃

0 −1 · · · 0 0 −εu−1ε−1b−m̃

0 εu−1ε−1b−m̃ · · · 0 0 −εu−1ε−1b−m̃

...
...

. . .
...

...
...

0 0 · · · εu−1ε−1b−m̃ −1 −εu−1ε−1b−m̃

0 0 · · · 0 εu−1ε−1b−m̃ −1−εu−1ε−1b−m̃


.

By Lemma 4.5 and analogous computations as in [BC17] we obtain

detM = (−1)r(m−1) det(u−mb−1 − 1).

The rest of the proof works exactly as in [BC17]; note that Hypothesis (I) plays the
role of the assumption ω = 0 in the one-dimensional setting.

We recall that G = Gal(N/K) = 〈a〉 × 〈b〉. Any irreducible character ψ of G
decomposes as ψ = χφ, where χ is an irreducible character of 〈a〉 and φ an irreducible
character of 〈b〉. We will denote by χ0 the trivial character.
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Proposition 6.15. Assume Hypothesis (I). For L = pp+1
N the element

χZp[G],BdR[G](M
•(L), 0) ∈ K0(Zp[G], BdR[G])

is contained in K0(Zp[G],Qp[G]) and represented by ε ∈ Qp[G]× where

κχφ =

{
pmr if χ = χ0

(−1)r(m−1) det(u−mφ(b)−1 − 1)(χ(a)− 1)mr(p−1) if χ 6= χ0.
.

Proof. We choose the elements ri,k and si,j,k of Lemma 6.14 as a Zp[G]-basis of
ker(f3,W ) and fix the canonical Zp[G]-basis of W . Then

χZp[G],BdR[G](M
•(L), 0) = [ker(f3,W ), id,W ]

is represented by the determinant of

M =



TaI (a− 1)I 0 · · · 0 0
0 −I (a− 1)I · · · 0 0
0 ∗ −I · · · 0 0
...

...
...

. . .
...

...
0 ∗ ∗ · · · −I (a− 1)I
M ∗ ∗ · · · ∗ −I


,

where in the above pmr × pmr all the entries are mr ×mr-blocks. Recalling that p
is odd, we get:

det(χφ(M)) =

{
pmr(−1)mr(p−1) if χ = χ0

(−1)m
2r2(p−1) det(χφ(M))(χ(a)− 1)mr(p−1) if χ 6= χ0

=

{
pmr if χ = χ0

(−1)r(m−1) det(u−mφ(b)−1 − 1)(χ(a)− 1)mr(p−1) if χ 6= χ0.

It remains to consider the case of Hypothesis (T). Here we follow the strategy of
[BC17, Section 7.4].

Lemma 6.16. There is a commutative diagram of Zp[G]-modules with exact rows

0 // X(2)⊕W //

f̃3,W
��

W ′ ⊕W δ2 //

f̃3

��

Zp[G]rz0
π //

f̃2
��

Z/(FN − 1)Z //

=

��

0

0 // F(p
(r)
N )

fF,N // IN/K(ρnr)
(F−1)×1// IN/K(ρnr) // Z/(FN − 1)Z // 0

where

δ2(eiz1) = (umb− 1)eiz0,

δ2(eiz2) = (a− 1)eiz0,

δ2(eivj,k) = 0,

f̃2(eiz0) = [(θ1)i, 1, . . . , 1],

f̃3(eiz1) = [(θ1)i, 1, . . . , 1],

f̃3(eiz2) = [γi, . . . , γi],

f̃3(eivk,j) = fF ,N(f̃3,W (eivk,j)),

π(eiz0) = ei,
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for all i, j and k (recall that γi was defined in (23)). Further, X(2) = ker(δ2|W ′) and
f̃3,W is the restriction of f̃3 to X(2)⊕W .

Proof. We recall from [Cob18, Sec. 2] that the action of Gal(K0/K)×G on IN/K(ρnr)
is characterized by

(F × 1)[x1, . . . , xd] = [UNx
FN
d , x2, . . . , xd−1],

(F−n × σ)[x1, . . . , xd] = [ρnr(σ̃)xσ̃1 , . . . , ρ
nr(σ̃)xσ̃d ],

where xi ∈
∏

r N̂
×
0 , the elements F−n and σ ∈ G have the same restriction to N ∩K0

and σ̃ ∈ Gal(N0/K) is uniquely defined by σ̃|K0 = F−n and σ̃|N = σ. Furthermore,
we remark that the action of G on Z/(UN − 1)Z is induced by

a · ei = ei, b · ei = ρnr(F−1)ei = U−1
K ei.

The bottom sequence is exact by [Cob18, Thm. 3.3 and Lemma 2.1]. The proofs
of the exactness of the top sequence as well as the proof of commutativity follow
along the lines of proof in the one-dimensional case, see [BC17, Lemma 7.4.1]. For
example, if we denote the coefficients of UK = um by uij, then

f̃2 ◦ δ2(eiz1) = f̃2((umb− 1)ei) = f̃2

(
r∑
j=1

buj,iej − ei

)

=
r∑
j=1

(1× b)uj,i · [(θ1)j, 1, . . . , 1]− [(θ1)i, 1, . . . , 1]

= (1× b) · [(θu1,i1 , θ
u2,i
1 , . . . , θ

ur,i
1 ), 1, . . . , 1]− [(θ1)i, 1, . . . , 1]

= (1× b)[u(θ1)i, 1, . . . , 1]− [(θ1)i, 1, . . . , 1]

= (F × 1)(F−1 × b)[u(θ1)i, 1, . . . , 1]− [(θ1)i, 1, . . . , 1]

= (F × 1)[u−1u(θ1)i, 1, . . . , 1]− [(θ1)i, 1, . . . , 1]

= ((F − 1)× 1) ◦ f̃3(eiz1)

We will need an explicit description of X(2), which generalizes the one given in
[BC17, Lemma 7.4.3].

Lemma 6.17. We have

X(2) = 〈(a− 1)eiz1 − (umb− 1)eiz2, Taeiz2〉Zp[G].

Proof. The proof is just the r-dimensional analogue of that of [BC17, Lemma 7.4.3].

We let
f3,W : X(2)⊕W −→ F(p

(r)
N )/F((pp+1

N )(r)).

denote the composite of f̃3,W with the canonical projection. By Lemma 6.11 the
homomorphism f3,W is surjective.

In the next proposition, which is the analogue of [BC17, Lemma 7.4.2], we will ob-
tain an explicit representative for the complex M•(L), which we will use to compute
the Euler characteristic χZp[G],BdR[G](M

•(L), 0).
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Proposition 6.18. The complex

F • := [ker f3,W −→ W ′ ⊕W −→ Zp[G]rz0]

with modules in degrees 0, 1 and 2 is a representative of M•(L) for L = pp+1
N .

Proof. If we recall the definition of M•(L) from (17), then it follows readily from
Lemma 6.16 and Lemma 6.11 that we have a quasi-isomorphism of complexes

F • −→M•(L).

For the computation of the Euler characteristic of M•(L) we continue to closely
follow the approach of [BC17, Sec. 7.4]. On these grounds we will only sketch the
proofs, pointing out the parts which are specific for the higher dimensional setting.

The next result is an analogue of [BC17, Lemma 7.4.5] and [BC17, Lemma 7.4.6].
Recall that by assumption (m, d) = 1 and let m̃ denote an integer such that

mm̃ ≡ 1 (mod d).

Lemma 6.19. There exist yi,1 ∈ W≥1 such that

ti,1 := (a− 1)eiz1 − (umb− 1)eiz2+

+

(
m∑
j=2

αj(u
mb)1−(j−2)m̃ +

(
α1 −

m∑
j=2

αj

)
(umb)m̃

)
eiw0 + yi,1

and

ti,2 :=

{
Taeiz2 − α1eiwp−1 if m = 1

Taeiz2 − α2eiwp−1 if m > 1

are in the kernel of f3,W .

Proof. Let x2 ∈ OKnr be such that x2/α1 (mod pK′) is a root of Xp −X + Aθ2 and

let (1+x2θ1)i be the element in
∏

r U
(1)
N0

whose i-th component is 1+x2θ1 and all the
other components are 1. By the same proof as in [BC17, Lemma 7.2.2] we obtain

(1 + x2θ1)
ρnr(FN )FN−1
i ≡ (1− α1θ1)i (mod p2

N0
).

Therefore, by [Cob18, Lemma 2.4] we may assume γi ≡ (1 + x2θ1)i (mod p2
N0

).
With this in mind, the proof of the lemma is the same as in [BC17, Lemma 7.4.5]

and [BC17, Lemma 7.4.6].

In the case of Hypothesis (T) we need to redefine the elements ri,1 in a different
way:

Lemma 6.20. The elements

ri,1 = Tati,1 + (umb− 1)ti,2

belong to ker f3,W ∩W and their α1w0-components are (umb)m̃Taei.

Proof. Straightforward by the same calculations as in [BC16, Lemma 4.2.5].
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We also redefine the matrixM considered in the case of Hypothesis (I) using the
elements ti,2 instead of the elements ri,1. For m > 1 we obtain:

M =

0 0 · · · 0 0 εu−mm̃ε−1b−m̃

−1 −1 · · · 0 0 −εu−mm̃ε−1b−m̃

0 εu−mm̃ε−1b−m̃ · · · 0 0 −εu−mm̃ε−1b−m̃

...
...

. . .
...

...
...

0 0 · · · εu−mm̃ε−1b−m̃ −1 −εu−mm̃ε−1b−m̃

0 0 · · · 0 εu−mm̃ε−1b−m̃ −1−εu−mm̃ε−1b−m̃





M1 M̃

.

We call M1 the matrix consisting of the first r columns of M, M̃ the matrix of
the remaining columns.

For m = 1 the matrix M is determined only by the ti,2 and, recalling their
definition from Lemma 6.19, we get minus the identity matrix.

By an easy calculation det(M) = (−1)mr(det(u)mb)−m̃(m−1).

Lemma 6.21. The r(pm+1) elements t1,i, t2,i, for i = 1, . . . , r, ri,k, for i = 1, . . . , r,
k = 2, . . . ,m and si,j,k, for i = 1, . . . , r, j = 0, . . . , p − 2, k = 1, . . . ,m constitute a
Zp[G]-basis of ker(f3,W ).

Proof. It is enough to follow the proof of [BC17, Lemma 7.4.9]. Note that we can
construct the matrix M as in [BC17] and that it also takes exactly the same shape
up to the fact that all the entries are r × r-blocks.

By the same proof as in [BC17] we can now reduce the computation of the term
χZp[G],BdR[G](M

•(L), 0) to the determinant of a matrix (w,M), which looks exactly
as in [BC17], with the convention the elements in Zp[G] must be thought as diagonal
r × r matrices. So in particular m ×m blocks become mr ×mr blocks and so on.
Of course, for the block M we have to take the one defined above and not that of
[BC17]. With this in mind the matrix looks as follows:

∑d−1
i=0 (umb)i

udm−1
(a− 1)Ir 0 0 0 0 · · · 0 0

0 1− umb TaIr 0 0 0 · · · 0 0

0 v 0 TaĨ (a− 1)Irm 0 · · · 0 0
0 ∗ 0 0 −Irm (a− 1)Irm · · · 0 0
0 ∗ 0 0 ∗ −Irm · · · 0 0
...

...
...

...
...

...
. . .

...
...

0 ∗ 0 0 ∗ ∗ · · · −Irm (a− 1)Irm
0 ∗ M1 M̃ ∗ ∗ · · · ∗ −Irm


.

Here Irm (resp. Ir) is the rm × rm (resp. r × r) identity matrix, Ĩ is obtained
by Irm by removing the first r columns, v is an r × rm matrix, whose first r rows
coincide with the matrix (umb)m̃ and 1

udm−1
is the inverse of the matrix udm − 1.

We are ready to record the result of the computation of the refined Euler char-
acteristic of M•(L).
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Proposition 6.22. We assume the hypotheses (F) and (T) and let L = pp+1
N . Then

the element χZp[G],BdR[G](M
•(L), 0) is contained in K0(Zp[G],Qp[G]) and represented

by ε ∈ Qp[G]× where

κχφ =

{
(−1)r det(u)mm̃φ(b)rm̃prm

det(umφ(b)−1)
if χ = χ0

(−1)(m−1)r(det(u)mφ(b)r)−m̃(m−1)(χ(a)− 1)rm(p−1) if χ 6= χ0

and χφ is the decomposition explained before Proposition 6.15.

Proof. The proof is a straightforward adaption of the computations in the proof of
[BC17, Prop. 7.4.10].

7 Rationality and functoriality

From now on we set ∂̂1 = ∂̂1
Zp[G],BdR[G]. As in [BC17], we consider the term

RN/K = CN/K + Ucris + rm∂̂1(t)−mUtw(ρnr
Qp)− rUN/K + ∂̂1(εD(N/K, V ))

which a priori lives in K0(Zp[G], BdR[G]). The unramified term UN/K is defined by
Breuning in [Bre04b, Prop. 2.12]. Recall that RN/K differs from [BC17, (17)] since
we have to adapt the definition of RN/K as explained in Remark 6.6.

Proposition 7.1. The element RN/K is rational, i.e. RN/K ∈ K0(Zp[G],Qp[G]).

Proof. For elements x, y ∈ K0(Zp[G],Qc
p[G]) we use the notation x ≡ y when x−y ∈

K0(Zp[G],Qp[G]). By Propositions 6.5, 5.1 and 4.8 we get

RN/K ≡ r∂̂1(ρ)− rUN/K − rTN/K ,

where TN/K := ∂̂
(
τQp(IndK/Qp(χ))χ∈Irr(G)

)
is precisely the element defined by Bre-

uning in [Bre04b, Sec. 2.3]. The result now follows, since this is exactly r times the
element obtained in [BC17, Prop. 7.1.3].

Proposition 7.2. Let L be an intermediate field of N/K and H = Gal(N/L). Let
ρGH and qGG/H be the restriction and quotient map from (6) and (7), respectively. Then

(a) ρGH(RN/K) = RN/L.

(b) If H is normal in G, then qGG/H(RN/K) = RL/K.

Proof. By definition of the cohomological term we have

RN/K = −χZp[G],BdR[G](M
•, expV,N ◦comp−1

V,N) + rm∂̂1(t)−mUtw(ρnr
Qp)

+Ucris,N/K − rUN/K + ∂̂1
Zp[G],BdR[G](εD(N/K, V ))

with M• = RΓ(N, T ) ⊕ IndN/QpT [0]. The functoriality properties of rm∂̂1(t) and
mUtw(ρnr

Qp) follow easily using the general formulas in [BW09, Sec. 6.1 and 6.3].
Recalling also Lemma 4.9, Lemma 5.2 and [Bre04a, Lemma 4.5], it remains to show

ρGH
(
χZp[G],BdR[G](M

•, expV,N ◦comp−1
V,N)

)
= χZp[H],BdR[H](M

•, expV,N ◦comp−1
V,N) (26)
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and

qGG/H
(
χZp[G],BdR[G](M

•, expV,N ◦comp−1
V,N)

)
= χZp[G/H],BdR[G/H](M

•, expV,L ◦comp−1
V,L).
(27)

The proof of (26) follows along the same line of argument as the proof of [Bre04a,
Lemma 4.14 (1)]. We just have to replace A = µpn in loc.cit. by F [pn].

Since (27) is essentially proved in the same way as part (2) of [Bre04b, Lemma
4.14] we only give a brief sketch. As in (17) of loc.cit. we obtain a canonical isomor-
phism

RΓ(L, T ) ∼= RHomZp[H](Zp, RΓ(N, T )) (28)

in the derived category. For each i the induced map from H i(Qc
p ⊗ RΓ(L, T )) ∼=

Qc
p⊗H i(L, T ) to H i(Qc

p⊗RHomZp[H](Zp, RΓ(N, T ))) ∼= Qc
p⊗H i(N, T )H is the map

induced by the restriction H i(L, T ) −→ H i(N, T ).

For i = 1 this restriction map is clearly given by the inclusion F(p
(r)
L ) ⊆ F(p

(r)
N )

and for i = 2 cohomology vanishes after tensoring with Qc
p by our hypothesis (F).

We further note that we have a canonical isomorphism(
IndN/QpT

)H ∼= IndL/QpT (29)

which is given by x 7→ x, if we identify IndN/QpT with the set of maps x : GQp −→ T
satisfying x(τσ) = τx(σ) for all τ ∈ GN and σ ∈ GQp .

From (28) and (29) we derive a canonical isomorphism M•
L
∼= RHomZp[H](Zp,M•

N)
and it finally remains to show that the induced maps (drawn as dotted arrows below)
in the following diagram coincide with comp−1

V,L and expV,L, respectively.

(
IndN/Qp(V )BdR

)H
∼=
��

comp−1
V,N //

(
DN

dR(V )BdR

)H
∼=
��

expV,N// (H1(N, V )BdR
)
H

= F(p
(r)
N )HBdR

∼=
��

IndL/Qp(V )BdR

comp−1
V,L // DL

dR(V )BdR

expV,L // H1(L, V )BdR
= F(p

(r)
L )BdR

For expV this is immediate since it is defined as a connecting homomorphism (see,
for example, [BB08, p. 612]) and thus compatible with restriction. Also for compV
it follows from the definitions, see [BB08, p. 625].

8 Proof of the main results

As in [BC17] we also define

R̃N/K = CN/K + Ucris + rm∂̂1(t)−mUtw(ρnr
Qp) + ∂̂1(εD(N/K, V )),

so that RN/K = R̃N/K − rUN/K .
We now argue as in the proof of [BC17, Prop. 3.2.6] (see page 359 of loc.cit.). By

Taylor’s fixed point theorem together with [Bre04b, Prop. 2.12] it can be shown that
RN/K = 0 in K0(Zp[G],Qp[G]) if and only if R̃N/K = 0 in K0(Znr

p [G],Qnr
p [G]).

From Propositions 6.5, 5.1 and 4.8 we conclude that

R̃N/K =r∂̂1(ρβ) + r[L, id,OK [G] · β]− χ(M•(L), 0)

+ ∂̂1(∗(det(1− Fp−dKu−dK )eI))− ∂̂1(∗(det(1− udKF−1)eI))

+ ∂̂1
(
det(u)−dK(sKχ(1)+mχ)

)
χ∈Irr(G)

− r∂̂1
(
τQp(IndK/Qp(χ))

)
χ∈Irr(G)

.

(30)
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As in the one-dimensional case, see [BC17, Proposition 3.2.6], the following three
statement are equivalent in our present setting:

(a) Cna
EP (N/K, V ) is valid.

(b) RN/K = 0 in K0(Zp[G],Qp[G]).

(c) R̃N/K = 0 in K0(Znr
p [G],Qnr

p [G]).

Proof of Theorem 1.1. It suffices to show that R̃N/K = 0. From (30) together
with Proposition 6.7 we obtain

R̃N/K = r∂̂1(ρβ) + r[pN , id,ON ] + ∂̂1(∗(det(1− Fp−dKu−dK )eI))

+ ∂̂1
(
det(u)−dK(sKχ(1)+mχ)

)
χ∈Irr(G)

− r∂̂1
(
τQp(IndK/Qp(χ))

)
χ∈Irr(G)

.

The term
∂̂1
((

det(u)−dK(sKχ(1)+mχ)
)
χ

)
vanishes by [IV16, Lemma 6.2]. Since N/K is tame, the group ring idempotent eI is
contained in Zp[G] and it is then easy to show that

∗(det(pdK − Fu−dK )eI) ∈ Zp[G]×.

We conclude that

∂̂1(∗(det(1− Fp−dKu−dK )eI)) = −r∂̂1(∗(pdKeI))

= −r[pN , id,ON ].

where the last equality follows from [IV16, (6.7)]. In conclusion, we have shown that

R̃N/K = r
(
∂̂1(ρβ)− ∂̂1

(
τQp(IndK/Qp(χ))

)
χ∈Irr(G)

)
.

We finally conclude as in the proof of [Bre04b, Thm. 3.6] or as in [IV16, page 517]
to show that

∂̂1(ρβ)− ∂̂1
(
τQp(IndK/Qp(χ))

)
χ∈Irr(G)

= 0.

We recall that these proofs crucially use a fundamental result of M. Taylor (see
[Frö83, Thm. 31]) which computes the quotient of norm resolvents and Galois Gauss
sums. We also note that the so-called non-ramified characteristic which occurs in
these results is an integral unit itself.

Proof of Theorem 1.3. The crucial input in our proof is a result of Picket and
Vinatier in [PV13]. In [BC16, Sec. 5.1] we used this result to construct an integral
normal basis generator β = p2αMθ2 of L = pp+1

N . Hence the expression in (30)
simplifies to

R̃N/K =r∂̂1(ρβ)− χZp[G],BdR[G](M
•(L), 0)

+ ∂̂1(∗(det(1− Fp−dKu−dK )eI))− ∂̂1(∗(det(1− udKF−1)eI))

+ ∂̂1
(
det(u)−dK(sKχ(1)+mχ)

)
χ∈Irr(G)

− r∂̂1
(
τQp(IndK/Qp(χ))

)
χ∈Irr(G)

(31)
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By [BC16, Prop. 5.2.1] the element ∂̂1(ρβ) − ∂̂1
(
τQp(IndK/Qp(χ))

)
χ∈Irr(G)

is repre-

sented by ∂̂1(η−1) with η as in [BC16, Prop. 5.2.1]. Furthermore, recalling that
m = dK and sK = 0,

∂̂1
(
det(u)−dK(sKχ(1)+mχ)

)
χ∈Irr(G)

= ∂̂1
(
det(u)−mmχ)

)
χ∈Irr(G)

.

From now on, we have to distinguish the three conditions in the statement of the
Theorem. Let us start with (a), i.e. Hypothesis (I). In this case R̃N/K is represented
by

r̃χφ =


d
r/2
K NK/Qp (θ2|φ)rp2rm det(1−p−mu−mφ(b−1))

prm det(1−umφ(b))
if χ = χ0

d
r/2
K NK/Qp (θ2|φ)rprmχ(4)rφ(b)−2r det(u)−2m

(−1)r(m−1)(u−mφ(b)−1−1)(χ(a)−1)rm(p−1) if χ 6= χ0

=

(−1)r
d
r/2
K NK/Qp (θ2|φ)r

det(1−umφ(b))
det(u)−mφ(b)−r det(1− pmumφ(b)) if χ = χ0

(−1)r
d
r/2
K NK/Qp (θ2|φ)r

det(1−umφ(b))
det(u)−mφ(b)−r

(
−p

(χ(a)−1)p−1

)rm
χ(4)r if χ 6= χ0.

Let Wθ2 ∈ Otp[G] ⊂ Znr
p [G]× be defined by

χφ(Wθ2) = (−1)rd
r/2
K NK/Qp(θ2|φ)r.

So

r̃ =
Wθ2 det(u)−mb−r

det(1− umb)
(det(1− pmumb)ea + (−ũ)mσ4(1− ea)) ,

where ũ ∈ Zp[a] is a unit whose augmentation is congruent to 1 modulo p, as in
[BC17, Sect. 8]. Then the proof works as in [BC17].

Let us now consider case (b), i.e. Hypothesis (T). In this case R̃N/K is represented
by

r̃χφ =

(−1)r
d
r/2
K NK/Qp (θ2|φ)rp2rm det(umφ(b)−1) det(1−p−mu−mφ(b−1))

det(u)mm̃φ(b)rm̃prm det(1−umφ(b))
if χ = χ0

(−1)r(m+1) d
r/2
K NK/Qp (θ2|φ)rprmχ(4)rφ(b)−2r det(u)−2m

(det(u)mφ(b)r)−m̃(m−1)(χ(a)−1)rm(p−1) if χ 6= χ0

=

{
χφ(Wθ2)φ(b)−r−rm̃ det(u)−m−mm̃ det(1− pmumφ(b)) if χ = χ0

χφ(Wθ2)φ(b)−r−rm̃ det(u)−m−mm̃
(

−p
(χ(a)−1)p−1

)rm
χ(4) det(u)m

2m̃−m if χ 6= χ0,

So

r̃ = Wθ2b
r−rm̃ det(u)−m−mm̃

(
det(1− pmumb)ea + (−ũ)mσ4 det(u)m

2m̃−m(1− ea)
)
.

As in [BC17], Hypothesis (T) implies that det(u)m
2m̃−m ≡ 1 (mod 1− ζp). Then the

proof works as in [BC17], using the computations of the case of Hypothesis (I).
It remains to consider the case (c). Let E/K ′ be the unramified extension of

degree d̃. By the functoriality result of Proposition 7.2 (a) it is enough to show
RNE/K = 0, which is true since for NE/K we can apply part (b) of the theorem.

We finally prove Theorems 1.5 and 1.6. For the definition of the twist matrix
of an abelian variety A with good ordinary reduction we refer the reader to [LR78,
page 237]. We recall the following lemma.
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Lemma 8.1. Let A be an r-dimensional abelian variety defined over the p-adic num-
ber field L with good ordinary reduction and let U be the twist matrix of A. Then
det(U − 1) 6= 0.

Proof. This is shown in [Maz72, Cor. 4.38] or in the proof of [LR78, Thm. 2].

Proof of Theorems 1.5 and 1.6. The results are immediate from Theorems 1.1
and 1.3. Note that Hypothesis (F) and the condition det(ρnr(FN)d̃ − 1) 6= 0 are
automatically satisfied by Lemma 8.1.
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