The epsilon constant conjecture for higher
dimensional unramified twists of Z (1)

Werner Bley and Alessandro Cobbe

Abstract

Let N/K be a finite Galois extension of p-adic number fields and let
p™: Gg — Gl (Zy) be an r-dimensional unramified representation of the ab-
solute Galois group GG i which is the restriction of an unramified representation
rg,: Go, — Gl,(Zy). In this paper we consider the Gal(/N/K)-equivariant
local e-conjecture for the p-adic representation T' = Z(1)(p™). For example,
if A is an abelian variety of dimension r defined over Q, with good ordinary
reduction, then the Tate module 7' = T, A associated to the formal group A of
A is a p-adic representation of this form We prove the conjecture for all tame
extensions N/K and a certain family of weakly and wildly ramified extensions
N/K. This generalizes previous work of Izychev and Venjakob in the tame
case and of the authors in the weakly and wildly ramified case.
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1 Introduction

Let p be a prime and N/K a finite Galois extension of p-adic number fields with
group G := Gal(N/K). We write Gk (resp. Gy) for the absolute Galois group of
K (resp. N) and for each finite extension £/Q, we let Fr denote the arithmetic
Frobenius automorphism. Let V denote a p-adic representation of Gx and let T C V
be a G-stable Z,-sublattice such that V' = Q, ®z, T

As in [IVI16] and [BC1T] we write Cp(N/K, V) for the equivariant e-constant
conjecture, see for example Conjecture 3.1.1 in [BC17]. For more details and some
remarks on the history of the conjecture we refer the interested reader to the intro-
duction and Section 3.1 of [BC17].

In this manuscript we will consider C}%(N/K, V') for higher dimensional unram-
ified twists of Z (1) (which should be considered as the Tate module associated with
G7,). More precisely, by [Cobl8|, Prop. 1.6], each matrix U € Gl.(Z,) gives rise to
an unramified representation of G by setting p"*(Fk) := U. We will be concerned
with the module 7" = Z;(1)(p™"), which by [Cobl18, Prop. 1.11] can be considered as
the Tate module of a an r-dimensional Lubin-Tate formal group.

We recall that for » = 1 and representations p™ which are restrictions of unram-
ified representations pgy : Gg, —* Z, lzychev and Venjakob in [IV16] have proven
the validity of CE‘}D(N / K V) for tame extensions N/K. The main result of [BCI17,
Thm. 1] shows that C}%(N/K, V') holds for certain weakly and wildly ramified finite
abelian extensions N/K. In this context we recall that N/ K is weakly ramified if the
second ramification group in lower numbering is trivial. Generalizing these results
we will show:

Theorem 1.1. Let N/K be a tame extension of p-adic number fields and let
pg,: Go, — Gl.(Z,)

be an unramified representation of Gg,. Let p™ denote the restriction of py to Gk.
Then CEp(N/K, V) is true for N/K and V = Q)(1)(p™), if det(p™ (Fin) — 1) # 0.

Remarks 1.2. (a) The condition det(p™(Fy)— 1) # 0 holds, if and only if H*(N,T)
is finite (see Section . It is also equivalent to (Z;(pnr))GN =0.
(b) If r = 1, then det(p™(Fy) — 1) = 0 if and only if p™|g, = 1. If r > 1, then

there are 'mixed’ cases where both p"|g, # 1 and det(p™(Fy) — 1) = 0, see,
e.g., [Cobl8, Example 3.18].

(c) If p™|g,y = 1, then twisting commutes with taking G y-cohomology, so that we
expect that Cp%(N/K, V) can be proved relying on the fact that the conjecture
is known in the untwisted case by |[Bre04b]. In the case r = 1 this is sketched in
[IV16, App. A.1], however, for r > 1 we have not checked the details.

In the weakly ramified setting we will prove the following theorem.

Theorem 1.3. Let p be an odd prime. Let K/Q, be the unramified extension of
degree m and let N/K be a weakly and wildly ramified finite abelian extension with



cyclic ramification group. Let d denote the inertia degree of N/K, let d denote the
order of p™ (Fn) mod p in Gl.(Z,/pZ,) and assume that m and d are relatively prime.
Let

pa}: GQp — GlT(Zp)
be an unramified representation of Gg, and let p™ denote the restriction of Py, to

Gr. Assume that det(p™ (Fy) — 1) # 0 and, in addition, that one of the following
three conditions holds:

(a) p™(Fy) — 1 is invertible modulo p;

(b)  p™(Fy) =1 (mod p);

(¢c) ged(d,m) =1 and det(p™(Fy)? — 1) # 0.

Then C5(N/K, V) is true for N/K and V = Qg(l)(pm).

Remarks 1.4. (a) In the case r = 1 we define as in [BC17, (14)] a non-negative
integer w = wn = v,(1 — p™(Fn)). Note that the conditions (a) and (b)
concerning the reduction of p™(Fy) modulo p generalize the cases w = 0 and
w > 0, which were studied separately in [BC17], and which exhaust all the
possible cases when r = 1. In the higher dimensional setting of the present
paper, however, this is not true, even under the assumption det(p™ (Fy)—1) #
0. To deal with the remaining cases, our strategy of proof is to replace the
field N by its unramified extension of degree d and to use functoriality with
respect to change of fields (see Prop. . For technical reasons this forces us
to require hypothesis (c).

(b) By [Cobl8, Lem. 1.1] we know that d is a divisor of p*t with s = (r — 1)r/2
and t = [;_;(p' — 1).

In a more geometrical setting, if A/Q, is an abelian variety of dimension r with
good ordinary reduction, then by [Cobl8, Prop. 1.12] the Tate module of the as-
sociated formal group A is isomorphic to Z;(l)(p&) for an appropriate choice of
pgy,- Here it is worth to remark that the converse is not true, i.e. not every module
Z,(1)(pg,) comes from an abelian variety with good ordinary reduction. In this set-
ting, by a result of Mazur [Maz72, Cor. 4.38], we know that det(p™(F) — 1) # 0 is
automatically satisfied for any finite extension L/Q,, see Lemma

Theorem 1.5. Let N/K be a tame extension of p-adic number fields and let A/Q,
be an r-dimensional abelian variety with good ordinary reduction. Let P, be the
unramified representation induced by the Tate module Tpfl of the formal group A
of A and let p™ be the restriction of pg to Gr. Then Cyh(N/K,V) is true for

V= Qp ®Zp TpA

Theorem 1.6. Let p be an odd prime and let A/Q, be an r-dimensional abelian
variety with good ordinary reduction. Let K/Q, be the unramified extension of degree
m and let N/K be a weakly and wildly ramified finite abelian extension with cyclic
ramification group. Let Py, be the unramified representation induced by the Tate

module Tpfl of the formal group A of A and let P be the restriction of Py, to Gk.

Let d denote the inertia degree of N/K and let d denote the order of p™(Fy) mod p
in Gl,.(Z,/pZ,). Assume that m and d are relatively prime, and, in addition, that
one of the following conditions holds:



(a) p™(Fy) — 1 is invertible modulo p;

(b)  p"(Fy) =1 (mod p);

(¢) (m,d)=1.
Then CEp(N/K, V) is true for V = Q, ®z, T,A.

To conclude this introduction we reference forthcoming work of Nickel [NicI§]
and a forthcoming joint paper of Burns and Nickel [BN] where an Iwasawa theoretic
approach to C}%(N/K,V) is developed. In a little more detail, Nickel formulates
an Iwasawa theoretic analogue of CE%(N/K,Q,(1)), call it Cp%(Noo/K,Q,(1)) for
the purpose of this introduction, for the extension N, /K where Ny /N is the un-
ramified Z,-extension of N. Then, in a second paper, Burns and Nickel show that
Cpp(Noo/K,Q,(1)) holds if and only if CEH(E/F,Q,(1)) holds for all finite Galois
extensions E/F such that K C FF C E C N,. Furthermore they prove a certain
twist invariance of the conjecture. If Xg, 1s a one-dimensional unramified charac-
ter, they show that Cpp(Noo N’/ K, Q,(1)) holds if and only if Cp%:(E/F, Q,(1)(x™))
holds for all finite Galois extensions E/F such that K C FF C E C NN’ where
N’/N is a certain unramified extension of degree dividing p — 1. It will be very
interesting to see how this Iwasawa theoretic approach will carry over to the higher
dimensional case.

Notations: We will mostly rely on the notation of [BC17] and [Cobl§|. For
a field L we write L¢ for its algebraic closure; for any subfield L of Q5 we let L
denote the p-adic completion of L. In this paper, N/K will always denote a finite
Galois extension of p-adic number fields. We write N™ for the maximal unramified

extension, and then set Ny = N and denote by NO\X the p-completion of Nj*. Let
N; be the maximal unramified subextension of N/Q,. We will denote by ey/x and
dn/k the ramification index and the inertia degree of N/K, Oy will be the ring of

integers of N and Uy will be its group of units. We also set Ay = [[. Ng (p™),
Ty =1, m(pnr) and Z = Z;(p™) and we will mostly use an additive notation
for the (twisted) action of the absolute Galois group Gy. The elements fixed by the
action of GGy will be denoted by Ag” , TgN and Z%~ | respectively.

Let ¢ be the absolute Frobenius automorphism, let Fy be the Frobenius auto-
morphism of N and let F' = Fx be the Frobenius of K.

For an r-dimensional formal group F, we denote by F (p%)) the group structure
on [[, pn induced by F.

For any ring R we denote by M, (R) the ring of r x r matrices with coefficients
in R and by Gl,.(R) the group of invertible matrices. A unity matrix will always be
denoted simply by 1. Also we write Z(R) for the centre of R.

If A and ¥ are unital rings and A — ¥ a ring homomorphism, then we write
Ky(A,Y) for the relative algebraic K-group defined by Swan [Swa70, p. 215]. If
¥ = L|G] for a finite group G and a field extension L/Q, we write Nrdy: K;(X) —
Z(X)* for the map on K, induced by the reduced norm map. We will only be
concerned with cases where Nrdy is an isomorphism. In this case we set 3,{2 =
O\ x oNrdy': Z(¥)* — Ko(A, X)) where Ihx: Ki(X) — Ko(A,X) is the canonical
map. If there is no danger of confusion we will often abbreviate é}\z to 0.

For any Z,-module X and any ring extension R/Z, we set Xp := R®z, X.



1.1 Plan of the manuscript

We will start recalling some results on the cohomology of Z;(l) which are proved in
[Cobl8]. We will also formulate a finiteness hypothesis (F), which we will assume
throughout the paper, and we will show some basic consequences of (F). After a short
digression on the formal logarithm and exponential function in higher dimension in
Section 3| we can start our study of the conjecture C%(N/K, V).

As in [BC17], which was motivated by the work in [IV16], we define an element

Ryyx = Onyic + Uasis + 1m0, ) e () = mUno(63,)
—rUnyx + 07,161 Banic) (ED(N/ K, V)

in the relative algebraic K-group Ky(Z,|G|,Q,[G]). The conjecture Cp%(N/K, V) is
then equivalent to the vanishing of Ry/k.

Actually the element Ry k as defined in (1) differs from [BC17, (17)] by the term
MUy, (p&) This new term emerges from the computation of the cohomological term
Cn/k, which was slightly incorrect in [BCI7], and has to be compensated in the
definition of Ry/k. For more details on this issue we refer the reader to Remark

We will explicitly compute the terms Cy/ g, Ueis and é%p[G],BdR[G} (ep(N/K,V)) in
the definition of Ry,x and then use these results to prove C3p(N/K, V) when N/K
is tame (Theorem and, under some additional hypotheses, also when N/K is
weakly and wildly ramified (Theorem |1.3)). This generalizes previous work for r = 1
of Izychev and Venjakob in [IV16] in the tame case and the authors in [BC17] in the
weakly ramified case.

(1)

2 The cohomology of Z;(1)(p™)

Let u € Gl.(Zy) and let p™ = p,: Gg, — Gl,(Z,) denote the unramified represen-
tation attached to u by [Cobl8, Prop. 1.6]. By [Haz78, Sec. 13.3] there is a unique
r-dimensional Lubin-Tate formal group F = F,,—1 attached to the parameter pu~'.
As in |[Cobl8, Prop. 1.10] we can construct an isomorphism 6: F — G/ defined

over the completion Q" of Q" such that
O(X)=c'X+...and P00 ' =u’ (2)

where £ € G1,(Z27) has the defining property ¢(e7)e = u™'. In the following we set
T :=7Z,(1)(p™) and for future reference we recall that 7" is isomorphic to the p-adic
Tate module T,F of F by [Cobl8, Prop. 1.11].

Let N/Q, be a finite field extension and let Ny = N denote the completion of
the maximal unramified extension of N. Following [Cobl8] we define

Ay = 1_[]\70X (™), Z =17y (p™).

Then, by [Cobl8, Cor. 3.16], we have

I

HYN,T) = A{Y = F(pl)) x 267,
H*(N,T) = Z/(Fy—1)Z,
H'(N,T) 0 fori #1,2.

bt



Remark 2.1. We point out that the above isomorphisms are induced by the explicit
representative C » of RI'(N,T) constructed in [CoblI8, Thm. 3.15]. In the formu-
lation of Cp(N/K, V), however, we will use the identification of the cohomology
modules resulting from the use of continuous cochain cohomology. We will address
this problem in Section [6.1]

For each finite field extension N/Q, we set
Uy = pu(Fx) = p™(Fy) = ™%
and in the sequel always assume the following finiteness hypothesis.
Hypothesis (F): det(Uy — 1) # 0.
This hypothesis clearly implies (and, in fact, is equivalent to)

H'(N,T) = F(py))
H*(N,T) = Z/(Fy—-1)Z=17,/(Uy —1)Z] is finite.

I

The elementary divisor theorem immediately implies
#(Z/(Fy —1)2) = p* with w = v,(det(Uy — 1)),

where v, denotes the normalized p-adic valuation.
We first study the case when N/K is tame.

Proposition 2.2. Let N/K be a finite Galois extension with Galois group G =
Gal(N/K). Assume that Hypothesis (F) holds. If N/K is tame, then both H'(N,T)
and H*(N,T) are G-cohomologically trivial.

Proof. By [Cobl8, Thm. 3.3 and Lemma 2.2] it suffices to show that Z/(Fy—1)Z =
Zr/(Uy — 1)Z, is cohomologically trivial.

We set M := Z/(Fn —1)Z and write I = Iy/k for the inertia group. By [ENI1S|
Lemma 2.3] it suffices to show that H(G/I, M') = 0 and H(I, M) = 0 for all i € Z,
where H' denotes Tate cohomology. Since M is a (finite) p-group and p t #I we get
Hi(I,M) = 0. Hence it suffices to show that H*(G/I, M') = 0 for all i € Z. Since
G/I is cyclic and M finite, a standard Herbrand quotient argument shows that it is
then enough to prove that H—*(G/I, M') = 0. Note that M’ = M. The long exact
cohomology sequence attached to the short exact sequence

0— 22 h z s M—0
of G/I-modules yields the exact sequence
HYG/I,Z2) — HY(G/I,M) — H°(G/I, 2).
With Fy = Fi"/ one has Uy = U’ and

1 - Uy =(14+Ug + ...+ U1 - Ug).

Since Uy — 1 is invertible, the same is true for 1 — Uy, hence Z¢/1 = 0 and
HY(G/I,2) = 0. To show that H~'(G/I,Z) = 0 we note that the above iden-
tity also implies that 1 + Ugx + ... + U;N/ LT invertible, and hence the kernel of
the norm map is trivial. Consequently, H~'(G/I, Z) = 0. O

6



Because of Proposition the tame case is much more accessible to proofs of
conjecture C%(N/K, V') than the wild case. Conversely, the following lemma shows
that in the generic wild case the cohomology modules are not cohomologically trivial.

Lemma 2.3. Assume that Hypothesis (F') holds. Then the following are equivalent:
(i) H?*(N,T) is trivial.

(1) Un—1€ GlL(Z,).

If N/K is wildly ramified, then this is also equivalent to

(iii) H'(N,T) is cohomologically trivial.

() H?*(N,T) is cohomologically trivial.

Proof. The equivalence of (i) and (ii) is clear. The equivalence of (iii) and (iv) follows
from |Cobl8, Thm. 3.3 and Lemma 2.2]. To see the equivalence of (i) and (iv) in
the wildly ramified case it suffices to note that I acts trivially on M := H*(N,T) =
Z/(Fy —1)Z. If P denotes a subgroup of I of order p, then one obviously has

HY(P,M)=Hom(P,M) =0 <= M =0.

[]

3 Formal logarithm and exponential function in
higher dimensions

In this section we prove some results which are probably well-known, but for which
we could not find a precise reference in the literature. Throughout this subsection
we let L be a finite extension of Q, and v, the normalized valuation of L.

The statement and the proof of the following lemma generalize [Fro68, TV.1,
Prop. 1] to a higher dimensional setting. We set X := (X1,...,X,) and for a
homomorphism

fi
f=1:+1:F—-G,
fr

for the Jacobian of f.

: .— [ Ofi
we write J;(X) := <8)J;j>1<ij<r

Lemma 3.1. Let F be an r-dimensional commutative formal group defined over Z,.
Then there exists a unique isomorphism logr : F — G/ defined over Q,, so that the
Jacobian Jiog, (X) satisfies Jiog,(0) = 1. Furthermore, Jiog (X) € Gl.(Z,[[X]]) and
log 7(z) converges for allx = (x4, ..., x,) € L' satisfying min{vy (zy), ..., vp(z,)} >
0.

Proof. By [Er668), 11.2, Thm. 1, Cor. 1] there exists an isomorphism ¢ : F — G/
defined over @Q,. It is then clear that the Jacobian .J,(0) is an invertible matrix.
We also note that J,(0)'X defines an isomorphism ¢; : G — G%. Thus the
composition logr = g1 0 g : F — G/ is an isomorphism satisfying our normalization
Jogr(0) = T (9(0)) T, (0) = J,(0) 1 T,(0) = L.

7



To prove uniqueness we assume that f : 7 — G/ is another isomorphism with

J¢(0) = 1. Then

Jiogr051(0) = Jiog op-1(f(0)) = Jiog, (0)Tp=1(£(0)) = Jiog- (0)J7(0) " = 1.

It is easy to see that the isomorphisms G, — G/, over Q, are in one to one correspon-
dence with the matrices in G1,(Q,). Hence we deduce that logzof~! is the identity

map, i.e., f = logr.
To show that Ji, . (X) € M, (Z,[[X]]), we write

log(F(X,Y)) =logz(X) + log£(Y).

We view both sides as formal series in the variables Y, calculate the Jacobians and
evaluate at Y = O:

g (F(X,0)) Jr(x,9(0) = 04 Jiog - (0).
As a consequence we obtain

Jiogy (X)Jr(x(0) = 1.

We let a denote the ideal of Z,[[X]] which is generated by Xj, ..., X, and note that
PZ,[[X]] + a is the maximal ideal of the local ring Z,[[X]]. By the axioms of formal
groups it follows that Jr(x.)(0) = 1+ M with a matrix M € M,(Z,[[X]]) with coef-
ficients in a. Hence det(Jr(x.(0)) =1 (mod a) and we deduce that det(Jrx,)(0))
is a unit in Z,[[X]]. It follows that Jr(x,)(0) is invertible in M, (Z,[[X]]), so that its
inverse Jog . (X) has integral coefficients and is in fact in Gl,(Z,[[X]]).

Hence a general term of any component logz ; of logz is of the form * I, X,

r

with m = ged(ny,...,n,) and a € Z,,. If we set n. =), n;, then

v, (% Hgyf) > anvL(a:Z) —wvr(m) > nmin{vg(21), ..., vr(x,)} — (log, n)vL(p).

This last expression tends to infinity when the total degree n tends to infinity. [

As usual we write expr for the inverse of logr. To obtain information on the
convergence of exp r we will need the following lemma whose proof is inspired by the
proof of [Sil09, Lemma IV.5.4].

Lemma 3.2. Let f,g € Q,[[X]]" be power series without constant term such that
fl9(X)) =X for X =(X,...,X,). Assume that J,(X) € M,(Z,[[X]]) and J4(0) =
1. Then for all s € N and for all i,n,...,ns € {1,...,r} we have

O fi

—8Xn1 LOX, (0) € Z,,.

Proof. In a first step we prove the following

Claim: For all s € N and all ny,...,ns € {1,...,r} the expression

- 0 fi Ogm, O,

mi1=1 ms=1




is a polynomial in %(g()()) with 1 <t <s—1, ky,....k € {1,...,7} and
coefficients in Z,[[X]].

Indeed, the chain rule for 55— apphed to fi(g(X)) = X; yields

DX,

Jg
X _m1 — 51 n 4
(0 S5 =, (@)
mi1=1
and thus establishes the claim for s = 1
For the inductive step we apply 3 X to the expression in and again by the

chain rule we obtain

aSJrlfi agm1 8gms agms+1
Z Z Z DXy X, 0K, <9<X))3Xm U oX,. 90X,

s+1

mi1=1 ms=1mgsy1=1
r o fz OGm, OGm.
Koo (;1 mz—l OXop,y -+ <g(X))aXn1 aXm)
a 8 fz 8 8gm1 8gm5
g:l 3 o g — ( S 8an) |

Using the inductive hypothesis for the first term on the right hand side and the
assumption J,(X) € M,(Z,[[X]]) for the second one proves the above claim.

In order to prove the assertion of the lemma we again proceed by induction on s.
For s = 1 we specialize (4) at X = 0 and obtain from ¢(0) =0

—~ Ofi
DX,

OGms ;v _ <
(0) X, (0) = din, -

mi1=1

Since J,(0) = 8%? (0) = iny € Zp.
For the inductive step we specialize at X = 0 and since J4(0) = 1 we simply

obtain o

. a—Y

0Xp, -+ 8an( )
By the above claim and the inductive hypothesis this is an element in Z,. O]
Lemma 3.3. The isomorphism expr converges for all v = (xy,...,x,) € L") satis-

fying min{vy (z1),...,v(z)} > vr(p)/(p —1).
Proof. By Lemma [3.1] and Lemma [3.2] we have

0° expr;
——(0)eZ
OXm---é?an( ) P
for any s € N and 7,n4,...,n, € {1,...,7}. It follows that each component expx

of expr is of the form

§ E aml ~~~~~ my Xml . er
m1 "

m1=0 m=0



for some @, m, € Z,. As in the proof of [Sil09, Lemma IV.6.3 (b)] we can show

that

1=0,m;7#0

-----

which under our assumption tends to infinity as the total degree tends to infinity. [J
We summarize our discussion in the next proposition.

Proposition 3.4. Let L be a finite extension of Q, with normalized valuation vy,

Let n > UPLT(?) be an integer. Then the formal logarithm induces an isomorphism

logz: F((p7)") — Go((p7)")
with inverse induced by expr.

Proof. Given the results of this section the proposition follows as in the proof of
[Sil09, Thm.IV.6.4]. O

4 Computation of the term U,

4.1 Some preliminary results

We will apply the notation introduced and explained in [BBOS|, Sec. 1.1]. In partic-
ular, B, Bst and Bgr denote the p-adic period rings constructed by Fontaine. We
recall that the field Bqr = Bjg[1/t] is a Q,-algebra which contains Qf and carries
an action of Gg,. The uniformizing element ¢t = logle] depends on the choice of
¢ = (Gn),>o Where the primitive p"-th roots of unity (,» are compatible with re-
spect to x — aP. We let xy.: Gg, — Z, denote the cyclotomic character which is

uniquely determined by the requirement (7, = C;,%W(U) for all n > 0 and all o € Gg,.
In particular, we have o(t) = xcye(0)t for all o € G, .

The subring B of Bgr contains the element ¢ and, in addition, there is a
Frobenius endomorphism ¢ acting on Bs. In Section we will frequently use the
formula ¢(t) = pt. If V is a p-adic representation of Gk, we put

Gk

D?R(V) = (BdR ®Qp V) , Dng(V) = (Bcris ®Qp V) G

The K-vector space D3 (V) is finite dimensional and filtered. The tangent space of
V over K is defined by

v (K) = Dl (V) /P’ Dl (V).

Finally, we write expy, : ty(K) — H'(K,V) for the exponential map of Bloch and
Kato. Note here that H'(K, V) is defined using continuous cochain cohomology (see

Remark [2.1)).

For any Q,-vector space W we write W* = Homg, (W, Q,) for its Q,-linear dual.
For convenience we usually write ¢j,(K) instead of ty (K)*.
We fix a matrix 7" € Gl,(Z5) so that o(T™)(T™)~! = u™', which exists by

[Cobl8l Lemma 1.9].

10



Lemma 4.1. Let v},..., v} denote the elements of the canonical Q,-basis of V*(1).
Then ef = Z;Zl(an)i_ﬁ @, i =1,...,r, constitute a basis of DY, .(V*(1)) as an

Ni-vector space and of DY (V*(1)) as an N-vector space. In addition, each element
i is fived by the action of the Galois group Gg,.

Proof. The following proof is the r-dimensional generalization of the first part of the
proof of [BC17, Lemma 5.2.1].

By definition we have T™ = u@(T™) and by induction we deduce Fy(1T™) =
@ (T™) = =T and hence u™ Fy(T™) = T™.

First of all recall that the completion ZTID“ of Z;r is contained both in B..s and
Bar. We now prove that the elements e; are fixed by the absolute Galois group Gg,,
which will show that the e} are contained in both DX (V*(1)) and DI (V*(1)). We
note that the inertia group Ig, acts trivially on V*(1) and hence it remains to prove
that ef is fixed by ¢. We first need to calculate ¢(v;). Here we use the definitions
and the fact that the elements v; constitute the canonical basis of Q,(1)(pg, ):

p(v])(v;) = v} (ulvy) = v; <Z(U_l)k,ﬂ)k> = (u™)iy-

k=1

Hence

p(v;) = Z(U_l)i,jv;a

and we conclude that

ple;) = (Z(T’“ ) > (T zhuhn®z )k U
n=1 k=1

n=1 h=1
= (an) (Sh ey Uk: = Z(Tm) ® Uk = 6
h=1 k=1 k=1

Since T™ ¢ GIT(ZTET) C Gl (Bais) the elements ef,... e are a Bgs-basis of
Bais ®g, V*(1). As Nj is a subfield of B, we see that ej,..., e} are linearly
independent over N;. This concludes the proof that the elements e constitute a
basis of DX (V*(1)) since dimpy, DY (V*(1)) < dimg,(V*(1)) = r. In particular this
also proves that V*(1) is cristalline. Then the elements ej, ..., e} must also be a

basis of the N-vector space DI:(V*(1)) = N @y, DY, (V*(1)). O

Cris

Lemma 4.2. Let vy,...,v, be the elements of the canonical Q,-basis of V. The
elements e; = Y _, 1an ® v, i = 1,...,7 constitute a basis of DY, (V) as an
Ni-vector space and of DdR(V) as an N vector space. In addition, each element e;
is fized by the action of the Galois group G, .

Proof. For o € Iy, we compute

r

ole) =Y ot T @ o(v,) Zxcyc ET™ @ Xeyel0)vn = €5

n=1

Hence the elements e; are fixed by the inertia group and a similar computation as in
the proof of Lemma shows that ¢(e;) = e;. The proof follows as above. ]
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Lemma 4.3. Let 0y, ...,7, be the elements of the canonical Q,-basis of V(—1). The
elements & = Y | T ® U, are a basis of DYi (V(—=1)) as an Ny-vector space and

of DX.(V(=1)) as an N-vector space. In addition, each element &; is fized by the
action of the Galois group G, .

Proof. Similar as above. O

4.2 Computation of U,

We recall that V' = Q(1)(p™) and V*(1) = Q)((p™)") and that we always as-
sume Hypothesis (F). The following lemma (and its proof) is the analogue of [BC17,
Lemma 5.1.2].

Lemma 4.4. We have:

(a) ty-ay(N) =0.

(b) H}(N, V*(1)) =0.

(c) H}(N, V)= H!N,V)=H'YN,V).

Proof. Proofs are as for [BC17, Lemma 5.1.2]. For the proof of part (c) we also need
that by Lemma below the endomorphism 1—¢ of DY, (V) is an isomorphism. [

cris

By the above lemma, [Cobl8, Coroll. 3.16] and [BCI7, (30)] the 7-term exact
sequence [BCIT, (5)] degenerates into the two exact sequences

(V) =% DX

cris

0 —s DN

cris

(V)@ ty(N) — H(N,V) — 0

and

0 — DN (V*(1))* — 0.

The term Ues € Ko(Z,[G], Q,[G]) is defined by [BC1T, (26)]. We recall that for a
ring R the abelian group K;(R) is generated by elements [P, ], where P is a finitely
generated projective R-module and « is an automorphism of P. By the computations
in loc.cit., see in particular equation [BC17, (32)], we obtain

Ueris = 02,61,0,6) ([Paxis(V): 1 = 0)) = 97, 1610161 ([ Deis V(1) ", 1 = 67]). - (5)

Before computing U5 we need an easy lemma from linear algebra.

(V*(1))" = D

cris

Lemma 4.5. Let R be a unital commutative ring and let

1 0 0 --- 0 B
A1 0 --- 0 Bs
0o A1 --- 0 Bs
M=1. . . . . € My, (R)
o 00 --- 1 B,
o 00 --- A 1+B,

be a block matrixz, with n® square blocks of the same size. Let det = detg denote the
determinant over R. Then

det(M) = det (1 + nz:(—A)iBn_i> :

12



Proof. By Gaussian elimination we obtain the matrix

100 --- 0 By

10 --- 0 By — AB,
0 01 --- 0 Bs—AB,+ A’B,
000 1 Y (—A) By

(@)
(@)
(@)
[e)

1+ Z?:_Ol <_A)iani
]

The Wedderburn decomposition of Q,[G] induces a decomposition of Z(Q,[G])
as a finite direct sum €, F; of suitable finite field extensions F;/Q,. If z € Z(Q,[G])
we let *z € Z(Q,[G])* denote the invertible element which is given by (*z;) with
*r, = 1 if x; = 0 and *x; = x; otherwise.

We now generalize [BC17, Lemma 5.2.1 and Lemma 5.2.2] and in this way explic-
itly compute the element Ugis. Recall that F' = Fx = ¢ is the Frobenius element
of K. We write I = Iy/k for the inertia subgroup of the Galois extension IV, /K.

Lemma 4.6. The endomorphism 1 — ¢* of DN, (V*(1))* is an isomorphism. Fur-
thermore we have

05 110,11 (DR (V1)1 = ¢7)) = 0 161,001 (" (det (1 — u FV)ey))

in Ko(Zp|G],Qp G])-
Proof. We have to compute ¢(e}). Using the ¢-semilinearity of ¢ we compute

r

= Z @((an)fl)i’n R0 = Z((Tﬂr>7lu)i,’n ® v

n=1

= Z an uan an zn ® U _ Z Z an uan (an)én Q :L
n=1 (=1

((an>_IUan)i,Z€Z-
(=1

We fix a normal basis element 6 of N;/Q,. Then w; ; := ¢ 7(f)e; fori =1,...,r
and j =0,...,dg —1is a Q,[G/I]-basis of DY, (V*(1)). Let ¥;; € DY, ,(V*(1))* for

i=1,...,rand j =0,...,dxg — 1 be the dual Q,[G/I]-basis.
ForO0<i,h<r,0<j,k<dg—1and 0<n <d-—1 we have

¢ (Vi) (F"wn ) = g ((F" ™ (0)er)) = i, <F "o (0) Z((T“r)_luTm)h,e@Z)
(=1

(™)~ uT™ )ty (F o™ (0)eg) = > ((T™) " uT™ ) gthi j (F"we 1)
=1 =1
Ifn=0k=j+1and any 0 < h < r this is equal to ((T™)uT™);; it is 0

otherwise. Hence
T

O* (Vi) = Z((Tm)_1UTm)hﬂ/)h,j+1-

h=1

13



Analogously for 0 < ¢ < r and j = dg — 1 we have

T

O (Vidpe—1) = Z((an)_1Uan)h,iF_l¢h,o-

h=1

Note here that ¢* is indeed defined over Q,[G/I] since (T™)'uT™ € M,(Q,).
With respect to the Q,[G/I]-basis 1; ; the matrix associated to 1 — ¢* is given by

1 0 0 --- 0 — ()T
— (TP )~y 1 0 - 0 0

0 (7)™ ] 0 0

0 0 0 - 1 0

0 0 0 oo —(T™) lu™ 1

In this matrix each entry is an r x r matrix with coefficients in Q,[G/I] (recall that
F = Fk generates G/I). In the following we write det for the determinant over the
commutative ring Q,[G/I]. By Lemma the determinant of the above matrix is
det(1— F~Y(T™) " tudxT™r) = det(1 — F~'u’%). Since this determinant computes the
reduced norm of 1 — ¢* the equality in the lemma follows.

To conclude that 1 — ¢* is an isomorphism it is now enough to notice that

(1= F'u™) (14 F 'l 4 (F ) ve-1) = 1 — Uy,
which is invertible since by Hypothesis (F) we always have det(Uy — 1) # 0. O

Lemma 4.7. The endomorphism 1 — ¢ of DN (V) is an isomorphism and we have
07,110,101 ([Dais(V), 1 = ¢]) = azp[o],Qp[G}(*(det(l — F(pu)~"€)es))
in Ko(Zp|G], Qp|G]).

Proof. The proof is analogous to the proof of the previous lemma.

To show that det(l — F (pu)~9x) is invertible in Q,[G/I], it is enough to notice
that > (F " (pu)?x)’ converges in the matrix ring M, (Z,[G/I]) and is the inverse
of

L= F7H (pu)™ = —F~(pu)™ (1 — F(pu)~*).

Proposition 4.8. We have

Uaris = é%p[a]@,,[c}(*(det(l — F(pu)™™)er)) — 0z, 160,11 (" (det(1 — u™ F~1)ey)).
Proof. The proof is easily achieved by combining , Lemma and Lemma .
We conclude this section proving some functorial properties for the term U,;s. To

that end, we let L be an intermediate field of N/K and set H := Gal(N/L). Then
we let

Pt Ko(Z,[G], Q[G)) — Ko(Z,[H], Q,[H]), (6)

denote the natural restriction of scarlars homomorphism, and if H is normal in G,
then

66m+ Ko(Zy[G), Q[G)) — Ko(Z,|G/H], Q,[G/H]). (7)

denotes the homomorphism which is induced by the functor Homg(Z, ) = (-)*.

14



Lemma 4.9. Let L be an intermediate field of N/K and H = Gal(N/L). Then:
(a) Pg(UCris,N/K) = Ucris,N/L-

(b) If H is normal in G, then qg/H(UcriS,N/K) = Ussis, L/ K -

P’I"OOf. Let Ueris, N/K € Z(QP[G])X be such that é%p[G],@p[G] (Ucris,N/K> = UcriS,N/K' We
will use an analogous notation for all the other Galois extensions involved in the
proof.

Then, for any irreducible character x of GG, we can take

det(l—x(F)(pu)_dK) . o
(ucris N/K)X = { det(l*“dKX(F)_l) if X|IN/K - 17
| 1 if X1y, # 1-

For two (virtual) characters x; and x» of a finite group J we write (x1, x2)s for
the standard scalar product.

(a) By [BWO09, Sec. 6.1] we have

€]
pg(“cri&N/K) - H (ucris,N/K)QX’Inde>G

X€lrr(G) beTrr(H)

Since (x,Ind%¢)e = (x|m,¥) s by Frobenius reciprocity we obtain

. 1 if X’IN/K #1,
(UCris,N/K);X’Inde>G = q Ueris N/ if X|IN/K =1land x|y =¥,

If ¢[r,,, # 1, then x|r,,, # 1 whenever (x|m, )i # 0. Thus pG (Ueris, v/ )y = 1
for those characters ).

On the other hand, if 9| Iy, = 1, then ¢ is a character of the cyclic group
H = H/Iy/ = (Fr). Each character x € Irr(G) with (teis v/i)y 7 1 is actually
a character of G := G/Iy/x = (Fg). Note that we can naturally identify H with
a subgroup of G and recall that |G/H| = dp, .

We therefore obtain

T R LR | QL S CA 3
cris, X —

det(1 — udxy(Fg)~1t)
x€lrr(G) xEIrr(@),X|ﬁ:¢ © ( U X( K) )

We consider the numerator and denominator separately and use in each case the
polynomial identity

[I (X —x(Fx) = X% —g(Fy).

x€lrr(G), x|g=v¢

15



For the numerator we compute

[T det(t—x(Fi) (o))

XEII‘I”( ) XlH

= det II o ()™ - x(Fx))

X€Irr(G), x|l g=v
= det ((pu)”/x ((pu)?= T —(Fp)))
= det (1 — (pu) " y(Fy))

and a similar computation for the denominator shows claim (a).

(b) For any character ¢ of G/H we write infl(1)) for the inflated character of G. By
[BW09, Sec. 6.3], qg/H(ucﬁsﬁN/K)w = (Ueris,N/K )infi(y) for any ¢ € Irr(G/H). This
is equal to (Ueis /K )y because Ir x = In/kH/H and infl(v))(Fx) = ¥ (Fk).

m
5 Computation of epsilon constants
As in [IV16], Sec. 2.3] we define
en(N/K,V) = (e(Dpa(Indiesg, (V ® p})), e, g, xemey € [[ @ = Z(Q5[G)) .

x€lrr(G)

For all unexplained notation we refer the reader to [IV16, Sec. 2.3]. If there is no
danger of confusion we sometimes drop ¢ and g, from our notation. Still following
[IV16] (see the proof of Lemma 4.1 of loc.cit.), we obtain

Dpst(Indg/q,(V @ pi)) = Dpst(V) @apr Dpsi(Ind /g, (X7))- (8)

For an extension L/K of p-adic fields we write D,/ = WZL/ Oy for the different
of L/K; in the case K = Q, we use the notations ®, for D1, and s for sz /g,
If M/L is a finite abelian extension and n an irreducible character of Gal(M /L),
then we let 7, (n) denote the abelian local Galois Gaufl sum defined, e.g., in [PV13]
page 1184]). For the definition of Galois Gaufl sums for a finite Galois extension
M/ L we refer the reader to [Fro83, 1.§5].

Proposition 5.1. We have the equality
a%p[a] Qz[q] (5D(N/K, V)

- 8ZP[G] Q5G] <(det( ) dxclsrx(iytm) TQp <IndK/@p (X))_T)Xelrr(G)> ’

where we write f(x) = 7Ok for the Artin conductor of x.

Proof. In the proof we will use the list of properties in [BBOS, Sec. 2.3]. The field
K of loc.cit. corresponds to @Q, in our situation. Hence, if ¢/ denotes the standard
additive character, we have n(y) = 0 for its conductor.
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Since V is cristalline the Nj-basis {e;} constructed in Lemma is also a Q-
basis of Dy (V). A straightforward computation (see the proof of Lemma E for a
similar computation) shows that

Zp an 71an)h,i€h- (9)

As in the proof of Lemma [£.2] any element o of the absolute inertia group acts
trivially on the basis elements e;, whence Dy (V) is unramified.
Applying (8) and [BBOS| 2.3 (6)] we obtain

€(Dpst(Indg g, (V @ py)), 1)
= &(Dpst(Indg /g, (X)), te)" - det( Dyt (V) (p) ™ Preerdisoy 6N

where m(Dpg(Indg/g,(x*))) is the exponent of the Artin conductor.
We consider the first factor and note that

Dpst(Indr/g, (7)) = Q) @, Indrg, (X7,
so that we deduce from [BCI7, Prop. 6.1.3] that
€(Dpst(Indi /g, (X)), ¥¢) = 7o, (Indk /g, (X"))-
As a consequence of [Mar77, Prop. I11.4.1 (ii)] we get
7a, (Indk/g, (X)) = 7o, (Indk /g, (x)) " - p™Prs /e 0D (det((Ind g, x) (—1)))-
For the second factor, we first note that
det(Dy (V) (p) = det(p™", Dy (V).

By [BB0S, page 625] the action of the Weil group Wg, on Dy (V) is defined so
that the action of the geometric Frobenius ¢! coincides with the usual action
of p~'¢ on Dyg (V). We recall from @D that with respect to the basis {e;} of
Dyt (V) the element ¢~ '¢ acts as ¢ *(p~1(T™) 'u™'T™) on Dy (V), so that we
derive det(¢ ™!, Dpst (V) = p" det(u™t).

Finally, by [Neu92, VII.11.7], we get

HQy @q, Indig, (X)) = fIndg, (X)) = 05 Nigjg, (F(x7)) = pieerex®mo,
so that
m(Dpst(Ind /g, (X)) = m(Qy" ®qg, Indg/q, (X)) = dr(skx(1) + my).
We conclude that
ep(N/K,V)y = (det(Indg g, (x))(—1))" - det(u) <X+ 7y (Indg g, (X)) "

The proposition is now immediate from [BC17, Lemma 6.2.2], which shows that

%100 (Ao, ) (1) i) =0
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Concerning functoriality with respect to change of fields we have the following
lemma.

Lemma 5.2. Let L be an intermediate field of N/K and H = Gal(N/L).
(a) PH( Z,[G],Q5[G] (gD(N/K V))) = 3%,)[H],@;[H](5D(N/La V).
(b) If H is normal in G, then

qg/H(aA%p[G],Qg[G} (ep(N/K,V))) = é%p[G/lﬁﬂ,@;,[c/ﬁr](<€D(L/K7 V).

Proof. By Proposition we have

Pg(aép[c]@g[c] (ep(N/K,V)))
= o (321)[0},@;[@ ((det(“)_dK(sKX(le") T, (IHdK/@p(X))_T)Xem(G)>> :

By [Bre04b, Lemma 2.3] we have

pﬁ(@%p[g}@gm (T@p (Indg/q, <X))7T)x€h“r(G)) zaép[m,@;[m (TQp (Indyq, ("b))ﬂ)welrr(m ;

whereas [BW09, Sec. 6.1] implies

G (] —dx (s m 3
PH (%F[G],@;[G} (det(u) drelsrx X))> = a%p[H},@;[H] ((O%)wehr(m)

with
H det —dg (srx(1 +mx)<X IndH1/1>

x€lrr(G)

From [Neu92, Thm. VII.11.7] and the obvious relation

IndGe = Y (x,Indfd)ax

x€Elrr(G)

we derive

[T v/ x)bemdiiode = 5N/ K, ndGe) = 045 Np s ((N/L,0)),

x€lrr(G)

where 97, denotes the discriminant of L/K. This implies

Z my (X, Indfﬂmc =dr/kspg (1) + dpxmy.

x€E€lrr(G)

Furthermore, we note

Z (¢, IndGv)a - x(1) = (IndgG) (1) = [G : HJ(1) = er/xdrx(1).

Xx€lrr(G)
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Hence we deduce from dj, = dgdp i

Y dilsrx(l) +my){x, indfe)e
x€lrr(G)

= dg(sxer/xdr k(1) +dpspr(1) + dpxmy)
= dpsxer/k¥(1) +drspx (1) +dpmy,

= drY(1)(sxer/x + sp/x) + dpmy

=dpp(1)s, + dpmy.

where the last equality follows from the multiplicativity of differents, see [Neu92l
Thm. 111.2.2 (i)]. The first functoriality property is now obvious.

The second functoriality property follows easily from [Bre04bl Lemma 2.3] and
[Neu92, Lemma VII.11.7 (ii)]. O

6 Computation of the cohomological term

6.1 Identifying cohomology

In the following we will take the opportunity to clarify some of the constructions
of [BCI7, Sec. 7.1, page 356]. This is necessary since in the definition of Cy/k
we use the identification of H'(N,T) with F (p%)) coming from continuous cochain
cohomology combined with Kummer theory whereas in the computations in [BC17,
Sec. 7.1] we use the identification coming from [BC17, Thm. 4.3.1] combined with
[BC17, Lemma 4.1.1]. In this manuscript we work in the r-dimensional setting based

on the results of [Cobl8, Sec. 3], where the special case r = 1 covers the situation of
[BC1T].
Let

CRpoe = Iy (X™) — Iy (X™) — Qu(p™)/(Fnv — 1) - Q(p™)],

with non-trivial modules in degree 0, 1 and 2, be the complex of [Cob18, Thm. 3.12]
and let

Cyr = Ine(X™) — Ine(X™)],

with non-trivial modules in degree 1 and 2, be the complex of [Cobl8, Thm. 3.15].
We also deduce from |[Cobl18, Thm. 3.3] combined with [Cobl8 Lemma 2.1] the short
exact sequence

T fv nr nr
0 — FpW) L5 Ty (X™) — In/(X™) — Z/(Fy —1)Z — 0. (10)

In the sequel we will use dotted arrows for morphisms in the derived category
and solid arrows for those which are actual morphisms of complexes.
In the proof of [Cobl8, Thm.3.12] we construct an isomorphism

7: O yue = RT(N, F)

in the derived category which induces the identity on H°. In a second step, see
[Cobl8, Cor. 3.13], we produce quasi-isomorphisms

n: P* 5 O% e and ij: P* 5 C} (1]
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where

pt = [P — P — P —Q/(Fv—1)-Q(p™)],
p* = [P —P"— Pl

Here the Z,[G]-modules P~!, P’ P! are finitely generated and projective and the
uniquely divisible module Q) (p™)/(Fn — 1) - Q;(p™) is G-cohomologically trivial.
Composing  and 7 we obtain an isomorphism P® - > RI'(N,F) in the derived
category. Passing to the projective limit in [Cobl8, Lemma 3.14] we obtain another
quasi-isomorphism ¢: P* s RT(N, T)[1] and thus obtain the following commuta-
tive diagram in the derived category

o ——— Ci 1] (11)
NT” NT?}
T P* - P
~ :TOT le
4 ¥

On H° we therefore obtain the commutative diagram

r f N ° i °
F(pl)) — =5 HO(C ) — = HY(C 1) (12)
Lid lHO(T) jHO(g)
F(p'r) id 0 HO(pon~tor™1) 1y

By the proof of [BC17, Thm. 4.3.1] (which is used also for [Cobl8, Thm. 3.15]) we
know that the composite

HON, F) 20, (N, T) — HY(N, Fp")
is the Kummer map Ok, ,, resulting from the distinguished triangle
RT(N, F) 2% RT(N, F) — RT(N, Flp"))[1] — .
By the universal property of projective limits we obtain

Hpon™') = Ok, respectively H°(&) = Oy,

6.2 Definition of the twist invariant

In this subsection we define an invariant Utw(p@rp) in the relative algebraic K-group
Ko(Z,|G], Qr[G]). We recall that T € Gl,(Z2") satisfies the matrix equality

O(T™) = u 1T, (13)
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This equality determines 7™ up to right multiplication by a matrix S € Gl,(Z,),
explicitly, if 7™ is a second matrix satisfying , then T™ = T™S. It is thus
immediate that the element

Utw(pa,) = é%p[GL@[@(det(Tm)) (14)

does not depend on the specific choice of T™ satisfying .

Remark 6.1. The element Uy, (p&rp) clearly becomes trivial under the canonical map

Ko(Z, |G, @ G]) — Ko(Zy'[G], QrlG)).

6.3 The cohomological term Cly g

In this subsection we clarify and correct the computation of the cohomological term
Cn/k of [BC17, Sec. 7.1]. In particular, we produce a detailed proof of [BC17, Lemma
7.1.2], which in loc.cit. was quoted from [IV16, Lemma 6.1]. It is this part of the
computation where the new term Uy, (pg, ) emerges.
We recall that we throughout assume Hypothesis (F), in particular, p"|q, # 1.
Then, by [BCI7, (15), (16)] the cohomological term Cy,x is defined by
Cn/k = —X2,(G),Banlc)(M*, expy, ocompy') (15)
where
M* = RT(N, T) @ Indy,q,T[0]. (16)

We fix a Z,|G]-projective sublattice £ C Oy such that the exponential map exp
of Lemma [3.3] converges on £, We set X(£) := exp»(£")) and note that X (L) C

Fpi). f
F,N

The embedding X (£) <—— H'(C} ), where fry is the first map in the exact
sequence , induces an injective map of complexes X (L)[—1] — C} ;. We set

K*(L) = Indwyg, (T)[0] & X(£)[-1],
ML) = [Inyx(p™)/ frn(X (L)) — Inyx(p™)] (17)

with modules in degree 1 and 2 and have thus constructed an exact sequence of
complexes

0 — K*(L) — C}r ® Indnyqg, (T)[0] — M*(L) — 0.
We first rewrite Cy/k in terms of the middle complex and obtain
Ok = —X2,061,Bar16) (Chr © Ind g, (T)[0], expy, ocompy,' o HY(€))

with ¢ as in . We then use additivity of refined Euler characteristics in distin-
guished triangles and derive

CvN/K = [X<‘C)7 )‘7 IndN/@p (T)] - XZp[GLBdR[G](M.(‘C)7 0)7 (18)
where A is the following composite map

r I7, o
X(‘C)BdR = ‘F(pgv))BdR FN} Hl(CN,T)BdR
HO(¢)
RELIN

compy oexp(/1

HI(N> T)BdR E— (IndN/Qp(T))BdR'
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Then the term xz,(6),B.r(c)(M*(L£),0) is precisely the term which is computed in
[BCIT, Sec. 7.2 in the one-dimensional weakly ramified case. We will compute this
term in arbitrary dimension r» > 1 in Section [6.4] in the tame case and in Section [6.5
in the weakly ramified case.

For the first term we obtain

[(X(L£), A\, Indyyq, (T)] = | X (L), Ao, @ Le;| + @ Le;, compy, Indyg, 7| (19)
i=1 i=1
where the elements eq, ..., e, are defined in Lemma and )\, is the composite map
HO(&)ofF, expyt
X(ﬁ)BdR[G] — H1<N7 T)BdR[G] i) tV<N)BdR[G]' (20)

Note that ey, ..., e, constitute an N-basis of DI (V) =ty (N).
In the next three lemmas we will compute the summands in .

Lemma 6.2. With Ay denoting the composite map defined in (@) we have

X(L), M, @Eei] = 0.
=1

Proof. This proof is an expanded version of the arguments of [IVI6l p. 509].

Recall the isomorphism ¢ : F — G7, from (2)), which satisfies 6(z) = e~z
(mod deg > 2). Let mp,, : Bt — C, be the natural projection to the residue
field. Similarly to [BK90, p. 360] we can construct a commutative diagram of exact
sequences

0—T ——"———1lim F(p{;) ) F(py) ) ——0
= 9 g0l

0—T ——Lm(OF )" (p™) = (R*) () ==~ (O, )y ————0
incl log,,

0—V (B& N B ) (p) ————2—C; 0
= incl vt LTy

0 1% BSleV (Bar/Bart) @ V —=0

Note that (differently from [BK90]) some of the objects are twisted by p™ in
order to make all maps G y-invariant; ¢ always denotes multiplication by the element
€€ (QT;}r which occurs in . We observe that by Lemma we have the equality
log, 0 060 = log£.

Taking Gy-fixed elements and cohomology we obtain

(F(p5) ) = F(py)) —— 2 H(N,T)
Llog}- incl
(Cey =N HY(N,V)

((Bar/Bart) @ V)ON = ty(N) = @)_, Ne, —% H'(N, V),
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where the map s is such that s(v;) = e; for all i. Note that this diagram is the
higher dimensional version of [IV16] (3.4)]. It makes the identification s of N and
the tangent space ty (N) explicit.

We rewrite Ag in terms of the maps in the last diagram and get

HO(&)ofr N O r
H (Na T)BdR[G] > ‘F(p%))BdR[G]

llog;

B dR(T)

|

3% (N)BdR[G]

X(‘c)BdR[G] = F(F%))BdR[G]

A2

By diagram we see that (0L o HO(&) o fr n)(X (L)) = X (L), so that it remains
to show

[X (L), s 0logr, € Lei] =0,
=1

which is immediate from log (X (£)) = £ and s(v;) = e; fori=1,...,7. O
Lemma 6.3. With notation as in (19) and m := [K : Q,] we have

[@ Le;, compy, Indyq, T

=1

@ Lé;, compy(_y), Indyyo, T(—1) |,

=1

= —rmdy, @ paic)(t) +

where the elements é; are defined in Lemma[].3

Proof. 1t is easy to see that in the r-dimensional setting we also have a diagram as
in [IV16], (6.1)]. If we denote the vertical maps in this diagram by f; and fs, then

@ Le;, compy, Indy,q, T

i1
= [é; Le;, f1, é Le;
i—1 i—1

Since f; sends each basis element e; to €;, the first summand on the right hand side
is trivial. Both Indy/q,T" and Indy/g,T(—1) are isomorphic to Z,[G]"™ as Z,|G]-
modules. Via these isomorphisms the map f> corresponds to multiplication by ¢ and
so we obtain

+ [Indyyq, T, fo, Indyyg, T(—1)]

+ @ Lé;, compy,(_q), Indyyq, T(—1)

=1

[IndN/QpTa f2, IndN/QpT(—l)] = [Z,[G])"™ 1, Z,|G]™] = Tmé%p[(;},BdR[G] (t).

Let 5 € N be a normal basis element of N/K, i.e. N = K[G]S. Let

s = (P) yemiey € Z(QG)* =[] (@)

x€lrr(G)
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be defined by
1
P = 0K Nicso, (1),

where 0 denotes the discriminant of K/Q, and Nk q,(8|x) the usual norm resol-
vent, see e.g. [PV13, Sec. 2.2].

We also recall the definition of the twist invariant Uy, (pg, ) in Section 6.2} The
next lemma corrects an error in [BCI7, Lemma 7.1.2] where we just quoted the
proof of [[V16, Lemma 6.1]. However, whereas we work in the relative group
Ko(Zy|G], Bar[G]), the authors of loc.cit. work in Ko(Z2'[G], Bar[G]) where Uno (PG,
vanishes by Remark [6.1]

Lemma 6.4. With m = [K : Q,] and 9" = é%p[GLBdR[G] we have
B céi, compy 1y, Indyyg, T(=1) | = r[L,id, Ok[G)B] + mUp,(pl,) + 10" (ps)-
i=1

Proof. We let Ti, = Zl(f) and Vi, = @I(f) denote the trivial representations. Let
21, ..., % denote the canonical Z,-basis of T} .
In the following we choose to use for each Gy-representation W

Indy/g,(W) = {z: Gg, — W | 2(10) = 1x(0) for all T € Gy,0 € G, }

as the definition for the induction. Note that if L/Q, is any field extension (e.g.,
L = Bgr) which carries an action of Gg, and W is an L-space, then Indy/q, (W) is
also an L-space with (ax)(0) = o(a)x (o) for all @ € L and o € Gg,. We also note
that

Indy/q,(W) — L|Gg,] @ricy W, 2+ Z oc®x(ch),

JGG@p/GN

is a well-defined isomorphism of L[G]-modules. For the comparison isomorphism
compy,, we then obtain the following simple description

compyy : L ®q, (L ®g, W)™ — Tndyyg, (L &g, W),
l®z — ly,,

where l € L, z € (L ®q, W)GN and y.(0) := z for all o € Gg, (and hence, (ly.)(0) =
a(l)z).

We define a G-equivariant isomorphism

h: (BdR ®q, va)GN — (BdR Xq, V(—l))GN , 1®z =6

and
h: IIldN/Qp (BdR ®Qp ‘/triv) — IndN/Qp (BdR ®Qp V(—l)) > T+ i?, ox.
Then, similar as in the proof of [IV16, Lemma 6.1], we obtain a commutative diagram

comp triv
Bar ®q, (Bar ®q, Viriv) N " Indy/q, (Bar ®q, Viriv)
l/BdR@B h

compy, (1
Bar ®q, (Bar ®g, V(—1))~ " ndwyg, (Bar ®g, V(1))
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As a a consequence we derive
@ Lé;, compy,(_q), Indyyq, T(—1)

=1
r
@ 'CZ’D COMPy;, . IndN/QplIlcriV

= é £zi, BdR ® iL, é »Céz’
L i=1 i=1 i=1

-+ [IndN/@thriv, h, IHdN/QpT<—1)}

+

+ [IndN/QpTlcriva ha IndN/QpT(_l)]

[ r
= @ Lz;, compy, , Indy/qg, Tiriv
Li=1

r

@(OK [G]B2), compy, ., Ind /g, Tiiv
i=1

-+ [IndN/@thriv, h, IHdN/QpT(—l)}

=T [ﬁ,id, OK[G]ﬁ] +

The computations in [IV16, pages 512-513] show that

[@ Ok [G]Bzia Compyy, . IndN/@thriv =T a%p[c], Bar[G] (PB)-
i=1

It finally remains to prove that

[IndN/QpTlcriw h7 IndN/QpT(_l)} = mUtw(p&)

Go, = U U Gnpo;

peG O'iEGK\GQp

To that end we write

and define elements z;; € Indy)q,(Thiv) and y;; € Indy/g,(T'(—1)) for i = 1,...,m
and j =1,...,7r by

zj, iti=Fkandp=1,

0, otherwise,

and
(o) v;, ifi=kandp=1,
ij\POk) = .
Yig\Pok 0, otherwise.
Without loss of generality we assume p = 1 for p = 1. Then the z;;, respectively,
the y;;, constitute a Z,[G]-basis of Indy/q, (Ttriv), respectively, Indy/q, (T(—1)).
For fixed 7 and j and for 1 < k < m we compute

(h(r) (o) = {éﬂv ifi=kand p= 1

0, otherwise.

For 1 <s<mand 1<t <rlet £ be indeterminates (with values in Bgr). Then

(Z gstyst) (poy) = {Zt<pgk)(fkt)f}t7 if p=1,

0, otherwise.
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Since é; =, T{i ® ¥; we obtain

> (0o () =

t

and hence for all 1 <t <r
& =07 (T}), & =0 for k # .

We conclude that with respect to the chosen basis the map h is represented by a
block matrix of the form

ST e, ifi=k,
0, if ik,

o (1)
C =
o (T™)
We recall that o(T™) = = 'T™ and fix oy; € Z such that 0ilgu = . Note that for
all n € Z, o=(T™) - (T™)~! = u™, which coincides with p™(©"). By a continuity

argument we have =% (T™) - (T™)~! = y* where u® is well-defined by [CobI8|
Lemma 1.5]. Then

det(C) = ﬁ det (uT™) = det(u)* det(T™)™

=1

with v = 37, o Since det(u)* € ZX C Z,[G]™ the result follows from the definition

of Utw(pél;;)
O

We summarize the results of the previous lemmas in the following proposition.

Proposition 6.5. With 0' = é%p[G},BdR[G] and X = Xz,¢),Bar[c) We have

Cyx = —rmd'(t) + 7 [L£,id, Ok [G]8] + 10" (ps) + mUsu(p.) — X(M*(L),0).

Remark 6.6. To compare Proposition and [BCI17, (55)] we first note that in
loc.cit. we have £ = Ok[G]S. The additional new term Uy, (pfy ) emerges from the
computations in Lemma [6.4. The error does not affect the validity of any of the
arguments in [BC17], it just forces us to adapt our definition of Ry, x and RN/ K-

To finish the proof of the conjecture it is necessary to compute explicitly the term
XZ,(G),Barlc](M*(L£),0). For this we will consider the tame and the weakly ramified
case separately.

6.4 The tame case

In this subsection we let N/ K be tame und compute the term xz, (), B.ic)(M*(£),0)
from . In the tame case, by results of Ullom, we can and will use £ = p¥%; for a
large enough positive integer v and we also fix § € Oy such that Oy = Og[G]5.

Proposition 6.7. We have
XZ,(G),Bar[6) (M * (L), 0) = r[p, id, pn] — a%p[G},BdR[G](*(det<1 —u' F~Nep)).
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Proof. The key point in the proof is that by Proposition the cohomology modules
of M*(L) are perfect, so that we can compute the refined Euler characteristic of
M*(L) in terms of cohomology without explicitly using the complex. In a little more
detail, we note that the mapping cone of

Fp)/X (L)1) — M*(L),

where the map in degree 1 is induced by fr .y, is isomorphic to H*(N,T)[2]. We
also recall from Section [2| that we identify H*(N,T) with Z/(Fy — 1)Z. Hence we
conclude from [BB05, Thm. 5.7] that

X2,[G)Barlc] (M (£), 0)
= Xeala)pantc) (FO)/X(L)1),0) + Xayfc)mmicr (2/ (Fy = 1)Z,0).

To compute the first summand we observe that by Proposition 3.4 we have X (L) =
F ((p’jv)(r)). Since for each integer ¢ > 0 the identity map induces isomorphisms

F(0)") /F (05 HD) = (0i) ™/ (0" (21)

a standard argument shows that

xzy il (FOS)/XL)1),0) = x50 (p/(5%)V[1],0) = rlp, id, o).

For the computation of the second term we consider the short exact sequence of
G-modules

F-lydr —1

0— Z3[G/1] LG/ 5 Z/(Fy —1)Z — 0,

where 7(2(g)) = g- (¢ + (Fy — 1)2) for all z € Z; and g € G and where G acts
on Z/(Fy — 1)Z through any lift of its elements to G (which is well-defined since
elements of G act trivially).

Let 2 = Y a,F ' € Zy|G/I] be an element in the kernel of the map on the
left. Then u%a;_; —a; = 0 for all i. Hence (u%% —1)a; = 0 and by the assumption
ZGn =1, it follows that a; = 0 for all i. Hence the map on the left is injective.

Next we see that m((F~ludx — 1)e;) = (p™ (Fudx — 1)e; = 0.

Conversely let = = Zf;ol o F =" € Z7[G/I] be such that m(x) = 0. Modulo
the image of F~'u% — 1, z has a representative y € Z,. We must show that
y € im(F~'u —1). Since 7(y) = 0, there exists z € Z] such that y = (u™x —1)z =
((F~ludx)? — 1)z, which is in the image of F~'u?% — 1. Hence we have exactness in
the middle term.

To prove the exactness of the sequence, it remains to check the surjectivity of the
map on the right, which is obvious.

Since we are considering the case of a tame extension, Z7[G/I] is a projective
Z,|G]-module and we have:

Xz,(6),Banlc) (H* (N, T)[2],0) = =[Z,[G/1], F~ uf™ — 1, 2]G /1],

The results follows.
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6.5 The weakly ramified case

In this subsection we let p be an odd prime. Let K/Q, be the unramified extension
of degree m. We let N/K be a weakly and wildly ramified finite abelian extension
with cyclic ramification group. We let d = dy,x be the inertia degree of N/K and
assume that m and d are relatively prime.

The aim of this subsection is to compute the term xz, (68,61 (M*()),0) from
in this weakly and wildly ramified situation. For that purpose we aim to gener-
alize the methods of [BC17], however, this forces us to introduce a further technical
condition which might be either

Hypothesis (T): Uy =1 (mod p)
or
Hypothesis (I): Uy — 1 is invertible modulo p

Here (T) stands for trivial reduction modulo p and (I) for invertible modulo p. If
we set w := v,(det(Uy — 1)) then we have the following equivalences

(I) holds <= Uy —-1€Gl(Z,) < w=0.

Note also that Hypothesis (T) immediately implies w > 0. However, in the higher
dimensional setting there are mixed cases, where none of our hypotheses holds.
As in [BC17] we have a diagram of fields as follows.

N
N
NN
N

Here K'/K is the maximal unramified subextension of N/K, M/K is a weakly and
wildly ramified cyclic extension of degree p and N = MK’. Since ged(m,d) = 1,
there exists K’/Q, of degree d such that K’ = KK’

The following lemma generalizes [BC17, Lemma 7.2.1].

Lemma 6.8. For n > 2 one has
F((pr) ™) is Z,)|G]-projective <= n=1 (mod p).

Moreover,
F(pg\r,)) is Z,|G|-projective <= Hypothesis (I) holds.
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Proof. For n > 2 the formal logarithm induces an isomorphism F((p%)) = (p7,)")
of Z,|G]-modules by Proposition Hence the first assertion follows from [K6c04,
Th. 1.1 and Prop. 1.3].

We henceforth assume n = 1. By Lemma m we know that F (p%)) is cohomo-
logically trivial, if and only if Hypothesis (I) holds. Hence it suffices to prove that
F (p%)) is torsion-free. By [Cobl8, Lemma 2.1] the module F (p%)) is isomorphic to

— ¢
(HT NOX(p“r)> " which is torsion-free, Indeed, any tuple ((y,...,(.) of p-th roots

of unity (i,...,¢ € Ny = Z, x U](Vlo) must be contained in N (because Ny/N is
unramified). Hence ((i, ..., () is fixed by Gy, if and only if it is fixed by Fy, if and
only if (; = ... = (, = 1 (using Hypothesis (I)).

O

By Lemma . we can and will take £ = p¥/ 1 and thus obtain
X(£)=F (i)

We recall some of the notations from [BC17]. We put ¢ = p™, b = F~! and
consider an element a € Gal(N™/K) such that Gal(M/K) = (a|u), a|gn = 1. Since
there will be no ambiguity, we will denote by the same letters a, b their restrictions
to N. Then Gal(N/K) = (a,b) and ord(a) = p,ord(b) = d. We also define T, :=
Yo at

Let 0, € M be such that Ty g6, = p, where Ty;/x denotes the trace map from
M to K, and Og[Gal(M/K)])6y = pa. Let 62 (resp. A) be a normal integral basis
generator of trace one for the extension K’/Q, (resp. K/Q,). Let ay € O} be such
that 071 =1 — a0, (mod p3,). If we set

m—2

a1, a0 = A, a3 = 1A% oy, = a0 AP (22)

then these elements form a Z,-basis of Ok (see [BCIT, (60)]).
Furthermore, we use [Cobl8, Lemma 2.4] to find for i« = 1,...,r an element
v € [, U such that
(Fv = 1) -7 = (61)s, (23)
where

01); == (1,...,1,0971 1,...,1)

with the non-trivial entry is the i-th component.

Let
W, = ZP[G]T,Zl D Z, [G]TZQ,
p—1 m p—1 m
Wen = DD ZICT vrs = DD Z[CT e = 69 Ox[G]"w;
Jj=n k=1 j=n k=1
and put
W = Wzo.
If we write ey, ..., e, for the standard Z,-basis of Zp(r), then a general element of W
is of the form
r p—1 m r p—1
DD D Nidkeitig = D D Higkeit
i=1 j=1 k=1 i=1 j=1
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with A, jx € Z,[G] or p;; € Ok[G]. We will apply this convention analogously for
the modules W’ and Ws,,.
We define a matrix F € M,(Og/) by

1 under Hypothesis (1)
E= dm—1 ; . (24)
SN (A0,)¢ w* under Hypothesis (T)
and a matrix
o 1 under Hypothes%s (I) (25)
u under Hypothesis (T)

We also recall that in [Cobl18| Lemma 1.9] we constructed an element ¢ € Gl, (ZT;‘“)
such that u = &1 - (e).

Lemma 6.9. The following assertions hold:
(a) E € Gl.(Ok).

(b) o(E) =aF = Eu (mod pOg).

(c) o(e'E) =utae™'E (mod p).

Proof. Let H = Gal(K’/Q,) and let f: H — K’ be defined by f(c) = (A6)"
Then, applying [Was97, Lemma 5.26 (a)], we obtain

det((AQz UTEH = H Z A@Q

xEH oeH

Since Af, is an integral normal basis generator and K'/Q, is unramified, the left
hand side det(70 1 (A463)), rcn is a unit (whose square is the discriminant of K'/Q,).
Therefore, for each character y € H the factor

> (A0,)7 ' x(0) = Z (A05)%" x(07")

is a unit and hence » 37, 9L 40,)% o~ is a unit in the maximal order M of K'[H].
Since Z (A7 E Ok/[H], we deduce from the well-known fact

M* 0 O H)| = O [H)*

that de Y(A6,)¢ o' € Ox/[H]*. We now apply the character pg, and easily derive

(a).

For the proof of (b) we can assume Hypothesis (T) and we compute

dm—1
o(E) = Z (AQQ)“"ZHU_(HI)U = Fu=uFE (mod pOgk)

=0

where the congruences hold because we have u™? =1 (mod p) by hypothesis (T).
If Hypothesis (T) holds, then part (c) is an immediate consequence of [Cobl8|
Lemma 1.9]. Under Hypothesis (I) it follows from the definitions. ]
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Generalizing the approach of [BC17, Sec. 6.3] we define a Z,[G]-module homo-
morphism

fs,wi W — «7:(135\1;))
by

fow(eivg;) = Bag(a —1Y0e; = E | apla —1)70

for all 7, 7, k, Where 0 = 0:0,. We denote by f3y the composition of ]?37W with the

projection to F(p'))/F((p%)™).
In order to generahze [BCIT, Lemma 7.2.4], we first need a higher dimensional
version of [BC16, Lemma 4.1.7].

Lemma 6.10. Forv € Ok|G|,i=1,...,r and j =0,...,p — 1 we have
faw (vew;) € phle; and fsw(veqw;) = vE(a —1)70e; (mod piy™?).

Proof. We write v =Y, , , vhika" by, for some vy ), € Z,. Then

; 1
faw (Z yh7l7kahbleiakwj> = Z yh,l,kahbl - Eag(a —1)0e; € pﬁ €;

holk hol.k
by [BC16, Lemma 3.2.5]. Using the isomorphism in , this is congruent to

Z vakahblEozk(a —1)70e; (mod pj+2).
hilk

Lemma 6.11. The map fsw is surjective. More precisely, for j > 0,

Fow (W) = F((py D)/ F (PR HT).
Proof. For j = p, Ws, = {0} and F((p%))/F((p%")") = {0}, so the result is

trivial.

We assume the result for j + 1 and proceed by descending induction. Let x €
F((piH)™). As in the proof of [BCIT7, Lemma 7.2.4], there exist v € Z, such
that

r=FE Z Upeira"bag(a — 1)70e;  (mod plf?)

ht,ik
~ —me . 9
= E @B vy pa"b an(a — 1)0e;  (mod pif?)
hotik
N : 2
= E W™ 50"V Eag(a — 1)70e;  (mod piy?)
hotik
_ 7 i hpt 42
= faw < E W™ Vg Q"D eiakw]) (mod py/ 7).
hot,ik

31



This means that the class m(x) of z in ]:( )/.7:(( P is the sum of an element in
the image of W and an element in F ((p?} +2) )/ F((p%") ), which is by assumption
in the image of Wx ;11 C W>;. []

Lemma 6.12. Let 1 < i < r, 0 < 53 <p—1,1 <k < m. Then there exists
i € Wsjio such that the element

sijk = agla — L)e;w; — apewjpr + ik
is in the kernel of fsw. Here w, should be interpreted as 0.

Proof. As in the proof of [BCIT, Lemma 7.2.5], we see that the formal subtraction
of X and Y takes the form

X —F Y=X-Y+ (XtAhY)h — (YtAhY)h + (deg > 3)

with A, € M,(Z,) for h=1,...,r. In analogy to the proof of [BC17, Lemma 7.2.5]
we set

v = Eoy(a —1)abe;, y:= Boy(a—1)0e;, z:=2—y= Eay(a—1)""0e;
and we obtain that z —ry —7 2 = 0 (mod F((p’*))). Therefore
Faw(cn(a — Deaw; — ageqwjn) =0 (mod F((pi™*)"))
and we conclude the proof of the lemma using Lemma [6.11] [

Lemma 6.13. The elements

| = Taeiaqwg + eu” M at " e T e 0q w1 — €W,y

—1~1— mm&j lbfm

Tik = Ta€iapwo +eu™ 4 iUt 1Wp—1 — €0 Wp_1,

m
—1~1— -1
Tim = Ta€iQmWo + U™ U i —lp=me, (a1 — g ozi) Wp—1 — €0y Wp_1

i=2
for1<i<randl<k<m arein the kernel of f3w. Note that eu™'a'=™"c~1 has
coefficients in Z," and is fived by o, hence it has coefficients in Z,.

Proof. We denote by v; the j-th component of a vector v. Using [BC16], Lemma 3.2.2]
and Lemma (c) we calculate

(NMuo/io (e Eagbe)); = Ny /iy (1) (e Eagbae;);
= —a,ﬁgo& Pp(e _1Eei)jp (mod ppH)
—ab0ha; Pp(p(e 'E)e;);  (mod piit)

= —abfha; Pp (u e lEez)J (mod pp+1).

We also compute

o 50 (€7 Eaibe;) = Ty i (01)e ™ Ecbae; = pagbae™ Fe;  (mod ppH).
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With this in mind, we can do analogous calculations to those in [BC16, Lemma 4.2.6]
and [BC17, Lemma 7.2.6] and obtain

P
_ Qg b 1~ -1 +1
faw (Taeiapwy) = € (akeg — o (a_) 0y u u) peEe; (mod pii7).
1
Furthermore,
fg,w(eu’1ﬂl’mmeflb’meiakﬂwp,l)

11 s mm —m 1
= eyt pY Ozk+1p912) e; (mod PZ;\;;)

= gu—lal—mﬁ%umﬁz(g—lE)go

mm b*'fn p+1
ag1pby e (mod piy )

P —m 1
= eu ‘e Eayipts e;  (mod piit).

It is straightforward to adapt the remaining calculations from [BC17, Lemma 7.2.6]
and conclude that r;;, € ker fsy for for 1 < ¢ <r and 1 < k < m. The proof that
Tim € ker f5 s is analogous. []

From now on we have to distinguish the cases of Hypothesis (T) and (I).
We start assuming Hypothesis (I).
Following the computations in [BCI17, Sect. 7.3], we have

Xzyic1,Banicl(M*(£),0) = [F((ph 1)), id, FRR)] = [ker(faw), id, W].

Lemma 6.14. The pmr elements 1,5, 8; ;5 for 1 <i<r, 0<j<p—-2,1<k<m
constitute a Z,|G|-basis of ker f5w .

Proof. We adapt the proof of [BC17, Lemmas 7.3.1]. We write the coefficients of the
e;owy—_1-components, ¢ = 1,...,r, k= 1,...,m, of the elements r; ;, j = 1,...,m,
into the columns of an mr x mr matrix which we call M and whose entries are r x r

blocks,

cule™p™m—1 0 0 0 ey~ te ™™
0 -1 - 0 0 —eu e ™
0 eutetpm .. 0 0 —eu e ™
M=
0 0 oy UL —eu e
0 0 e 0 eute7p™m  —1—eute o™

By Lemma and analogous computations as in [BC17] we obtain
det M = (=1)"™ Y det(u"™b"" — 1).

The rest of the proof works exactly as in [BCI17]; note that Hypothesis (I) plays the
role of the assumption w = 0 in the one-dimensional setting. O]

We recall that G = Gal(N/K) = (a) x (b). Any irreducible character ¢ of G
decomposes as 1 = y¢, where Y is an irreducible character of {(a) and ¢ an irreducible
character of (b). We will denote by xq the trivial character.
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Proposition 6.15. Assume Hypothesis (I). For L = p?VH the element
Xz,[6).Bar[c] (M (£), 0) € Ko(Zy|G], Bar[G])
is contained in Ko(Z,|G],Q,[G]) and represented by ¢ € Q,[G]”* where
K. = P Zf X = Xo
=D det(umg(0) ! = 1 (x(a) — )M if x # o

Proof. We choose the elements r;; and s; ;5 of Lemma as a Z,|G]-basis of
ker(fsw) and fix the canonical Z,[G]-basis of W. Then

Xz,[6),Bar|c] (M * (L), 0) = [ker(fsw),id, W]

is represented by the determinant of

T (=D 0 - 0 0
0  —I (a-1I - 0 0
0 * —1I - 0 0

M = . . . . . . )
0« b e I (a—1)I
M . s g

where in the above pmr x pmr all the entries are mr x mr-blocks. Recalling that p
is odd, we get:

(=)™ e det(xd(M)) (x(a) — 1)™ @D if x # xq

_ if X = o
(1) =D det(u="g(b) "' — 1)(x(a) — 1)™ @D if x # yq.

Il

det(xo()) = {pW(_”W(p_D L

It remains to consider the case of Hypothesis (T). Here we follow the strategy of

[BC1T, Section 7.4].

Lemma 6.16. There is a commutative diagram of Z,|G]-modules with exact rows

0—=XQR) W —=W&W —2~7,[G) 20—~ Z/(Fy — 1)Z —0
| lfg sz l—
0—= F(p}) fF—JV)IN/K(Pm) (F_I)MIN/K(PM) —Z/(Fy —1)Z2—0
where
da(e;z1) = (u™b — 1)e; 2,
da(e;29) = (a — 1)e; 2o,
G2(eivjn) =0,
faleizo) = [(61)i 1, 1,
faleiz) = [(01):,1, ..., 1],
faleiza) = D - il,
fa(evng) = fra(faw(evn,)),

W(Gizo) = €4,
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foralli, j and k (recall that ~y; was defined in 23)). Further, X(2) = ker(d2|w) and
fsw is the restriction of f5 to X(2) @ W.

Proof. We recall from [Cobl8|, Sec. 2] that the action of Gal(Ky/K)x G on Zn/k(p™)
is characterized by

(Fx D[zy,...,2q) = [UNSCFN Ta, ---,«Tdfl]l
(F"x o)z, .. zd) = [p™(6)], ..., p"(5)ag],

where z; € [[, NE, the elements F'~" and ¢ € G have the same restriction to N N K
and ¢ € Gal(Ny/K) is uniquely defined by &k, = F~" and 7|y = o. Furthermore,
we remark that the action of G on Z/(Uy — 1)Z is induced by

a-e=¢€;, b-e= p“r(F_l)eZ- = U[_(lei.

The bottom sequence is exact by [Cobl8, Thm. 3.3 and Lemma 2.1]. The proofs
of the exactness of the top sequence as well as the proof of commutativity follow
along the lines of proof in the one-dimensional case, see [BC17, Lemma 7.4.1]. For
example, if we denote the coefficients of Ux = u™ by u;;, then

f2 052(€i21) = fQ(( b — 1 61 = (Zbu]le] 1)

= Z(l X Duji - [(61);,1,...,1] = [(61)i,1,...,1]

= (1 xb)-[(6y",67,...,00""),1,..., 1] = [(01):,1,...,1]
= (1 xb)[u(0)s,1,...,1] = [(0),1,...,1]

= (Fx D(F' xb)u(d);,1,...,1] —[(61);,1,...,1]

= (F x D[u " u(b),1,...,1] = [(61):,1,...,1]

= ((F—=1)x 1) o fs(e;z1)

]

We will need an explicit description of X (2), which generalizes the one given in
[BC17, Lemma 7.4.3].

Lemma 6.17. We have
X(2) = <(a — 1>€i21 — (Umb — 1)€i22,7:161'22>zp[g}.

Proof. The proof is just the r-dimensional analogue of that of [BC17, Lemma 7.4.3].
[

We let
Faw: X(2) & W — F(p)/F((p3HD).

denote the composite of f~37W with the canonical projection. By Lemma the
homomorphism f3 y is surjective.

In the next proposition, which is the analogue of [BC17, Lemma 7.4.2], we will ob-
tain an explicit representative for the complex M*(L), which we will use to compute
the Euler characteristic xz,q),Bi(c) (M *(£),0).
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Proposition 6.18. The complex

F* = [ker fsw — W & W — Z,[G] 2]
with modules in degrees 0,1 and 2 is a representative of M*(L) for L = pzj\,ﬂ.

Proof. If we recall the definition of M*(L£) from (17)), then it follows readily from
Lemma [6.16] and Lemma that we have a quasi-isomorphism of complexes

F* — M*(L).
U

For the computation of the Euler characteristic of M*(L£) we continue to closely
follow the approach of [BCIT, Sec. 7.4]. On these grounds we will only sketch the
proofs, pointing out the parts which are specific for the higher dimensional setting.

The next result is an analogue of [BC17, Lemma 7.4.5] and [BC17, Lemma 7.4.6].
Recall that by assumption (m,d) = 1 and let /m denote an integer such that

mm =1 (mod d).
Lemma 6.19. There exist y;1 € Wsy such that

ti1 = (a—1)e;z1 — (ub — 1)e;z0+
+ (Z o (umb)t UM (al - Z aj) (umb)m> ewo + Vi1
=2 =2

and

- Taeize — arew,_1  if m=1
4,2 .

Taeiza — asejw,—1  if m>1
are in the kernel of fsw.

Proof. Let x5 € Ok be such that xs/a; (mod pg/) is a root of XP — X + Afy and

let (14 226); be the element in [, U](\}O) whose i-th component is 1+ z56; and all the
other components are 1. By the same proof as in [BC17, Lemma 7.2.2] we obtain

(1+ 220 ™ = (1 - a16,); (mod p%).

Therefore, by [Cobl8, Lemma 2.4] we may assume y; = (1 4 2261); (mod p3, ).
With this in mind, the proof of the lemma is the same as in [BC17, Lemma 7.4.5]
and [BC17, Lemma 7.4.6]. O

In the case of Hypothesis (T) we need to redefine the elements ;1 in a different
way:

Lemma 6.20. The elements
ri1 = Tatiz + (u™b—1)t; 5
belong to ker fsw NW and their aywy-components are (u™b)™ T,e;.

Proof. Straightforward by the same calculations as in [BC16, Lemma 4.2.5]. [
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We also redefine the matrix M considered in the case of Hypothesis (I) using the
elements ¢, , instead of the elements r; ;. For m > 1 we obtain:

M, M
0 0 e 0 0 gy Mg lpmm
-1 -1 e 0 0 —ey ey
M = 0 ey mme=lp=m. .. 0 0 —ey ey
C ey MMM -1 —ey MMM
0 gy~ MMeTlpTm ] gy 1M

We call M, the matrix consisting of the first r columns of M, M the matrix of
the remaining columns.

For m = 1 the matrix M is determined only by the ¢;» and, recalling their
definition from Lemma [6.19] we get minus the identity matrix.

By an easy calculation det(M) = (—1)™"(det(u)™b) ™™D,

Lemma 6.21. The r(pm+1) elements ty;,ta;, fori=1,...,r, rig, fori=1,...,r,
kE=2...,mands; i, fori=1,...,r, 7 =0,...,p =2, k =1,...,m constitute a

Z,|G]-basis of ker(fsw).

Proof. 1t is enough to follow the proof of [BC17, Lemma 7.4.9]. Note that we can
construct the matrix M as in [BC17] and that it also takes exactly the same shape
up to the fact that all the entries are r x r-blocks. O

By the same proof as in [BC17] we can now reduce the computation of the term
X2,(G],Barlc](M*(L£),0) to the determinant of a matrix (w, ), which looks exactly
as in [BC17], with the convention the elements in Z,[G| must be thought as diagonal
r X r matrices. So in particular m x m blocks become mr x mr blocks and so on.
Of course, for the block M we have to take the one defined above and not that of
[BC17]. With this in mind the matrix looks as follows:

T (1), 0 0 0 0 0 0
0 1—u™ T, 0 0 0 0 0
0 v 0 Tod (a— 1)1y, 0 0 0
0 % 0 0 Liw (@=L -+ 0 0
0 * 0 0 * — L 0 0
0 * 0 0 * * oo =L (a— 1)1,
0 * My M * * * —Lm

Here I,,, (resp. I,) is the rm x rm (resp. r x r) identity matrix, I is obtained
by I, by removing the first  columns, v is an r X rm matrix, whose first r rows
coincide with the matrix (u™b)™ and —— is the inverse of the matrix u®™ — 1.

We are ready to record the result of the computation of the refined Fuler char-

acteristic of M*(L).
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Proposition 6.22. We assume the hypotheses (F) and (T) and let £ = p%™. Then

the element xz,ic),Birjc)(M* (L), 0) is contained in Ko(Z,|G],Q,|G]) and represented
by € € Qu[G]* where
7 det(u) ™M (b)"Mpr™ e
Ky = (=1) éet)(u%(()) ) if X = Xo
(=17 (det(w)d(0)") ™"V (x(a) — 1)™PDif x # xo

and x¢ is the decomposition explained before Proposition |6.15.

Proof. The proof is a straightforward adaption of the computations in the proof of
[BC17, Prop. 7.4.10]. ]

7 Rationality and functoriality

From now on we set 9! = 8%?[(;] BarlG]" As in [BCI1T7], we consider the term

Ry/k = Cnyg 4 Ugis + rmd'(t) — mUu(0g,) — rUnyx + ' (ep(N/K,V))

which a priori lives in K¢(Z,[G], Bar|G]). The unramified term Uy/x is defined by
Breuning in [Bre04b, Prop. 2.12]. Recall that Ry/x differs from [BCI7, (17)] since
we have to adapt the definition of Ry/x as explained in Remark .

Proposition 7.1. The element Ry is rational, i.e. Ry/x € Ko(Zy|G], Qp[G]).

Pmof For elements x,y € Ko(Z,[G], Q;|G]) we use the notation z = y when z —y €

Ko(Z,|G],Q,|G]). By Proposmonsm uandwe get
RN/K = Tél(p) — TUN/K — T’TN/K,

where Ty g = B (T@p(IndK/Qp (X))xelrr(G)) is precisely the element defined by Bre-
uning in [Bre04bl Sec. 2.3]. The result now follows, since this is exactly r times the
element obtained in [BC17, Prop. 7.1.3]. O

Proposition 7.2. Let L be an intermediate field of N/K and H = Gal(N/L). Let

p% and qg/H be the restriction and quotient map from (@) and (@), respectively. Then

(a) pii(Rn/k) = Ry
(b) If H is normal in G, then qg/H(RN/K) =Ry/k.

Proof. By definition of the cohomological term we have

Ry = —X2,c)Banlc) (M, expy y ocompy ) + rmd' (t) — mUs, (ol
+Uaris,n/k — TUnyi + 3%10[@}73&[@] (en(N/K,V))
with M* = RI'(N,T) @ Indyyg,T[0]. The functoriality properties of rmd(t) and
mUu, (pg,) follow easily using the general formulas in [BW09, Sec. 6.1 and 6.3].
Recalling also Lemma [1.9) Lemma and [Bre04al, Lemma 4.5], it remains to show

5 (X261, Barlc) (M, €Dy, ocompyy)) = Xz, (8], Ban () (M, expy, y ocompy ) (26)
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and

qg/H (X2, Banlc) (M, expy, OCOIHP;&V)) = Xz,(G/H),Bar|c/H) (M, expy 1 OCOIHP;(}L)j

27
The proof of follows along the same line of argument as the proof of |[Bre04al,
Lemma 4.14 (1)]. We just have to replace A = p,n in loc.cit. by F[p"].

Since is essentially proved in the same way as part (2) of [Bre04bl Lemma
4.14] we only give a brief sketch. As in (17) of loc.cit. we obtain a canonical isomor-
phism

RI(L,T) = RHomg, 1)(Zy, RT(N, T)) (28)

in the derived category. For each ¢ the induced map from H'(Q} ® RI'(L,T)) =
Q@ H'(L,T) to H(Q, ® RHomy, (11(Zy, RU(N,T))) = Q ® H'(N,T)" is the map
induced by the restriction H(L,T) — H'(N,T).
For i = 1 this restriction map is clearly given by the inclusion F (pg)) CF (p(Nr))
and for 7 = 2 cohomology vanishes after tensoring with Qf by our hypothesis (F).
We further note that we have a canonical isomorphism

(Indyyg,T)" 2 Indy g, T (29)

which is given by x — x, if we identify Indy,q,T" with the set of maps x: Gg, — T
satisfying (7o) = 72(0) for all 7 € Gy and 0 € Gg,.

From and we derive a canonical isomorphism M} = RHomg, g)(Z,, My)
and it finally remains to show that the induced maps (drawn as dotted arrows below)
in the following diagram coincide with COIIlp‘_/}L and expy, 1, respectively.

H comp_’1 [ €Xp r
(ndwyg, (V) B ) S (DN (V)py) ' —F (HY N, V) )" = FO)E
compy, exp r
Indp /g, (V)pgs E.r Dh (V) gy o HYL, V) gy = F(0U) Bon

For exp,, this is immediate since it is defined as a connecting homomorphism (see,
for example, [BBOS|, p. 612]) and thus compatible with restriction. Also for compy,
it follows from the definitions, see [BBOS| p. 625]. ]

8 Proof of the main results

As in [BC17] we also define
Rk = Cnyic + Ueris + rm0* (t) — mUp () + 0" (ep(N/ K, V),

so that RN/K = RN/K — T’UN/K.

We now argue as in the proof of [BC17, Prop. 3.2.6] (see page 359 of loc.cit.). By
Taylor’s fixed point theorem together with [Bre04bl Prop. 2.12] it can be shown that
RN/K =01in Ko( [ ] @p[ ]) if and only if RN/K =01in Ko(ZEr[G],Qgr[GD

From Propositions [6.5] [5.1] and 4.8 we conclude that

Ry =rd'(ps) + r[L.1d, Ok[G] - B] — x(M*(£).,0)
+ 0" (*(det(1 — Fp~ % u)er)) — 9 (*(det(1 — u® F~1)e;)) (30)

+ o (det(u)_dK(SKX(1)+mX))Xelrr((}) —rot <7—Qp (IndK/Qp (X)))Xelrr(G) .
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As in the one-dimensional case, see [BC17), Proposition 3.2.6], the following three
statement are equivalent in our present setting:

(a) CP%(N/K,V) is valid.
(b)  Ry/x =0 in Ko(Z,[G], Qy[G]).
(c) RN/K =0in KO(ZT?[G],QTT[G”
Proof of Theorem [I.1l It suffices to show that fZN/K = (0. From together
with Proposition |6.7| we obtain
Ry = 10" (ps) + rlpn,id, On] + 0 (*(det(1 — Fp~xu=%)er))
+ 0" (det(u) i Cexm) =10 (o, (Indisa, (0)) e -

The term R
al ( (det (u)—dK(SKX(1)+mX))X>

vanishes by [[V16, Lemma 6.2]. Since N/K is tame, the group ring idempotent e; is
contained in Z,[G] and it is then easy to show that

*(det(p'® — Fu™%)e;) € Z,[G]*.
We conclude that

0'(*(det(1 — Fp~*u=")e;)) = —rd" (*(p*er))
= —T[pN, ld, ON]

where the last equality follows from [IV16, (6.7)]. In conclusion, we have shown that

RN/K = T (81(/)5) - él (TQp (IndK/Qp <X)))X€Irr(G)> ’

We finally conclude as in the proof of [Bre04bl Thm. 3.6] or as in [IV16, page 517]
to show that

él (pﬁ) - él (TQp (IndK/Qp (X)>)X€Irr(G) = 0.

We recall that these proofs crucially use a fundamental result of M. Taylor (see
[Er683, Thm. 31]) which computes the quotient of norm resolvents and Galois Gauss
sums. We also note that the so-called non-ramified characteristic which occurs in
these results is an integral unit itself. O]

Proof of Theorem 1.3l The crucial input in our proof is a result of Picket and

Vinatier in [PV13]. In [BCI6, Sec. 5.1] we used this result to construct an inte
30)

normal basis generator 8 = p2ay 0y of L = pi’\,“. Hence the expression in

simplifies to

Ry =r0"(ps) = Xzyfc),Banic)(M*(£), 0)
+ 51(*(det(1 — Fp’dKu’dK)ef)) — 51(*(det(1 — udKFfl)eI)) (31)
+ al (det(u)—dK(SKX(l)""mx))Xelrr(G) — Tal (T@p (IHdK/Qp <X)))xelrr(G)
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By [BCT6, Prop. 5.2.1] the element ' (ps) — 0" (TQP(IndK/QP(X)))Xelrr(G’) is repre-

sented by 9'(n~!) with 7 as in [BCI6, Prop. 5.2.1]. Furthermore, recalling that
m = dg and sg =0,

ot (det(u)’dK(SKX(leX)) =0 (det(u)’mmx))

Xx€lrr(G) x€lrr(GQ) *

From now on, we have to distinguish the three conditions in the statement of the
Theorem. Let us start with (a), i.e. Hypothesis (I). In this case Ry, is represented
by

O Nic /g, (02]0) 2™ det(1—p~™u=mg(b=1)) .
Fro = — P det(I=um g b)) X =xo
he 02 Nic /g, (0210)7 D™ x(4)" 6(b) 2" det(u) 2™ y
(-7 1( e T D@ e X F X0

K “Nic p (02[)" —m —r m, m ; —
(—1)" U—¢d et (u) " ¢(b) " det(1 — pmum (b)) if y = xo

*Nic/g, (0216)" o _ rme
() BN ot () g(0) " () XA X # Xo

Let Wy, € OL[G] C Z2'[G)* be defined by

X6(Wa,) = (1)1 N jq, (0] 0)"

Wy, det(uw)"™b~" mom —m

F= c012et(1 (—)umb) (det(1 — p™u™b)e, + (—u)"o4(1 —e,)),
where @ € Zy[a] is a unit whose augmentation is congruent to 1 modulo p, as in
[BCIT, Sect. 8]. Then the proof works as in [BC17].

Let us now consider case (b), i.e. Hypothesis (T). In this case Ry/x is represented

T‘DT/QNK/Q (92|¢)Tp2Tm det(’umd)(b)fl) det(lfp*mufm(b(bfl)) .
r(ma1) 05 N s, (02]0) D™ x (4)" G (b) =2 det(u) 2™ '
(_1) ( ) K(det(U)m¢(b)r)—m(m—1)(X(a),l)rm(p_n if x # xo

_ fxo(Wa,)o(0) 7 det(u) 7 det(L — p"um (b)) if x = xo
NO(W,)o(0) ™7™ det(u) ™™ ((ozie )™ () det(w)™ ™ if x # xo,

So

7= W, b" "™ det(u) ™™™ <det(1 — P u"b)e, + (—i) "oy det(u)™ (1 — ea)> :

As in [BCT7], Hypothesis (T) implies that det(u)™ ™™ =1 (mod 1—¢,). Then the
proof works as in [BC17], using the computations of the case of Hypothesis (I).

[t remains to consider the case (¢). Let F/K' be the unramified extension of
degree d. By the functoriality result of Proposition (a) it is enough to show
Ryg/k = 0, which is true since for NE/K we can apply part (b) of the theorem. [J

We finally prove Theorems and [I.6] For the definition of the twist matrix
of an abelian variety A with good ordinary reduction we refer the reader to [LR7S8|
page 237]. We recall the following lemma.
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Lemma 8.1. Let A be an r-dimensional abelian variety defined over the p-adic num-
ber field L with good ordinary reduction and let U be the twist matriz of A. Then
det(U — 1) # 0.

Proof. This is shown in [Maz72, Cor. 4.38] or in the proof of [LR78, Thm. 2]. O

Proof of Theorems [L.5] and [1.6l The results are immediate from Theorems L]
and E Note that Hypothesis (F) and the condition det(p™(Fy)? — 1) # 0 are
automatically satisfied by Lemma [8.1] O
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