Exercises for Stochastic Processes

Tutorial exercises:

T1. Let $S = \{0, 1\}$. Consider the general Q-matrix

$$\begin{pmatrix} -\beta & \beta \\ \delta & -\delta \end{pmatrix},\tag{1}$$

for some $\beta, \delta \geq 0$. Show that the corresponding transition probabilities are $p_t(x, y) = \mathbb{1}_{\{x=y\}}$ if $\beta + \delta = 0$, and otherwise they are given by

$$p_t(0,0) = \frac{\delta}{\beta+\delta} + \frac{\beta}{\beta+\delta}e^{-t(\beta+\delta)}, \quad p_t(0,1) = \frac{\beta}{\beta+\delta}\left(1 - e^{-t(\beta+\delta)}\right),$$
$$p_t(1,1) = \frac{\beta}{\beta+\delta} + \frac{\delta}{\beta+\delta}e^{-t(\beta+\delta)}, \quad p_t(1,0) = \frac{\delta}{\beta+\delta}\left(1 - e^{-t(\beta+\delta)}\right). \tag{2}$$

- T2. Consider the following stochastic process X(t) on $\{0, 1\}$. If the process is in 0 it stays in this state for an exponential distributed time with parameter β and then jumps to state 1. If the process is in state 1 it stays in this state for an exponential distributed time with parameter δ and the goes to 0. Let $p_t(i, j)$ be the probability that X(t) = j if X(0) = i.
 - (a) Show that

$$p_t(0,1) = \int_0^t \beta e^{-\beta s} p_{t-s}(1,1) \mathrm{d}s$$

and

$$p_t(1,0) = \int_0^t \delta e^{-\delta s} p_{t-s}(0,0) \mathrm{d}s,$$

- (b) Show that the Q-matrix for this process is the same as in (1), so that the transition probabilities for this process are given in (2).
- T3. With the notations used in the lecture in the probabilistic construction of a Markov chain with a given Q-matrix, show that the following statements are equivalent:
 - (a) $\mathbb{P}(N(t) < \infty) = 1$ for all $t \ge 0$.

(b)
$$\sum \tau_n = \infty$$
 a.s.

(c)
$$\sum \frac{1}{c(Z_n)} = \infty$$
 a.s.

 \rightarrow Page 2

Homework exercises:

H1. Let Q be a Q-matrix on a finite state space. Show that $p_t(x, y)$ defined by

$$P_t := \sum_{k=0}^{\infty} \frac{t^k Q^k}{k!}$$

is a transition function and show that

$$q(x,y) = \left. \frac{\mathrm{d}}{\mathrm{d}t} p_t(x,y) \right|_{t=0}$$

- H2. (a) Show that, for any continuous time Markov chain with starting point $x \in S$, the time of the first jump has an exponential distribution (possibly with parameter 0 or ∞).
 - (b) Is this still true for a continuous time Markov chain with random starting point? In other words, for a probability measure π on S, does the first jump of a Markov chain with law \mathbb{P} given by

$$\mathbb{P}(A) := \sum_{x \in S} \pi(x) \mathbb{P}^x(A)$$

have an exponential distribution?

H3. Let (X_n) be a sequence of independent continuous time Markov chains on $\{0,1\}$ with Q-matrices $\begin{pmatrix} -\beta_n & \beta_n \\ \delta_n & -\delta_n \end{pmatrix}$. Assume that $\sum \frac{\beta_n}{\beta_n + \delta_n} < \infty$. Define

$$X(t) := (X_1(t), X_2(t), \dots)$$

and

$$S := \left\{ x \in \{0,1\}^{\mathbb{N}} \mid \sum x_n < \infty \right\} \,.$$

- (a) Show that S is countable and $\mathbb{P}(X(t) \in S \mid X(0) \in S) = 1$.
- (b) Show that $p_t(x, y) := \mathbb{P}(X(t) = y \mid X(0) = x)$ is a transition function on S.
- (c) Assume that, moreover, $\sum \beta_n = \infty$. Show that $c(x) = \infty$ for all $x \in S$.
- (d) Show that, for any $x \in S$ and $\epsilon > 0$,

$$\mathbb{P}^x(X(t) = x \text{ for all } t < \epsilon) = 0.$$

Conclude that there is no Markov chain with transition function p.

Deadline: Tuesday, 28.11.17